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ABSTRACT

Chemotherapy agents have little or no specificiterocancer cells, resulting in low
therapeutic concentrations at the tumor site (aseguence of a broad systemic distribution),
and severe side effects. With the aim of avoidiagcer therapy failure, several approaches
such as design of new anticancer drugs, chemiaggiheering of conventional drugs and
development of drug delivery systems have beengsexh The objective is to enhance drug
localization at the tumor region (by controlling iiodistribution profile) and, therefore, to
increase the anti-tumor efficacy (even in multigireesistant tumors), while reducing
systemic side effects. One of the most promisingr@gches to the problem is the
development of drug nanocarriers based on the polyuly(scaprolactone). In this review
we will focus our attention on these polymeric omlk, particularly on the most significant
characteristics and formulation procedures, antheir use as nanoplatforms for the delivery
of chemotherapy agents to the tumor site. Furthegrtbe most recenh vitro andin vivo
investigations on the subject are extensively nega:

KEYWORDS: Anti-tumor Drug, Cancer, Controlled Release, D@agriers, Drug Delivery,
Polymeric Particles, Polg{caprolactone).

INTRODUCCION

Cancer therapy strategies are currently focussesuagery, chemotherapy, radiotherapy,
immunotherapy and hormonal therapy. These conwvegitigtrategies are limited by the
accessibility to the tumor and the lack of selettitowards tumor cells, the spread of cancer
cells throughout the body, and the risk of operatom a vital organ. Regarding cancer
chemotherapy, treatment failure is frequently em¢ened even in the most sensitive cancers
to chemotherapy agehtsSeveral reasons have been pointed out for chemagt failure:)
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the physicochemical properties of many drugs, elydrophobicity, promotes the
unsuccessful localization at the cancer siig;the unfavorable pharmacokinetics (rapid
clearance and rapioh vivo degradation) determine the need of higher dosdsrigerous
treatment schedules to obtain a therapeutic effi@gt;the relative poor selectivity of
chemotherapy agents for targeted tumor cellsthe large biodistribution and non-intended
extravasation with severe side effects in non-tadsites; and) the susceptibility to induce
drug resistané&. Cancer physiology is also responsible for therattberapy failure, mainly
because of the absence of a non-functional lymplsggtem that allows drug escaping out of
the tumor, and due to a very high hydrostatic pnesgradient inside the tumor that difficult a
uniform drug diffusion inside the tuntdt

The association of anti-tumor drugs to colloidalivdy systems in cancer treatment has
been proposed to improve their efficacy and to cediheir associated toxicity. This strategy
could allow obtaining a specific accumulation aé ttumor site, an improvement of the
pharmacokinetic profile, a prolongation of the esyp@ of the tumor cells to these active
agents and a minimization of the severe side efféct

With this aim, it have been established that aablet anti-tumor drug delivery system
should have the following propertia3:small size € 500 nm) to allow a large biodistribution
and an adequate perfusion at the target sijethe ability to deliver therapeutic drug
quantities, without overloading the organism wibtineign materialjii) physical stability and
low drug leakage problems under storage andvivo, iv) controlled drug release rates
exclusively at the targeted tumor; ampg maximum biocompatibility and biodegradability
(with very low toxicity of breakdown products), amdinimal antigenicity®. These drug
carriers are frequently based on vesicular (lipas®@ind niosomes) and polymeric systems.
Special approaches such as surface-functionalizdecag., with specific ligands to tumor
cells) and engineering of stimuli-sensitive matsriaould enhance the biodistribution profile
of loaded drugs and, thus, resulted in a moreiefftaumor therapy’”.

One of the most promising materials for the desafnnanocarriers loaded with
chemotherapy agents is the biodegradable polyméy(gcaprolactone) (PCL). This
aliphatic polyester is very suitable for controligdig delivery due to its high permeability to
many drugs and non-toxicity, its exceptional apit form blends with other polymers, and
its very low degradation rate (compared to othdlt lweown drug carriers, such as poly(D,L-
lactide-co-glycolide) (PLGAY®. Thus, it is of great interest to review the msignificant
characteristics and preparation procedures of BiMng special attention to its use in drug
delivery to tumors. This paper will also detail theost importantin vitro and in vivo
investigations on the subject.

MAJOR PROPERTIES OF POLY(&CAPROLACTONE) FOR DRUG DELIVERY

&caprolactone£CL) is a monomer widely used in the preparatiomifferent polymers,
including polyg-caprolactone) (PCL), by opening the with nucletgshi e.g., water and
alcohol. PCL is a synthetic aliphatic polyesterpdaigradable, biocompatible and highly
hydrophobic. It is typically prepared by ring-opegipolymerization o&-CL (figure 1). The
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average molecular weight (M of PCL may vary from 10000 to 42500 Da. PCL iadgd
according to this M. PCL is soluble at room temperature in chlorofodichloromethane,
carbon tetrachloride, benzene, toluene, cyclohexanand 2-nitropropane. It has a low
solubility in acetone, 2-butanone, ethyl acetatel iiis insoluble in alcohol, petroleum, ether
and diethyl ethét*2

Figure 1. Chemical structure of (&caprolactone and (b) polss€aprolactone).
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This crystalline polymer has been widely utilized numerous biomedical applications
such as design of sustained-release drug deliveterss, because of its slow degradation
rate, high drug permeability and non-toxicity. dtalso used with very promising results in
tissue-engineering scaffofds? The combination of PCL with other polymers, sashPLGA
or poly(D,L-lactide) (PLA), is widely used to ohbmacopolymers with higher stress crack
resistance, dyeability and adhesion properties.f@imaulation of PCL-based copolymers can
also allow manipulating the drug release rate ftbis systents*°

In vivo studies have suggested the great biocompatibityyocompatibility and non-
toxicity of PCL, with only non-significant inflamntian reactions as a consequence of the
high local concentrations assayed in these sttfdfiesThe degradation of PCL is an
autocatalyzed process, whereby the generated cdibgxoups catalyze an autohydrolysis
reaction, i.e. the cleavage of additional esterugsd. In vivo degradation is also clearly
determined by phagocyto&is

SYNTHESIS PROCEDURES FOR THE FORMULATION OF DRUG-LO ADED
POLY(&CAPROLACTONE) CARRIERS

Poly(s-caprolactone) (PCL) particles can be prepareceeitly the polymer alone or by
using PCL copolymers or blends. Several methode baen reported in the literature for the
preparation of drug-entrapped PCL particles, indgdinterfacial disposition, interfacial
polymerization, solvent evaporation, desolvation ahacromolecules, emulsion
polymerization in continuous aqueous phase or imticoous organic phase, or
electrohydrodynamic atomization, to cite just a'few

With respect to drug-loaded PCL microparticles, tir@st important preparation methods
are:
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i) The o/w emulsion solvent extraction/evaporatioatind, where typically the required
amount of polymer and drug are dissolved in an mgphase which is emulsified under
mechanical stirring with a poly(vinyl alcohol) (PYAolution to form an o/w emulsidh

i) The w/o/w emulsion solvent evaporation technigde.aqueous solution of the drug is
emulsified with PCL in dichloromethane. Then, thesulting w/o emulsion is again
emulsified under mechanical stirring with water &oming PVA as an emulsifi&t

iii) The spray drying technique. An organic solutiéth@ drug and the polymer is made in a
mixture of dichloromethane and chloroform (1:1).isTlrganic solution is finally sprayed
through a nozzle in a spray-drier

iv) The solution-enhanced dispersion method. Thisragmgh overcomes the problems
associated to the use of organic solvents (exgitg). It is based on the use of supercritical
fluids like carbon dioxid.

V) The hot melt technique. This synthesis methottaquently used for the preparation of
polymeric microparticles with low melting point neaials, such as PCL. The molten polymer
is dispersed in a suitable dispersion medium amdlglcooled to form the microparticles

Regarding the formulation of PCL nanopatrticles, ititerfacial polymer disposition and
the dialysis methods are frequently uSéd Interfacial polymer disposition is based on the
displacement of a water-miscible semi-polar soleon a lipophilic solution. Briefly, the
polymer is dissolved in an organic solvent (e.getane). A mixture of phospholipids is
prepared in the same organic solvent by heatingesw the boiling point. After mixing both
solutions, the resulting organic phase is mixedwaitboenzyl benzoate-drug solution and it is
poured under stirring to an aqueous poloxamer isoluf colloidal nanoparticle suspension
is immediately obtained and the organic solventramoved under reduced pressure.
Regarding the dialysis method, the polymer is digsb in an organic solvent (usually,
dimethylformamide) and the drug is added to thiatsmn under stirring at room temperature.
After removing the organic solvent, dialysis is damsing a cellulose membrane bag during
24 h. Subsequently, the micellar solution is celddrom the bag, sonicated and centrifuged
to eliminate the unloaded drug and the macroagtgegkinally, lyophilization is carried out
for 2 days, obtaining the polymeric nanopatrticles.

The preparation procedures that are used for thmulation of PCL copolymers are
usually based of the previously commented synthesthods for the preparation of PCL
micro- and nano-particlés The synthesis routines that are mainly followe® &he
nanoprecipitacion method, the interfacial disposittechnique, the solvent displacement
process and the double emulsion pressure homogenizachniqué®?3?* Following these
preparation methods, it have been synthesized qtblglene oxide) (PEO)—poly(propylene
oxide) (PPO)—poly(ethylene oxide)-PCL [PEO-PPO-RE@)L], PEO-PCE, methoxy
poly(ethylene glycol) (MePEG)-PG!, PCL-PEG—PCFE’"?® and self-assembled amphiphilic
PCL grafted PVA (PClg-PVA) copolymeré’. PCL nanoparticles have also been surface-
functionalized with chitosan and poly-L-lysifle
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APPLICATIONS OF POLY( &CAPROLACTONE) AS DRUG DELIVERY SYSTEMS
FOR CANCER TREATMENT

Biodegradable polycaprolactone) (PCL) particles are one of the npwetnising drug
delivery systems. Various categories of drugs Haeen encapsulated in PCL micro- and
nano-particles for their effective delivery. Thesuls that have been obtainiedvitro andin
vivo with anti-tumor drug-loaded PCL particles haveed®mined their potential in cancer
treatment. PCL colloids loaded with anticancer dryg.g., 5-fluorouracil, doxorubicin,
paclitaxel, etc.) have shown enhanced anti-tumdivigc as a consequence of a higher
therapeutic efficacy and a reduced systemic toxitit The development of multi-drug
resistances associated to long-term chemotherapglsa be minimized or overcom#.

Tamoxifen-loaded PCL nanoparticles were proposedhie treatment of breast canter
The preparation procedure is based on a solvefusth technique which involved the
addition under stirring of a drug-polymer acetoméusion into a pluronic F-68 aqueous
solution. Cell internalization studies in MCF-7 asé cancer cells employing fluorescent
nanoparticles showed that after 1 hour of inculpate high concentration of nanoparticles
was found in the cytoplasm and in the perinuclegian, suggesting a great cell penetration
(higher than in the case of the free drug) by aswetific endocytosta Even more, surface
functionalization with PEO significantly increaseédig accumulation within tumor as well as
extended their presence in the systemic circuldtiolh was determined that the higher
concentration of nanoparticles delivered to thedumvould result in net intracellular drug
concentration and, hence, greater efficacy of tleatinent. Hence, this tamoxifen-loaded
nanocarrier was supposed to be very useful in @ffedrug delivery to breast cancer, which
may be especially interesting to minimize the adeeside effects (e.g., subsequent
endometrial cancer) and the development of resissaassociated to long-term prophylactic
therapy in high-risk and postmenopausal women.

A number of 5-fluorouracil (5-FU) delivery systerbased on PCL have been studied for
cancer treatmeft>’. Recently, PCL particles loaded with doxifluriding -deoxy-5-
fluorouridine, 5°-DFUR) were prepared by ring-openpolymerization of-CL, using Sn(ll)
2-ethylhexanoate (Sn(Og})as catalyst. This is a prodrug that is mostlyvested to the
active drug (5-FU) by the enzyme thymidine phosplase in tumor tissii& Moreover, PCL
colloids have been formulated for the enhancemetiteobioavailability andn vivo stability
of curcumin (a polyphenolic compound with anti-tumactivity) with very interesting
result$®. PCL particles have also been loaded with theesitbgen RU 58668 (a promising
estrogen-dependent anticancer agent) (mean diame36r— 50 nm) and tested for cancer
treatment. This formulation developed an intratusth@xtravasation behavior and the slow
drug release proved to be able to inhibit estrdgdneed transcription in human breast
cancer celf$.

One of the most interesting applications of PCLapemticles is as anti-tumor targeting
systems in multi-drug resistance (MDR) tumors. Aseaample, a combination of paclitaxel
(PTX) and C6-ceramide (CER, an apoptotic signaltmgecule) in PCL nanoparticles 200
nm) surface functionalized with PEO was used fazroesming MDR in ovarian cané8r A
single dose of PTX (20 mg/Kg) and CER (100 mg/k@gded nanoparticle formulations to

Ars Pharm, Vol. 50 n°2; 83-96.



Arisas JL et al. Drug delivery systems based on pelgéprolactone) for cancer treatment

88

subcutaneous sensitive (wild-type) and MDR-1 pesitiSKOV-3 human ovarian
adenocarcinoma xenograft-bearing female Nu/Nu micdyuced a significantR < 0.05)
tumor growth suppression as compared to the adimatian of aqueous solutions of each
molecule. For instance, in SKOV-3 wild-type modabre than 4.3-fold increas® & 0.05)

in tumor growth delay and 3.6-fold < 0.05) increase in tumor volume doubling time DT
were observed when co-administering both typesaobparticles as compared to untreated
animals. Similarly, 3-fold increasé® (< 0.05) in tumor growth delay and tumor volume DT
was observed in the SKOVRmulti-drug resistance model. With respect to thadity, no
significant differences were observed. Moreovepaalitaxel/tamoxifen co-therapy based on
PEO-PCL nanoparticles showed a decrease in thbitiotyi concentration 50 (l§g) of PTX

by 10-fold in SKOV-3 cells and by > 3-fold in SKO3%x cells, without any significant acute
toxicity*2.

Depot-based PCL systems have been also proposedafarer treatment with very
promising results. As an example, a bleomycin ddmged on PCL microparticles was
evaluatedin vivo in tumor-bearing mice. Interestingly, upon suboetaus injection, the
biodegradable depot-forming PCL microspheres ctattodrug release and significantly
suppressed the tumor growth kinetics compared tirad’. An injectable PTX-polymer
paste formulation based on a random copolymer & Bhd PCL with PEG, blended with
MePEG was proposed for the treatment of prostatmts. This PTX-loaded copolymer was
administered intratumoraly into non-metastatic hapeostate LNCaP tumor-bearing mice.
The administration of this PTX-loaded paste induaetbcrease in the serum prostate-specific
antigen (PSA) levels and in the tumor volume in parison to the blank paste. No significant
toxicity but minor ulceration at the injection sites observeéd. Finally, an injectable anit
situ forming drug delivery system based on photocroksli poly¢-caprolactone fumarate)
networks loaded with tamoxifen citrate (TC) weraleated against MCF-7 breast cancer cell
line. The cytotoxicity assay showed that while tpisotocrosslinked network exhibited no
significant cytotoxicity against MCF-7 cells, 60 % of the MCF-7 cells were killed after
incubation with TC-loaded devicts

Furthermore, PCL micelles are emerging as effectiveg carriers for hydrophobic
photosensitizers in photodynamic therapy (PDT) aven, as a potential dual carrier for the
synergistic combination of PDT and chemotherapy tfee treatment of canéér As an
example, the photophysical and photochemical ptgseof protoporphyrin IX (PplIX)-loaded
MePEGb-PCL diblock copolymers (mean diameter50 nm; loading efficiency 80 %)
were compared to that of free PplX. The cellulatakip of PplIX in RIF-1 cells using PpIX
micelles was approximately two-fold higher tharefigplX.In vitro PDT results showed that
the PpIX micelles have markedly increased photdoyioity over that achieved with free
PpIX, by nearly an order of magnitude at the highlight dose usef. Micelles of
MePEG750b-oligo(&-caprolactong) (MePEG7506-OCLs) were loaded with the
photosensitizer m-tetrahydroxyphenylchlorin (mMTHPI@) a film hydration method. The
cellular uptake of the drug-loaded micelles andirtiphotocytotoxicity on human neck
squamous carcinoma cells, in the absence and peesdripase, were compared with free
and liposomal mTHPC (Fosp&gformulations. Thisin vitro study revealed that the high
loading capacity of the micelles, the high stapidibove the critical aggregation concentration
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and the lipase-induced release of the photoseasittake them very promising carriers for
PDTin vivo®.

As can be concluded, taking into account these uggresting results, the potential of
PCL particles loaded with anticancer drugs is evidelowever, the majority of the research
efforts have been focussed on the use of copolymeesto their better drug loading and
release properties, and to a more suitable biodatjiom profilé’. As an example,
MePEG/PCL amphiphilic block copolymers (nanopagtidiameter 100 nm) proved to be
able to encapsulate doxorubicin (DOX) in aqueoulitiems. Confocal laser scanning
microscopy (CLSM) demonstrated that drug-loaded eftés accumulated mostly in
cytoplasm instead of cell nuclei, in contrast teeffDOX. Furthermore, these drug-loaded
particles exhibited time-delayed cytotoxicity inrhan MCF-7 breast cancer céllsThis
biodegradable block copolymer has also been suftasionalized with folic acid to target a
folate-binding protein that is overexpressed onstiiace of many tumor cells. With this aim,
PTX-loaded folate-conjugated MePEG/PCL micelles{5IB0 nm) were prepared by micelle
formation in aqueous medium. Thevitro PTX release profile from the micelles showed no
initial burst release but a clear sustained relebgerestingly, these PTX-loaded micelles
proved much higher cytotoxicity for cancer cellsg(e MCF-7 and HelLa cells) than
MePEG/PCL micelles non-conjugated to folate. A ooaf image analysis revealed that
fluorescent PTX-loaded folate-conjugated micellesrev endocytosed into MCF-7 cells
through the interaction with overexpressed fol@eeptors on the surface of cancer é&lls
Furthermore, PEG/PCL nanoparticles were prepareal diglysis method and further surface-
functionalized with folate moieties (via a couplirgaction between the —OH groups of PEG
and the —COOH group of folic acid) for the actiaegeting of 5-FU and PTX to tumors. It
was observed an enhanced cytotoxicity of these-raded nanoparticles against folate
receptor expressing tumor célsMePEG/PCL nanoparticles loaded with taxol weeppred
by a dialysis proceduf® This copolymer was also used in the vehiculizatiof
geldanamycin. In this case, the pharmacokineticfilproof the drug was improved
(enhancement in the AUG 72-fold) and this formulation exhibited a lowerssymic
toxicity®”. Finally, MePEG/PCL nanoparticles loaded with Esip (entrapment efficiency
75 %) have shown a significant less toxicity andeahanced circulation time, compared to
the free drug. Cisplatin release occurred in aasosti mannerin vitro cytotoxicity studies
proved the efficacy of cisplatin-loaded nanopagschgainst BGC823 and,Hcancer cell
lines in a dose and time-dependent manner. Furtirerntompared with the free drug,
cisplatin-loaded nanoparticles exhibited a supesati-tumor effect by delaying tumor
growth when delivered intratumorally (figure®2)

Figure 2. Tumor volume of established,}xenografts in ICR mice during therapy under
different treatments. Mice were intratumorally tezhwith different protocols on Day 0
(tumor volume: 100 mf). Saline: vehicle; empty np: empty nanopartic@isplatin: free
cisplatin at a dose of 5, 10 and 20 mg/kg, respelgti cisplatin-np: cisplatin-loaded
nanoparticles in a saline solution at equivalespleitin doses of 5, 10 and 20 mg/kg,
respectively. Data are presented as mean + SD6jnEhe difference between tumor
volumes in the group of saline and cisplatin-loadadopatrticles is highly significan®
0.01). A significant difference?(< 0.05) is also observed between the group ofdigdatin
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and cisplatin-loaded nanoparticles at the equitalese (*). Reprinted with permission from
Ref. [51]. Copyright Elsevier (2008).

—a— Saline « Cisplatin (5 mafKg)

& Cisplatin (10 mgiKg)

'

. Cisplatin (20 mgfKg)

5r «— Cisplatin-np (5 mgiKg) Cisplatin-np (10 mgiKg)

3

» Cisplatin-np (20 mgiKg) ~® empty np

Tumor volume (mm?3-103)

Days following initial treatment (day)

Another PCL-based block copolymer was proposedHerdelivery of vinblastine. By a
modified o/w emulsion method PCL grafted dextranaparticles were prepared, andian
vitro cytotoxicity assay in a breast cancer cell lineCf47) showed higher cancer cell
mortality than the free drdg This drug delivery system was also successfudlsagedin
vitro with coumarin-6 in a human gastric cancer ce# {BNU-6385°.

Poly(ethylene oxideplockpoly(e-caprolactone) (PE®-PCL) and poly(ethylene oxide)-
blockpoly(a-benzyl carboxylate-caprolactone) (PE®-PBCL) micelles (< 90 nm) were
engineered by a co-solvent evaporation techniquenasocarriers for the delivery of
cucurbitacin | and B, which are inhibitors of théegral transducer and activator of
transcription 3 (STAT3). It was determined that &méi-cancer and STAT3 inhibitory activity
of the polymeric micellar cucurbitacins were congide to the free druga vitro andin vivo
in a B16-F10 melanoma cell line. Interestingly, theicity associated to cucurbitacin | and B
was significantly reduced when these drugs weréddanto the nanopartic&'s

A two-step nanoprecipitation method have been mmegofor the synthesis of
poly(caprolactoneo-lactide)b-PEGh-poly(caprolactoneo-lactide)  block  copolymer
nanoparticles loaded with 10-hydroxycamptotheci@PH) (entrapment efficiency > 85 %).
It was demonstrated that the HCPT-loaded nanopestideveloped a highein vitro
cytotoxicity, a superiom vivo anti-tumor activity and a remarkably different digtribution
in Sarcoma 180 (S180)-bearing mice than the fragPdr In addition, PCL-PEG-PCL
nanoparticles were used as carriers for the wasatible drug oridonin in liver cancer
treatment. This amphiphilic block copolymer 100 nm; entrapment efficieney90 %) was
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synthesized by an interfacial deposition methodylch the ring-opening polymerization of
e-CL was initiated by the —OH groups of PEG, witarstous octoate as catalyzer. The anti-
tumor activity of the oridonin-loaded PCL-PEO-PClanoparticles was evaluated by
measuring changes in tumor volume, tumor weight sumgtival rates of mice with grafted
hepatoma (H22). The results indicated that thistantor drug delivery system prolonged the
survival time of mice and exhibited a higher thexatfc activity compared to free oridonfn
PCL-PEG-PCL nanoparticles were also used for tHeadg of the biphenolic compound
honokioF®.

Poly(D,L-lactideran-s-caprolactone)-poly(ethylene glycol)-poly(D,L-latiran-c-
caprolactone) tri-block copolymers loaded with 5-€loug loading > 90 %) were prepared by
ring-opening polymerization of D,L-lactide ardCL in the presence of PEG, using Zn L-
lactate as initiator. The thermal behavior of tlaetiples showed their potential as injectable
drug-delivery devices: as the melting temperatp@@aches room temperature, a less porous
inner structure is formed compared to the one uraddngher melting temperature; this
resulting in a slower drug release rateA novel self-assembled amphiphilic PCL grafted
PVA copolymer (PCLg-PVA) has been formulated by a dialysis methodtfar controlled
release of PTX and DOX (up to 20 and 15 days, ieismdy)*.

It has also been suggested the preparation of P&ioparticles surface-coated with
chitosan for the delivery of Mitomycin C (MMC). Thgharmacokinetic profile of the drug
was improved by its vehiculization into the polymeranoparticles. Furthermore, this MMC-
loaded nanoplatform showed a very efficient antivdu activity against a MB49 bladder
carcinoma cell lin&.

Finally, PCL nanoparticles have also been usedjéme delivery in cancer treatment. As
an example, specific small interfering RNA (siRNAbkat target the estrogen receptor alpha
(ERa) were encapsulated in PEGylated pelgéprolactone-malic acid) (PEG-PCL/MA)
nanocapsules (diameter: 100 — 200 nm, loadingiefity = 70 %), as a novel strategy in the
treatment of hormone-dependent breast cancersrdsicence quenching assays confirmed
the incorporation of siRNA into the nanocapsuleecd persistent loss of ER90 % over 5
days) was observed in MCF-7 human breast cancds teht were treated with this
formulation. Furthermore, the intravenous injectiohthese nanocapsules into estradiol-
stimulated MCF-7 cell xenografts led to a significdecrease in tumor growth and a decrease
in ERx expression in tumor ceff$ In this way, several studies have pointed outhibreefits
of the combination of nanotherapeutic strategieduting both gene silencing and drug
delivery, especially in the treatment of refractarymors. As an example, PEO-PCL
nanoparticles were formulated to efficiently encdpte MDR-1 silencing siRNA and PTX.
Upon administration in MDR SKOWR& human ovarian adenocarcinoma cells, siRNA-
mediated MDR-1 gene silencing was evident at ariMose. The combination of MDR-1
gene silencing and nanoparticle-mediated delivegnifscantly influenced the cytotoxic
activity of PTX in SKOV3r cells. The enhancement in cytotoxicity (actiorselto what was
observed in drug sensitive SKOV3 cells) was atteduo an increase in the intracellular drug
accumulation upon MDR-1 gene silencing, leadingrt@poptotic cell-kill effect.
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CONCLUSIONS

Poly(-caprolactone) colloids loaded with chemotherapgnég) have shown in principle
very promising results against cancer. Howevemrer to achieve an optimal anti-tumor
activity, it is needed the control of the biolodidate of these drug delivery systems.
Therefore, significant engineering efforts shoutd focused on the development of pely(
caprolactone) nanocarriers able to respond to plogical or physical stimuli, as well as to
enhance the delivery of drugs to targeted candéis.involves the need for an effective drug
transport into tumors, an adequate control of tlieeHemical factors regulating drug release
and the maintenance of drug levels over the mininmytotoxic concentration. Hence, the
future of polyg-caprolactone) nanoplatforms in anticancer thenajlydepend on advances
in the design and nanoengineering of such kind adloicls, as well as on an improved
understanding of tumor biology and biological bensi
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