
  
A N N A L E S  

 U N I V E R S I T A T I S  M A R I A E  C U R I E - S K Ł O D O W S K A  
L U B L I N  –  P O L O N I A  

VOL. LX, 1 SECTIO AA 2005 

 
Conductivity of a concentrated colloidal suspension of 

spherical particles in an alternating electric field 
 

F. J. Arroyo1*, F. Carrique2, M. L. Jiménez3  and A. V. Delgado3 
1Departamento de Física, Facultad de Ciencias Experimentales, 

 Universidad de Jaén, 23071 Jaén, Spain 
2Departamento de Física Aplicada I, Facultad de Ciencias, 

 Universidad de Málaga, 29071 Málaga, Spain 
3Departamento de Física Aplicada, Facultad de Ciencias,  

Universidad de Granada, 18071 Granada, Spain 
 

In this paper the complex (ac) conductivity of a concentrated suspension of 
spherical colloidal particles is considered in the light of a cell model. Previous 
works have dealt with the study of the conductivity of a concentrated colloidal 
suspension for general conditions, including arbitrary zeta potential, particle 
volume fraction, double-layer thickness, and ionic properties of the solution, 
but only the static case (dc electric fields) was addressed. In this contribution, 
the complex conductivity of a concentrated suspension is studied for the same 
general conditions as in the static case. The numerical data presented in this 
paper cover a wide range of typical situations including the special case of 
overlap of double layers of adjacent particles. Like in the static case, the 
treatment is based on the use of a cell model to account for hydrodynamic and 
electrical interactions between particles. The two relaxation processes 
occurring in the frequency range of interest (alpha and Maxwell-Wagner-
O’Konski) are analyzed for different values of the ionic strength, particle 
radius, zeta potential and particle concentration. Roughly speaking, these two 
relaxations tend to overlap in frequency as the volume fraction of solids 
increases for otherwise general conditions; in such cases, no clear distinction 
can be established between them. On the other hand, considerable attention has 
also been devoted to the numerical analysis of the complex conductivity for 
those special situations where overlapping between double layers is non-
negligible. Finally, a comparison between theoretical predictions and some 
experimental results is shown, revealing a general good agreement. 
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1. INTRODUCTION 
 

It is a well known fact that different electrokinetic phenomena in colloidal 
suspensions, such as static and dynamic electrophoresis, dielectric relaxation 
spectroscopy, static and complex conductivity, etc., are very sensitive to the 
properties of the interface between the solid particles and the liquid medium [1]. 
For dilute suspensions, different theories have been developed relating such 
properties to the behavior of a single particle in an unbounded electrolyte [2-4]. 
Considering in particular the dynamic response of a dilute colloidal suspension 
in an oscillating electric field, DeLacey and White [4] developed what is now 
known as the standard theory of the complex conductivity and dielectric 
response of a dilute colloidal suspension. Later, Rosen et al. [5] generalized this 
theory by assuming a dynamic Stern layer (DSL) (that is to say, allowing for 
adsorption and tangential ionic transport in the inner region of the double layer) 
developed by Zukoski and Saville [6] to reconcile the differences observed 
between zeta potentials derived from static electrophoretic mobility and 
conductivity measurements. More recently, Mangelsdorf and White [7-9] 
developed a general DSL model to be applied to electrophoresis and dielectric 
response in oscillating electric fields. In general, DSL models seem to improve 
the agreement between theory and experiments [5,10-12] as compared with the 
standard predictions in dilute suspensions. Let us also mention that DSL models 
are often (and perhaps more properly) called non-zero stagnant-layer 
conductivity (SLC) models. Recall that the stagnant layer is that region of the 
ionic atmosphere where the liquid is stuck to the solid in such way that it always 
moves together with the particle. In DSL (or finite SLC) theories, ions are 
allowed to move in this quiescent fluid when acted by an external electric field. 

On the other hand, there is an increasing interest in studying suspensions that 
cannot be considered as dilute, not only because they are frequently used in 
industrial applications, but also because different theoretical models have 
recently come out trying to account for the characteristics of the phenomena 
observed in these interesting and rather complicated systems. Special effort has 
been dedicated to the development and improvement of theoretical electrokinetic 
models for phenomena such as electrophoresis, sedimentation, electrical 
conductivity, electroacoustic phenomena, etc., in concentrated colloidal 
suspensions [13-20]. The fundamental problem of accounting for hydrodynamic 
particle-particle interactions is usually faced by means of cell models [21,22]. 
When particles are charged, additional electrical boundary conditions have to be 
implemented to completely solve the problem. Most of the relevant studies on 
electrokinetic phenomena in concentrated suspensions, electrical conductivity in 
particular, are based on Levine-Neale’s boundary conditions [13]. Ohshima [16] 
developed a general expression for the static electrical conductivity valid for low 
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zeta potential and non-overlapping double layers in concentrated suspensions by 
using the Kuwabara cell model [22] and Levine-Neale’s boundary conditions. In 
a recent series of papers [23-27], a new set of boundary conditions have been 
checked according to the Shilov-Zharkikh cell model [28] following the 
suggestion of Dukhin et al. [29], who described some inconsistencies in the 
Levine-Neale model. Following Levine and Neale’s boundary conditions and 
another set of conditions somewhat similar to those of the Shilov-Zharkikh’s 
model, Ding and Keh [30] analyzed the static electric conductivity of 
concentrated suspensions according to Happel [21] and Kuwabara’s [22] cell 
models, and derived an analytical expression for the conductivity, correct to 
O(ζ 2) (ζ is the zeta potential), assuming double-layer overlap. In a recent paper 
[24], we derived a general expression for the electrical conductivity of a 
concentrated suspension valid for arbitrary zeta potentials and non-overlapping 
double layers, and extended the theoretical approach to include the effect of a 
non-zero SLC [24]. 

Focusing on the problem of the complex conductivity in concentrated 
suspensions, a new general model has been recently developed by the 
authors [31], filling a gap in this area. The theory is also based on the cell model 
of Kuwabara [22] to allow for particle-particle interactions. In this contribution 
we present numerical data of the complex conductivity of a colloidal suspension 
according to our model. As already mentioned, this model is valid for arbitrary 
zeta potential, double layer thickness (overlapping of double layers is allowed), 
stagnant-layer conductivity (via a dynamic Stern layer model), particle volume 
fraction, particle radius and ionic properties of the solution. In any case, the aim 
of this contribution is to analyze the complex conductivity data obtained by 
numerically solving the full electrokinetic equations for a representative cell, 
including hydrodynamic and electrical particle-particle interactions. Thus, the 
conductivity data is checked against: particle radius at constant electrolyte 
concentration and zeta potential; electrolyte concentration at constant particle 
radius and zeta potential; and zeta potential at constant electrolyte concentration 
and particle radius; and, in all situations, as a function of frequency for different 
particle volume fractions. The results do clearly show the relative importance of 
particle-particle interactions as volume fraction increases on the complex 
conductivity. In addition, the consideration of double layer overlap when double 
layer thickness is large and volume fraction not low, seems to be essential in 
interpreting data properly. As it has been reported for DC conductivity [32] (the 
same could be stated for the complex conductivity in the low frequency region), 
the overlap of double layers might help in interpreting discrepancies generally 
found between experimental data and standard theoretical predictions, even in 
suspensions not too far from being considered as dilute. 
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2. BASIC EQUATIONS 
 
Prior to analyzing the complex conductivity of a concentrated suspension, it 

may be useful to briefly review the basic equations and boundary conditions of 
the theory. Only a short account will be given, in order to avoid unnecessary 
repetition of already published material [31]. Like in Kuwabara’s model, our 
starting assumption is that each spherical particle (radius a) is enclosed by a 
concentric spherical shell of solution with outer radius b, chosen in such a way 
that the particle/cell volume fraction equals the particle volume fraction (φ) 
throughout the whole suspension, i.e., φ = (a/b)3. 

In the absence of any external field, there will be an electrical potential 
distribution, Ψº(r) around any particle; Ψº(r) is the solution of the Poisson-
Boltzmann equation that for a problem with spherical symmetry reads 
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where r is the spherical radial coordinate, zie is the charge of type i ions, with 
bulk number concentrations ni

∞, εm is the liquid electric permittivity, kB is the 
Boltzmann constant and T is the thermodynamic temperature of the system. The 
slip plane will be assumed to be located at r = a, so that 
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In addition, in equilibrium conditions the unit cell as a whole will be electrically 
neutral, and hence 
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where σ is the surface charge density of the particle. When the external electric 
field, of strength E = E0e-jωt (it is a harmonic field of frequency ω; j is the 
imaginary unit) is applied, we will assume, as Shilov et al.[28], that the potential 
is perturbed 
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),()(),( 0 trt rr Ψ+Ψ=Ψ δ ,  (5) 
 
with 
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θ being the zenithal angular coordinate. We note that terms of order higher than 
one in this and any other perturbation quantity are neglected in this linear theory. 

The field will set both the liquid and the ions in the electrical double layer 
(EDL) into motion. The fluid velocity u is given by the following expression, in 
spherical coordinates: 
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where h(r) is a function to be determined, and the velocity vector must be zero at 
the slip plane, i.e., 
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Furthermore, since no ionic motions are allowed between the solid surface and 
the slip plane, the flux of ions normal to it must also be zero: 
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where vi is the velocity of the i-th ionic species, governed by the ion 
conservation equation: 
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At the cell boundary, r = b, we use the Kuwabara’s boundary conditions 
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where –ve is the velocity of the liquid with respect to the particle far from it, so 
that ve is in fact the electrophoretic velocity (it will be a complex quantity, since 
we are in the presence of ac fields), and ue is the electrophoretic mobility, 
usually called dynamic mobility in ac fields. 

Similarly to the auxiliary function h(r) introduced in Eq. (7), the following 
function Ξ(r) will be defined in connection with δΨ(r, t): 

 
θδ cos)(),( Ert Ξ=Ψ r . (13) 

 
Also, N functions Φi(r) are needed, relating the perturbations δni(r,t) to the 
equilibrium ionic concentrations ni

0(r) to the applied field: 
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We can now wonder how these quantities are related to the ac conductivity, K*, 
of the suspension. In Ref. [31] we have demonstrated that 
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where λi is the ionic drag coefficient for the i-th species, related to its limiting 
equivalent conductance Λi

0 by 
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NA being the Avogadro number. 
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Eqs. (15,16) indicate that we must calculate the values of the functions Φi(r) 
and Ξ(r) and their first derivatives on the outer cell surface, r = b. The 
differential equations that must be solved, and the pertinent boundary conditions 
are well known: 
- Poisson: 
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- Navier-Stokes: 
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- Ion conservation: 
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and L is a differential operator 
 

22

2 2
d
d2

d
d

rrrr
L −+≡ . (25) 
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where εp is the permittivity of the particle. One more boundary condition is 
needed for h(r). This condition was derived using the equation of motion of the 
cell in Ref. [20]. 

These equations were solved using a numerical scheme similar to that 
proposed by Delacey and White [4]. In the following paragraphs we will discuss 
the main results in terms of conductivity vs. frequency for different volume 
fractions, ionic strengths, zeta potentials and particle sizes, varying one 
parameter at a time. 

 
3. RESULTS AND DISCUSSION 

 
Effect of ionic strength on K*. First of all, we show in Figure 1 the dependence 
of the real part K’(f)/K∞ of the complex conductivity ratio as a function of 
frequency, upon varying the electrolyte concentration at fixed particle radius and 
zeta potential, for different volume fractions, from nearly dilute suspensions to 
concentrated ones. Recall that, according to Eq. (24), increasing κa at constant a 
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is equivalent to increasing the ionic strength (and, in turn, decreasing the 
thickness of the diffuse ionic atmosphere). Let us also point out that K∞ in this 
and subsequent Figures is the dc electrical conductivity of the pure electrolyte 
solution, and is given by 
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There are several relevant features in Figure 1. One is the volume fraction 

dependence of the conductivity ratio for a given frequency f: K´(f)/K∞ increases 
with φ at low κa and decreases at high (> ~20) κa. This is the result of two 
opposed effects. For given κa (constant electrolyte concentration, and therefore, 
constant conductivity of the solution K ∞ ) and zeta potential, increasing volume 
fraction can lead to larger conductivity ratios (Figs 1a, 1b) because we are 
adding to the system more charged particles contributing with their double layers 
to the conductivity. On the other hand, we are also adding non-conducting 
material per unit volume (the material the particles are made of). The final result 
will depend on the relative weight of these two opposite contributions. 

It appears that suspensions of particles with smaller electrokinetic radius κa 
are relatively more efficient in contributing to the electrical conductivity than 
those with larger κa values, for a given zeta potential. The reason is related to 
the fact that double layer thickness is reduced as κa increases, bringing double 
layer charge, mostly counter-ions, closer to the particle surface. This has a 
hindering effect on ion trajectories, which are forced to detour around the 
impenetrable particles by the electric field. The overall result is a decreasing 
effect on the conductivity as volume fraction increases for the larger κa values 
analyzed. In these latter cases (negligible double layer overlapping), the positive 
effect of the double layers on the conductivity does not surpass the negative 
effect associated with the non-conducting nature of the material forming the 
solid particles (Figs 1c and 1d). 
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Fig. 1. Ratio of the real part, K´, of the electrical conductivity of a colloidal suspension of 
spherical particles (a = 100 nm, ζ = 100 mV) in a KCl solution at 25 ºC, to that of the 
solution, K∞, as a function of frequency for different particle volume fractions at the κa 
indicated. 

 
We must still consider the role of double layer overlapping on the 

conductivity of the suspensions. As pointed out when dealing with the static dc 
conductivity of a concentrated colloidal suspension, the conductivity ratio is 
quite sensitive to the overlap phenomenon. For instance, for κa = 5, a 1 % 
volume fraction is enough to have overlap effects; if κa = 10 it is necessary to 
increase φ above 20 % to observe such effects [32]. This should also apply to the 
low-frequency values of K´(f)/K∞ at low κa and moderate or high volume 
fractions (Figs 1a and 1b). 

It was demonstrated that the overlapping correction to the conductivity leads 
to a clear increase of the latter as κa decreases, this increase being larger the 
more concentrated the suspension. This conductivity enhancement is primarily 
related to the term [32] 



 Conductivity of a concentrated colloidal suspension... 11 

 

�
=

∞
��
�

�
��
�

� Ψ
−−

N

i B

i
iie Tk

bez
eznu

1

0 )(
exp  (28) 

 
that was demonstrated to be increasingly positive as overlapping becomes more 
and more important. 

Summarizing, the general decreasing trend of the conductivity ratio as κa 
increases for fixed zeta potential and particle volume fraction, can be understood 
according to the following argument: the particle surface conductance 
contribution increases more slowly with ionic strength than the conductivity of 
the solution (κa rises as well because a is fixed in this study) [1]. Likewise, the 
opposite trends of the conductivity ratio observed when comparing Figures 1a 
and 1b with Figures 1c and 1d, can be ascribed to the presence of important 
overlapping in the former ones, and negligible for the latter two. 

 
Frequency dependence of the conductivity ratio. It is first remarkable the 
increase of the conductivity ratio in the high frequency region, which is more 
notorious for the low κa values analyzed. This increment has to do with the 
contribution of dielectric losses to the conductivity. It is a well known fact that 
when the polarization of the double layers of the particles can no longer follow 
the changes imposed by the sinusoidal electric field, a phase lag is produced 
between the response of the system, expressed by the polarization vector, and the 
electric field [33]. It is then useful to express the polarizability (or the 
permittivity related to it), representing the linear response between polarization 
and field, as a complex quantity. This phase lag gives also rise to an imaginary 
component of the displacement current density; such component will be in phase 
with the electric field, and hence will add to the conduction current, yielding the 
whole in-phase component of the electric current density [33]. Thus, the 
complex conductivity is commonly expressed in alternating electric fields as [4]: 
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is the DC conductivity of the concentrated suspension (limit of Eq. (15) when 
the frequency goes to zero, i.e., the static case) [25], and 
 

)(j)()( ωεωεωε ′′+′=∗ , (31) 
 
is the complex permittivity of the suspension. Also, in terms of the complex 
dielectric increment )(ωε ∗∆  [4,31], Eq. (31) can be expressed as: 
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Then, the referred increase in the real part of the complex conductivity ratio 
is clearly associated to the term )()( ωεωφωεω ′′∆=′′ . Now, we need to know 
more about the dielectric relaxation processes in this frequency range because 
they are responsible for the increasing trend of the conductivity at high 
frequency. There are two fundamental relaxation processes in a colloidal 
suspension, contributing to dielectric losses in the low to moderately high 
frequency region (well below the GHz range). They are, from low to high 
frequency, respectively, the alpha relaxation process associated with the 
polarization of the double layer and the formation of a gradient of neutral 
electrolyte concentration around the particle when an electric field is applied 
(concentration polarization) [3]; and the other one, the well-known Maxwell-
Wagner-O’Konski relaxation process [3] associated to the discontinuity of the 
permittivity and conductivity at the solid/liquid interface. Because the 
characteristic times of concentration polarization and Maxwell-Wagner-
O’Konski processes are usually very different, the dielectric spectrum typically 
shows two separate relaxation peaks. Roughly, at low volume fractions the 
relaxation frequency of the alpha process is given by 
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It has been shown [31] that the alpha relaxation frequency increases as volume 
fraction increases from low to moderately high values (the rest of parameters 
remaining fixed). 

On the other hand, the Maxwell-Wagner-O’Konski relaxation frequency is as 
follows if mp εε <<  [34]: 

 

φ
φφ

ε
ω

+
++−=

∞

2
2)1(2 DuK

m
MW . (35) 

 
In this equation, Du is a dimensionless number [1], the Dukhin number, that 
measures the relative importance of surface conductance, Kσ , compared to the 
bulk electrolyte conductivity: 
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It is also well known that Kσ is independent of volume fraction, so that 

Eq. (35) predicts a reduction in MWω  when the volume fraction increases for 
fixed zeta potential and electrolyte concentration. As an example that can help in 
visualizing these features, we can observe in Figure 2 the trend of the relaxation 
peaks as volume fraction increases. The shoulder stemming from the Maxwell-
Wagner-O’Konski relaxation process is clearly visible at very low volume 
fraction, and almost disappears when both relaxation processes overlap in 
conditions of sufficiently high volume fraction. 

We can then conclude that, as observed in Figure 2, the α-relaxation and 
Maxwell-Wagner-O’Konski frequencies will get closer the higher the volume 
fraction. If the latter is large enough, it will be impossible to visualize them as 
separate processes. These features are clearly shown in Figure 1. 

The real part of the conductivity ratio as a function of volume fraction for the 
same conditions as those in Figure 2, but at a fixed frequency of 1 MHz, is 
represented in Figure 3. This is a frequency roughly belonging to the 
intermediate region between both relaxation processes. For the majority of 
conditions analyzed, this frequency could be representative of a region where 
changes in conductivity with frequency are taking place (i.e., beyond the 
constant conductivity plateau of low frequency). It is remarkable how the 
increasing trend of the conductivity ratio with volume fraction observed at low 
κa, is almost compensated at moderate κa values, say 10 ~ 20, and reversed at 



14 F. J. Arroyo, F. Carrique, M. L. Jiménez and A. V. Delgado  

higher values. This fact shows at a glance the role of the particles in determining 
the conductivity of the system at each volume fraction. 

 

 
 
Fig. 2. Imaginary part of the dielectric increment of a colloidal suspension of spherical 
particles (a = 100 nm, ζ = 100 mV) in a KCl solution at 25 ºC, as a function of frequency 
for different particle volume fractions at fixed κa = 2.5. The alpha (double-layer) and 
Maxwell-Wagner-O’Konski (interfacial) relaxations are indicated. 
 

 
Fig. 3. Ratio of the real part, K´, of the electrical conductivity of a concentrated colloidal 
suspension of spherical particles (a = 100 nm, ζ = 100 mV) in a KCl solution at 25 ºC, to 
that of the solution, K∞, as a function of particle volume fraction for different κa values at 
a fixed frequency of 1 MHz. 
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Effect of particle size on K´(f)/K∞∞∞∞. Figure 4 shows the dependence of the 
conductivity ratio on frequency for a fixed intermediate volume fraction, 
constant electrolyte concentration and zeta potential, and four particle radii, 
ranging from 25 to 1000 nm. Those radii leading to lower κa values yield larger 
conductivities. Again, we must consider the balance between the negative effect 
of the negligible bulk conductivity of the particles, and the positive contribution 
of surface conductance, eventually together with the double-layer overlap, to 
explain these results. On the other hand, the alpha relaxation frequency 
diminishes as the radius of the particles increases at fixed electrolyte 
concentration (see Eq. (33) for the dilute case, and ref. [31] for larger volume 
fractions). Simultaneously, the magnitude of the dielectric relaxation increases 
with particle radius (the rest of parameters being fixed).  

 
 

Fig. 4. Ratio of the real part of the electrical conductivity of a concentrated colloidal 
suspension of spherical particles (ζ = 100 mV) in a KCl solution (9.3 x 10-4 M) at 25 ºC, 
to that of the solution, as a function of frequency for a volume fraction φ = 0.21 and 
different particle radii, as indicated. 
 
Therefore, the larger contribution to the real part of the conductivity ratio 
associated with the larger imaginary part of the dielectric constant of the alpha 
process for larger radii, )(ωεω ′′ , is somewhat compensated by the lower 
frequency values of the frequency range where )(ωε ′′  is non-negligible 
(consider the lower values of the alpha relaxation frequency as the particle radius 
increases for fixed volume fraction). In Figure 5 we can see more clearly the 
frequency-dependent part of the conductivity ratio for different volume fractions, 
and only for a radius of 250 nm. As indicated by the arrows, the MW and alpha  
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Fig. 5. Frequency-dependent contribution (relative to that of the solution) to the 
conductivity of suspensions of spherical particles as a function of frequency and volume 
fraction φ. The following quantities were fixed: particle radius a = 250 nm; ζ = 100 mV; 
KCl concentration, 9.3 x 10-4 M. 
 
contributions are easily distinguished, tending to overlap in frequency as the 
volume fraction increases (the relaxation frequency of both processes tend to 
approach each other as volume fraction grows). 

 
Effect of zeta potential variations. As regards the influence of zeta potential on 
the conductivity at different volume fractions, it is worth mentioning that as ζ 
increases for fixed κa (with constant ionic strength and particle radius), the real 
part of the conductivity ratio increases for any volume fraction and frequency 
(see Fig. 6). For the lower ζ values (Figs 6a, 6b) the ratio diminishes as volume 
fraction increases. The opposite is found for the larger ζ values (Figs 6c, 6d). In 
the first case (ζ = 25, 50 mV), increasing volume fraction means increasing the 
number of dielectric particles per unit volume with not enough surface 
conductivity contribution (the Dukhin number and consequently the surface 
conductivity (Eq. (36)) increases with ζ ). In these situations the insulating 
nature of the material the particles are made of is responsible for the 
conductivity ratio values being lower than unity. In other words, their surface 
conductivity is not enough to compensate for the conductivity of the amount of 
electrolyte excluded by the solid particles. This fact is reversed as ζ is further 
increased (Figs 6c, 6d). 
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Fig. 6. Conductivity ratio of suspensions of spherical particles (100 nm in radius), with 
the volume fractions and zeta potentials indicated. The value of κa was fixed at 10 in all 
cases. 

 
In Figure 7 we show the real part of the conductivity ratio as a function of 

volume fraction for different zeta potentials but at a fixed frequency of 1 MHz, 
obtained from the frequency spectra of Figure 6. It is remarkable that no matter 
the number of particles per unit volume, the conductivity ratio decreases with 
volume fraction if ζ is low. This situation is compensated when ζ is allowed to 
further increase for the same conditions. When a value of ζ between 75 and 100 
mV is attained, the conductivity of the suspension at this frequency would be 
almost the same as that of the solution, no matter the volume fraction. A further 
increase in ζ yields a raising conductivity as a function of volume fraction, the 
more so the larger ζ. As we know, the Maxwell-Wagner-O’Konski relaxation 
frequency diminishes as φ rises for fixed ζ and κa. Instead, the alpha relaxation 
frequency increases for the same latter conditions [31]. The final result is an 
overlap of both relaxation contributions which is more pronounced the larger ζ 
and φ (see Fig. 6d). 
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Fig. 7. Conductivity ratio at 1 MHz as a function of the volume fraction for suspensions 
of spheres with 100 nm radius, with κa = 10, for the zeta potentials indicated.  
 
Comparison with experimental data. Finally, we show in Figures 8-10  
a comparison between some experimental conductivity data by Midmore et al. 
[35] and our theoretical predictions. In the latter reference, the authors derived 
an approximate conductivity formula based on a somehow similar cell model, 
although restricted to thin double layers. According to Midmore et al. notation 
[35], we can define the average particle complex dipole strength for unit applied 
electric field, )(ω∗S , as: 

3
0 4

)(3
1

)(
)(

a

S

K
K

e π
ω

ε
φ

ω
ω

∗

∗

∗

+= , (37) 

 
where the complex conductivity of the solution is expressed by: 
 

me KK ωεω j)( += ∞∗ . (38) 
 

As observed in Fig. 8, there is a reasonably good agreement between 
theoretical and experimental complex conductivity, when a zeta potential of  
–157 mV is chosen. Midmore et al. [35] pointed out that the fit for the 
conductance data related to )('fK  was not as good as that for the capacitance 
data related to )( fε ′  because of an additional stray conductance. For this 
reason, there is a better confidence in the comparison between theoretical and 
experimental dielectric constant than between conductance data.  
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Fig. 8. Comparison between Midmore et al. experiments [35] and cell model predictions 
for a concentrated colloidal suspension (φ = 0.516) of spherical particles (a = 253 nm) in 
a KCl solution (10-3 M) at 25 ºC, as a function of frequency: a) Ratio of the real part of 
the electrical conductivity to that of a fixed frequency of 1 MHz; b) Real part of the 
complex dielectric constant. 
 
Figure 8 shows that our calculations can describe reasonably well both 
quantities. Taking into account that the volume fraction is high enough in the 
study depicted in the Figure, and also considering the relative good agreement 
above mentioned between theory and experiment, we can conclude that the cell 
model is able to interpret and predict averaged properties of a concentrated 
suspension in response, in this case, to an electric field. We must point out that 
we have only one adjustable parameter, the zeta potential.  
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Finally, in Figures 9-10, we compare the experimental [35] and theoretical 
real and imaginary parts of the particle complex average dipole strength 

*( )S ω� � as a function of frequency for a low concentrated case, and a 
moderately concentrated one, respectively. As it can be observed, a unique zeta 
potential provides a reasonable agreement between theory and experiment for 
both volume fractions, although the agreement is poorer the lower the volume 
fraction.  

 
Fig. 9. Comparison between Midmore et al. experiments [35] and cell model predictions 
of the real and imaginary parts of the particle complex average dipole strength for a 
concentrated colloidal suspension (φ = 0.096) of spherical particles (a = 271 nm) in a KCl 
solution (1.75 x 10-3 M) at 25 ºC, as a function of frequency. 

 
Fig. 10. The same as Fig. 9 but for a particle volume fraction φ = 0.388. 
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The same was observed by Midmore et al, who argued that the discrepancies at 
lower particle concentrations could be due to poorer signal-to-noise ratio in the 
measurement of the complex conductivity. Again, our zeta potential of –158 mV 
which best fits the experimental data, is somewhat larger than the –141 mV 
found by Midmore et al. In any case, it seems that the larger the volume fraction, 
the closer the cell model predictions are to the experimental results (see Fig. 10), 
which suggests some confidence in the way the cell model is able to manage 
particle-particle interactions. 

 
4. CONCLUSIONS 

 
In this paper, the complex conductivity of concentrated suspensions has been 

calculated for arbitrary conditions of zeta potential, particle volume fraction, 
double-layer thickness, and ionic properties of the supporting electrolyte 
solution. Effects on the conductivity-frequency relationship of changes in zeta 
potential, ionic strength or particle radius, for different volume fractions (from 
dilute to moderately concentrated suspensions) have been investigated. The 
results have been analyzed in terms of the different relaxation processes (the 
alpha and Maxwell-Wagner-O’Konski relaxation processes) that take place in 
these systems when subjected to an alternating electric field, as frequency rises. 
The magnitude of these dielectric processes and their corresponding relaxation 
frequencies have been studied and their variations estimated as volume fraction 
increases. We have shown that the overall behavior of the complex conductivity 
is greatly influenced by the magnitude and degree of overlap of both processes, 
and also by the overlap of double layers. The predictions of our theoretical 
model permit to conclude that almost the same qualitative behavior is found for 
the real part of the conductivity ratio versus frequency as volume fraction 
increases, when either the ionic strength or the particle radius raise (varying only 
one of them at a time), or when the zeta potential diminishes. Regarding the 
comparison between theoretical and experimental complex conductivity, we can 
conclude that the cell model can be considered as a promising tool to interpret 
experimental data.  
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