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ABSTRACT

FATIGUE PROGNOSIS IN COMPOSITES:

A BAYESIAN FRAMEWORK

Anticipating and characterizing the damage induced by fatigue

loadings is a challenging problem in the composites science and tech-

nology. In contrast to metals, fatigue degradation of composites is

presented since the initial stages of the process leading to a decrease

in the mechanical performance. The literature covers a large num-

ber of fatigue models for composites, the majority of them are only

valid in their experimental conditions. In this thesis a novel bayesian

inverse strategy to reconstruct fatigue damage over lifetime is pro-

posed. This model has been developed to be extensible to different

material configurations and loading conditions, in a coherent sta-

tistical sense. Finally this result has led to a bayesian model class

selection, by which it is possible to select the most plausible model

parameterization. The proposed methodology has been validated

against fatigue damage data. This bayesian framework has shown

versatility to take into account all possible information about data,

models and the relation between them. The updated information

inserted into the reliability problem is shown to confer a way to con-

sidered the long term reliability without the need to make hypothesis

for time to failure.



RESUMEN

PRONÓSTICO DE FATIGA EN COMPOSITES:

UNA VISIÓN BAYESIANA

Anticipar y reconstruir el daño por fatiga en materiales com-

puestos es todavía un desafío. A diferencia de los materiales metáli-

cos, el daño por fatiga se manifiesta desde los primeros ciclos de

carga en forma de fallos locales progresivos que van reduciendo las

propiedades mecánicas iniciales del material. Frente a los numerosos

modelos de fatiga presentes en la literatura, en esta tesina se pro-

pone una metodología basada en el problema inverso bayesiano para

la reconstrucción del daño por fatiga en toda la vida útil recogida

por los datos; así como un método de selección bayesiana de modelos

más evidentes según las observaciones. Este método se ha aplicado a

datos experimentales de fatiga en forma de reducción de rigidez sobre

laminados de fibra de vidrio tipo E-glass/polyester. Los resultados

permiten obtener el modelo que mejor ajusta y predice los datos

disponibles de fatiga. La aplicación de la información estadística

procedente de la reconstrucción del daño para obtener los valores de

fiabilidad a lo largo de la vida útil es una de las principales conclu-

siones del trabajo. La consideración de la vida útil en el pronóstico

de daño y su relación con la fiabilidad, supone un paso importante

para el desarrollo sostenible de materiales compuestos, y posibilitará

la viabilidad de estos materiales en aplicaciones fuera de las aeroes-

paciales.
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Chapter 1

Introduction

1.1 Motivation and Objectives

As an emerging field, such as nanotechnology and biotechnology today, the

composite technology in the seventies saw a boost in research and deve-

lopment. The result was important advances in mechanics of laminates as

well as in composites failure criteria, some of which form standard topics for

composite designers today. Initially, the strength and failure of composites

materials were treated as a extension of metals theories. Experimental ob-

servations put in question this approach, showing that the accumulation of

series of multiple local damage events, led to failure that was unpredictable

by available theories.

Damage in composites become instead the focus of approaches in late

seventies and early 80s and fatigue was appointed as important source of

cumulative damage, since early stages in the lifetime. During 80s and 90s,

fatigue damage covered an important area of the composites research topic

and nowadays there are a wide spread of fatigue models available, all of

them valid in its range of application [1].

Already since more than three decades in use, the applications have

moved towards primary structures not only in aircraft, but also in in civil

1



1.1 Motivation and Objectives 2

engineering, architecture and energetic infrastructures [2–4]. However, fa-

tigue damage is still an open question, overall in those new applications

combining long term behavior and difficulty or absence of maintenance like

bridges, off-shore and underground structures, etc.

In aerospace industry, fatigue is overcome through high quality fibers

and matrices that minimize the effect of fatigue, and also by standardized

manufacturing processes and maintenance programs that reduce the uncer-

tainty associated to fatigue modeling. The same cannot be apply in other

applications out of aerospace industry to be of an inadmissible cost. It is

one of the main reasons for today difficulties in developing new composites

applications.

Moreover, the emerging challenges of the 21th century lie in assuring

the sustainability of technological developments of the global community,

that requires a paradigm out of the posture of only using high quality ma-

terials and processes. In a sustainable development scheme, the objective

is to minimize the impact of today’s products and processes, and so to suit

the needed requirements for a specific performance during a established

operational lifetime.

In this scheme the material damage prognosis plays an important role to

make predictions of the performance over lifetime, and so a cost-performance

trade-off exercise may be conducted to optimize the required material and

processes parameters. This may view as a part of a bigger picture including

the lifetime dimension that entails additional life cycle considerations that

accounts for the materials and energy inputs in all stages of the life, as shown

in Figure 1.1. In this approach, a statistical framework is imperative to

account the unavoidable uncertainty into the global cost evaluation and also

to establish levels of plausibility over lifetime predictions. This task firstly

requires the consideration of evolutive phenomena as stochastic processes,
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Figure 1.1: Sustainable Development of Composite Materials by consi-
deration lifetime evolutive processes.

and then to deal with a formulation framework capable of consider full

information over lifetime parameters.

In this thesis, a bayesian framework to infer damage in composites is pre-

sented, conferring the main step to achieve fatigue prognosis in composites

materials. In this work, the likelihood function for parameterized Markov

processes is imported from mathematical literature and a bayesian model

class selection is originally proposed as a conjunction of states information

[5]. This formulation has been validated against experimental fatigue da-

mage data from the literature [6]. As a result, a posteriori distributions of

Markov model parameters are obtained leading to a selection of the most

plausible model parameterization.

The statistical information derived from the bayesian formulation is pro-

posed to be used to derive long term reliability, and hence to make predic-

tions for lifetime subjected to uncertainty. Previously to this work, a rea-

sonable large spread in the methods to derive reliability in composites was
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observed in literature, and an up-to-date review of the existing methodolo-

gies has been required. The last part of this thesis, is advocated to serve as

a review in reliability of composites.

1.2 Thesis Organization

This thesis is organized as follows. The present chapter remarks the moti-

vation for working in fatigue modeling in composites. The main research

objectives are also highlighted. In Chapter 2, the bayesian framework is

presented in the format of a scientist paper prepared to be submitted to

Journal of Composite Science and Technology. Chapter 3 deals with the

review paper on reliability in composites, which is also prepared to be sub-

mitted to Composite Part B: Engineering.

Finally, the document is closed with appendices and lists of tables and

figures, that helps the document to be easily read.



Chapter 2

A Bayesian Framework to Infer

Fatigue in Composites

In this paper a bayesian inference of the complete stochastic damage process

is proposed for fiber composites subjected to fatigue loading. A general

bayesian inverse problem is formulated for a parametrized Markov chain

model as a conjunction of states of information, leading to a general way

to incorporate full information from data, models and the relation between

them. This methodology is applied to data of stochastic evolution of damage

considered as a stiffness reduction over open hole quasi-isotropic glass-fiber

composite coupons subject to tension fatigue. As a result, the posterior

information about model parameters from two parametrized nonstationary

fatigue models is obtained. This approach confers an efficient way to update

the initial believe on a particular fatigue model using measured data and,

in general, to treat cumulative process in composites.

2.1 Introduction

In composites science, fatigue damage represents one of the most impor-

tant sources of uncertainty for in service behavior leading to conservative

5



2.1 Introduction 6

designs and extra costs in the manufacture and maintenance [7]. Through-

out decades of investigation, numerous fatigue models have been proposed

and a large amount of data has been derived from expensive experimental

programs.

The vast majority of fatigue models are deterministic approaches, and

hence they can hardly account for the variability of test results or monitoring

data, so more than often they are not practical for engineering purposes.

Recently, probabilistic damage approaches are emerging as a suitable

tool for fatigue in composites materials, but the extension of such methods

is not as mature as deterministic ones [1]. Among them, Discrete Time

Markov Chain (DTMC) models are recently used by its ability to account

the variability of the process [8]. In the classic work of Bogdanoff and Kozin

[9], Markov chains are used to model the fatigue degradation of engineer-

ing materials and a time transformation-condensation method is proposed

by which it’s also possible to account the non-stationarity of the fatigue

processes. Based on it, several authors have applied them to composites

materials to model the compliance and lifetime evolution due to fatigue

damage accumulatiom [6, 10–12].

However, the increasing need to improve the model predictions for ac-

counting the complexity of damage accumulation during service condition

together with the need to provide new models that best adjust to test data,

makes necessary to update the initial belief on particular stochastic models

using field data [13].

In this paper, a bayesian framework to infer the cumulative fatigue pro-

cess is proposed for composites materials.

Other proposals have addressed the fatigue problem in a bayesian frame-

work although by adopting some assumptions over the random vars [14] or

over the relations between model and data [13]; and all of them are applied
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for isotropic materials or steel alloys [15, 16].

In our work, the inference has been formulated into a bayesian inverse

problem of Tarantola [5] intended as a conjunction of states of information

for giving the more general framework to incorporate all possible informa-

tion about data, model and relation between both. In view of an industrial

application, this method allows to treat a large range of problems in com-

posites involving cumulative process due to fatigue, without modifying the

formulation framework.

In Markov processes, the relation between model and data for inference

purposes have been extensively studied by mathematical literature [17, 18]

and more specializes in DTMC by [19, 20]. In our work, these concepts have

been imported for engineering purposes and inserted into a inverse problem

leading to a versatile way to make prognosis with parametrized models of

fatigue.

As an example, this formulation has been applied to a stochastic damage

data for sixteen quasi-isotropic open hole S2-glass laminates subjected to a

constant amplitude tension-tension fatigue loading. Due to complexity of

the posterior PDF of parameters, stochastic simulation technique Markov

Chain Monte Carlo (MCMC) was used for its efficiency to draw samples of

a PDF known up to a constant [21].

The results show this framework as a versatile tool to update the initial

believe on a particular fatigue model using measured data, and hence, to

treat damage evolution in composite materials.

The first part of this paper is devoted to provide a concise basis about

fatigue based damage accumulation modeled as DTMC and also to present

the parametrized fatigue models as forward problem. In Section 2.3 the

problem of inference of DTMC formulated into a bayesian inverse problem

framework, is addressed. In Section 2.4, our formulation is applied to a set
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of fatigue data and serve as a example of actualization of model parameters

and class selection. Section 2.5 briefly concludes.

Through this paper, the path of simplifications required to resolve com-

mon model updating subjected to fatigue data, are highlighted with the

objective to suit a common engineering necessities into the proposed gen-

eralized formulation, and so to attend not only to scientist community but

also to industry and practitioners.

2.2 Stochastic fatigue model

The evolution of fatigue damage as a function of cycles is proposed to be

modeled by Markov chains, under the main hypothesis established by the

Markov property, which states that the future of the process only depends

on its present state, which is independent of the past. This phenomenolog-

ical stochastic approach is based on the theory of Markov Chains [22] and

assumes the following underlying assumptions [9, 12]:

1. Damage is a nondecreasing random variable and it passes through an

integer and finite number of states, j = 1, 2, ..., s, until the “absorbing”

state s is reached.

2. The time period N over which damage may accumulate is discretized

in integer units of duty cycles (DCs), n = 0, 1, ..., N .

3. Damage is only considered at the beginning and the end of a DC,

without taking into account what is happening within a DC.

4. Damage can only increase within a DC from the state at the start of

that DC to the next state.

It follows from the previous remarks that the proposed model is a finite-

state (1), discrete-time (2), embedded (3) Markov process in which the
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damage accumulation mechanism is of the unit-jump type (4). At each

integer time n, there is an integer-valued random variable (rv) Dn called the

damage state at time n and the damage process is family of rv’s {Dn;n > 0}.

Let then the rv Dn represents the damage state at time or duty cycle n.

Thus the probability of Dn to be in state j at time n is denoted by

P [Dn = j] = pn(j) (2.1)

The probability mass function of the rv Dn at time n is given by the vector

pn = {pn(1), pn(2), ..., pn(s)} (2.2)

where
s∑
j=1

pn(j) = 1 (2.3)

From the theory of stochastic processes, the probability density function

(PDF) of damage after a given number of duty cycles N , pN , is determined

by the PDF of the initial damage state, p0, and the probability transition

matrices (PTM), Pn, as

pN = p0

N∏
n=0

Pn (2.4)

The PTM summarizes the allowed transitions between damage states. Thus

they adopt the form:

Pn =


p1(n) p1(n)

p2(n) p2(n)

... ...
ps−1(n) ps−1(n)

1

 (2.5)

where the pj(n) and qj(n) are conditional probabilities that determine if

the current damage state remains or proceeds to the next state at time n,

respectively.
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2.2.1 Forward problem

For the purpose of inference, the fatigue model described above must be

parametrized by setting the transition probability matrix PM dependent

on a vector M of model parameters. So, let define PM = pMij (n)(i, j =

1, . . . , s; n = 0, . . . , N) the probability of state j at time n given state i

at time n − 1, and C the manifold of possibles parameterized models for

stochastic fatigue modeling.

In this work, two nonstationary models C1 and C2 have been defined with

five and three parameters respectively as below:

Model C1: M = {m1,m2,m3,m4,m5}

PM = p0


m5 1−m5

m5 1−m5

... ...
m5 1−m5

1


α

(2.6a)

α = n× PMS(m1,m2,m3,m4) (2.6b)

0 6 mj 6 1 j = 1 . . . 5 (2.6c)

Model C2: M = {m1,m2,m3}

PM = p0


m3 1−m3

m3 1−m3

... ...
m3 1−m3

1


α

(2.7a)

α = n× PMS(m1,m2) (2.7b)

0 6 mj 6 1 j = 1 . . . 3 (2.7c)

In both models, the nonstationarity is accounted by means of an unitary

time transformation while the probabilities of transition between states pMij

remain time-invariants.
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2.3 Bayesian Inverse Problem

Following the probabilistic formulation of the model reconstruction inverse

problem established by Tarantola [5], the solution is, not a single-valued, set

of model parametersM. Their definition is given by providing their prob-

ability density function (PDF) p(M) of the values of the model parameters

M within the manifold M of possible values. The PDF is assigned the sense

of plausibility of the model values to be true.

Since an absolute probability cannot be computed, statistical inference

theory is used to incorporate to the a priori available or observed infor-

mation about the measured observations D, the model parametersM and

the model class C, the information of idealized relationship between them

D = D(M) computed by a numerical model pertaining to a model class C.

The former are defined by the probability densities to prior (labelled 0) data

p0(D), p0(M) and p0(C) respectively, whereas the additional information

about relationship (labelled m) between observations and model provided

by the model class C, is given by the PDF pm(D,M, C). The conjunction

operator (preferred over the Bayesian formulation of statistical inference

for being more general, see [5]) over probability densities, combines them

to yield the a posteriori probability p(D,M, C) of the hypothetical model

M jointly with the observations D and class C,

p(D,M, C) = k1
p0(D,M, C)pm(D,M, C)

µ(D,M, C)
(2.8)

where µ(D,M, C) is the uniform or noninformative density function and k1

is a normalization constant.

In this specific case where we are interested in translating information

from the data space D into the model space M and also where both spaces

have different physical meanings, some assumptions will be made at this

point. First, D, M and C are assumed to be independent a priori, which
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allows to split the joint prior information p0(D,M, C) = p0(D)p0(M)p0(C)

and the uniform distribution µ(D,M, C) = µ(D)µ(M)µ(C).

Second, the probabilistic model can be represented under the form of a

probability density for D given any possibleM, which yields pm(D,M, C) =

pm(D|M, C)pm(M, C)pm(C). Third, the model is not assumed to provide

conditional information between model and class, i.e. pm(M, C) = µ(M),

pm(C) = µ(C) are noninformative. This specialise the general expression for

the inverse problem (2.8) to:

p(D,M, C) = k1
p0(D)p0(M)p0(C)pm(D|M, C)

µ(D)
(2.9)

The posterior information of the model parametersM is obtained from

the joint probability p(D,M, C) by extracting the marginal probability

p(M)
∣∣
C=Ci

for all possible observations D ∈ D and provided the model

class Ci ∈ C is assumed to be true ⇒ p0(C = Ci) = 1,

p(M)
∣∣
C=Ci

=

∫
C=Ci

∫
D

p(D,M, C)dDdC

=k1p
0(M)

∫
D

p0(D)pm(D|M, Ci)
µ(D)

dD = k2p
0(M)L(M)

(2.10)

being L(M) the likelihood function.

2.3.1 Likelihood Function for Markov Chains

A general approach to maximum-likelihood estimation of the transition

probabilities of a DTMC is based on the so-called Whittle formula [19].

In our special case of DTMC of damage states, D is a linear space and

so µ(D) = const. Additionally, for the particularity of Whittle formula

based on observed sequence of discrete states as will exposed bellow, L(M)

can be restricted to a subset O ⊆ D representing the observed data which

implies to assum the hypothesis of negligible observational uncertainties

with respect to modelization uncertainties ⇒ p0(D) = δ(D −O).
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So, the factor p0(D)pm(D|M, C) from (2.10) derives to pm(O|M, C) and

the Likelihood function results then:

L(M) =

∫
D

pm(O|M, C)dO (2.11)

Once established this framework, let define the states i = 1, 2, . . . , s

and the time of observation n = 0, 1, . . . , N . Let PM = pMij (n)(i, j =

1, . . . , s;n = 0, . . . , N) be the probability of state j at time n given state i

at time n − 1, as a function of model parameters M ∈ M. And let S be

the set {i, j / pMij (n) > 0}.

Given a sequence of observations O materialized by a l -dimensional vec-

tor x = (x0, . . . , xl) ∈ I l+1 from an s-state Markov chain (Xm) with transi-

tion probability matrix P, the n-step transition count matrix F(x, n) /F =

fij(x, n) is defined as the matrix that accounts the number of observed tran-

sitions i(n−1) → j(n) ∈ S [20], i.e. the the number of times m, 0 6 m < l,

for which xm+1 = j at time n given xm = i at time n− 1.

By Whittle’s formula [19], the probability describing any particular se-

quence x = x(n) with transition count F(x, n) and PTM PM is given by:

pm(O|M, C) =
N∏
n=0

s∏
i,j=1

(
pMij (n)

)fij(n) (2.12)

It’s known that both relations implies the transition count F(x, n) on

its own or together with the initial state p0, forms a sufficient statistic [18],

in the sense that for any parametrization of the PTM PM,M∈M; F(x, n)

does not depend onM, which also means that M and O are independent.

When all possible sequences x ∈ O following a trajectory compatible

with a given n-step transition count F are accounted, is demonstrated [19]

that Equation 2.11 is equivalent to multiply Equation 2.12 by respective

appropriate functions of factorials obtaining a Whittle’s distribution [20].

This distribution assigns to F a probability, acting so as the likelihood

function of the Markov Chain as follows:
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L(M) =
N∏
n=0

[
s∏
i=1

(
fi+(n− 1)!∏s
j=1 fij(n)!

s∏
j=1

(
pMij (n)

)fij(n))] (2.13)

with fi+ =
∑s

j=1 fij and fi+(n − 1) =
∑s

j=1 fij(n) respectively. Equation

2.13 represents how good a Markov modelM|Ci is explaining the observed

sequence x ∈ O.

2.3.2 Model-class selection

Let model class C ∈ C denote an idealized mathematical model hypothe-

sized to simulate the experimental system, whereas model M denotes the

set of constants of physical parameters that the model-class depends on.

Different model classes can be formulated and hypothesized to idealize the

experimental system, and each of them can be used to solve the proba-

bilistic inverse problem in the previous section, yielding different values of

model parameters but also physically different sets of parameters. To select

among the infinitely many possible model classes that can be defined, user

judgement is a criteria, but a probabilistic one can also be defined based on

their compatibility between prior information p0(O,M, C) on observations

O, model parametersM and model class C, and probabilistic model infor-

mation given by pm(O,M, C). The conjunction of probabilities established

in Equation 2.9 will be adopted instead of Bayes’ theorem, for its generality.

The goal is to find the probability p(C|O), understood as a measure

of the probability of a class of model conditional on the set of observed

data O [23]. It can be derived as the marginal probability of the posterior

probability p(D,M, C) as defined in Equation 2.9 given the observed data

O ⊆ D as follows:
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p(C|O) =

∫
O⊆D

∫
M

p(D,M, C)dMdD (2.14)

= k1p
0(Ci)

∫
M

p0(M)

∫
O

pm(O|M, Ci)dO︸ ︷︷ ︸
L(M)

dM

= k2p
0(Ci)

∫
M

p0(M)L(M)dM = k2p
0(Ci) p(O|Ci)︸ ︷︷ ︸

evidence

(2.15)

The same expression for the probability of a class model provided O,

can be obtained by using the Bayes’ theorem:

p(Ci|O) =
p(O|Ci)p0(Ci)

p(O)
(2.16)

where p(O) can be solved from the theorem of total probability over all

model classes C,

p(O) =

∫
C

p(O|C)p0(C) (2.17)

The factor p(O|Ci) is called the evidence for the model class Ci provide

by the observed data O. It expresses how likely the data are obtained if the

model class Ci is assumed.

If no prior information is provided by the user about the class or the a

priori information available for each class is the same, p0(Ci) = µ(Ci)

⇒ p(Ci|O) = k3p(O|Ci). Note that the evidence is equal to the recip-

rocal of the normalizing constant k2 in establishing the posterior PDF in

Equation 2.10.

Once the evidence p(O|C) is computed for every class, its value allows

to rank the models accordingly to how compatible they are with the ob-

servations [24]. This also allows to find a correct trade-off between model

simplicity and fitting to observations, as explained in the following subsec-

tion.
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Interpretation of class evidence

In the case of globally identifiable models and informative prior data, the

posterior PDF may be accurately approximated by a Gaussian distribu-

tion and the evidence term can be obtained by an asymptotic expansion

[25]. The general case where the posterior PDF may not be approximated

by Gaussian distribution, an information point of view may be used for

interpretation of the evidence for a model class [26], as follows:

ln p(O|C) = [ln p(O|C)]
∫
M

p(M)
∣∣
C=Ci

dM︸ ︷︷ ︸
= 1

(2.18)

Since the evidence is independent of M, we can bring it inside the in-

tegral and then make substitutions according to Bayes’ Theorem in Equa-

tion 2.10 to expand the log-evidence as:

ln p(O|C) = lnL(M)− ln
p(M)

∣∣
C=Ci

p0(M)
(2.19)

Substituting in Equation (2.18), the log-evidence results as difference of

two terms:

ln p(O|C) =

∫
M

[lnL(M)] p(M)
∣∣
C=Ci

dM−
∫
M

[
ln
p(M)

∣∣
C=Ci

p0(M)

]
p(M)

∣∣
C=Ci

dM

(2.20)

The first term is a measure of the average log-goodness of fit of the model

class C. It accounts for the log-goodness of fit for different combinations of

the parameters, weighted by the posterior PDF [27]. The second term is the

relative entropy between the posterior and prior PDF of parameters. This

term is a measure of the information gained about the parameters given the

observations O.
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2.3.3 Stochastic Simulation

Due to difficulties with analytically evaluate Equation 2.13 for obtaining the

posterior parameters, the stochastic simulation like Markov Chain Monte

Carlo (MCMC) methods, are feasible alternatives for exploring the parame-

ter space [28]. The goal of the stochastic simulation methods is to generate

samples which are distributed according to a unknown probability density

function (PDF). For this task, several algorithms have been proposed in li-

terature such as the Metropolis-Hastings, Gibbs Sampler and Hybrid Monte

Carlo algorithms.

Among them, Metropolis Hastings (MH) is widely used for its versatility

[29]. This algorithm generates samples from a Markov Chain whose statio-

nary distribution is any specified target PDF π(y), known up to a constant.

By sampling a candidate point y from a proposal distribution q(.|xs), the

MH obtains the state of the chain at s + 1 given the state at s, known by

the previous value xs.

To ensure the convergence to target distribution, some regularity con-

ditions for q(.|xs) are required, which are usually satisfied when q(.|xs) has

a positive density on the same support as the target distribution, like mul-

tivariate gaussian and uniform [30]. The candidate point y is accepted as

the next state of the chain with probability given by:

α(xs,y) = min

{
1,
π(y)q(xs|y)

π(xs)q(y|xs)

}
(2.21)

Appendix A provides a description of the implemented algorithm to

explore the posterior L(M)|C=Ci as target distribution.

As a drawback, for high-dimensional parameter spaces, it may still be

very difficult to draw samples that cover all the regions of high-probability

content [26], so recently new improvements to the original algorithm have

been provided, like Adaptive [31] and Transitional [32] Markov Chain Mon-

tecarlo Methods, AMCMC and TMCMC respectively.
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In this work, the dimensional space is known to be in the interval [0, 1]n,

with n = {3, 5} so the MH have been used without restrictions, with the

only caution of adjusting by training the covariance matrix of q(.|xs) to

ensure the convergence for an adequate number of trials, once discounted the

burn-in period . The chosen proposal distribution has been a multivariate

gaussian with identical standard deviation in each dimension, which derives

to the Random Walk version of the algorithm [33].

2.4 Application-Numerical Example

The proposed framework is illustrated in an example considering stochastic

damage data from literature [6] for sixteen quasi-isotropic open-hole S2-

glass laminates subjected to a constant amplitude tension-tension fatigue

loading (R = 0.1, f = 5Hz, σmax = 0.5 × σu), as shown in Table 2.1. In

this experiment, the observed data d(k) ∈ O came from measurements of

relative stiffness decreases for each k laminate defined as follows:

d(k)(n) =
E

(k)
0 − E(k)(n)

0.6E
(k)
0

(2.22)

E0 is the initial longitudinal stiffness, E(n) is a stiffness sample measure-

ment in n. For this data, the most suitable value for duty cycle n was

considered to be 500 load cycles with a DTMC assembly of s = 25 states,

as was reported in J. chiachio et al through a sensitivity study. The total

number of duty cycles results in N = 213900/500 = 428.

Note that in the experiment some measurements were taken out of [0, 1]

interval, and so to ensure the existence of an absorbent state for the study

conditions of a stochastic process, was required either to interpolate [6] or

to consider as absorbent state the last duty cycle that d(k) > 1 . In this

example, this last option was adopted to minimizes the alteration in the
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statistical information because only affects to a small portion of measure-

ments near the absorbent state.

Table 2.1: Stiffness reduction stochastic data [6].

Cycles d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) d(11) d(12) d(13) d(14) d(15) d(16)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6200 0,11 0,03 0,03 0,21 0,08 0,1 0,08 0,26 0,09 0,1 0,06 0,06 0,06 0,06 0,1 0,15

9300 0,19 0,11 0,06 0,26 0,09 0,11 0,11 0,3 0,1 0,12 0,1 0,06 0,13 0,09 0,16 0,19

12400 0,21 0,16 0,12 0,3 0,09 0,13 0,13 0,34 0,15 0,13 0,15 0,11 0,16 0,11 0,18 0,22

15500 0,26 0,18 0,13 0,34 0,1 0,14 0,13 0,37 0,18 0,13 0,17 0,14 0,18 0,17 0,2 0,25

18600 0,3 0,19 0,15 0,35 0,11 0,18 0,14 0,4 0,19 0,14 0,21 0,16 0,21 0,18 0,22 0,31

21700 0,33 0,2 0,16 0,36 0,12 0,19 0,14 0,4 0,21 0,17 0,21 0,17 0,21 0,19 0,25 0,35

27900 0,39 0,23 0,2 0,38 0,14 0,22 0,18 0,43 0,24 0,18 0,21 0,2 0,25 0,25 0,26 0,41

34100 0,44 0,26 0,23 0,4 0,17 0,25 0,28 0,46 0,27 0,25 0,25 0,22 0,28 0,26 0,27 0,43

40300 0,47 0,27 0,25 0,42 0,22 0,26 0,34 0,49 0,27 0,26 0,26 0,25 0,3 0,29 0,28 0,45

46500 0,51 0,31 0,27 0,43 0,26 0,28 0,43 0,5 0,34 0,27 0,29 0,27 0,33 0,36 0,3 0,46

52700 0,6 0,34 0,3 0,44 0,29 0,3 0,63 0,5 0,41 0,3 0,32 0,3 0,33 0,38 0,31 0,47

65100 0,66 0,36 0,43 0,46 0,38 0,35 1,04 0,54 0,42 0,38 0,35 0,34 0,41 0,91 0,38 0,48

77500 0,91 0,39 0,56 0,47 0,46 0,37 0,59 0,47 0,48 0,44 0,4 0,45 1,5 0,44 0,5

89900 1,16 0,48 0,75 0,49 0,56 0,41 0,61 0,53 0,56 0,47 0,65 0,49 0,45 0,52

102300 0,58 0,95 0,52 0,93 0,5 0,65 0,69 0,63 0,8 0,9 0,82 0,54 0,55

114700 0,73 1,14 0,55 1,33 0,58 0,68 0,92 1,07 1,23 1,1 1,1 0,79 0,56

127100 0,81 0,59 0,67 0,72 1,25 1,09 0,57

139500 0,98 0,62 0,79 0,84 0,6

151900 1,01 0,64 0,95 0,98 0,62

154986 0,67 0,98 0,98 0,63

164300 0,71 1,1 1,09 0,65

176700 0,74 0,72

189100 0,83 1

201500 0.94

213900 1.15

For simplification in obtaining the posterior of model parameters, the

non-informative distribution p0(M) = µ(M) is assumed, which can in turn

be dropped as follows:

p(M)
∣∣
C=Ci

= k2p
0(M)︸ ︷︷ ︸

constant

∫
O

pm(O|M, C)dO = k3L(M) (2.23)
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So, without lack of generality, in this example the parametric inference is

contributed solely by the likelihood functions (2.13).

Additionally, by the fact that given an observed sequence, the relation

between Equations 2.13 and 2.12 is a constant, Equation 2.23 can also be

simplified to:

p(M)
∣∣
C=Ci

= k4p
m(O|M, Ci) = k4

N∏
n=0

s∏
i,j=1

(
pMij
)fij(n) (2.24)

with N = 428, s = 25 and k4 is a normalization constant that is needed

for p(M)
∣∣
C=Ci

to fulfill the theorem of total probability
∫
M
p(M)

∣∣
C=Ci

dM =

1. This simplification substantially reduces the computational cost in the

stochastic simulation.

To simulate the process, the MH algorithm has been implemented with

N = 104 trials and σ = 0.02 for model class C1 and σ = 0.01 for model class

C2. Each simulation required 2, 4 · 103 and 2, 7 · 103 [sec] respectively in a

2.4 [GHz] double core computer. The algorithm configuration was verified

to ensure the chain is ergodic and, hence, converges to Equation 2.24 by

choosing the first sample distributed according the target PDF [34]. And

also, by observing that the sample stabilizes (to the expectation to target

disribution) after the burn-in period, in this case of 115 and 11 samples for

C1 and C2 respectivelly, as shown in figure 2.1.
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Figure 2.1: Sample history of Equation 2.24 for both model classes. It’s
shown in logarithmic scale to correctly detect the burn-in period after which
the expectance of the target distribution is stabilized. See also that model
class 1 has larger likelihood value than model class 2.

The results for posterior parameters are summarized in Table 2.2 for

respective models C1 and C2.

Table 2.2: Results for posterior parameters

Parameter Optimal mi Std. dev σmi
C.O.V(%) Burn-in period

m1 0.0741 0.0182 22.16 115

m2 0.0730-0.1 0.0308 30.46 115

C1 m3 0.1139 0.0205 17.82 115

m4 0.3015 0.0378 12.16 115

m5 0.8592 0.096 1.12 115

m1 0.6 0.1375 19.55 11

C2 m2 0.6335 0.1337 18.40 11

m3 0.89 0.0074 0.82 11

In figures 2.2 and 2.3 the scatterplot matrices for the simulation process
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are shown, with main diagonals representing marginal posterior PDF for

model class C1 and C2 respectively.
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Figure 2.2: Plots of the samples in the M space when updating model
class C1 with fatigue data O . In diagonal histograms and kernel density
estimate construction for parameters.
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Figure 2.3: Plots of the samples in the M space when updating model
class C2 with fatigue data O . In diagonal histograms and kernel density
estimate construction for parameters.

This results show that posterior parameters from model C1 have small

uncertainty than those from model C2. However, this does not necessary give

a good model class for future prediction because the model output may be

too sensitive to parametric and modeling error [35]. The best choice between

both class will be those with the higher evidence value.

Due to difficulties associate with analytically evaluate the evidence, an

approximation based on stochastic simulation is used. Since p0(M) is a

true PDF, the probability integral in Equation 2.15 can be viewed as an

expectation of L(M) over samples drawn from the prior p0(M), as follows:

p(O|C) =

∫
M

L(M)p0(M)dM≈
N∑
i=1

L(Mi) (2.25)

withMi ∼ p0(M) = U(0, 1).
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Since L(M) is concentrated in a small volume of the parameter space

(see Figures 2.2 and 2.3), 2 · 104 samples (in this case independents) were

required to achieve the convergence of the estimator.

The results, given experimental data in Table 2.1, show an evidence of

2, 84 ·10−4 for C1 and 4, 64 ·10−4 for C2. This means that class C1 has better

fitting capability due its largest maximum likelihood value, although C2 is

better for robust prediction, as shown in Figure 2.4. The same result was

obtained in J.Chiachio et al, through a cross-validation.

However both classes has similar evidence values, so that a good choice

for damage prediction may be through a model averaging as follows:

p(d|O) ≈
Nc∑
j=1

p(d|O, Cj)p(Cj|O) = 0, 38p(d|O, C1) + 0, 62p(d|O, C2) (2.26)

where p(d|O) is PDF of damage given the observed data O and p(Cj|O)

obtained as in Equation 2.16 by assuming a equally weighted class prior

p0(C) = 1/2. This approximation is exact only if the Nc models classes pro-

vides independent prediction for the damage or by accounting all possible

correlations among all model classes. However, even discarding the correla-

tions, this approximation still performs better than using the most plausible

model class alone [27].



2.4 Application-Numerical Example 25

0 0.5 1

0

0.5

1

n=12

0 0.5 1

0

0.5

1

n=31

0 0.5 1

0

0.5

1

n=56

0 0.5 1

0

0.5

1

n=93

0 0.5 1

0

0.5

1

n=155

0 0.5 1

0

0.5

1

n=229

0 0.5 1

0

0.5

1

n=304

0 0.5 1

0

0.5

1

n=353

0 0.5 1

0

0.5

1

n=428

Figure 2.4: Plots of CDF of damage in nine equally spaced duty cycles
covering the full time, for model class 1 and 2, solid line and dashed line
respectivelly. In grey color (dashed-dot line), the empirical CDF of damage.

Effect of prior information

Due to the evidence integral is the inner product of the prior distribution

and the likelihood of a model, the choice of prior distribution p0(M) is im-

portant for model class selection because it offers a reference for comparison

in quantifying the information gain from the data. In this work, prior infor-

mation about model parameters is not available, so the choice of uniform

distribution is an appropriate option for parameter updating. However this

option imply to absorb the prior distribution into the normalizing constant

for model class at the expense of loose the information reference.

In this section, six gaussian priors are adopted to serve as an example of

quantifying the goodness of fit and the information gain, as in Equation 2.20.

All parameter are assumed to follow the same gaussian prior, centered each
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one in µ = {0.25, 0.75} with standard deviation of σ = {0.1, 0.2, 0.4}, ob-

taining six prior combinations (see Table 2.3).

To resolve the probability integrals in Equation 2.20, an approximation

based on simulation with dependent samples drawn from L(M) by the MH

algorithm is adopted as follows:

p(C|O) =

∫
M

L(M) p0(M)︸ ︷︷ ︸
g

dM≈
N∑
i=1

g(Mi) (2.27)

∫
M

L(M)p(M)
∣∣
C=Ci

dM =
1

p(O|C)

∫
M

[lnL(M)] p0(M)︸ ︷︷ ︸
h

L(M)dM

≈
N∑
i=1

h(Mi) (2.28)

withMi ∼ L(M).

Results of Bayesian model class selection are shown in Table 2.3. The

log-evidence and average log-likelihood function over the posterior PDF

that are estimated from stochastic simulation are shown, along with the

information gain, which is not directly estimated but rather calculated from

the other two quantities using Equation 2.20.
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Table 2.3: Results for model class selection using example gaussian priors.

Prior PDF log p(O|C) log Average fit Information gained

µ = 0.25, σ = 0.4 -1.37 -366.53 -365.15

µ = 0.25, σ = 0.2 -5.45 -366.65 -361.20

C1 µ = 0.25, σ = 0.1 -21.48 -367.26 -345.77

µ = 0.75, σ = 0.4 -4.61 -366.58 -361.97

µ = 0.75, σ = 0.2 -18.27 -366.99 -348.72

µ = 0.75, σ = 0.1 -70.82 -368.71 -297.88

µ = 0.25, σ = 0.4 -2.50 -415.26 -412.76

µ = 0.25, σ = 0.2 -8.69 -415.25 -406.55

C2 µ = 0.25, σ = 0.1 -30.48 -415.21 -384.72

µ = 0.75, σ = 0.4 -0.18 -415.31 -415.12

µ = 0.75, σ = 0.2 -0.69 -415.31 -414.62

µ = 0.75, σ = 0.1 -2.21 -415.34 -413.12

This table remarks the effect of prior on the evidence of a model class.

It is shown that irrespectively the prior, the model class C1 is the best for

fitting capabilities but not necessarily the best for robust prediction because

of its larger model complexity, which is indicated by the larger information

gain. This also concord with the conclusion obtained when improper prior

was adopted.

2.5 Conclusions

A new methodology is proposed to infer the fatigue-based damage evolu-

tion in composites, as solution of a general bayesian inverse problem. This

framework has the versatility for accounting all possible information about
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data, model and relation between both. Given the required simplifications,

this capability allows to be used for parameter estimation in fatigue test-

ing, for model updating with monitoring damage data, or even for selecting

the model classes with best evidence for a specific material data set. The

methodology has been validated on a example for obtaining the posterior

PDF of model parameters from two nonstationary models, in terms of fit-

ting to stochastic damage data. It has been shown that the posterior PDF

and the associated model evidence can be obtained using a Markov Chain

Monte Carlo method like Metropolis Hastings algorithm with a moderate

computational cost.

As a drawback, this methodology does not allow the duty cycle (Dc)

and number of states (s) to be incorporated as model parameters because

it would make F not to be a sufficient statistic, which is mandatory in the

definition of the likelihood function. Depending on the specific set of data,

this parameters can influence on fatigue stochastic modeling, so a previous

sensitivity study for setting their values is recommended.

Other phenomena in composites like porous density, crack growing in-

tensity, etc., that imply cumulative processes can be benefited by applying

this method by only obtaining a set of data from a state variable observed

through time.

Further work is needed to extrapolate this method to Continuos Time

Markov Process that would allow to incorporate whatever heterogeneous

set of data and hence would confer independence on (Dc) and (s).



Chapter 3

Reliability in Composites-a

selective review and survey of

current development

As a response to the rampant increase in research activity within relia-

bility in the past few decades, and to the lack of a conclusive framework

for composite applications, this article attempts to identify the most rele-

vant reliability topics to composite materials and provide a selective review.

Available reliability assessment methods are briefly explained, referenced

and compared within an unified formulation. Recent developments to con-

fer efficiency in computing reliability in large composite structures are also

highlighted. Finally, some general conclusions are derived along with an

overview of future directions of research within reliability of composite ma-

terials and their influence on design and optimization.

3.1 Introduction

The need to incorporate uncertainties in engineering design has long been

recognized. In contrast to the traditional approach of using safety coeffi-

29
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cients, the probabilistic design allows the estimation of reliability by consid-

ering the stochastic variability of the data for which designs are qualified to

have a given reliability value [36]. The performance is generally evaluated

by means of a variable such as the displacement of a point, the maximum

stress, etc., or by a set of them. Variability in the performance of com-

posite materials arises mainly from the variability in constituent properties,

fibre distribution, structural geometry, loading conditions and also manu-

facturing process. As an orthotropic material, this variability can lead to

a catastrophic failure mainly when inaccuracy arises in loading direction or

fiber orientation, while the traditional approach of safety factors could result

in a costly and unnecessary conservatism [37], which is a serious drawback

for making composites competitive and sustainable.

In the recent decades, a large number of articles have been reported to

cover probabilistic failure and reliability in composites. The first contribu-

tions were in the form of probabilistic strength over aircraft applications

[38, 39]. Shortly later, the β-method by Hasofer Lind [40] was applied

to laminated plates [41]. Wetherhold and Ucci [42] evaluated reliability

methods used in composites through an example and Soares [43] made an

overview and gave a perspective about deriving reliability from ply to lam-

inate level.

However, due to the inherent variability in the material behavior, relia-

bility in composites requires that several decisions are adopted. The reasons

for that are multiple: 1) there are a wide range of possibles failure functions

to adopt, 2) numerous influencing random variables need being incorpo-

rated, 3) several reliability methods arise and 4) there are different ways to

consider reliability for a laminate, as shown in Figure 3.1.

According to Soares [43], several results have been reported, but unfortu-

nately, a lack of consensual framework is observed in literature for the use of
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Figure 3.1: Schematic representation of a reliability problem in composites.

methods, failure criteria, statistical description of mechanical variables and

even for conclusions. These, together with new trends to confer efficiency in

reliability calculation require the need for a thorough and up-to-date review

of the literature in this area.

Hence, as a first step to provide a basis for a discussion about this claim,

the present paper reviews some fundamental concepts of reliability from an

orthotropic material perspective. This work highlights the results where

connections between reliability and failure criteria in composites are most

striking. It also gives a concise background of reliability methods with spe-

cial emphasis to those that already have a fruitful impact on composite

applications, and identify results which evaluate the influence of such vari-

ability in methodology. Section 3.3 gives a set of examples where ideas of

reliability in composite laminates have demonstrated advantages for lam-

inate design and optimization, and identifies areas of particular potential

for further development. In Section 3.4, some basic notions of techniques

to confer computational efficiency are recalled. It is also shown how they

provide a framework for reliability assessment of large structural composites

systems. Section 3.5 briefly concludes.
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In Table ??, additional information related to the decision topics is pro-

vided, that helps to derive a perspective of reliability in composites.

This work is not only focused on reliability procedures but also in re-

liability based design and safety factor calibration, which are topics where

reliability calculation is crucial.

Throughout the paper, methods and techniques to assess reliability from

literature are expressed within an unified formulation which helps this re-

view to be read with independence of the references.

Due to the large number of articles involved and the lack of electronic

access to many conference proceedings, the emphasis of this review is on

the more accessible refereed journal articles.

3.2 Reliability formulation. Ply level

The essence of the structural reliability problem is the probability integral:

Pf =

∫
X|g(X)≤0

fX(X)d(X) (3.1)

where X = {x1, . . . , xn}T is a vector of random variables that represent

uncertain quantities influencing the state of the structure, fX(X) is the

probability density function (PDF) and g(X) ≤ 0 denotes a subset of the

outcome space where failure occurs [44].

For a mathematical analysis, is necessary to describe the failure domain

g(X) ≤ 0 in an analytical form, which is widely named as limit state func-

tion (LSF). The next section 3.2.1 is dedicated to expose different formu-

lations of the LSF used for reliability in composites. Methods of resolving

the integral in Equation 3.1 will be commented in section 3.2.2.

Both mentioned topics about Equation 3.1, together with the discussion

about what to consider as random variables, cover almost all of the literature

discussion on composites reliability.
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3.2.1 Concept of failure

Failure criteria used in probabilistic analysis are the same as used in a

deterministic approach, so the accuracy of reliability analysis is critically

dependent on an appropriate criterion for the study conditions. Composite

materials display a wide variety of failure mechanisms as a result of their

complex structure and manufacturing processes. So, in literature, a wide

spread of possibilities for LSF have been developed, all apparently valid

depending on each specific problem [45–47]. Recently, a comprehensive

review of failure theories is given by Orifici et al. [48], in which a concise

way to classify them is also proposed according to whether they are based

on strength or fracture mechanics theories, whether they predict failure in

a general sense or are specific to a particular failure mode and whether

they focus on in-plane or inter-laminar failure. Following this classification,

the in-plane general strength failure criteria ranges almost all the literature

in reliability, although important contributions have also been derived in

composites reliability based on other LSF like damage based criteria [49],

crack initiation over pipe surfaces [50, 51] and buckling failure [37, 52].

In relation to the scale level, although recent advances in multiscale

failure have been reported [53, 54], the body of reliability literature takes a

mesoscale or macroscopic approach to the failure as the phenomenological

model to analytically describe the reliability of composites. An interesting

approach which seems to be a first step to multiscale reliability evaluation

of composites have been recently reported [55]. In these study, a micro and

macro-scale evaluations of the Tsai-Hill LSF are critically compared in a

reliability framework showing good agreement and conclude that reliability

analysis starting from micro level would help benchmarking corresponding

macro-level analyses.

In reliability literature, due to the complexity of the failure concept, a
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step by step approximation to the subject is observed, from uniaxial ten-

sion reliability [39, 56] to a more general multiaxial case in recent years.

In the latter multiaxial case, two main approaches have been proposed:

the interactive and non-interactive, depending on the stress working or not

collectively towards the failure of the element [57].

The non-interactive case considers reliability at each stress direction

independently [57] or exclusively the most stressed direction [58, 59], in

conjunction to Max Stress, Max Strain or Max Work criteria as LSF. This

approach has not been extensively used in reliability due to its well-known

insecure position for certain stress combinations [60].

Among the interactive failure criteria, Quadratic Failure Criteria, are

the most used in reliability mainly because a mature knowledge has been

achieved in considering quadratic functions as LSF for reliability [61]. This

criteria takes into account the interactions between different stress com-

ponents. The LSF for the Quadratic Failure Criteria in the component

orientation for one ply is expressed by:

g(X) = 1− (Fijσiσj + Fiσi) 6 0 (3.2)

where Fij = Fij(X), Fi = Fi(X) are the strength parameters, σi = σi(X) the

stress in the tensor component i, with i, j = 1, 2, 6 the stress or strain tensor

components [60]; and X = {x1, . . . , xn}T the random variables written in

matricial notation.

Particularly, the quadratic Tsai’s criterion has been fairly used in liter-

ature motivated by being one of the existing mature theories [62–64]. The

main contributions in reliability have used the Tsai’s criterion, although not

exclusively, as shown in Table ??.

Under such variability of failure criteria to define the LSF, certain au-

thors [42, 58, 65–67] declined to probe with several possibles and compare
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to experimental or reference reliability data when available. In Nakayasu

and Maekawa [68] a quantitative trade-off for six different failure criteria

from the viewpoint of reliability-oriented design of composite materials was

carried out. This work yielded an important conclusion about the need to

verify the criterion suitability under specific load combinations, which also

agrees with Lin [69].

3.2.2 Reliability methods used in composites

Methods used in literature for computation of the probability integral in

Equation 3.1, are reviewed in subsequence chapters. To avoid duplication

in the current review but conferring a sufficient conceptual framework, the

methods have been presented in a concise way.

3.2.2.1 Fast probability integration methods (FPI)

FPI methods rely on approximating the failure surface by a predetermined

geometric form for which evaluation of the integral is practical [44].

A most probable point (MPP) is searched during the evaluation, over

which the failure surface is approximated by such geometric form. The

distance between the origin and the MPP corresponds to the radius β of

a n-sphere beside the failure domain and tangent with it, in the MPP. In

literature, this β value is called as Reliability Index and means the distance

from MPP to the origin in units of standard deviation, as shown in Figure

3.2.

In FPI methods, first order reliability methods (FORM) and second

order reliability methods (SORM) are included.

First order reliability methods The well known technique FORM uses

a linear approximation of the LSF in the vicinity of the design point to evalu-
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Figure 3.2: Schematic representation of FORM/SORM approximations

ate the β index [40]. This method requires standard normal non-correlated

variables, so the vector of random variables X must be transformed into

standard non-correlated variables vector U taking,

U = φ−1(FX(X)) (3.3)

where FX(X) and φ−1 are the cumulative distribution function and the

inverse of the standard cumulative distribution function for the vector of

normal variables X, respectively.

The reliability index β is then calculated by:

β = min(U ·UT )
1
2 (3.4)

which represents an Euclidean distance between the origin and the failure

function g(U), in the non-correlated normal standard space U , as shown in

Figure 3.2. If any correlation exists in the random variables, a Cholesky

decomposition of the covariance matrix may be used to transform from

the real space to the non-correlated standard space [70]. In case of non

normal variables, Rackwitz-Fiessler Method [61] can be employed. In case

of correlated and non-normal variables, the Rosenblatt transformation is
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recommend [71, 72].

The value of the density function integrated over the hyper volume is

found to be equal to the standard normal integral (distribution function) at

β, and so, the reliability R can be expressed as,

R = φ(β) (3.5)

while the probability of failure is the complement,

Pf = 1−R = 1− φ(β) = φ(−β) (3.6)

Second order reliability methods To improve the approximation of the

failure surface beyond the level employed in FORM, additional information

about the failure surface is required [44]. The SORM use the β value in

conjunction with the second derivatives of g(X) at MPP. The method is

based on a general quadratic expansion by expanding the failure surface

g(X), into a second order Taylor series about the MPP. Since the curvatures

may have positive, negative and zero values; parabolic, elliptic, or hyperbolic

forms may result. These methodology requires complicated integrations

that restrict the applicability in the study of reliability [73]. Two simpler

forms are extensively used in literature for the quadratic approximation

that are relatively simple for use: the rotational paraboloid and non-central

hyphersphere forms based on a predetermined axis [61].

Since only one curvature is used with the predetermined forms, a method

for determining that one curvature must be selected. For conservatism, the

largest positive curvature κ it is used, and hence the smallest radius of

curvature since r = 1/κ.

The rotational paraboloid approximation gives,
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Pf =

∫ ∞
0

φ

[
β − t

2r

]
fχ2

n−1
(t)dt (3.7)

where fχ2
n−1

is the chi-square density function with n degrees of freedom.

Analogously, the non-central hypersphere approximation gives,

Pf = 1− χ2
n,δ(r

2) (3.8)

where χ2
n,δ(r

2) is the non-central Chi-Squared distribution with non-central-

ity parameter δ = [r − β]2.

3.2.2.2 Monte Carlo methods (MCM)

Monte Carlo method is a very simple and accurate approach mainly used

as reference or exact method [44, 74, 75].

Given the joint probability density function fX(X) of X, then the failure

probability in Equation 3.1 can be alternatively written as,

Pf =

∫
X|g(X)≤0

fX(X)d(X) =

∫
X

I [g(X)] fX(X)d(X) (3.9)

where I [g(X)] is an indicative function defined by:

I[g(X)] =

 1 if g(X) ≤ 0

0 if g(X) > 0
(3.10)

Using the indicative function, it is possible to evaluate the probability

integral in Equation 3.1 over the whole domain and not only over the fail-

ure domain. This probability integral in Equation 3.9 can be viewed as a

mathematical expectation of I [g(X)] with X distributed as fX(X), and this

perspective leads to the direct Monte Carlo method, where Pf is estimated

as a sample average of I [g(X)] over independent and identically distributed

samples of X drawn from the PDF fX(X), as follows:
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Pf = E
[
I[g(Xj)]

]
' 1

ns

ns∑
j=1

I
[
g(Xj)

]
(3.11)

where ns is the number of simulations, Xj the vector of random variables

of the jth sample. The error of this method is only dependent on ns and so

it is extremely robust with respect to applications. The term
∑j

ns
I [g(Xj)]

represents the sum of the number of simulations (nf ) in the failure domain,

and so Equation 3.11 may be also be written as,

Pf '
nf
ns

(3.12)

This method has a serious drawback in cases of small failure probabil-

ities, by the fact that the total number of required simulations increases

drastically. Hence, attention has been focused on developing more efficient

simulation methods.

For the structural reliability problem, the most promising technique ap-

pears to be the importance sampling method (MC-IS) [76]. This method

reduces the variance of the estimate by sampling more frequently from inside

the failure domain.

Following the same concept of failure probability as a mathematical

expectation, Equation 3.9 may be also written as follows:

Pf =

∫
X|g(X)≤0

fX(X)d(X) =

∫
X

I[g(X)]fX(X)

h(X)︸ ︷︷ ︸
H(X)

h(X)d(X) = E
[
H(Xj)

]
(3.13)

where H(X) is called the importance sampling quotient and Xj distributed

as h(X). h can be selected to shift and spread the simulations close to the

failure domain. h is assumed to be appropriately chosen such that H has

finite variance under h.
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3.2.2.3 Analytical methods

In order to confer more simplicity in reliability calculations, some analyti-

cal approaches have appeared for composites applications. Only few of this

approaches have been successfully developed, and in their range of applica-

tion, they have been demonstrated good agreement as compared to MCM,

taken as a reference.

Edgeworth expansion method (EDW) and Pearson’s empirical

distribution (PRS) In Philippidis and Lekou [77] two analytical ap-

proaches, namely a functional expansion technique and the introduction of

Pearson’s semi-empirical distribution function, were developed for off-axis

UD FRP composites for the general plane stress. In that work, only strength

parameters were considered as random variables, each following a Weibull

distribution.

The quadratic version of the failure tensor polynomial in the principal

material coordinate system under plane stress conditions, was considered as

follows:

g(X) = 1− (Fijσiσj + Fiσi) (3.14)

with X = XT the strength random variables, Fij = Fij(X
T ), Fi = Fi(X

T )

the strength parameters [60] for one ply and σi stress tensor components,

considered as deterministic values.

The purpose of this two analytical approaches, was to determine the

CDF (Fg) of the failure condition g(X), by which the failure probability

P (g 6 0) can be obtained.

The EDW, that was previously introduced in off-axis composites for

the case of uniaxial tension [78, 79], was used to predict the cumulative

probability of complex systems in terms of individual component moments
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[80]. The failure function in Equation 3.14, was expanded in a multivariable

Taylor series in term of central moments of the random variable, g. This is

given by:

F (g) = Φ(g)− 1

3!

µ3

µ
3/2
2

Φ3(g) +
1

4!

µ4

µ2
2

Φ4(g) +
10

6!

µ3

µ
3/2
2

Φ6(g) + . . . (3.15)

where µk are the central k-moments of the LSF g and Φn(g) is the nth

derivate of the normal CDF Φ(g).

This method was further developed for the case of a laminate in a plane

stress state considering the strength properties as stochastic variables [81],

and in a more recently work [82] by considering the elastic and thermal

properties as random too. In the latter work, it was demonstrated over wind

turbine blades, that the stochastic nature of the material elastic properties

drastically affects the failure locus, whereas, on the contrary, the effect of

the material thermal properties is minimal within the temperature range

met during operation of wind turbine rotor blades.

In PRS method, the unknown CDF of the failure condition is alterna-

tively fitted by empirical statistical distributions once the central moments

of g are calculated. As an example in Philippidis and Lekou [77], the group

of distribution families proposed by Pearson, called as Pearson Families gen-

erated as a solution to the differential Equation 3.16 [83], were considered

by proper choice of the parameters λ and bi (i = 0, 1, 2).

df(g)

dg
=

(g − λ)

b0 + b1g + b2g2
f(g) (3.16)

The Pearson distribution families include the Normal, Beta (Pearson

Type I), and Gamma Distribution (Pearson Type III). From Equation 3.16,

after some detailed algebraic manipulations, the constant parameters can

be expressed in terms of the central moments of the distribution function.
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By using the coordinate transformation k = g− λ, Equation 3.16 reads:

df(g)

dk
=

k

B0 +B1k +B2k2
f(g) (3.17)

where Bi are certain algebraic linear combinations of bi and λ for simplicity.

If the roots of the polynomial in the denominator of Equation 3.17 are real

and of the opposite sign, the distribution f(g) reduces to Beta distribution

B(p, q), whit parameters p, q found by equating the Pearson distribution’s

moments with that of the failure function.

Finally, for evaluating the cumulative distribution function by which can

be derived the failure probability, was used the next expression:

1

B(p, q)

∫ z

0

zp−1(1− z)q−1dz (3.18)

with (p, q > 0, 0 ≤ z ≤ 1) and z as a algebraic function of roots of the

polynomial in the denominator of Equation 3.17.

In this work, several comparisons between analytical EDW, PRS, MCM

and a semi-determinisitic failure analyses, were made considering different

fibre angle and assumptions for the Tsai-Wu failure domain. The results ob-

tained with the analytical approaches were shown to be in excellent agree-

ment with experimental or Monte Carlo data.

Generalization of LSF Another relevant result in analytical methods

for reliability in composites comes from Gurvich and Pipes [84]. A new

approach considering the LSF in the form of a random linear function of

products of applied random stresses is presented, in stead of the traditional

consideration of the LSF as a random non-linear function of the stresses

(see Equation 3.2). This approach allows to obtain exact evaluation of the

main statistical parameters (moments) of the LSF considered as a random

function. The starting point is the consideration of a deterministic 3-D

framework of the LSF in a more general formulation as follows,
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g(X) = 1−

(∏
ij

σij +
∏
ijkl

σijσkl + . . .

)

i, j, k, . . . = x, y, z, . . . ;

(3.19)

where X =
(∏

ij,
∏

ijkl, σij, σijkl

)
; with

∏
ij,
∏

ijkl,. . . the strength tensors

and σij, σijkl,. . . , the tensor of the applied stress state.

The following matrix columns were introduced by the rules,

[st] = [s1, s2, . . . , sn] = [σij, σijσkl . . . ]

[ρt] = [ρ1, ρ2, . . . , ρn] =

[∏
ij

,
∏
ijkl

. . .

] (3.20)

where sm are components characterizing all necessary combinations of the

stresses in increasing order, ρm are the strength characteristics and n is the

number of elements in the matrices.

Thus, Equation 3.19 may be presented as,

g(X) = 1−

(
n∑

m=1

ρmsm

)
(3.21)

which is useful in a probabilistic framework, since this allows one to consider

g as a linear function of random parameters of the problem as follows:

g = 1− [p̃t] [̃s] = 1−

(
n∑

m=1

p̃ms̃m

)
(3.22)

In this formulation, the random matrices [s̃], [p̃] may be determined by

the mean matrices-column [s̄], [p̄] and the correlation matrices [Ks], [Kρ],

respectively; all of them considered as initial data.

Therefore, basic statistical characteristics of g, such the first two mo-

ments: µ1 and µ2, can be obtained as,

µ1 = 1−

(
n∑

m=1

p̄ms̄m

)
(3.23)
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µ2 =
n∑

m′=1

n∑
m′′=1

{Ksm′,m′′ p̄m′ p̄m′′ +Kpm′,m′′ s̄m′ s̄m′′ +Ksm′,m′′Kpm′,m′′} (3.24)

where Ksm′,m′′ , Kpm′,m′′ are the correlations between random variables sm′ ,

sm′′ and pm′ , pm′′ respectively; with (m′,m′′ = 1, . . . , n). The possibility of

considering all possible correlations between random variables is an impor-

tant advantage of this method [84]. Finally, reliability R was proposed to

be calculated as a probability of the condition g(X) 6 0,

R = P{g 6 0} =

∫ 0

−∞
fg(g)dg (3.25)

where fg is the probability density function of g. The only assumption of

this approach is connected with a type of distribution g: Normal, Weibull,

Gamma Function, etc. In all of the remaining methods cited above, reliabil-

ity calculation requires an assumption regarding the type of the distributions

for strength and/or stress, whereas Gurvich’s method requires those in the

type of distribution g. An interesting discussion between this analytical

method in relation to the others is done at the end of Gurvich’s work.

3.2.2.4 Numerical methods

In a numerical scheme, particularly in the context of finite element mod-

eling, the stochastic finite element modeling (SFEM) are receiving special

attention for reliability, due to the technological advances in the available

computational power [85]. SFEM involves finite elements whose properties

are random. These new advances have been carried out in an effort to

generate statistics from a response vector for each node [86, 87].

There are three main variants of SFEM in the literature: a) the per-

turbation approach [88] which is based on a Taylor series expansion of the

response vector, b) the spectral stochastic finite element method (SSFEM)

[89] where each response quantity is represented using a series of random
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Hermite polynomials and c) Monte Carlo simulations (MCS) [90–92] based

on independent sampling of the response vector.

In composites applications, Lin [69] used the stochastic finite element

method (SFEM) to predict the reliability of angle-ply laminates with differ-

ent types of buckling failure modes subject to in-plane edge random loads.

This author also provides a comparison of different reliability methods and

different failure criteria using (SFEM) to derive for the statistics of the

First-Ply-Failure (FPF) load by mean-centered second-order perturbation

technique. The results were compared with experimental FPF load data of

centrally loaded composite plates with different lamination arrangements to

study the accuracy of the methods.

Onkar et al. [67] used SFEM by the first order perturbation techniques

and studied the form to generate statistics for the failure load index using

Tsai-Wu and Hoffman as failure criterion in orthotropic plates with ran-

dom material properties and random loads. In this case, the results were

compared with analytical solutions.

Ngah and Young [36] demonstrated an application of SSFEM in a com-

posite panel subject to random loads and constitutive properties. Covari-

ance and probability density functions were derived for different approxima-

tion schemes. A comparative study of accuracy and computationally effort

of SSFEM versus MCS, was also presented.

3.2.2.5 Comparison between reliability methods

Due to the wide range of reliability approaches and the lack of results coin-

cidence when they are applied to composites, several authors have declined

to contrast different well accepted reliability methods to a specific compos-

ite application or to check one proposed method to a experimental data.

All examples encountered in literature, use at least MCM as a reference.
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In Ucci [73] the FPI methods and MCM was presented, and a com-

parison between them was done considering both Tsai-Wu and Tsai-Hill as

failure criteria in different loading levels and ply angles. A sensitivity study

was done to evaluate the influence of each stochastic variable in the relia-

bility calculation. The comparisons were performed over three main fields:

accuracy, conservatism and computational speed.

For accuracy, FPI was observed to derive satisfactory accuracy in cases

of low stresses and moderate fibre angle (it is pointed out the interval 30◦−

40◦), when preferably using Tsai-Wu as failure criteria. In extremely low or

high orientation angles, near 0◦ and 90◦, planar FPI were seem to be quite

accurate.

When studied the conservatism, the report concluded the need to con-

sider the curvature in the MPP. Particularly, for planar FPI, independently

of the accuracy, the conservatism would be depend upon the curvature is

safe or unsafe.

In computational speed, this work does not give substantial conclusions

as compared to others [93] cited in section 3.4. However, an interesting

result about computational cost as compared to MCMwas implicitly derived

through reduction of variables to be sampled in MC-IS by a sensitivity

analyses, by the fact that depending on each specific case, the bulk of the

reliability value depends upon several localized stochastic variables.

That conclusion was later explicitly pointed out by Di Sciuva and Lo-

mario [37], who compared FORMmethods with MCM and explicitly pointed

out for Directional Cosines, using important factors, as an efficient method

to reduce the stochastic variables to be sampled in MCM without significant

less of accuracy. In this work, a laminated composite flat plate loaded by

compressive distributed forces acting in its mid-plane was studied, with the

LSF defined analytically for buckling load. The results showed acceptable
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level of accuracy when FORM methods were used in this specific case, in

which the buckling LSF fits well to linear. Directional Cosines were pointed

out to be efficient for this calculation.

In Lin [69] three different methods, MCM, FORM and first-order sec-

ond moment method, were used to calculate the reliability and compared

to experimental FPF of centrally loaded laminated composite plates with

different lay-ups. In the first-order second moment method, the SFEM was

used to derive for the statistics of the FPF load from those of the base-

line random variables. The LSF and baseline for load values, were also

took as variables for comparison. As conclusion, this work also pointed

out to FORM together with Tsai-Wu for obtaining reasonably good result.

However according to [42], this conclusion may be erroneous with different

tensional ranges and fiber orientations than used for the study.

In [82] the EDW previously introduced by Philippidis [77], was compared

to MCM and FORM with Tsai-Hahn as failure function for FPF noting that

the EDW estimation overrate the structural load carrying capacity of the

laminated plate.

3.3 Reliability and design of composites lami-

nates

Since a laminate can be viewed as a mechanical set of plies, whole laminate

reliability may consider systems reliability.

An accurate evaluation of laminate reliability is essential almost all in

those areas where reliability determines the final composite design, like reli-

ability based design and safety factor calibration, which are designing tools

fully used in research and industry.
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3.3.1 Laminate reliability

In composites, Soares [43] presented an overview of methods used for lami-

nates and pointed out two main approaches: the bounding and system re-

liability formulation [57]. The former establishes an interval in which relies

the actual reliability, while in system reliability is considered the progres-

sive failure process. The vast majority of authors use bounding formulation

for laminate failure consideration in reliability subject. Most of them, for

simplification in a safe position, propose lower bound reliability with FPF

as LSF, which implies the ply considered as failure unit. For this reason and

to provide a basis for a discussion about this claim, its timely to consider

the subject again in the form of fundamental concepts.

3.3.1.1 Bounding formulation

The starting point for such bounding formulation is the definition of the

unit of failure as the unit statistically homogeneous for the failure. Two

such units have been proposed: the ply units and modal units [57]. The

first one assumes that individual plies are the failure units while the modal

failure units allow the recognition of three potential modes of failure within

each ply: longitudinal, transverse and shear; resulting in 3n failure units

for an n-ply laminate. Obviously that last failure unit implies non inter-

action between longitudinal, transverse and shear effects which assumes

non-interactive failure, exposed in Section 3.2.1.

The upper bound reliability limit, considers that ultimate failure of the

laminate will not occur until every individual unit had failed. Thus, the

probability of failure for the laminate is given by the product of probabilities

of failure for the individual units. In terms of reliabilities, this gives the
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following expressions:

RUply = 1−
n∏
i=1

(1−Ri) Non-Interactive (3.26a)

RUmodal = 1−
n∏
i=1

∏
j=1,2,6

Rij Interactive (3.26b)

where Ri is the reliability of ith ply, and Rij is the reliability of the jth mode

of layer i.

As lower bound reliability, a series system formulation is proposed, so

that the failure of the whole laminate is subject to the failure of the weakest

unit. In reliability terms,

RLply =
n∏
i=1

Ri Non-Interactive (3.27a)

RLmodal =
n∏
i=1

∏
j=1,2,6

Rij Interactive (3.27b)

whit the same meaning for Ri and Rij as described above.

The most representative works that belong to bounding approach are

cited by Soares [43] review. Those up to Soares [43] are nextly introduced in

which interesting conclusions about composites design are also highlighted.

Kam and Chang [66] used experimental distributions of FPF load for

validation of different types of baselines probability density functions on the

bounding failure probability over centrally loaded graphite-epoxy laminated

composite plates with different lamination arrangements. The failure data

were compared with those obtained analytically with a F.E.A for stress

calculations, in both interactive and non interactive failure criteria. Results

showed that, in general, differences between the experimental and theory are

small (less than 12%) irrespective to the types of probability distributions

used for modeling the lamina strength parameters and FPF load.
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More recently, Frangopol and Recek [94] presented a benchmark study of

laminate failure probability by MCM considering random loads with Tsai-

Wu as failure criterion. Two main cases were studied: uniaxial loaded single-

layer laminate plate of graphite/epoxy and two layers laminate plate of

glass epoxy, each one subjected to uniaxial and biaxial tension. In such two

cases, the material strength parameters were considered as deterministic,

and stresses as lognormal distributed random variables since no information

on the type of distribution for principal stresses was available for this study.

As a first conclusion of these work, the importance of the mean value of

the principal stress, specially in tension-tension case, was shown and the

low influence of coefficient of correlation between principal stresses on the

probability of failure, was also highlighted.

Another important conclusion was pointed out about the effects on relia-

bility of additional layers in a composite laminate. In presence of new layers,

the plate does not necessarily increases the reliability but it’s depends on

the fibre orientation and its thickness ratios. The special case of two or-

thogonal layers was studied, showing that the weakest more stressed lamina

approximately determines the whole reliability, which implicitly supports

the weakest link hypothesis in this specific case.

Others results encountered up to Soares [43] review also use the bounding

approach for system reliability calculation in composites, particularly FPF

[49, 65, 67, 69, 82, 93]; which are commented in more suitable chapters of

this review.

3.3.1.2 System reliability formulation

In system reliability formulation, the approach consists in considering the

step by step failure process of the laminate. The bounding formulation

just described, does not attempt to represent the whole collapse process of



3.3 Reliability and design of composites laminates 51

the laminate. Indeed, such approach establishes an interval in which relies

the desired reliability value. Although an attempt to precisely describe

probabilistic failure of a laminate would be really impacting and necessary,

the methodology of system reliability has been shortly explored in literature.

In Yang and Ma [39] was derived the full quantity loading method for

reliability analysis of a composite structural system with consideration of

stiffness degradation process of set of whole plies.

Gurvich and Pipes [95] also utilized a mesoscale approach for progressive

failure of composite laminates with both in plane and bending loads which

call attention the search for computational efficiency by agreeing individual

plies into sublaminates as whole units for the step-by-step failure. This

author also made a comparative study contrasted with experimental data

considering step-by-step failure process over weakest link assumption, and

concluded the weakest link assumption lead to lower failure results with

increasing the material strength scatter.

Wu and Robinson [96] proposed a micromechanical approach in which

the laminate is treated as a mechanical system and accounted local load

sharing and sizing effects.

In system reliability, the scale of the approach influences the reliability,

so exploring multiscale probabilistic failure seems to be an interesting way

to derive a robust framework for progressive failure of composites. Recent

works about uncertainty quantification at different scales [53–55] and propa-

gation of uncertainties from micro-to-macroscale [97] in composites, provide

a basis for this claim.

3.3.2 Reliability based design

Due to the well-known high specific stiffness, strength and corrosion resis-

tance, composite laminates are often selected for high-responsibility struc-
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tural applications like aircraft, automobile, machinery and marine. Nowa-

days new applications in all-composite bridges [98], off-shore and civil engi-

neering are emerging [2, 4, 99]. In these applications requiring big amount of

composites materials, design optimization plays an important role through

providing tools to rationally select the best over a wide range of choices in

enhancing the structure’s performance [100–103]. Over such named con-

ventional optimization problem, the probabilistic optimum design is an in-

creasing issue, in which how to obtain the best laminate structure under

a reliability constraint or how to get the maximum reliability under the

constraint of structure cost is the key question. This problem is called the

Reliability Based Design Optimization (RBDO) [104], in which an accurate

calculation of reliability is crucial in final composite design, as follows in

next equation:

min
X,π

F (µX,π) s.t:

β(X,π) 6 βt

πl 6 π 6 πu

(3.28)

where βt is the target reliability index, π ∈ Rn is a vector of deterministic

design variables and µX is the realization of the vector of random design

variables X ∈ Rm. F (µX,π) is the function describing the structural per-

formance, which is usually considered a structural weight or cost function;

although some recent works have also considered others like frequency re-

sponse [105], structural efficiency [106] or even statistical robustness [107].

The first efforts to apply RBDO in laminate design, derived results that

clearly remark the difference between deterministic and probabilistic designs

[56, 108].

An open question remains about which random variablesX to be consid-

ered into the optimization problem, specifically those in relation to laminate

design like fiber orientation, ply ratios, laminate arrangement, etc. In Ea-

mon and Rais-Rohani [109], a probabilistic sensitivity analysis was derived
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to determine the influence of uncertainty in each candidate variable on β.

Other related works have declined to include these variables as uncertain

parameters into the optimization problem [49, 110]. In Miki et al. [111], a

simultaneous optimization of fiber angles and ply ratios was corroborated,

which concords with Frangopol and Recek [94]. The cross-ply configuration

was pointed out to be optimal or near optimal for the case where does not

exist uncertainty in shear stress.

The above cited works consider the formulation of the reliability-based

optimum under a hard constraint, in the sense that constraints are clearly

specified and if the solution is outside the constraint range, even if the devi-

ation is very little, an unacceptable solution is derived. A recent approach

that complements this work is the soft constraint RBDO, by which fuzzy

reliability optimum models are established. This method provides with an

especially useful tool in designing optimum laminated composites, owing to

the fact that due to its complex manufacture process, a laminate can be

influenced by many factors including probabilistic variables and also fuzzy

ones [112].

3.3.3 Reliability based safety factors

Because of possible lack of statistical data from the strength of materials

used and the applied loads, design concepts based on traditionally safety

factors have also been studied. In this approach, the effects E of actions

on a structure and the resistance S to these effects, verify a criterion in the

form:

E <
S

γ
(3.29)

Several authors made a direct comparison between probabilistic and

safety factor based deterministic design [82, 108, 111] where important dif-

ferences in failure prediction, sometimes in a insecure position, are high-
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lighted.

One successful approach to minimize that differences leads to obtain

safety factor from probabilistic previous calibration, which is frequently

named reliability based safety factor.

Zhu [113] proposed a first approach to reliability based safety factor for

aircraft composite structures and a method was presented to compare such

safety factor to those used in metallic aircraft design.

Boyer et al. [65] presented a method of safety factor calibration from

the probabilistic method to achieve a specific reliability level. In this work,

an interesting discussion about sensitivity of safety factors with stochastic

parameters, was also carried out.

Richard and Perreux [50] utilized the same concept as describe above

for safety factor calibration, but in a damaged elasto-viscoplastic model for

composites in a thermodynamic framework for long term applications over

a pipe for fluid transportation.

An extension of this work for strongly non linear behavior caused by

damage, was done by Carbillet et al. [114] who also took into account for

possible correlations between the different variables and spatial variability of

material properties for a [0◦, 90◦]S composite plate, showing up an important

effect on safety factor calibration.

3.4 Computational efficiency

The structural integrity analysis of composite structures based on proba-

bilistic concepts is a time consuming process unless inaccuracy FPI methods

were employed, and the problem can be exacerbated by the convergence dif-

ficulties associated to the non-linearity or complex non explicit LSF. Other

methods employing simulation procedures, such as MCM or MC-IS, may

have a prohibitive computational cost in large structural systems even if the
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structural evaluation is accelerated by a vectorized manner, by techniques

such as Neumann Series Expansion [87, 115] or by reducing the stochastic

variables to be sampled, as previously mentioned [37, 42].

In literature, there have been advised two efficient ways to reduce the

computational cost: a) by using new efficient reliability algorithms and b)

by reducing the effort of evaluation the LSF. In the former, new reliability

algorithms have proved to save great amount of computation time. Special

attention require SUBSET Simulation [116] and 2SMART algorithms [117],

which confer large efficiency as compared to crude MCM, overall for small

failure probabilities and high dimension problems [118]. Nowadays they

appear integrated on a OpenSees computational platform called FERUM,

as acronym of Finite Element Reliability using Matlab® [119], that is a

high versatile reliability tool. Unfortunately, these algorithms have not

been sufficiently exploited in composites.

In relation to the second approaches, the Response Surface Method

(RSM), and more recently, Artificial Neuronal Networks (ANN), have also

emerged as feasible alternatives. The next chapters are dedicated to appli-

cation of this techniques in composites reliability.

Evolutionary strategies like Genetic Algorithms (GA) are also computa-

tion techniques fully employed nowadays in reliability although their well-

known high computational cost, which contrasts with the aim of this chap-

ter. However, the existence of multiple design points MPP in the LSF,

especially when linking reliability and optimal design, makes necessary the

employ GA. Certain authors have provided genetic algorithm strategies in

application to composites by which the efficacy of the reliability design

problem has also largely improved [120].
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3.4.1 Response surface methods (RSM)

In Response Surface Methods, the LSF is substituted or sampled to improve

the computational effort. The principle consists in the substitution of the

real LSF by approximate simple functions or sampled data, at the neigh-

borhood of the design points where their contribution to the total failure

probability is more important [121]. As a consequence, the computational

cost can be reduced with respect to the cost required when the full LSF is

used or when it is necessary to evaluate the LSF by Finite Element Method

(FEM) runs.

When the LSF is substituted by simple functions, generally by explicit

polynomial expressions, the method is called Polynomial Based Response

Surface Method or simply RSM. Those that the LSF is approximated with

training sampling data in contrast to the last one, are called Artificial Neu-

ronal Network (ANN)-based response surface methods [59].

3.4.1.1 Polynomial based response surface

In the original conceptual form of the Response Surface technique, polyno-

mials are used to approximate real LSF. So an important requirement for

the LSF is to be smooth around the area of interest. In order to obtain the

Response Surface, some regression analysis (for instance the Least Square

Method) must be accomplished. As states in Gomes and Awruch [115], the

main point resides in to adjust the polynomials to the L.S.F using the sam-

ple points, by using some of the several fitting techniques such as a) the

central composite design [122, 123] b) the fractional factorial design [124],

c) the random design, d) the partially balanced incomplete box design [125]

and e) Bucher and Bourgund’s [126] proposal.

With this method, the L.S.F is assimilated as follows:
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g(X) = a+
n∑
i=1

bixi +
n∑
i=1

cix
2
i (3.30)

with a, bi and ci the polynomial constants to be calculated.

As a consequence of Equation 3.30, only 2n+ 1 samples must be taken

along the coordinates axes of each variable at a distance xi = Ui(±h), where

Ui is the probabilistic transformation of the variable xi from the real space

to the non-correlated Gaussian space, with h being an arbitrary factor.

In composites, Chen et al. [52] derived the longitudinal ultimate com-

pressive strength of a composite stiffened ship’s hull, by a polynomial type

with quadratic terms RSM. The reliability analysis was carried out by

FORM, and interesting conclusions about ship hull compression dimension-

ing was derived with the help of a sensitivity analyses.

In the same way, but in an effort to confer computational efficiency in a

RBDO problem, Young et al. [106] have recently proposed the polynomial

RSM by regression analysis in a complex LSF with Eulerian fluid interaction

of a Hexcel (IM7-8552) CFRP marine propeller. A FORM was used to

evaluate the influence of uncertainties in material and load parameters and

thus to optimize the design parameters, obtaining in this case high accuracy

contrasted to MCM.

3.4.1.2 ANN based response surface

As described in previous sections, when reliability analysis is applied to a

complicated structural system, the responses of the structure need to be

calculated by sophisticated numerical methods. In those cases, sampling

the LSF by a trained ANN in substitution of MCM or direct FEA sampling

points, is achieved conferring large efficiency [127]. ANN-based response

surface emerges in reliability applications to solve the main limitation of

polynomial-based response surface methods about the need to increase the
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number of deterministic analysis when the number of random variables is

high, thus making them no as efficient as desirable [59]. Several authors have

compared between both methods, showing that the ANN-based response

surface method is more efficient than polynomial-based response surface

method [115].

ANN are computational models based in parallel distributed process-

ing with interesting properties such as the ability to learn, to generalize,

to classify and to organize data. There are two main models developed

for different specific computational tasks: those with a supervised train-

ing and networks without a supervised training. Networks may be also

divided in feed forward, feedback architectures and a combination of both

architectures. In reliability, Perceptron Multilayer Neural Networks and

Neural Networks with Radial Basis Functions are mostly used. Both types

of Networks have a supervised training, feed forward architecture and are

universal tools for function approximation. To avoid duplication in liter-

ature, a concise introduction of ANN in reliability, done by Hosni Elhewy

et al. [59], is recommended. More details about different aspects of Neural

Networks are given in the work of Haykin [128].

In composites, ANNs have been used in a wide range of applications like

fatigue life prediction, dynamic mechanical properties, processing optimiza-

tion, numerical modeling, damage detection, delamination, among others

[129–132]. But only few works have been encountered in reliability applica-

tions for composites, precisely where the computational efficiency of using

ANNs can be fully amortized.

Recently, Lopes et al. [93] use artificial neural network (ANN) to gen-

erate sample data for the LSF (Tsai-Wu) in stead of FEA, in which high

computational efficiency is demonstrated, particularly for low failure prob-

ability values regardless the method employed for reliability evaluation. In
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this work were used two ANN for comparison: the Multilayer Perceptron

Network and the Radial Basis Network. The results demonstrated that only

0.02% of MCM using FE as reference CPU time is required for reliability

calculation employing an ANN with high accuracy.

3.5 Concluding remarks

In the past few decades, numerous studies have been conducted on the

reliability of composite materials and the corresponding applications. The

inherent statistical scatter in the material properties together with their

complex mechanical performance, makes reliability in composites to be a

question of decisions.

Methods, assumptions and applications of reliability of composites have

been reviewed to confer a perspectival framework that helps to adopt these

decisions. Both, traditional approaches and new trends in reliability com-

putation, have been exposed. Following, general concluding remarks are

made:

• In contrast to the deterministic approaches, probabilistic failure and

reliability in composites have demonstrated a prolific framework over

a design viewpoint to make composites competitive, sustainable and

secure.

• Due to the large number of variables involved in the mechanical de-

scription of composites as compared to traditional materials, impor-

tance measures related to input parameters is a necessary exercise to

derive an adequate reliability result. Particularly important is the

influence of stiffness randomness description over reliability based de-

sign, as recent results demonstrate. Those cases in which stochastic

description of certain mechanical variables are not available or incom-
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plete, statistical uncertainty analysis by incorporation available prior

or interval probability [110, 133] are prolific ways to carry out the

problem.

• Several works remark the convenience of studying the suitability of

reliability method over the failure criterion chosen for a specific situ-

ation and compare to experimental or reference reliability data when

available. Certain stress levels and fiber orientations require a specific

reliability method to ensure accuracy. In case of utilization of safety

factors in stead of a reliability method, a reliability based calibration

may warrant good results.

• More research effort is need about the progressive failure of composite

laminates and its relationship with reliability, in order to help to opti-

mize composite design in a probabilistic framework. In this scenario,

the consideration of others failure modes than fracture, like stiffness

and/or strength reduction by mechanical damage and delamination,

is also necessary. This framework would help to derive a reliability

formulation over the lifetime of composites.

• Large composite structures require efficient techniques for reliability

computation. Recent studies have proved Artificial Neuronal Net-

works (ANN’s) as an advantageous technique. Genetic Algorithms

(GA) are also relevant tools for those cases where reliability is inside

on a complex design optimization problem. New reliability algorithms

available on OpenSees computation platforms like FERUM, should

also be explored in composite reliability. These new algorithms to-

gether with ANN’s for LSF evaluation, is a suggestion that may dras-

tically reduce the computational cost for large composite structures

systems and provide sufficient accuracy for small probabilities cases.
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Metropolis Hastings Algorithm

The Metropolis-Hastings algorithm, is expressed through a iterative scheme

which can be easily implement by computer.

Chosen a proposal PDF q(.|xs) with cov (q(.|xs)) = σ2 · In·n (a multi-

variate normal in this work), the chain follows sequence of steps through N

iterations as described below:

1.- Randomly initialize x0 and set cov (q(.|xs)) = σ2 · In·n s = 1 to N 2.-

Generate y ∼ q(.|xs), y ∈M. 3.- Generate u ∼ U(0, 1)

u ≥ α(xs,y) eq.(2.21) xs+1 = y xs+1 = xs

5.- Set s = s+ 1

Samples obtained with this algorithm are correlated (the next sample

depends on the previous one) but follow the target distribution after a burn-

in period, i.e. after the Markov chain reaches stationarity. When N is large

enough, it is generated sample that are effectively independent sample from

π(y) = L(M)|C=Ci .

In order to adjust the cov(q(.|xs)), a small value in comparison with the

length scale of M is preferable. If σ is large, movement around the state

space will only occur when a transition to a state with low probability is

accepted or when the step chances to land in another probable state. So

the convergence will be reached only when the chain makes a big amount
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of steps.

The disadvantage of small values for σ is that the algorithm will explore

the target π(y) slowly by a random walk, and it takes time.

Although several rule of thumbs have been proposed in literature, train-

ing between N and σ and examining the convergence of each parameter by

locating the burn-in period, have demonstrate to be a effective way to ob-

tain a reasonable configuration of the algorithm in cases of complex target

distributions, as matter.
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Summary of Bibliographic

Survey in Composites-Reliability
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Author Failure Criteria Methodology Random Vars Main Objetive Level

Yang [38, 39] TH Others Lds & Strn RBDO Ply

Cederbaum et al. [41] H FORM Lds Reliability Ply

Thomas and Wetherhold [57] Max-DEn MCM Strn Reliability Laminate

Kam et al. [58]
Max-S&Min-

S&Max-W
Others Lds&Strn Reliability with damage Laminate

Zhu [113] Non-Interactive FORM Lds&Strn Safety Factor Calibration Ply

Wetherhold and Ucci [42] TH,TW Comparison Lds&Strn Reliability-Comparision Ply

Murotsu et al. [108] TW AFOSM Lds&Str&Geo RBDO Laminate

Gurvich and Pipes [95]
Baseline based Crite-

ria
MCM Lds&Strn Probabilistic Strn Laminate

Kam and Chang [66] Max-S&TW FORM Strn Validation FPF Reliability Laminate

Miki et al. [111] TW AFOSM Lds&Strn RBDO Laminate

Boyer et al. [65] TH; TW, Max-S FORM Lds&Strn Safety Factor Calibration Laminate

Nakayasu and Maekawa [68] Comparision Comparison Lds&Strn Reliability-Comparison Laminate

Soares [43] TH-TW FORM Lds&Strn State of the Art Laminate

Philippidis and Lekou [77] TH Analytical Lds&Strn Reliability Ply

Gurvich and Pipes [84] TW or any Analytical Lds&Strn Reliability Laminate

Richard and Perreux [49] damage FORM Lds&Strn
Reliability and RBDO with dam-

age
Laminate

Richard and Perreux [50] damage strain criteria FORM Lds&Strn&Geo Safety Factor Calibration Laminate

Lin [69] TW,TH,H,Max-S Comparison Lds&Strn&Geo Reliability Laminate

António. [120] TW & Buckling FORM Lds & Strn Reliability & RBDO Laminate

Di Sciuva and Lomario [37] Bucling Comparison
Lds & Strn &

Stff & Geo
Reliability- Comparision Laminate

Frangopol and Recek [94] TW MCM Lds Reliability- Comparision Laminate

Chen et al. [52] Buckling FORM
Lds & Str & Stff

& Geo
Reliability Laminate

Onkar et al. [67] TW,H SFEA Lds & Strn Reliability Laminate

Lekou and Philippidis [82] T-HN Comparison
Lds & Strn &

Stff
Compare Methods Laminate

Ge et al. [110] TW FORM Strn RBDO Laminate

Carbillet et al. [114] damage FORM
Lds & Str & Stff

& Geo
Safety factor Calibration Laminate

António and Hoffbauer [97] TW FORM Strn & Stff RBDO Laminate

Lopes et al. [93] TW Comparison Lds & Strn Reliability Laminate

Young et al. [106]

Other(Fluid-

Structure Interaction

Failure

FORM Geo RBDO Laminate

TW: Tsai-WuH: Hasin TH: Tsai-HahnMax-DEn: Max. Density Energy Max-S: Max. StressMin-S: Min. Strain Max-W: Max. Work Lds: Loads Strn: Strength Str: Stress Geo: Geometry

Table B.1: Reliability bibliography Synoptic Table. Papers increasingly
ordered by date of publication
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MatlabR○ codes

This appendix provides a summary of the algorithms developed for the

research work presented herein. The code consists of a collection of MatlabR○

files developed ad hoc in conjunction with other MatlabR○ functions. A

description of the main part of the code is provided below.

1 %%%%%%%%%%%%%%%%%%%%%%MAIN_NSTT.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %(Evaluates the Likelihood function of a Markov Chain from Model 1)

3

4 format compact;

5 clear all;

6 load newdata; %load Young´s modulus experimental data (N/m2)

7 load datatime; %load the corresponding experimental times

8 norm_compl=newdata';

9 datatime;

10

11 global PMFe

12 global T

13 global D_e

65
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14 global mdl

15 global R

16

17 %********************input parameters**********************************

18 DC=500; %number of cycles in a DC

19 nx=2^7; %number of experimental points

20 tol=15;

21 %**********************************************************************

22

23 nzro_compl=[]; %time zero is avoided (trivial case)

24 for i=2:size(norm_compl,2)

25 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

26 end

27 abs_st=1; %absorbing state

28 nzro_compl=absrvnt(nzro_compl,abs_st);

29 nzro_compl=treatdata(nzro_compl);

30 norm_compl=nzro_compl;

31

32 dutytime=datatime/DC;

33 Tmax=floor(max(dutytime));

34 T_e=dutytime(2:end);

35 T=T_e;

36 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

37 D_e=treatdata(D_e);

38 PMFe=treatdata(PMFe);

39 [PMFe]=adjs_zero(PMFe);

40 mu_samples=mean(norm_compl,1);

41 desv_samples=sqrt(var(norm_compl,1,1));

42

43 %model evaluation

44 [accPTMy,accQy,real_rt]=PTM_nstt(b,p,alfa1,beta1,alfa2,beta2,T);

45 %Likelihood function%

46 [Fnstt,F,P_mle]=Ftrnscnt_nnst(b);

47
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48 L_t=[];

49 for tim=1:numel(real_rt)

50 pval_Matrix=[];

51 for i=1:b

52 j_pval_Matrix=[];

53 for j=i:b

54 if accQy{tim,1}(i,j)==0

55 j=j+1;

56 else

57 j_pval_stat=(accQy{tim,1}(i,j))^(Fnstt{tim,1}(i,j));

58 j_pval_Matrix=[j_pval_Matrix,j_pval_stat];

59 end

60 end

61 pval_stat=prod(j_pval_Matrix);

62 pval_Matrix=[pval_Matrix,pval_stat];

63 end

64 L_aux=prod(pval_Matrix);

65 L_t=[L_t;L_aux];

66 end

67 L_nstt=prod(L_t);

1 %%%%%%%%%%%%%%%%%%%%%%PTM_nnst.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %(Calculates the PDF of damage by nostationary model 1)

3 function [accPTMy,accQy,real_rt]=PTM_nstt(b,p,alfa1,beta1,alfa2,beta2,T)

4 b=round(b);

5 alfa2=alfa1+alfa2*(1−alfa1);

6 beta2=beta1+beta2*(1−beta1);

7 q=1−p;

8 p0=zeros(1,b);

9 p0(1,1)=1;

10

11 for j=1:(b−1)

12 P1(j,j)=p;
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13 P1(j,j+1)=q;

14 end

15

16 P1(b,b)=1;

17 xx=0:0.001:1;

18 x=[0 alfa1 alfa2 1];

19 y=[0 beta1 beta2 1];

20 yy=pchip(x,y,xx);

21 PTMy=eye(size(P1)); %Initialize

22 accPTMy={};accQy={};

23 PMFd=[];

24 X=max(T);

25 x_time=xx*(X);

26 y_time=yy*(X);

27 real_rt=interp1(y_time,x_time,T);

28 D_d=cat(2,0.01,1/b*((1:b)−0.5),1);

29 mu_d=[];

30 desv_d=[];

31

32 for i=1:numel(real_rt)

33 if i==1

34 n=floor(real_rt(i))−0;

35 elseif real_rt(i−1)==0;

36 n=floor(real_rt(i))−ceil(real_rt(i−1));

37 else

38 n=floor(real_rt(i))−ceil(real_rt(i−1))+1;

39 end

40

41 if n<0;

42 disp('MCHR_error: fmodel, line 63')

43 break

44 else

45

46 if n==0;
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47 Qy=eye(size(P1));

48 elseif n==1

49 Qy=P1;

50 else

51 Qy=binprod(P1,n);

52 end

53

54 accQy{i,1}=Qy;

55 PTMy=PTMy*Qy;

56 pt=p0*PTMy;

57 pt=cat(2,0,pt,0);

58 med=sum(D_d.*pt);

59 stdev=sqrt(sum(((D_d−med).^2).*pt));

60 mu_d=[mu_d,med];

61 desv_d=[desv_d,stdev];

62 CDF_D=pt(1);

63

64 for n=2:numel(pt)

65 CDF_D=[CDF_D,CDF_D(n−1)+pt(n)];

66 end

67

68 PMFd=[PMFd;CDF_D];

69 end

70 accPTMy{i,1}=PTMy;

71 end

1 %%%%%%%%%%%%%%%%%%%%%%MAIN_NSTT_II.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %(Evaluates the Likelihood function of a Markov Chain from Model 2)

3 %Setting initial data (Wei'10)

4 format compact;

5 clear all;

6 load newdata; %load Young´s modulus (N/m2)

7 load datatime; %load the time−cycle
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8 norm_compl=newdata';

9 datatime;

10

11 global PMFe

12 global T

13 global D_e

14 global mdl

15 global R

16

17 %********************input parameters******************************

18 DC=500; %number of cycles in a DC (≤500)

19 nx=2^7; %number of experimental points

20 tol=15; % percentual range (100*1/tol) tolerance of data

21

22 %******************************************************************

23

24 nzro_compl=[]; %time zero is avoided (trivial case)

25 for i=2:size(norm_compl,2)

26 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

27

28 end

29 abs_st=1; %absorbing state

30 nzro_compl=absrvnt(nzro_compl,abs_st);

31 nzro_compl=treatdata(nzro_compl);

32 norm_compl=nzro_compl;

33 dutytime=datatime/DC; %display time data

34 global dutytime

35 Tmax=floor(max(dutytime));

36 T_e=dutytime; %experimental time

37 T=T_e(2:end); %vector of time where model has to be evaluated.

38 %[D_e,PMFe,bndwth,dens]=smoothing(norm_compl,T,nx,tol);

39 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

40 D_e=treatdata(D_e);

41 PMFe=treatdata(PMFe);
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42 [PMFe]=adjs_zero(PMFe);

43

44 mu_samples=mean(norm_compl,1);

45 desv_samples=sqrt(var(norm_compl,1,1));

46 median_samples=median(norm_compl,1);

47 %%

48 %%%%%%%%PTM for non stationary model

49 T=dutytime;

50 b=25; %Number of states

51 %%%%Model Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52 p=0.8;

53 alfa1=0.01;

54 beta1=0.045;

55 %%%%%%%%Model evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 [accPTMy,accQy,real_rt]=PTM_nstt_II(b,p,alfa1,beta1,T);

57 % %%

58 % %%%%%%%%%%Likelihood function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59

60 [Fnstt,F,P_mle]=Ftrnscnt_nnst(b);

61 L_t=[];

62 for tim=1:numel(real_rt)

63

64 pval_Matrix=[];

65 for i=1:b

66 j_pval_Matrix=[];

67 for j=i:b

68 if accQy{tim,1}(i,j)==0

69 j=j+1;

70 else

71 j_pval_stat=(accQy{tim,1}(i,j))^(Fnstt{tim,1}(i,j));

72 j_pval_Matrix=[j_pval_Matrix,j_pval_stat];

73 end

74 end

75 pval_stat=prod(j_pval_Matrix);
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76 pval_Matrix=[pval_Matrix,pval_stat];

77

78 end

79 L_aux=log10(prod(pval_Matrix));

80 L_t=[L_t;L_aux];

81 end

82

83 L_nstt=sum(L_t);%%%Likelihood value

84 %%

85 %%%CONTOUR PLOT FOR SENSITIVITY ANALYSIS%%%%%%%%%%%%%

86 BNpts=30;

87 ANpts=30;

88 lb=[0.1,0.1];

89 ub=[0.99,0.99];

90

91 alfa1=linspace(lb(1),ub(1),ANpts);

92 beta1=linspace(lb(2),ub(2),BNpts);

93

94 [Fnstt,F,P_mle]=Ftrnscnt_nnst(b);%%%DATA

95 cont=1; %To number the subplot

96 tic;

97 par1=[0.7,0.8,0.88,0.904];

98 for k=1:numel(par1)

99 %%%%Rest of Model Parameters%%%%%%%%%%%%%%%%%%%%%%%%%

100 p=par1(k);

101 L=[];

102 for A=1:numel(alfa1)

103 L_A=[];

104 for B=1:numel(beta1)

105

106 %%%%%%%%Model evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%

107 [accPTMy,accQy,real_rt]=PTM_nstt_II(b,p,alfa1(A),beta1(B),T);

108 L_t=[]; %Partial Likelihood for diff. times step

109 for tim=1:numel(real_rt)
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110 pval_Matrix=[];

111 for i=1:b

112 j_pval_Matrix=[];

113 for j=i:b %Max size

114 if accQy{tim,1}(i,j)==0

115 j=j+1; %It discardes the zero elements

116 else

117 j_pval_stat=(accQy{tim,1}(i,j))^(Fnstt{tim,1}(i,j));

118 j_pval_Matrix=[j_pval_Matrix,j_pval_stat];

119 end

120 end

121 pval_stat=prod(j_pval_Matrix);

122 pval_Matrix=[pval_Matrix,pval_stat];

123 end

124 L_aux=log10(prod(pval_Matrix));

125

126 L_t=[L_t;L_aux];

127 end

128

129 L_nstt=sum(L_t);%%%Likelihood value

130 L_A=[L_A;alfa1(A),beta1(B),L_nstt];

131 end

132 L=[L;L_A];

133

134 sensimatrix=L;

135

136 end

137 %Contour plot

138 xlin=linspace(lb(1),ub(1),70);

139 ylin=linspace(lb(2),ub(2),70);

140 [X,Y]=meshgrid(xlin,ylin);

141 Z=griddata(sensimatrix(:,1),sensimatrix(:,2),...

142 sensimatrix(:,3),X,Y,'cubic');

143 M=subplot(0.5*numel(par1) ,0.5*numel(par1),cont),
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144 [C,h]=contour(X,Y,Z,20);axis tight;...

145 colormap ([0 0 0]);

146 text_handle=clabel(C,h,'FontSize',6,'Interpreter','latex');

147 Ax3=gca;

148 set(Ax3,'Xlim',[0,1],'Ylim',[0,1], 'YGrid','off','XGrid',...

149 'off','FontName','latex')

150 xlabel('$m_{1}$','Interpreter','latex','FontSize',8);...

151 ylabel('$m_{2}$',...

152 'Interpreter','latex','FontSize',8);

153

154 title(['States:',num2str(b) 'p:',num2str(par1(k))]...

155 ,'FontName','latex','FontSize',8);

156

157 [.8 1 5 5]);

158 cont=cont+1;

159

160 saveas(figure,['p',num2str(p),'stats_',num2str(b) '_.eps']);

161 end

162 toc;

1 %%%%%%%%%%%%%%%%%%%%%%PTM_nstt_II.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %(Calculates the PDF of damage by nostationary model 2)

3 function [accPTMy,accQy,real_rt]=PTM_nstt_II(b,p,alfa1,beta1,T)

4

5 b=round(b);

6 q=1−p;

7 p0=zeros(1,b);

8 p0(1,1)=1;

9

10 for j=1:(b−1)

11 P1(j,j)=p;

12 P1(j,j+1)=q;

13 end
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14

15 P1(b,b)=1;

16 xx=0:0.001:1;

17 x=[0 alfa1 1];

18 y=[0 beta1 1];

19 yy=pchip(x,y,xx);

20 PTMy=eye(size(P1));

21 accPTMy={};accQy={};

22 PMFd=[];

23 X=max(T);

24 x_time=xx*(X);

25 y_time=yy*(X);

26 real_rt=interp1(y_time,x_time,T);

27 D_d=cat(2,0.01,1/b*((1:b)−0.5),1);

28 mu_d=[];

29 desv_d=[];

30

31 for i=1:numel(real_rt)

32 if i==1

33 n=floor(real_rt(i))−0;

34 elseif real_rt(i−1)==0;

35 n=floor(real_rt(i))−ceil(real_rt(i−1));

36 else

37 n=floor(real_rt(i))−ceil(real_rt(i−1))+1;

38 end

39

40 if n<0;

41

42 disp('MCHR_error: fmodel, line 63')

43 break

44 else

45 if n==0;

46 Qy=eye(size(P1));

47 elseif n==1
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48 Qy=P1;

49 else

50 Qy=binprod(P1,n);

51 end

52

53 accQy{i,1}=Qy;

54 PTMy=PTMy*Qy;

55 pt=p0*PTMy;

56 pt=cat(2,0,pt,0);

57 med=sum(D_d.*pt);

58 stdev=sqrt(sum(((D_d−med).^2).*pt));

59 mu_d=[mu_d,med];

60 desv_d=[desv_d,stdev];

61 CDF_D=pt(1);

62

63 for n=2:numel(pt)

64 CDF_D=[CDF_D,CDF_D(n−1)+pt(n)];

65 end

66 PMFd=[PMFd;CDF_D];

67 end

68 accPTMy{i,1}=PTMy;

69 end

1 %%%%%%%%%%%%%%%%%%%%%%Ftrnscnt_nnst.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %(Calculates the transition count matrix)

3

4 function [Fnstt,F,P_mle]=Ftrnscnt_nnst(s)

5

6 load newdata;

7 load datatime;

8 norm_compl=newdata';

9 datatime;

10 abs_st=1;
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11 norm_compl=absrvnt(norm_compl,abs_st);

12 norm_compl=treatdata(norm_compl);

13 DC=500;

14 dutytime=datatime/DC;

15 Tmax=floor(max(dutytime));

16 min_d=0;

17 max_d=1;

18 ddss=linspace(0,1,s+1);

19 S=zeros(size(norm_compl));

20

21 %Transform damage matrix into state matrix

22 for i=1:size(norm_compl,1)

23 for j=1:size(norm_compl,2)

24 if norm_compl(i,j)==min_d

25 S(i,j)=1;

26 elseif norm_compl(i,j)≥max_d

27 S(i,j)=s;

28 else

29 for n=1:numel(ddss)−1

30 if norm_compl(i,j)>ddss(n) && norm_compl(i,j)≤ddss(n+1)

31 S(i,j)=n;

32 end

33 end

34 end

35 end

36 end

37

38 %F transition at each discrete−time

39 Fnstt={};

40 Fil_1=[sum(S(:,1)),zeros(1,s−1)];

41 Init=[Fil_1;zeros(s−1,s)];

42 Fnstt{1,1}=Init;

43

44 for n=2:size(S,2)



78

45 Sr=S(:,(n−1:n));

46 Fn=zeros(s);

47 for i=1:s

48 for j=i:s

49 for k=1:size(Sr,1)

50 for l=2:size(Sr,2)

51 if Sr(k,l−1)==i && Sr(k,l)==j

52 Fn(i,j)=Fn(i,j)+1;

53 end

54 end

55 end

56 end

57 end

58 Fnstt{n,1}=Fn;

59 end

60

61 %F transition matrix%

62 F=zeros(s);

63 for i=1:s

64 for j=i:s

65 for k=1:size(S,1)

66 for l=2:size(S,2)

67 if S(k,l−1)==i && S(k,l)==j

68 F(i,j)=F(i,j)+1;

69 end

70 end

71 end

72 end

73 end

74

75 %MLE for PTM

76 P_mle=zeros(s);

77 for i=1:s

78 for j=1:s
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79 P_mle(i,j)=F(i,j)/sum(F(i,1:end));

80 end

81 end

1 %%%%%%%%%%%%%%%%%%%%%%log−evidence.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%Codes for Model Class Selection

3 %%%Evidence computing.

4 %%%Is needed the sample of the likelihood function

5 %M. Chiachio. June 2011

6 %% Setting initial data (Wei'10)

7 format compact;

8 clear all;

9 load newdata; %load Young mod. (N/m2)

10 load datatime; %load the time−cycle

11 norm_compl=newdata';

12 datatime;

13 global PMFe

14 global T

15 global D_e

16 global mdl

17 global R

18

19 %********************input parameters*************************

20 DC=500; %number of cycles in a DC (≤500)

21 nx=2^7; %number of experimental points

22 tol=15; % percentual range (100*1/tol) tolerance of data

23

24 %*************************************************************

25 nzro_compl=[]; %time zero is avoided (trivial case)

26 for i=2:size(norm_compl,2)

27 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

28

29 end
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30 abs_st=1; %absorbing state

31 nzro_compl=absrvnt(nzro_compl,abs_st);

32

33 nzro_compl=treatdata(nzro_compl);

34 norm_compl=nzro_compl;

35

36 dutytime=datatime/DC; %display time data

37 Tmax=floor(max(dutytime));

38 T_e=dutytime; %experimental time

39

40 T=T_e(2:end);

41 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

42

43 D_e=treatdata(D_e);

44 PMFe=treatdata(PMFe);

45 [PMFe]=adjs_zero(PMFe);

46

47 mu_samples=mean(norm_compl,1);

48 desv_samples=sqrt(var(norm_compl,1,1));

49 median_samples=median(norm_compl,1);

50

51 %%

52 load RESULTS_I

53 load Expect_target

54 Nsim=numel(RESULTS_I(:,1));%Total nº of simulations

55

56 burn=115; %%See in Convergence_control folder

57

58 %Prior definition.Only for Gaussian prior.

59 sigma_prior=[0.4,0.2,0.1];

60 mu=[0.75 0.75 0.75 0.75 0.75];

61

62 G={}; %It initialize the matrix storage

63 H={}; %Idem
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64

65 tic

66 for j=1:3 %3 types of priors

67 %Prior i. By only changing the stdv.

68 sigma=sigma_prior(j);

69 covm=sigma^2*eye(5);

70 G_accum=[];

71 H_accum=[];

72 for i=burn:Nsim %%Is discount the burn−in period.

73

74 x=RESULTS_I(i,:);

75 g_value=exp(−0.5*(x−mu)*inv(covm)*(x−mu)'); %Prior

76 likeli=Expect_target(i); %%Likelihood value for x

77 h_value=g_value*log(likeli); %% And integration constant

78 G_accum=[G_accum;g_value];

79 H_accum=[H_accum;h_value];

80 x=[];% It avoid possible errors

81 end

82 G{j,1}=G_accum; %for each prior the simulation result is stored

83 H{j,1}=H_accum; %The function h is also stored

84

85 end

86 toc

87 save Gcomput G;

88 save Hcomput H;

89 %%

90 %%%Evidence: Expectation of Prior (G) over M−H sample

91 %%%%See Ka−Ven Yueng, Wiley 2010.

92 Evdnc=[];LogEvdnc=[];RelEntrop=[];

93 for k=1:3 %For each Prior

94 Evdnc(k)=(1/Nsim)*(sum(G{k,1}));

95 %%%Log−Evidence: Log of Evidence

96 LogEvdnc(k)=log(Evdnc(k));

97 %%%Log Goodness of fit
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98 LogGdoft(k)=(1/Evdnc(k))*(1/Nsim)*(sum(H{k,1}));

99 %%%Relative Entropy btwn prior & posterior

100 RelEntrop(k)=LogGdoft(k)−LogEvdnc(k);

101 end

102 ModClSl=[Evdnc;LogEvdnc;LogGdoft;RelEntrop]';

103 %%

104 %%%Evidence with improper prior. Integration constant

105 M=10000;

106 %Prior definition.Gaussian for simplicity

107 sigma_prior=[0.4];

108 mu=[0.2 0.2 0.2 0.2 0.8];

109 K_accum=[];

110 for i=1:M %%Is discount the burn−in period.

111 x=rand(1,5);

112 k_value=ftarget(x,dutytime); %Prior evaluated in M−H draws

113 K_accum=[K_accum;k_value];

114 end

115 Evdnc=(1/M)*(sum(K_accum));

1

2 %%%%%%%%%%%%%%%%%%%%%%MtrplsHstngs.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %%%METROPOLIS HASTING ALGORITHM

4 %by Manuel Chiachio−−May 2011 (Granada)

5

6

7

8 %%%TARGET DISTRIBUTION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %Defined as a m−function called ftarget.m

10 %Input: a vector x. Output: a function value (escalar)

11 %Number of parameters or size of x:

12 N=3;

13 %%%PROPOSAL DISTRIBUTION%%%%%%%%%%%%%

14 %%%Multivariate Gaussian uncorrelated function
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15 %Defined as a m−function called fnormal.m

16 %Input: xvalue(point evaluation),mu(mean),covm (cov. matrix)

17 %(point evaluation)and mu(mean) are changing inside the algorithm.

18 sig=0.01; %Too sensible for convergency

19 covm=sig^2*eye(N); %We assume no correlation for the prop.

20 R = chol(covm); %Cholesky decomposition of cov. matrix

21 %Output: a function value (escalar)

22 n=15000; %Nº of trials. Length of the chain

23 RESULTS_II=[];

24 tic

25

26

27 x=zeros(n,N); %Initializing the chain for computational tasks

28 %x(1,:)=rand(1,N); % Start point of the M. Chain

29 x(1,:)=[0.5,0.45,0.85];

30 %%%%

31 for i=2:n

32 %Gaussian multivariate pdf for new steps

33

34 y_aux=x(i−1,:)+randn(1,N)*R;% a new set of parameters

35 ind1=find(y_aux≥1,1,'first');%looks for not allowed values

36 ind2=find(y_aux≤0.05,1,'first');%idem

37 %It restrict the parameter to be (0,1)

38 while isempty(ind1)==false || isempty(ind2)==false,...

39 ||(y_aux(2)/y_aux(1))>4.5

40 y_aux=x(i−1,:)+randn(1,N)*R;

41 ind1=find(y_aux≥1,1,'first'); %It recount new 1

42 ind2=find(y_aux≤0.05,1,'first'); %It recount new 0

43 end

44 y=y_aux;

45 %generate a uniform for comparison

46 u=rand(1);

47 alpha=min([1,ftarget(y,dutytime)*fnormal(x(i−1,:),y,covm)/...

48 (ftarget(x(i−1,:),dutytime)*fnormal(y,x(i−1,:),covm))]);
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49 if u≤alpha

50 x(i,:)=y;

51 else

52 x(i,:)=x(i−1,:);

53 end

54 end

55 RESULTS_II=[RESULTS_II,x];

56

57 toc

1 %Function ftarget called by the evidence computing

2 function fvalue=ftarget(x,dutytime)

3

4 %%%%%%%%%%%%%PTM for non stationary model

5 T=dutytime;

6 b=25; %Number of states

7 %%%%Model Parameters%%%%%%%%%%%%%%%%%

8

9 alfa1=x(1);

10 beta1=x(2);

11 alfa2=x(3);

12 beta2=x(4);

13 p=x(5);

14

15 %%%%%%%%Model evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 [accPTMy,accQy,real_rt]=PTM_nstt(b,p,alfa1,beta1,alfa2,beta2,T);

17 %%%%%%%%%%%Likelihood function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19 [Fnstt,F,P_mle]=Ftrnscnt_nnst(b);%%%DATA

20 L_t=[];

21 for tim=1:numel(real_rt)

22

23 %N_xy=combint_nstt(Fnstt{tim,1}); %The factorial for each time
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24 pval_Matrix=[];

25 for i=1:b

26 j_pval_Matrix=[];

27 for j=i:b %Max size of any PTM is bxb. Only upper triang matrix

28 if accQy{tim,1}(i,j)==0

29 j=j+1; %It discardes the zero elements for each row

30 else

31 j_pval_stat=(accQy{tim,1}(i,j))^É

32 %Check the difference with

33 %the other nonzero elemnts

34 (Fnstt{tim,1}(i,j));

35 j_pval_Matrix=[j_pval_Matrix,j_pval_stat];

36 end

37 end

38 pval_stat=prod(j_pval_Matrix);

39 pval_Matrix=[pval_Matrix,pval_stat];

40

41 end

42 L_aux=prod(pval_Matrix);

43 %L_aux=log10(prod(pval_Matrix));

44

45 L_t=[L_t;L_aux];

46 end

47 L_nstt=prod(L_t);

48 %L_nstt=sum(L_t);%%%Likelihood value

49 fvalue=L_nstt;

1 %%Auxiliary script for evaluating the convergence of target

2 %distribution over N simulation.

3 %Manuel Chiachio. June 2011

4

5 %%%Model 1%%%%%%

6 nzro_compl=[]; %time zero is avoided (trivial case)
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7 for i=2:size(norm_compl,2)

8 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

9 end

10 abs_st=1; %absorbing state

11 nzro_compl=absrvnt(nzro_compl,abs_st);

12

13 nzro_compl=treatdata(nzro_compl);

14 norm_compl=nzro_compl;

15

16 dutytime=datatime/DC; %display time data

17 Tmax=floor(max(dutytime));

18 T_e=dutytime; %experimental time

19

20 T=T_e(2:end); %vector of time where model has to be evaluated.

21 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

22

23 D_e=treatdata(D_e);

24 PMFe=treatdata(PMFe);

25 [PMFe]=adjs_zero(PMFe);

26

27 mu_samples=mean(norm_compl,1);

28 desv_samples=sqrt(var(norm_compl,1,1));

29 median_samples=median(norm_compl,1);

30 %%

31 tic

32 load RESULTS_I;

33 Expect_target=[];

34 for i=1:numel(RESULTS_I(:,1))

35 aux_target=ftarget(RESULTS_I(i,:),dutytime);

36 Expect_target=[Expect_target;aux_target];

37 end

38 toc
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1 %%Script for evaluating the convergence of target

2 %distribution over N simulation.

3 %Manuel Chiachio. June 2011

4 %%Model 2 %%%%%%%%%%%%

5

6 nzro_compl=[]; %time zero is avoided (trivial case)

7 for i=2:size(norm_compl,2)

8 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

9

10 end

11 abs_st=1; %absorbing state

12 nzro_compl=absrvnt(nzro_compl,abs_st);

13

14 nzro_compl=treatdata(nzro_compl);

15 norm_compl=nzro_compl;

16

17 dutytime=datatime/DC; %display time data

18 Tmax=floor(max(dutytime));

19 T_e=dutytime; %experimental time

20

21 T=T_e(2:end); %vector of time where model has to be evaluated.

22 %[D_e,PMFe,bndwth,dens]=smoothing(norm_compl,T,nx,tol);

23 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

24

25 D_e=treatdata(D_e);

26 PMFe=treatdata(PMFe);

27 [PMFe]=adjs_zero(PMFe);

28

29 mu_samples=mean(norm_compl,1);

30 desv_samples=sqrt(var(norm_compl,1,1));

31 median_samples=median(norm_compl,1);

32 %%

33 tic

34 load RESULTS_II;
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35 Expect_target=[];

36 for i=1:numel(RESULTS_II(:,1))

37 aux_target=ftarget(RESULTS_II(i,:),dutytime);

38 Expect_target=[Expect_target;aux_target];

39 end

40 toc

1 %%%%%%%%%%%%%%%%%%%%%%AUXILIARY FUNCTIONS%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%%%%%%%binprod.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %J−MCHR 03/2011

4 %Binary product of matrices for large exponents

5

6 function [PTM]=binprod(P,X)

7

8 %%test

9 % P=rand(3);

10 % X=6;

11 % PTM1=P^X;

12

13 if X<0;

14 disp('MCHR_Warning: negative time in binprod!!. Converted to positive');

15 end

16 X=abs(round(X)); %this algorithm only allow integers positive exponents

17

18 if X==1

19 PTM=P;

20 elseif X==0

21 PTM=eye(size(P));

22 else

23 PTM=eye(size(P)); %initialize

24 ex=0; %initialize

25 while X−ex>1

26 n=floor(log2(X−ex));
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27 M=P;

28 for i=1:n

29 M=M*M;

30 end

31 PTM=PTM*M;

32 ex=ex+2^(n); %exponent of PTM in each iteration

33 if ex == X;

34 break

35 PTM;

36 elseif X−ex==1

37 PTM=PTM*P;

38 break

39 end

40 end

41 end

1 function [D_e,PMFe]=non_smoothing(norm_compl,T,nx)

2

3 D_e=[];

4 PMFe=[];

5 D_ac=[];

6

7 for n=1:numel(T) %using not−measured data is not allowed

8

9 D_ac=[D_ac,norm_compl(:,n)];

10 [stairs_ecdf,Dmg] = ecdf(D_ac(:,n));

11 for j=1:numel(Dmg)−1

12 if Dmg(j)==Dmg(j+1) || Dmg(j+1)≤Dmg(j)

13 Dmg(j+1)=Dmg(j)+1e−100;

14 end

15 end

16

17 PMFe=[PMFe;linspace(0,1,nx)];
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18 D_e=[D_e;interp1(stairs_ecdf,Dmg,linspace(0,1,nx))];

19 end

1 function [PMFe]=adjs_zero(PMFe)

2 %J−MCHR. March 2011

3 %WITH THIS FUNCTION THE FIRST COLUMN OF THE EXPERIMENTAL MATRIX (CDF) IS

4 %OBLIGATED TO BE ZEROS. THIS IS TO AVOID COMPUTATIONAL ERRORS.

5

6

7 for i=1:size(PMFe,1)

8

9 if PMFe(i,1)>0 && PMFe(i,1)<1

10 PMFe(i,1)=0;

11 end

12

13 end

1 %%Function to homogenize the absorvent state

2 function M=absrvnt(M,abs_st)

3

4 for i=1:size(M,1)

5 for j=1:size(M,2)

6

7 if M(i,j)>abs_st

8 M(i,j)=abs_st;

9 end

10

11 end

12 end
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