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Abstract. Measurements of aerosol optical properties and
aerosol number size distribution obtained during the period
from December 2005 to November 2007 at Granada, an ur-
ban site in south-eastern Spain, are analyzed. Large vari-
ations of the measured variables have been found, and re-
lated to variations in emissions sources and meteorologi-
cal conditions. High values of aerosol absorption and scat-
tering coefficients are obtained during winter and low val-
ues are measured during summer. This seasonal pattern
in the surface aerosol optical properties is opposite to the
seasonal cycle showed by columnar aerosol optical depth.
The differences in the seasonal features of the surface and
column-integrated data are related to seasonal variations in
the aerosol vertical distribution, aerosol sources and bound-
ary layer height. In winter the number density of “fine” par-
ticles (0.5<particle diameter<1µm) is significantly larger
than in summer while the number density of “coarse” par-
ticles (1<particle diameter<20µm) is slightly larger during
summer and spring than during winter and autumn. The
scattering Angstr̈om exponent,αs, presents an evident sea-
sonal cycle with values of 1.8±0.2, 1.6±0.3, 1.3±0.3 and
1.4±0.3 in winter, spring, summer and autumn, respectively.
This suggests the presence of a large fraction of submicron
particles at the site, especially during winter. The aerosols
measured in this study contain a large fraction of absorbing
material as indicated by the average single-scattering albedo
that has values of 0.65±0.07, 0.66±0.06, 0.70±0.06 and
0.73±0.06 in autumn, winter, spring and summer, respec-
tively. The aerosol scattering albedo obtained in the surface
boundary layer of Granada is below the critical value of 0.86
that determines the shift from cooling to warming. These
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results put in evidence the need of efforts to reduce absorb-
ing particles (black carbon) emissions to avoid the possible
warming that would result from the reductions of the cooling
aerosols only. The aerosol absorption and scattering coef-
ficients present a clear diurnal pattern, in all seasons, with
two local maxima, one early in the morning and the second
one in the evening. This diurnal cycle is mainly attributed
to the diurnal evolution of atmospheric boundary layer and
local anthropogenic activities.

1 Introduction

Atmospheric aerosol particles are one of the most variable
components of the Earth’s atmosphere, and are known to
influence the energy budget and climate. Aerosol parti-
cles affect the Earth’s radiative balance and climate directly
by absorbing and scattering solar radiation (Haywood and
Shine, 1997; Forster et al., 2007), and indirectly by acting
as cloud condensation nuclei, changing thus the microphys-
ical properties of clouds (Kaufman et al., 2005; Forster et
al., 2007). Also, aerosol particles play a major role in atmo-
spheric chemistry and so affect the densities of other minor
atmospheric constituents like ozone (Schwartz et al., 1995).
Furthermore, aerosol particles have been implicated in hu-
man health effects (Dockery and Pope, 1996) and visibility
reduction in urban and regional areas (Horvath, 1995).

Aerosol particle types which contribute to the scattering
coefficient include organic particles, water-soluble inorganic
species such as sulphates, nitrates etc. that are produced by
conversion from SO2 and NOx associated mainly with fos-
sil fuel/biomass combustion, and ammonium from fertiliz-
ers and biological sources. In addition, dust and sea salt
may also contribute significantly to the aerosol scattering
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characteristics in certain conditions. In an urban site, black
carbon is the principle particle species that absorbs radia-
tion in the visible spectrum. Black carbon is produced as
primary particles from incomplete combustion processes, in
particular from diesel engines, which are the major source of
black carbon in urban areas (Jacobson, 2001). In addition,
the hematite found in mineral dust is one of the particulate
substances that appreciably contribute to absorption at wave-
length less than 500 nm, but its absorption of visible light is
negligible compared to that of black carbon (Heintzenberg,
1982; Dubovik et al., 2002).

In contrast to the greenhouse gases which only cause
warming, atmospheric aerosol particles, depending on their
composition, can cause either cooling or warming of the at-
mosphere (Hansen et al., 1997). However, despite signif-
icant progress in understanding aerosol effects on climate
there are still significant uncertainties due to the lack of ad-
equate information on the temporal and spatial variability of
aerosol particles and their associated properties across the
globe (Forster et al., 2007). In this sense long range trans-
port events like Saharan dust outbreaks (Lyamani et al., 2005;
Lyamani et al., 2006a; Lyamani et al., 2006b; Guerrero-
Rascado et al., 2009) or global scale events like stratospheric
aerosols following major volcanic eruptions like El Chichón
and Mount Pinatubo (Olmo and Alados-Arboledas, 1995)
represent extreme cases of this variability. Hence, it is im-
portant to monitor aerosol properties across various places
on the Earth, in order to establish a comprehensive picture of
aerosols and their climatic and environmental impacts. Un-
derstanding the influence of atmospheric aerosol on climate,
visibility and photochemistry requires knowledge of their op-
tical and physical properties, such as the light extinction co-
efficient (the sum of the aerosol light scattering and absorp-
tion coefficients), single scattering albedo (ratio of scatter-
ing to extinction coefficients), upscatter fraction (fraction of
incident solar radiation that is scattered upward to space),
and size distribution (e.g. Waggoner et al., 1981; Haywood
and Boucher, 2000; Alados-Arboledas et al., 2003; Alados-
Arboledas et al., 2008).

Measurements of the aerosol absorption coefficient in Eu-
rope are relatively scarce, at least when compared with the
abundance of scattering measurements. Currently, aerosol
light absorption measurements typically show larger un-
certainties than do scattering measurements (Bond et al.,
2006). Thus, it is essential to use a technique that determines
the aerosol absorption coefficient with relatively high accu-
racy. At this time, the Multi-Angle Absorption Photometer
(MAAP) is the most reliable filter-based instrument for con-
tinuous atmospheric aerosol absorption measurements (Pet-
zold and Scḧonlinner 2004; Petzold et al., 2005). The MAAP
simultaneously measures radiation transmitted through and
scattered back from particles deposited on the filter and uses
radiative transfer calculations to determine the aerosol ab-
sorption coefficient to correct for errors that occur in other
conventional instruments (Petzold and Schönlinner 2004).

This explicit treatment of light scattering effects caused by
aerosol and filters matrix improve considerably the determi-
nation of aerosol absorption over other filter based methods,
as demonstrated by comparison with reference method (Pet-
zold et al., 2005; Sheridan et al., 2005). Thus, this instrument
provides aerosol absorption coefficient without further need
for data correction (Petzold and Schönlinner 2004; Petzold
et al., 2005). In this study, we used a MAAP for a better
determination of aerosol absorption coefficient.

In this work we present results on various aerosol opti-
cal and physical variables that were measured at Granada,
Spain, during the period from December 2005 to Novem-
ber 2007. Important aerosol parameters studied at this ur-
ban location include scattering and absorption coefficients,
scattering coefficient spectral dependence, single scattering
albedo, backscattering ratio, aerosol size distributions as well
as columnar aerosol optical depth. Meteorological parame-
ters that influence these aerosol properties, like wind speed
and ambient temperature, are also analyzed. Seasonal and
diurnal variations of these parameters and the influence of
meteorological conditions are also analyzed and explained.

The experimental site is described in Sect. 2. The detailed
descriptions of the instruments and the measurements are
given in Sect. 3. In Sect. 4, the seasonal and diurnal vari-
ations of aerosol properties are interpreted in light of local
anthropogenic activities and meteorological conditions. The
summary of results is given in Sect. 5.

2 Experimental site

The measurements presented in this study were regis-
tered at an urban site, the city of Granada (37.16◦ N,
3.58◦ W, 680 m a.s.l.), from 1 December 2005 to 30 Novem-
ber 2007. Granada, located in south-eastern Spain, is a
non-industrialized medium-sized city with a population of
300 000, that increases up to 600 000 if the whole metropoli-
tan area is considered. The city is situated in a natural basin
surrounded by mountains with elevations between 1000 and
3500 m a.s.l. Near continental conditions prevailing at this
site are responsible for large seasonal temperature differ-
ences, providing cool winters and hot summers. Most rainfall
occurs during spring and winter.

The measuring station is located in the southern part of
the city and is about 500 m away from the highway that sur-
rounds the city and about a similar distance from one of the
principal traffic roads of the city. The local aerosol sources
are mainly the heavy traffic (particularly diesel vehicles) to-
gether with the re-suspension of material available on the
ground, especially during the warm season when the reduced
rainfall and the dryness of the terrain can increase the con-
tribution of local mineral dust. The old part of the city has
rather narrow streets responsible of heavy traffic in some ar-
eas, especially during rush hours. In winter, domestic heating

Atmos. Chem. Phys., 10, 239–254, 2010 www.atmos-chem-phys.net/10/239/2010/



H. Lyamani et al.: Seasonal and diurnal variability 241

(based on fuel oil combustion) represents an additional, im-
portant source of anthropogenic aerosols.

The bowl-like topography of Granada basin and Mediter-
ranean climate favor winter-time inversions and the domi-
nance of very weak wind speeds. This, in combination with
pollutant emissions, can lead to a large accumulation of par-
ticles and thus high particle loads which can cause environ-
mental and human health problems.

3 Instruments and measurements

Air sampling for all the instruments was obtained from the
top of a stainless steel tube, 20-cm diameter and 5-m length
(Lyamani et al., 2008). The inlet is fitted with a funnel and
covered by an insect screen to prevent rain drops and insects
from getting into the sample line. The inlet was located about
15 m above the ground. Measurements were performed with
no aerosol size cut-off and no heating was applied to the sam-
pled air. There is no bend in the tube that passes trough the
rooftop. Several stainless steel pipes located inside the stain-
less steel tube provided sample air to the different instru-
ments. Each of the stainless pipes extracts the appropriate
flow for each instrument. The diameters of stainless pipes
were adjusted to maintain the laminar flow in the tubes and
minimize particle losses (Baron and Willeke, 2005).

Aerosol scattering (σsp) and backscattering coefficients
(σbsp) were measured with an integrating nephelometer (TSI,
model 3563) at three wavelengths 450, 550 and 700 nm.
This instrument draws the ambient air through a temperature-
monitored inlet at a flow rate of 30 l min−1, illuminates the
sample with a halogen lamp and measures scattered light
at 450, 550 and 700 nm using three photomultiplier tubes.
The scattered light is integrated over an angular range of
7–170◦ from the forward direction. Using the backscatter
shutter, this range can be adjusted to either 7–170◦ or 90–
170◦ to give total scatter and backscatter signals. Pressure
and temperature are measured in the scattering chamber and
used to calculate scattering by air molecules, which is then
subtracted from total scattering to determine scattering by
aerosol particles. Calibration of the nephelometer was car-
ried out every three months using CO2 as a high span gas and
filtered air as a low span gas. The averaging time was set to
5 min. The zero signal was measured hourly. Due to Neph-
elometer design limitations, measurements do not cover the
full (0◦–180◦) angular range, and scattering data need cor-
rection (e.g., Anderson and Ogren, 1998; Quirantes et al.,
2008). In this study, non-idealities due to truncation errors
were corrected using the method described by Anderson and
Ogren (1998) that account for the particle-size dependence
of the truncation error through the measured wavelength de-
pendence of light scattering.

The scattering coefficient shows a minimum dependence
on relative humidity (RH) below 50% RH while a sharp in-
crease is evident with RH above 80% (Anderson and Ogren,

1998; Xu et al., 2002). Therefore, even if the particles are
not chemically dry at RH<50% they can be considered dry
from a scattering point of view (Targino et al., 2005). During
the study period the RH measured within the nephelometer
chamber was below 50%. As a result, the light scattering
measurements presented in this study can be considered as
dry.

The aerosol light absorption coefficient,σap, was recorded
with a Multi-Angle Absorption Photometer (MAAP)
(Thermo ESM Andersen Instruments, Erlangen, Germany).
In this instrument, particles are deposited on a quartz fibre
filter. A continuous 670 nm laser illuminates the filter matrix
perpendicularly and simultaneous measurements are made of
radiation penetrating through the filter and the radiation scat-
tered back at two detection angles. In the MAAP, the de-
termination of the aerosol absorption coefficient of the de-
posited aerosol uses radiative transfer calculations and ex-
plicitly includes a treatment of scattering effects from the fil-
ter matrix and the light scattering aerosol component. The
particle-loaded filter is treated as a two-layer system: the
aerosol-loaded layer of the filter and the particle-free filter
matrix. Radiative processes inside the layer of deposited
aerosol and between this layer and the particle-free filter ma-
trix are taken into account separately. The two reflectivity
measurements allow correction for multiple scattering pro-
cesses involving the deposited particles and the filter matrix.
A detailed description of the method is given by Petzold and
Scḧonlinner (2004). The MAAP draws the ambient air at
constant flow rate of 1000 l h−1 and provides 1 min values
that are averaged to 5 min.

At present, the MAAP is the most reliable filter-based
instrument for aerosol absorption coefficient measurements
(Petzold and Scḧonlinner, 2004; Petzold et al., 2005; Sheri-
dan et al., 2005; Hitzenberger et al., 2006). The study
of Petzold et al. (2005) and Sheridan et al. (2005) showed
that the absorption coefficients measured by the MAAP are
in good agreement with those measured by photoacoustic
spectrometry and simultaneous measurement of aerosol ex-
tinction and aerosol scattering. Furthermore, the MAAP
filter-based method does not require calibration for the mea-
surement of the aerosol absorption coefficient and does not
need post-measurement data corrections or parallel measure-
ments of the aerosol light scattering coefficient (Petzold and
Scḧonlinner 2004; Petzold et al., 2005).

Filters based measurements of aerosol light absorption
can experience problems with particulate emissions from
biomass burning or other sources of liquid organic aerosol
(Subramanian et al., 2007). Recent laboratory and field mea-
surements indicate a strong systematic positive bias of the
particle soot absorption photometer in the presence of high
organic aerosol concentration (Lack et al., 2008; Cappa et
al., 2008). Nevertheless, only a 10% systematic bias was
detected for filter based measurements of aerosol absorption
by the Aethalometer in the presence of high concentration of
aerosol organic carbon in Mexico City (Paredes-Miranda et
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Table 1. Summary of daily aerosol properties -Mean, Standard
Deviation (SD), Maximum value and Minimum value- measured
in Granada, Spain, during the period from 1 December 2005 to
30 November 2007.

Parameter Mean±SD Range

σsp(450 nm) (Mm−1) 80±50 15–325
σsp(550 nm) (Mm−1) 60±30 12–234
σsp(700 nm) (Mm−1) 40±20 9–173
α 1.5±0.3 0.3–2.3
σbsp(450 nm) (Mm−1) 11±5 1–34
σbsp(550 nm) (Mm−1) 9±4 1–27
σbsp(700 nm) (Mm−1) 7±3 1–21
βsp(450 nm) 0.13±0.01 0.05–0.17
βsp(550 nm) 0.14±0.02 0.05–0.18
βsp(700 nm) 0.17±0.02 0.06–0.21
σap(670 nm) (Mm−1) 21±10 4–57
ω0A(670 nm) 0.68±0.07 0.49–0.93
N 0.5−20(cm−3) 30±30 2–179

al., 2009). The total method uncertainty for the aerosol light
absorption coefficient inferred from MAAP measurement is
around 12% (Petzold and Schönlinner 2004; Petzold et al.,
2005).

An Aerodynamic Aerosol Sizer (APS-3321, TSI) was
used to measure the particle size distributions and aerosol
concentrations. This instrument is an optical particle counter
that measures particle diameter and aerosol number density,
in real time, in 52 nominal size bins in the aerodynamic di-
ameter range 0.50–20µm by determining the time-of-flight
of individual particles in an accelerating flow field. The APS
can measure number densities up to 1000 particles/cm3 at 0.5
and 10µm diameters with coincidence errors inferior to 5%
and 10%, respectively. The minimum and maximum num-
ber densities that this instrument can measure are 0.001 and
10 000 particles/cm3, respectively. For solid particles, count-
ing efficiencies range from 85% to 99% (Volcken and Peters,
2003). The APS was operated at flow rate of 5 l min−1 and
an averaging time of 5 min.

The columnar aerosol optical depth,δa, was retrieved us-
ing a CIMEL CE-318 sunphotometer (Holben et al., 1998).
This instrument has a full view angle of 1.2◦ and is equipped
with 8 interferential filters and a temperature sensor for the
temperature correction of the signal for temperature depen-
dent channels. This instrument makes direct sun measure-
ments at 340, 380, 440, 500, 670, 870, 940 and 1020 nm
(nominal wavelengths). The direct sun measurements are
then used to retrieve the aerosol optical depth at each wave-
length except for 940 nm, which is used to compute total pre-
cipitable water (Lyamani et al., 2006a). For removing cloud
contaminated measurements we have used the cloud screen-
ing method developed by Smirnov et al. (2000). Periodi-

cally Langley plots at high location in Sierra Nevada Range
(2200 m a.s.l.) have been made to determinate the calibration
constants for this instrument. The calibration measurements
were carried out on completely cloud free days, with low and
stable aerosol concentration. The total uncertainty in aerosol
optical depth is<±0.02 (Estelĺes et al., 2006).

Meteorological variables, including wind speed and tem-
perature, used in this study were measured by an automatic
weather station at the sampling site. The wind velocity was
measured, at the same height of the sampling inlet, by a wind
monitor model 05103 (R. M. Young Company) and the tem-
perature was recorded by temperature sensor model MTH-
A1 (ITC). The error in temperature measurements is 0.4◦C
over the range−40◦C to +110◦C and the error in wind ve-
locity is 0.3 m/s over the range 1 to 60 m/s. Meteorological
data were recorded as 1 min averages, and subsequently pro-
cessed to hourly means.

Source regions responsible of special aerosol events can
be detected by performing a backward trajectory analysis.
To characterize the transport pathways of air masses arriving
at our study area and to detect the aerosol source regions re-
sponsible of some aerosol episodes in the study area, 5-day
backward trajectories ending at 12:00 UTC at Granada for
500, 1500 and 3000 m above ground level were calculated
using the HYSPLIT model (Draxler and Rolph, 2003). The
model version employed uses CDC1 Meteorological data
and includes vertical wind.

4 Results and discussions

4.1 Seasonal Aerosol properties variations

4.1.1 Aerosol scattering absorption coefficients and
aerosol number density

The temporal evolutions of daily average values of the
aerosol scattering coefficient at 450, 550 and 700 nm and
aerosol absorption coefficient at 670 nm measured during the
period from December 2005 to November 2007 are shown in
Fig. 1a and b, respectively. Table 1 presents a statistical sum-
mary of daily average aerosol optical properties measured
during the entire study period. There is significant day-to-
day variability in aerosol scattering and absorption coeffi-
cients. The daily average values ofσsp (550 nm) range be-
tween 12 and 234 Mm−1 with a mean and standard devia-
tion for the entire period of 60±30 Mm−1 while the daily
average values of the absorption coefficient at 670 nm vary
from 4 to 57 Mm−1, averaging 21±10 Mm−1. Like σsp and
σap, the backscattering coefficient at 550 nm,σbsp (550 nm),
presents high variability ranging from 1 to 27 Mm−1 with a
mean value of 9±4 Mm−1 for the entire period.

The lowestσsp (12 Mm−1 at 550 nm) andσap (4 Mm−1 at
670 nm) values are recorded on the same day on 19 Febru-
ary 2006 and are associated with a rain event. This is not
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Fig. 1. Evolution of daily mean values of(a) aerosol scattering
coefficient at 450, 550 and 700 nm and(b) aerosol absorption coef-
ficient at 670 nm, obtained at Granada during the period from De-
cember 2005 to November 2007.

surprising since precipitation scavenging is one of the most
important atmospheric removal mechanisms of aerosol par-
ticles. In addition, air backward trajectory analysis shows
that air masses reaching our study area on 19 February 2006
had originated in the Atlantic Ocean (Fig. 2a). In general,
Atlantic advection with associated rain cleans the urban at-
mosphere and as consequence causes a large decrease inσsp
andσap values. Pereira et al. (2008) also reported the lowest
σsp values (below 20 Mm−1) at Evora, Portugal, under these
conditions. The largestσsp (234 Mm−1 at 550 nm) andσap
(57 Mm−1 at 670 nm) are observed on 16 January 2007 and
12 December 2006, respectively, and are linked to long range
transport from North Africa (Fig. 2b and c). These results
show the strong influence of mineral dust transported from
North Africa on aerosol properties measured at Granada.

To analyze the seasonal variations of aerosol optical prop-
erties and the influencing factors at the study area, all data
have been grouped in four seasons: winter (from December
to February), spring (March to May), summer (June to Au-
gust) and autumn (September to November). In Fig. 3a and b
we show the seasonal variations ofσsp andσap averaged over
all data available from December 2005 to November 2007.

Fig. 2. 5-day backward trajectories ending at 12:00 UTC at Granada
at 500, 1500 and 3000 m above ground level for(a) 19 Febru-
ary 2006,(b) 16 January 2007 and(c) 12 December 2006.
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Fig. 3. Seasonal variations of(a) aerosol scattering coefficient
at 450, 550 and 700 nm and(b) aerosol absorption coefficient at
670 nm, averaged over all data available from December 2005 to
November 2007. The error bars are standard deviations.

The error bars are standard deviations. The seasonal average
data are calculated from daily average data.

The largest values of scattering coefficients are obtained in
winter (σsp (550 nm)=90±40 Mm−1) while the lowest values
are measured in summer (σsp (550 nm)=50±23 Mm−1). The
aerosol absorption coefficient shows a similar seasonal varia-
tion. Thus, the largest average aerosol absorption coefficient
corresponds to winter (30±12 Mm−1) while the lowest value
has been obtained in summer (14±5 Mm−1), thereby indicat-
ing larger near-surface aerosol loading during winter than in
summer. As can be seen in Fig. 4a and b, the two annual
cycles analyzed present similar seasonal variation ofσsp and
σap.

The standard deviations ofσsp andσap are largest during
winter and lowest during summer, thus indicating a strong
day to day variability in aerosol scattering and absorption co-
efficients during winter. This effect can be related to the vari-
able meteorological conditions that alternate between stable
anticyclonic situations, that favor trapping of particles near
the surface, and the influence of frontal system, that coming
from the Atlantic clean the air trough advection and/or wet
deposition processes. The lowest daily variations of aerosol
scattering and absorption coefficients in summer are likely

Fig. 4. Seasonal variations of(a) aerosol scattering coefficient
at 450, 550 and 700 nm and(b) aerosol absorption coefficient
at 670 nm obtained at Granada from December 2005 to Novem-
ber 2007. The error bars are standard deviations.

associated to the scarcity of rain events and the relatively less
variable meteorological conditions during this season.

Winter mean aerosol scattering coefficient is larger than
the summer average by a factor of 1.7 while winter mean
aerosol absorption coefficient is larger than the summer
counterpart by 2.1. In this way, it is evident that during win-
ter the density of absorbing particles experiences a larger in-
crease than that of pure scattering particles.

Figure 5a shows the seasonal variation of near surface
aerosol number density (N 0.5−20) in the aerodynamic di-
ameter range 0.5–20µm, obtained by the APS, for both
years. Measurements of aerosol number density presents a
gap in autumn 2006 (between early September and the end of
November) due to technical problems. For the available mea-
surement period, daily mean values ofN 0.5−−20 vary from
2 cm−3 to 179 cm−3 with an average value of 30 cm−3. The
observed seasonal variation in aerosol number density is al-
most similar to that observed forσsp andσap (Figs. 4 and 5a).
Large values of aerosol number density are obtained during
winter months (4–179 cm−3) while low values are measured
during summer months (3–69 cm−3).
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Aerosol number densities measured separately in 52 dif-
ferent size bins in the aerodynamic diameter range 0.5–
20µm by APS have been further classified into two cat-
egories, namely, “coarse” particles,N 1−20, with aerody-
namic diameters ranging between 1 and 20µm and the “fine”
particles,N 0.5−1, with aerodynamic diameters ranging be-
tween 0.5 and 1µm. Coarse particles over land are mainly
dust particles produced by wind blowing over land surfaces,
particularly under dry conditions and in the presence of re-
duced vegetation cover, whereas fine particles are mainly
produced by condensational growth and coagulation of nu-
cleation mode aerosols (Seinfeld and Pandis, 1998). Fig-
ure 5b and c show the seasonal variation ofN 0.5−1 and
N 1−20. Large values ofN 0.5−1 are observed during win-
ter and low values during summer and autumn, with a sea-
sonal pattern similar to those associated to aerosol scatter-
ing and absorption coefficients. In contrast, the number den-
sity of coarse particles shows the opposite pattern with values
slightly larger during summer and spring.

The large values ofσsp, σap, N 0.5−20 andN 0.5−1 mea-
sured during winter months can be explained by the com-
bination of meteorological conditions and increased anthro-
pogenic activities. Thus, in winter domestic heating (based
on fuel oil combustion) contributes to increase the aerosol
particles densities, especially fine particles densities, in the
atmosphere, with greater impact on the absorbing particles
densities. Furthermore, during winter the boundary layer
is in general shallow as result of the reduced solar heating
and the slightly low wind speeds. This leads to the confine-
ment of particles near the surface and therefore to the in-
crease in the values ofσsp, σap, N 0.5−20 andN 0.5−1. In
summer, lower values ofσsp, σap andN 0.5−20 andN 0.5−1
could be explained both by the absence of the domestic heat-
ing contribution and the enhanced thermal convection (due
to the strong insolation). In this way, the vertical develop-
ment of the planetary boundary layer (PBL) increases trans-
port of air pollutants from surface aloft and thus reduces the
aerosol load near surface and hence the values ofσsp, σap
andN 0.5−20 andN 0.5−1. On other hand, the slightly larger
wind speeds prevailing in this area in summer and spring,
associated with the soil aridity during this particular period,
provide a substantial dust loading from local soils to the at-
mosphere. On the contrary, in winter the soil is less dry than
in summer and so the availability of loose soil to be lifted by
wind becomes less. These factors may explain whyN 1−20
is slightly larger in summer and spring than in winter.

Saha et al. (2008) reported similar seasonal variations
of aerosol scattering and absorption coefficients at an ur-
ban costal site, Toulon, France, where the largest values
of σsp and σap were observed in winter and the lowest
values in summer. In addition, the mean value ofσsp
(61±31 Mm−1 at 550 nm) observed at Granada is similar to
theσsp(525 nm)=60 Mm−1 obtained at this urban costal site
during 2005–2006 (Saha et al., 2008) and is almost compa-
rable to those obtained in northern Greece (65±31 Mm−1)

Fig. 5. Seasonal variations of number density for(a) particles in the
aerodynamic diameter range (0.5–20µm), (b) “fine” particles (0.5–
1µm) and(c) “coarse” particles (1–20µm) measured at Granada
during the period from December 2005 to November 2007. The
error bars are standard deviations.
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and Sede Boker, Israel (60±31 Mm−1) by Gerasopoulos et
al. (2003) and Derimian et al. (2006), respectively. However,
our σsp average value is relatively larger than the average
values measured by Pereira et al. (2008), at Evora, Portu-
gal (46 Mm−1), and by Vrekoussis et al. (2005), in remote
areas of Greece and Turkey (50 and 45 Mm−1). Neverthe-
less, the measuredσsp values at Granada are lower than those
obtained in highly polluted areas in US (Greenwald et al.,
2007; Carrico et al., 2003) and are much smaller than those
observed in large urban areas in Asia (Bergin et al., 2001;
Andreae et al., 2008; Garland et al., 2008; Ganguly et al.,
2006). These results indicate that Granada aerosol scattering
coefficient values are typical of moderately polluted urban
areas.

The aerosol absorption coefficient values obtained at
Granada in summer (5–28 Mm−1) are similar to those ob-
tained by a MAAP (the same instrument used in this study)
during summer 2002 in Vienna (population 1.8 million)
which ranged from 8–30 Mm−1 (Hitzenberger et al., 2006).
In addition, the mean value ofσap (21±10 Mm−1) ob-
served at Granada is also comparable to the values ofσap of
22 Mm−1 obtained at the urban costal Toulon, France during
2005–2006 (Saha et al., 2008). However, the summer mean
aerosol absorption coefficient (14±5 Mm−1) obtained in the
present study is larger than the mean value of 8±6 Mm−1

measured by Greenwald et al. (2007) in Atlanta during 2004
summer, likely as a result of the large percentage of diesel
vehicles in Granada compared to Atlanta. These results in-
dicate that Granada aerosol absorption coefficient values are
typical of relatively polluted urban areas, indicating a high
concentration of absorbing aerosol types.

4.1.2 Scattering Angstr̈om exponent, aerosol single
scattering albedo and backscattering ratio

To determine the wavelength dependence ofσsp we calcu-
lated the scattering Angström exponentαs associated with
the scattering coefficient according to the following formula:

αs= −ln[σsp(700)/σsp(450)]/[ln(700/450)]

The Angstr̈om exponent is an intensive parameter that de-
pends on the aerosol size distribution – but not on the aerosol
density – and that increases with decreasing particle size. For
situations where scattering is dominated by particles of less
than 1µm diameter (fine), the Angström exponent has val-
ues around 2; it takes on values close to 0 when scattering
is dominated by (coarse) particles larger than few microns in
diameter (Seinfeld and Pandis, 1998).

The seasonal averagedαs values are of 1.8±0.2, 1.6±0.3,
1.3±0.3 and 1.4±0.3 during winter, spring, summer and au-
tumn, respectively. These large values ofαs indicate dom-
inance of fine particles at the site study during all seasons
and that the fine particles fraction increases in winter, an
observation supported by measurements of aerosol size dis-
tribution with the APS. The mean daily values of the ra-

tio N 0.5−1/N 1−20 – representing the relative abundance of
“fine” particles over “coarse” particles – are in the range 4–
140 with a mean value of 40±20 in winter months and vary
between 2 and 64 with a mean of 9±8 in summer. This large
difference between summer and winter can be attributed to
the increase in anthropogenic emissions (domestic heating)
with greater impact on the fine particle densities. Also, dur-
ing summer the contribution of large particles increases due
to local dust and slightly larger wind speeds.

As scattering and absorbing particles are present together
in the atmosphere, their direct effect in terms of cooling or
warming of the atmosphere depends on the single scattering
albedo,ω0A, of the mixture of particles, which is the ratio of
the scattering to the extinction coefficients of aerosol. Purely
scattering particles (e.g. sulphates) exhibit values ofω0A=1,
while very strong absorbers (e.g. black carbon) can have val-
ues of 0.2 (Schnaiter et al., 2003). In this study, we calculated
the single scattering albedo at 670 nm fromσspat 670 nm, de-
rived from nephelometer measurements using the Angström
exponent, andσap at 670 nm measured by the MAAP.

The seasonal averagedω0A (670 nm) values for the entire
period are 0.65±0.07, 0.66±0.06, 0.70±0.06 and 0.73±0.06
during autumn, winter, spring and summer, respectively.
The low values ofω0A (670 nm) obtained during autumn
and winter indicate an increase in the fraction of absorb-
ing particles during these seasons, that can be related to
the increase in anthropogenic activities (associated with do-
mestic heating based on fuel oil combustion) during this
period of the year, with greater impact on the absorb-
ing particle densities. The single scattering albedo val-
ues obtained in Granada are similar to the mean value of
0.68±0.07 obtained by Eidels-Dubovoi (2002) at Pedre-
gal site in Mexico City. Nevertheless, the single scatter-
ing albedo measured in Granada is lower than those ob-
tained in Marseille, France, (0.85±0.05), Toulon, France,
(0.73±0.07 to 0.79±0.07), Atlanta (0.87±0.08), Beijing,
China, (0.81±0.08) and Guangzhou, China, (0,82±0.05) by
Mallet et al. (2003), Saha et al. (2008), Carrico et al. (2003),
Bergin et al. (2001) and Andreae et al. (2008), respectively.
The lower values of single scattering albedo in an urban area
are generally related to black carbon, although dust can also
contribute to aerosol light absorption (Bohren and Hoffman,
1983; Horvath, 1998). Thus, the lower scattering albedo at
Granada reflects the greater relative importance of light ab-
sorbing particles and indicates that Granada’s aerosols con-
tain a large fraction of absorbing particles. As we mentioned
before the extended use diesel vehicles and domestic heat-
ing based on fuel oil combustion during winter in Spain can
be the cause of this increased absorption component of the
atmospheric aerosols.

Aerosol scattering albedo is one of the key properties
determining the effect of aerosol particles on the climate.
Hansen et al. (1997) suggest that the effect of aerosol could
shift from cooling to warming if the single scattering albedo
goes bellow a critical value that they estimated as 0.86.
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According to our analyses, the aerosol single scattering
albedo retrieved in the surface boundary layer of Granada
is below this critical value in all seasons. Thus, suggesting
a possible local warming effect of the aerosol in the surface
boundary layer (Ramanathan et al., 2007). In addition, heavy
aerosol loading and strong aerosol absorption may result in
regional and global climate changes (Xu et al., 2001; Ra-
manathan et al., 2001, Ramanathan and Carmichael, 2008).
This put in evidence the complexity of the aerosol contribu-
tion to climate. It is obvious that efforts to reduce the emis-
sions of sulphate and secondary organic aerosol precursors
must be combined with reductions in the emission of black
carbon, to avoid the accelerated warming that would result
from the removal of the cooling aerosols only.

We calculated the backscatter ratio (βsp) ratio as
σbsp(550 nm)/σsp(550 nm). The seasonal averaged
βsp(550 nm) values for the entire period are 0.14±0.02,
0.14±0.01, 0.14±0.02 and 0.14±0.01 during autumn,
winter, spring and summer, respectively. Opposite to the
previously analyzed aerosol properties,βsp do not show
any significant seasonal pattern. This implied thatβsp
is not sensitive to seasonal factors like meteorology and
changing source emissions. This finding is similar to
that of Aaltonen et al. (2006) at Pallas, a remote site in
Northern Finland, where they showed that the scattering and
backscattering coefficients have a clear seasonal variation
while the backscattering ratio does not show a consistent
seasonal pattern. Also, Bryant et al. (2006) showed that the
backscattering ratio obtained at Finokalia, a remote costal
site on the Greek island of Crete, exhibited little variability
between July 2000 and January 2001. The mean backscatter
ratio values obtained in the present study are comparable
to the value of 0.13±0.02 Mm−1 obtained by Andreae et
al. (2002) in Sde Boker (Israel), under continental pollution
conditions.

4.1.3 Columnar aerosol optical depth and Angstr̈om
exponent

The seasonal variations of columnar aerosol optical depth,
δa(λ), for all the wavelengths measured over the entire pe-
riod of our study from December 2005 to November 2007
are shown in Fig. 6. The error bars are standard deviations.
The seasonal average data are calculated from daily aver-
age data. The Angström exponent,αc, is calculated in the
spectral interval 440–870 nm. The columnar aerosol optical
depth at all wavelengths is larger in summer (0.23±0.10 at
440 nm) and lower in winter (0.16±0.08 at 440 nm), thereby
indicating larger columnar aerosol loading in summer than
in winter. The seasonal averagedαc values for the entire
period are 1.0±0.4, 1.4±0.2, 1.1±0.4 and 0.8±0.4 during
autumn, winter, spring and summer, respectively, indicating
dominance of fine particles during winter and an increase in
the contribution of coarse particles during summer months.
It is interesting to note that the seasonal variation showed

Fig. 6. Seasonal variations of columnar spectral aerosol optical
depth for whole data set obtained at Granada from December 2005
to November 2007. The error bars are standard deviations.

by δa(λ) is opposite to those shown for the case of surface
aerosol properties (σsp, σap andNT ) which presented larger
values during winter and lower values during summer.

Differences in the seasonal features of surface versus
columnar-integrated data can be related to seasonal varia-
tion in the aerosol vertical distribution, aerosol sources and
meteorological factors. Due to its location in the Mediter-
ranean basin, Granada is frequently affected by intrusions
of Saharan dust. At Granada, most of these Saharan dust
outbreaks occur in summer at high altitudes in the atmo-
sphere (Alados-Arboledas et al., 2007a, b; Guerrero-Rascado
et al., 2008) causing marked particles load in the free tro-
posphere and therefore increasing columnar aerosol optical
depth (Lyamani et al., 2005, 2006a; Alados-Arboledas et al.,
2007b). At the same time, forest fires represent an addi-
tional source of aerosol particles during summer (Lyamani
et al., 2006a). Recent observations at the site study have in-
dicated that the transport of forest fire plumes occur at high
altitude (Guerrero-Rascado et al., 2005; Alados-Arboledas et
al., 2007b, Ṕerez Raḿırez et al., 2008). Thus, the advection
of Saharan dust and/or biomass burning aerosols to Granada
may results in larger particles loading aloft in summer than
in winter. Also, seasonal differences in surface and column-
integrated data may be related to the difference in the atmo-
spheric boundary layer height. In this sense, summer convec-
tive activity increases the particles load aloft while reducing
the aerosol load near the surface layer.

4.2 Diurnal variations of aerosol properties

4.2.1 Aerosol scattering and absorption coefficients

The study of diurnal variations can offer further insight
into the underlying processes that control the evolution of
aerosol properties in Granada, including aerosol formation
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Fig. 7. Seasonal diurnal variations of(a) σsp(550 nm) and(b)
σap(670 nm) averaged over all data available from December 2005
to November 2007.

mechanisms. Furthermore, a detailed examination of diurnal
trends can help to identify local and regional sources. This
source identification is useful to develop local and regional
strategies to minimize air pollution for health and climatic
reasons.

Figure 7 shows the seasonal diurnal variations of
σsp(550 nm) andσap(670 nm) averaged over all data avail-
able from December 2005 to November 2007. Graphical
representation of the standard deviations of the mean is not
shown to facilitate better visualization of the data. During all
seasons, there are clear diurnal patterns inσsp(550 nm) and
σap(670 nm), with two maxima and minima within a day.
Both parameters reach high values in the morning between
08:00 and 11:00 GMT (local time minus one hour in win-
ter or two hours in summer); thereafter they slowly decrease
to reach minimum values in the afternoon around 15:00–
16:00 GMT. In the eveningσsp andσap increase and reach
secondary peak values around 19:00–21:00 GMT in winter
and autumn and around 21:00–24:00 GMT hours in summer
and spring. Thereafter,σsp andσap decrease slowly to attain
minimum values late at night 04:00–05:00 GMT.

Fig. 8. Seasonal diurnal variations of(a) ambient surface tempera-
ture and(b) wind speeds averaged over all data available from De-
cember 2005 to November 2007.

These diurnal cycles are typical of urban areas (Horvath
et al., 1997) and are likely due to variations in diurnal local
anthropogenic activities, removal mechanisms and local me-
teorological conditions. The mean daily patterns of ambient
surface temperature and wind speeds for different seasons of
the year are shown in Fig. 8. Aerosol density is affected by
the stability of the boundary layer, which is stable at night
due to the surface cooling and more active during day due
to increased solar heating (Navas-Guzmán et al., 2007). The
boundary layer generally increases after sunrise as result of
increasing solar heating, which results in mixing of clean air
from above with the polluted air below. Therefore, aerosol
density at surface decreases gradually due to the transport
of aerosols from surface to higher levels in the atmosphere.
Moreover, the increase in wind speed enhances atmospheric
diffusion and consequently can reduce the aerosol density
(Horvath et al., 1989).
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The large values ofσsp and σap measured early in the
morning can be attributed to the intense emissions due to
traffic during the morning rush hours. Furthermore, the low
wind speeds (Fig. 8) and low solar heating early in the morn-
ing favor a rather low boundary layer height that cause a large
particle loading near the surface and therefore high values of
σsp andσap.

The subsequent slow decrease inσsp and σap after the
morning peak can be associated with the gradual increase in
solar heating (Fig. 8) and convective activity which can en-
hance vertical particle diffusion and decrease the surface par-
ticle load. Moreover, this decrease inσsp andσap can be re-
lated both to the gradual increase in the wind speeds (Fig. 8),
which help the diffusion of particles in the atmosphere, and
to the decrease in anthropogenic emissions (reduction of traf-
fic).

The increase inσsp andσap late in the evening can be ex-
plained by the evening traffic peak and the reduction in both
boundary layer height and wind speed. Around 23:00 GMT
traffic decreases drastically leading to large reductions in pol-
lutant emissions and giving rise to minima inσsp andσap late
in the night, between 04:00–05:00 GMT.

On other hand, the scattering and absorption coefficients
of the late evening peaks are lower than those of the morning
peaks because the boundary layer height is typically lower
in the morning than late in the evening. Furthermore, wind
speeds are relatively lower in the morning than in the evening
(Fig. 8). Andreae et al. (2008), in their study conducted
in the area of Guangzhou, have shown that the scattering
and absorption coefficients present an evident diurnal cycle,
with two maxima and minima within a day. They have de-
tected that the scattering and absorption coefficients for the
late evening peaks were higher than those for the morning
peaks, due to the night-time truck traffic emissions, as result
of Guangzhou local traffic regulations.

Furthermore, in all seasons, the morning peak is partic-
ularly pronounced forσap. In fact, in all season,σap show
substantial increases by factor of approximately 4 from late
night minima to early morning maxima, whileσsp increases
by factor of approximately 2. This result indicates that local
sources have a larger impact on the aerosol absorbing mate-
rial than pure aerosol scattering particles. The pronounced
morning peak forσap in all seasons can be explained by the
large black carbon fraction contained in fresh combustion
aerosols from diesel vehicles (Ruellan and Cachier, 2001).

It is interesting to note that in winter, spring and autumn
the morning and evening maximum values ofσap occur ap-
proximately one hour earlier than those ofσsp. Some hy-
pothesis could be suggested to explain these results. The de-
lay in the scattering peak could be considered a result of the
time required for secondary particle formation in the atmo-
sphere whereas the early absorption peak could be attributed
to primary particles (black carbon) from traffic emissions
during rush hours. Furthermore, summer morning maxima
in scattering and absorption coefficients are almost coinci-

Fig. 9. Seasonal diurnal variation of scattering Angström exponent
averaged over all data available from December 2005 to Novem-
ber 2007.

dent. Summer dust re-suspension associated to traffic, that
is an important source of scattering particles, could be sug-
gested as a possible explanation of this result.

4.2.2 Scattering Angstrom exponent and aerosol
scattering albedo

Figure 9 shows the seasonal diurnal cycles of hourly-average
αs for the different seasons. As a common feature, all seasons
present a clear diurnal pattern of the scattering Angström
exponent, with large values at night and minimum values
in coincidence with the morning and late afternoon traffic
rush hours. During rush hours, vehicles emit fresh pollutants
which are small in size, but also enhance re-suspension of
road dust (large particles) into the air. Other urban studies
in the Mediterranean like the one developed by Pey (2007)
in the metropolitan area of Barcelona, Spain, have evidenced
that during the morning and afternoon traffic rush hours there
is an evident increase of the number density of both fine and
coarse particles. This can explain the increased fraction of
micrometric particles (minimum values ofαs) during morn-
ing and afternoon rush hours. In summerαs presents more
pronounced afternoon minima in coincidence with the max-
ima in surface temperature and wind speed (Fig. 8). The high
wind speed and the intense convective dynamics, in associa-
tion with the aridity of the soils that characterizes this season,
provide a high mineral dust loading to the atmosphere from
local soils. This can explain the increased fraction of large
particles in summer afternoons.

Figure 10 shows the average diurnal variation of single
scattering albedo at 670 nm for the different seasons. For all
seasons, the single scattering albedo shows an evident diur-
nal pattern with two minima, one in the morning and one in
the evening, and two maxima in the afternoon and the night.
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Fig. 10. Seasonal diurnal variation of single scattering albedo at
670 nm averaged over all data available from December 2005 to
November 2007.

The daily cycle of the single scattering albedo is determined
by daily variations in the aerosol scattering and absorption
coefficients. Thus, the observed daily variations of the sin-
gle scattering albedo, in all seasons, are due to the phase
difference between daily cycles ofσsp andσap. This phase
difference arises from differences in the formation processes
of the absorbing and scattering aerosol particles. Absorb-
ing aerosol particles, like black carbon, are emitted directly
to the atmosphere, while the majority of scattering aerosol
particles, like sulphates and nitrates are secondary aerosols
formed by gas-to-particle conversion processes. Thus, while
absorbing aerosols (black carbon) are emitted directly by ve-
hicles, the formation of secondary aerosols takes more time
(Pey, 2007).

In all seasons, the single scattering albedo reaches mini-
mum morning values at 08:00 GMT. These lower values of
ω0A(670 nm) indicate a greater relative importance of light-
absorbing particles during rush hours and the importance of
traffic emissions. After 08:00 GMT,ω0A increases gradually
to reach maximum values in the afternoon around 15:00–
16:00 GMT, depending on the season. These high after-
noon values ofω0A(670 nm) reveal relative increases in con-
tribution by scattering aerosol types. Several hypotheses
could be considered to explain these results. By one hand
we could consider the relative continuous formation of sec-
ondary aerosols and the relative decrease in black carbon
concentration, and hence in aerosol absorption, due to the
decreased traffic level. The same effect could be produced
if regional aerosol were advected into the urban area. After
reaching a maximum,ω0A starts to decrease rather slowly
to reach a second minimum around 19:00–20:00 and 21:00–
22:00 GMT in winter/autumn and spring/ summer, respec-
tively. This shift in the evening minima is due to the fact
that the people stay out later in summer/spring when days
are longer and meteorological conditions favour outdoor ac-
tivities.

5 Conclusions

In this study we have investigated aerosol physical and op-
tical properties in an urban area, Granada, from Decem-
ber 2005 to November 2007. This has been achieved by
analyzing aerosol scattering and backscattering coefficients,
aerosol absorption coefficient, aerosol size distributions in
the 0.5–20µm aerodynamic diameter range, wavelength de-
pendency in aerosol scattering, aerosol scattering albedo, and
backscattering ratio as well as columnar aerosol optical depth
and Angstr̈om exponent.

All aerosol parameters are widely variable as a result
of the variability in meteorological conditions and emis-
sions sources. The values of aerosol properties obtained
in this study are similar to those obtained in other ur-
ban areas, but with relatively large aerosol absorption co-
efficient values, likely due to the large contribution of
diesel engines in the vehicle fleet in the study area. The
aerosol scattering and absorption coefficients show a clear
seasonal pattern with maxima in winter. Largest val-
ues of scattering coefficients are obtained during winter
(σsp(550 nm)=90±40 Mm−1) while lowest values are mea-
sured during summer (σsp(550 nm)=50±23 Mm−1). Win-
ter and autumn present larger aerosol absorption coefficient
than the other season, the largest mean seasonal value cor-
respond to winter (30±12 Mm−1), while the lowest value is
associated to summer (14±5 Mm−1). These results indicate
the presence of larger near-surface absorbing and scattering
aerosols loading during winter than during summer. This
seasonal cycle is opposite to the seasonal cycle shown by
columnar aerosol optical depth, which exhibit larger values
during summer (0.23±0.10 at 440 nm) than during winter
(0.16±0.08 at 440 nm). This difference evidences seasonal
variations in the aerosol vertical distribution associated to the
atmospheric boundary layer seasonal cycle and to the sea-
sonality of the sources of aerosol particles and of the mecha-
nisms responsible of atmospheric transport from medium and
large scales.

Large values of aerosol number density,N 0.5−20, in the
aerodynamic diameter range of 0.5–20µm are obtained dur-
ing winter months (varying from 4 to 179 cm−3) while low
values are measured during summer months (ranging be-
tween 3 and 69 cm−3). Large values ofσsp, σap andN 0.5−20
measured during winter can be explained by the combined
effect of several factors including boundary layer dynamics
and increased anthropogenic activities (domestic heating).
The number density of “fine” particles,N 0.5−1, is signifi-
cantly larger in winter than in summer. In contrast, the num-
ber density of “coarse” particles,N 1−20, is slightly larger in
summer than in winter.

The scattering Angström exponent,αs, presents average
values of 1.8±0.2, 1.6±0.3, 1.3±0.3 and 1.4±0.3 during
winter, spring, summer and autumn, respectively. This in-
dicates dominance of fine particles at the study site during
all seasons, and that the proportion of fine particles increases
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in winter while that of coarse particles increases in summer.
These observations are supported by the aerosol size distri-
bution measurements by the spectrometer APS. The mean
daily values of the ratioN 0.5−1/N 1−20, which represents
the relative abundance of “fine” aerosols over “coarse” par-
ticles, are in the range 4–140 with a mean value of 40±20
in winter months, while in summer they vary between 2 and
64 with a mean of 9±8 in summer months. This large dif-
ference between summer and winter is attributed to seasonal
differences in aerosol particle sources. Thus, in winter the in-
creases in anthropogenic emissions (domestic heating) has a
larger impact on the fine particles, while the re-suspension of
local mineral particles due to anthropogenic activities and the
long-range transport of mineral particles from North Africa
during the dry season affect mainly the coarse fraction.

The aerosols measured in our urban station, located close
to main traffic arteries, and thus heavily affected by traffic,
contain a large fraction of absorbing material. The average
single-scattering albedo values of 0.65±0.07, 0.66±0.06,
0.70±0.06 and 0.73±0.06 obtained during autumn, winter,
spring and summer, respectively, indicate that about 27–35%
of the aerosol light extinction is accounted for by absorp-
tion. In this sense, the aerosol scattering albedo obtained in
the surface boundary layer at our station is below the crit-
ical value of 0.86 that determines the shift from cooling to
warming. These results put in evidence the need of efforts to
reduce absorbing particles (black carbon) emissions to avoid
the possible warming that would result from the reductions
of the cooling aerosols only.

A clear diurnal pattern is observed in all seasons for both
σap andσsp, with two local maxima occurring early in the
morning and late in the evening. This diurnal cycle is mainly
attributed to the diurnal evolution of atmospheric boundary
layer and to local anthropogenic activities.

During all seasons, the scattering Angström exponent
presents clear diurnal pattern with large values at night and
minimum values during morning and evening traffic rush
hours. However, during summerαs presents more pro-
nounced afternoon minimum, which indicate significant con-
tribution of large particles during this time. This pronounced
minimum is coincident with maximum in surface tempera-
ture and wind speed. During all seasons, the single scattering
albedo shows an evident diurnal pattern, with two minima in
the morning and late evening, and two maxima in the after-
noon and the night, indicating a greater relative importance
of light-absorbing articles during traffic rush hours and the
importance of traffic emissions.
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zer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima,
T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET –A
federated instrument network and data archive for aerosol char-
acterization, Remote Sens. Environ., 66(1), 1–16, 1998.

Horvath, H., Habenriech, T.A., Kreiner, I., Norek, C.: Temporal and
spatial variations of the Vienna aerosol, Sci. Total Environ., 83,
127–159, 1989.

Horvath, H.: Estimation of the average visibility in central Europe,
Atmos. Environ., 29, 241-246, 1995.

Horvath, H., Catalan, L., and Trier, A.: A study of aerosol of San-
tiago de Chile III: Light absorption measurements, Atmos. Env-
iron., 31, 3737–3744, 1997.

Horvath, H.: Influence of atmospheric aerosols upon the global ra-

Atmos. Chem. Phys., 10, 239–254, 2010 www.atmos-chem-phys.net/10/239/2010/

http://www.arl.noaa.gov/ready/ hysplit4.html
http://www.atmos-chem-phys.net/8/5161/2008/
http://www.atmos-chem-phys.net/3/2025/2003/
http://www.atmos-chem-phys.net/9/8453/2009/


H. Lyamani et al.: Seasonal and diurnal variability 253

diation balance, in atmospheric particles, edited by: Harrison, R.
M. and van Grieken, R., 543–596, John Wiley, Hoboken, N. J,
1998.

Jacobson, M. Z.: Strong radiative heating due to the mixing state
of black carbon in atmospheric aerosols, Nature, 409, 695–697,
2001.

Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich,
Y.: The effect of smoke, dust, and pollution aerosol on shallow
cloud development over the Atlantic Ocean, Proceedings of the
National Academy of Sciences of the United States of America,
102(32), 11207–11212, 2005.

Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P.,
Sierau, B., Bates, T. S., Quinn, P. K., Lovejoy, E. R., and Ravis-
hankara, A. R.: Bias in filter based aerosol absorption measure-
ments due to organic aerosol loading: Evidence from ambient
measurements, Aerosol Sci. Technol., 42(12), 1033–1041, 2008.

Lyamani, H., Olmo, F. J., and Alados-Arboledas, L.: Saharan dust
outbreak over south-eastern Spain as detected by sun photometer,
Atmos. Environ., 39, 7276–7284, 2005.
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