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Granada, 16 de Noviembre de 2012

Fdo: Pablo I. Hurtado Fernández y Pedro L. Garrido Galera





Agradecimientos

Tras haber concluido este trabajo, no queda más que expresar mi gratitud a
todos aquellos que en estos años me han apoyado tanto. En primer lugar, mi
más sincero agradecimiento a mis directores de tesis, Pablo Hurtado y Pedro
Garrido, por todo lo que he aprendido y lo mucho que me han ayudado en
todo momento. También quiero agradecer a todos los compañeros y amigos
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Resumen de la Tesis

En las últimas dos décadas se ha experimentado un gran avance en en el en-
tendimiento de los sistemas fuera del equilibrio. Sin embargo, a pesar de los
esfuerzos en esta dirección, aún no se ha logrado establecer una teoŕıa general
que permita describir la f́ısica macroscópica de los sistemas de no-equilibrio
a partir de sus propiedades microscópicas. Una teoŕıa general para enten-
der estos sistemas seŕıa de gran importancia ya que la mayoŕıa de procesos
presentes en la naturaleza están lejos del equilibrio.

La f́ısica estad́ıstica del equilibrio trata de explicar las propiedades ma-
croscópicas de la materia a partir de sus constituyentes microscópicos. Es una
teoŕıa que nos permite obtener el valor medio de observables macroscópicos
y el de sus fluctuaciones a partir únicamente de la distribución de probabi-
lidad de Gibbs, sin tener que resolver ninguna ecuación de movimiento para
los constituyentes microscópicos. Consideremos por ejemplo un sistema en
contacto con dos baños térmicos a temperaturas TL y TR. Se dice que el sis-
tema está en equilibrio si las dos temperaturas son iguales (TL = TR = T ).
En este caso la probabilidad de encontrar al sistema en una configuración
microscópica C viene dada por la distribución de Gibbs

Pequilibrium(C) = Z−1 exp
[
−E(C)
kBT

]
(1)

donde E(C) es la enerǵıa interna del sistema en la configuración C, kB
es la constante de Boltzmann y Z es la función de partición. La tarea de
la mecánica estad́ıstica del equilibrio es pues derivar las propiedades ma-
croscópicas (ecuaciones de estado, transiciones de fase, puntos cŕıticos, etc)
desde la Eq. (1) como punto de partida. Un aspecto simplificador de (1) es
que no depende ni de la naturaleza del acoplamiento con los baños ni de los
detalles de la dinámica. Todo lo que necesitamos saber es la enerǵıa de las
configuraciones microscópicas.

Por el contrario, si las temperaturas de los baños son diferentes (TL 6= TR),
el sistema alcanza en el ĺımite de tiempos largos un estado estacionario de
no-equilibrio y, a diferencia del sistema en equilibrio, no existe una expre-
sión que generalice (1) para la probabilidad P (C) de las configuraciones
microscópicas en el estado estacionario

Pnon-equilibrium(C) =? (2)

De hecho, para un sistema fuera del equilibrio, la medida P (C) del estado es-
tacionario depende en general de la dinámica del sistema y del acoplamiento

1



2 Resumen

con los baños térmicos y su cálculo a partir de la diámica microscópica es un
problema realmente dif́ıcil que solamente se ha resuelto para modelos muy
sencillos [5, 6, 7]. Por eso, lejos del equilibrio, el objeto básico que permita
definir equivalencias con la entroṕıa y los potenciales termodinámicos para
hacer aśı una extensin natural de la termódinámica, no es directamente ac-
cesible.

Sin embargo, la f́ısica estad́ıstica del equilibrio nos ofrece un camino alterna-
tivo a la teoŕıa de colectividades para derivar los potenciales termódinaámi-
cos. Esta alternativa consiste en estudiar el comportamiento macroscópico
fluctuante del sistema. Esta observación fundamental se puede generalizar
a sistemas fuera del equilibrio [8]-[20], donde no existe una teoŕıa general
capaz de predecir el comportamiento macroscópico y fluctuante en términos
de la f́ısica micróspica.

Para el caso de equilibrio se puede demostrar que, conforme el volumen
del sistema se hace más grande (pero finito), podemos expresar la probabili-
dad de observar una fluctuación de la densidad como la exponencial de una
función multiplicada por el volumen, i.e.,

P (ρ) ∼ exp [+vI (ρ)] . (3)

Se dice entonces que dicha probabilidad sigue un principio de grandes des-
viaviones [23, 24]. A la función I(ρ) se le conoce como función de grandes
desviaciones (LDF, por sus siglas en inglés) y nos da una idea del ritmo al que
se concentra la probabilidad alrededor del valor medio conforme el volumen
crece. En equilibrio se demuestra (véase la introducción de la tesis) que esta
LDF está uńıvocamente relacionada con la enerǵıa libre del sistema, a partir
de la cual podemos describir todas las propiedades macroscópicas del mismo.

Esta conexión bien establecida en equilibrio entre fluctuaciones de observa-
bles macroscópicos y potenciales termódinaḿicos, es la que ha motivado el
estudio de tales fluctuaciones en sistemas fuera del equilibrio. Por tanto, uno
de los objetivos más importantes de la f́ısica estad́ıstica del no-equilibrio, es
encontrar el observable macróscopico adecuado que permita, a través del es-
tudio de sus fluctuaciones, definir el equivalente a un potencial termódinámi-
co, desde el cual se puedan derivar las propiedades macrosópicas del sistema,
como ocurre en el caso de equilibrio. Para poder establecer esa equivalencia,
es necesario expresar la probabilidad de las fluctuaciones del observable co-
mo un principio de grandes desviaciones, lo que nos lleva a centrarnos en el
estudio de la LDF que es la que caracteriza dicha probabilidad.

Por un lado, como extensión natural del caso de equilibrio, uno de los obser-
vables macroscópicos a estudiar para sistemas de no-equilibrio es la densidad.
Esto ha conducido a resultados muy interesantes [32] en los que la LDF de
la densidad ha permitido describir propiedades macroscópicas del sistema
(como por ejemplo las correlaciones de largo alcance, una de las propiedades
ms relevantes de los sistemas fuera del equilibrio).

Sin embargo, nosotros estamos interesados en sistemas caracterizados por
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algún observable macroscópico que se conserva localmente (e.g. enerǵıa, den-
sidad de part́ıculas, momento). En este tipo de sistemas es razonable pensar
que el observable macroscópico más relevante es la corriente que se forma
cuando ponemos a dicho sistema fuera del equilibrio mediante la acción de
un campo externo, o aplicando un gradiente en sus extremos. Esta es la
razón por la que el estudio de la estad́ıstica de la corriente en términos de
la f́ısica microscópica se ha convertido en uno de los principales focos de
atención de la f́ısica estad́ıstica del no-equilibrio en las últimas dos décadas
[8]-[20]. Esta actividad ha llevado a un gran número de resultados interesan-
tes válidos arbitrariamente lejos del equilibrio. Probablemente el resultado
más importante obtenido hasta ahora, es el llamdo teorema de fluctuación
de Gallavotti-Cohen [8, 9, 12], que manifiesta las sutiles consecuencias de la
reversibilidad temporal a nivel macroscópico. La lista de reultados continúa
sin embargo con la igualdad de Jarzynski [25] o el teorema de fluctuación
de Crooks [26], hasta la relación de Hatano-Sasa [27] o la reciente extensión
de la desigualdad de Clausius a estados estacionarios fuera del equilibrio [28].

En esta tesis nos hemos centrado en el estudio de las fluctuaciones de la
corriente en sistemas difusivos. Como hemos visto, la corriente puede ser un
buen observable macroscópico con el que caracterizar a los sistemas fuera
del equilibrio. En concreto, nuestro objetivo es calcular la LDF de varios
sistemas y tratar de derivar a partir de ella propiedades generales de los
sistemas de no-equilibrio. El marco teórico en el que nos hemos basado, es la
llamada teoŕıa macroscópica fluctante (MFT, por sus siglas en inglés), desa-
rrollada por Bertini y colaboradores en los últimos diez años [15]-[18]. Esta
teoŕıa, descrita en el caṕıtulo 1, describe en detalle las fluctuaciones dinámi-
cas en sistemas difusivos, ofreciendo predicciones para la LDF a partir del
conocimiento de la ecuación de evolución macróscopica (o hidrodinḿica) del
sistema y sólo dos coeficientes de transporte. La MFT es un marco teórico
muy general y de amplia aplicación que normalmente desemboca en un pro-
blema variacional complicado cuya solución exacta es dif́ıcil en la mayoŕıa de
los casos. Como consecuencia, en el caṕıtulo 3 de esta tesis, se suponen dos
hipótesis simplificadoras que nos permiten resolver el problema variacional.
Estas hipótesis consituyen la “conjetura de aditividad”, cuyo nombre se de-
be a que su versión unidimensional es equivalente al Principio de Aditividad
(Additivity Principle) postulado por Bodineau y Derridad en 2004 [34].

Para determinar la LDF de la corriente integrada en el tiempo aplicando
la MFT dados los coeficientes de transporte, es necesario minimizar un fun-
cional sobre los campos de corriente y de densidad, que en general, pueden
depender del tiempo y el espacio. Estos campos están relacionados por la
ecuación de continuidad. Esto, como hemos señalado anteriormente, es un
problema variacional muy complicado pero que, suponiendo la “conjetura de
aditividad” śı se puede resolver. La citada conjetura supone lo siguiente:

i Los campos óptimos de densidad y de corriente que minimizan el fun-
cional, responsables de producir una fluctuación de la corriente, son
independientes del tiempo.

ii El campo de corriente, a su vez, no tiene estructura espacial, con lo
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que es constante.

Con estas dos hipótesis, somos capaces de calcular expĺıcitamente la función
de grandes desviaciones de la corriente integrada en el tiempo, obtenien-
do aśı la probabilidad de observar dicha corriente transcurrido un tiempo
largo pero finito. Hay que resaltar que cuando estudiamos las fluctuacio-
nes de la corriente integrada en el tiempo, dicho tiempo juega el mismo
papel que el volumen para el caso de las fluctuaciones de la densidad. De
ah́ı la necesidad de considerar tiempos largos para poder expresar las fluc-
tuaciones de la corriente como un principio de grandes desviaciones. En el
caṕıtulo 3, se calcula de manera teórica la LDF de la corriente integrada
en un modelo paradigmático de transporte difusivo. Este es el modelo de
Kipnis-Marchioro-Presutti (KMP), descrito en detalle en el caṕıtulo 2. Una
vez que tenemos la predicción teórica de la LDF de la corriente suponiendo
la conjetura de aditividad, comprobamos la validez de la misma realizando
sofisticadas simulaciones numéricas. En este punto, es importante destacar
el papel fundamental que desempeñan las dichas simulaciones, ya que repre-
sentan el “laboratorio experimental” donde comprobar y acotar la validez
de las aproximaciones que se realizan en la teoŕıa. Analizando los resultados
numéricos obtenidos para el modelo KMP, llegamos a la conclusión de que
la conjetura de aditividad se cumple para un amplio rango de fluctuaciones
de la corriente. Además, uno de los resultados a resaltar, es que el perfil
de densidad (independiente del tiempo) que minimiza el funcional para una
fluctación de la corriente dada, es de hecho el que medimos en las simulacio-
nes. Esto indica que el sistema adopta precisamente ese perfil para producir
dicha fluctuación.

Hay que decir que nos hemos centrado en el modelo KMP bidimensional
[43]. De hecho la segunda hipótesis de la conjetura de aditividad tiene senti-
do para sistemas de más de una dimensión. El porqué de ir a dos dimensiones
es debido a que una gran cantidad de nuevos fenómenos y simetŕıas apare-
cen para sistemas con dimensión mayor que uno. Este hecho se refleja en
el caṕıtulo 4, donde se deriva una nueva relación de fluctuación isómetri-
ca (IFR) [10] para fluctuaciones de la corriente en sistemas d-dimensionales
reversibles temporalmente y descritos por un único campo localmente con-
servado.. En general, un sistema con muchos grados de libertad transita un
camino óptimo en el espacio mesoscópico (coarse-grained) de las fases para
facilitar una fluctuación dada. Tal y como ha quedado demostrado en los
tests de aditividad realizados en el caṕıtulo 3, este camino óptimo es un ob-
servable f́ısico bien definido. Usando las herramientas de la MFT, se puede
demostrar que bajo condiciones muy generales y en dimensión arbitraria,
este camino óptimo permanece invariante bajo ciertas transformaciones de
simetŕıa sobre el vector corriente [10]. Usando esta invariancia, se demuestra
que en un sistema d-dimensional reversible temporalmente y descrito por un
único campo localmente conservado, la probabilidad de observar una fluc-
tuación dada del vector corriente emṕırico (promediado en espacio y tiempo)
obedece la siguiente relación de fluctuación isométrica (IFR, por sus siglas
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en inglés)

ĺım
τ→∞

1
τ

ln
[

Pτ (J)
Pτ (J′)

]
= ε · (J− J′) , (4)

para cualquier par de vectores corriente isométricos, |J| = |J′|. Pτ (J) es la
probabilidad de observar una fluctuación de la corriente J integrada en un
tiempo τ . En la ecuación anterior ε = ε+ E es un vector constante directa-
mente relacionado con el ritmo de producción de entroṕıa en el sistema, y
que depende de los baños térmicos del borde a través de ε = (ρ−1

R − ρ
−1
L )n̂

siendo n̂ el versor que apunta en la dirección del gradiente externo y ρL,
ρR la temperatura de los baños térmicos. La ecuación anterior, que incluye
como caso particular el teorema de Gallavotti y Cohen cuando J′ = −J,
relaciona de una manera sorprendentemente sencilla la probabilidad de una
flctuación de corriente J con la de cualquier otro vector corriente en la misma
hiperesfera d-dimensional de radio J, proyectando el problema complicado
de determinar la distribución de probabilidad Pτ (J) en d-dimensiones en un
problema muchos más sencillo en sólo una dimensión. Al contrario de lo que
sucede con la relación de Gallavotti y Cohen, que es una simetŕıa no dife-
renciable que implica el cambio de signo de la corriente, la IFR es válida
para cambios de orientación arbitrarios del vector corriente. Esto hace que
la verificación experimental de esta relación sea plausible, al contrario de lo
que sucede con el teorema de Gallavotti y Cohen, ya que podemos generar
suficiente estad́ıstica para fluctuaciones isométricas alrededor de la corriente
media y aśı garantizar la precisión del experimento. Es importante subrayar
que la IFR se cumple para fluctuaciones arbitrariamente grandes, incluso en
las colas no gaussianas de la distribución.

Cabe destacar, que la relación de fluctuación isométrica se demuestra de
manera sencilla en el marco de la MFT, una vez suplementada con el con-
jetura de aditividad. Además, se puede comprobar que el perfil óptimo de
densidad depende de J2, con lo que solo depende exclusivamente del módulo
de J y no se su orientación. De esta forma, todas las fluctuaciones de corrien-
te isométricas entre śı (esto es, caracterizadas por un módulo |J| constante)
tendrán asociado el mismo perfil óptimo de densidad, independientemente
de si el vector J apunta en la dirección del gradiente externo, en contra del
gradiente o en cualquier otra dirección. En otras palabras, el perfil óptimo es
invariante frente a rotaciones del vector corriente. En el caṕıtulo 4 se demues-
tra que esta invarianza no es más que una consecuencia de la reversibilidad
temporal de la dinámica.

La relación de fluctuación isométrica tiene implicaciones profundas en
las propiedades de no-equilibrio de un sistema. En particular, la IFR implica
una familia sorprendente de jerarqúıas en los cumulantes de la distribución
de corriente y los coeficientes de respuesta no-lineal del sistema, válidas arbi-
trariamente lejos del equilibrio, y que van mucho más allá que las relaciones
de reciprocidad de Onsager y las fórmulas de Green-Kubo.

Es importante señalar que la relación de fluctuación isométrica, un avance
derivado en el marco de la teoŕıa macroscópica fluctuante, ha sido confirma-
da con todo detalle en simulaciones a gran escala de dos modelos de no-
equilibrio diferentes: (i) El modelo KMP de transporte en dos dimensiones,
y (ii) un fluido de discos duros en un gradiente de temperatura [10]. En este
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último caso el sistema de interés obedece las ecuaciones de la hidrodinámica,
estando caracterizado por cuatro campos localmente conservados diferentes,
lo que claramente se sale del rango de aplicabilidad de la MFT. La validez
de la IFR en este contexto sugiere por tanto esta relación de fluctuación,
basada en la invariancia de los perfiles óptimos frente a transformaciones de
simetŕıa, es de hecho un resultado muy general válido para sistemas hidro-
dinámicos mesoscópicos arbitrarios.

Como hemos visto, la teoŕıa macroscópica fluctuante nos permite estudiar
fluctuaciones dinámicas en sistemas difusivos, ofreciendo predicciones con-
cretas para la función de grandes desviaciones del observable de interés y
el camino óptimo en el espacio de las fases mesoscópico responsable de una
fluctuación dada. Este camino óptimo es en general un objeto dinámico que
puede depender del tiempo, aunque ya hemos visto que en la práctica, y de
acuerdo con el conjetura de aditividad, el camino óptimo resulta ser indepen-
diente del tiempo para un rango amplio de fluctuaciones (ver caṕıtulo 3). Sin
embargo, para sistemas periódicos la MFT indica que el camino óptimo pasa
a ser dependiente del tiempo a partir de un valor cŕıtico de la fluctuación de
la corriente. Esto se interpreta como una transición de fase dinámica. En el
caṕıtulo 5 se observa esta transición de fase para otro modelo difusivo pa-
radigmático: el proceso de exclusión simple débilmente asimétrico (WASEP,
por sus siglas en inglés). Se hace en una y dos dimensiones. En este caso
se observa que los perfiles adoptan una estructura de tipo onda viajera que
se mueve a velocidad constante. Otro aspecto sorprendente es que el para
el régimen dependiente del tiempo, la IFR se sigue cumpliendo, haciendo
aśı extensiva su validez para perfiles dependientes del tiempo con estructura
tipo onda viajera.

Por último, en el caṕıtulo 6, nos salimos del marco de la MFT y explo-
tamos la anteriormente citada relación de Hatano-Sasa [27]. Esta relación
generaliza la igualdad de Jarzynski [25] generalizando de esta forma la se-
gunda ley para transiciones entre estados estacionarios. Sin embargo, para
poder aplicar la relación de Hatano-Sasa hemos de conocer a priori la dis-
tribución estacionaria de probabilidad. En lugar de esto, lo que se propone
en el caṕıtulo 6 es usar con distribuciones de probabilidad arbitrarias “de
referencia” que sean suaves, de manera que uno pueda tratar sistemas cuya
distribución estacionaria es demasiado dif́ıcil de calcular, como generalmen-
te ocurre en los sistemas fuera del equilibrio con muchos grados de libertad.
Haciendo esto, demostramos [29] que cada conjunto de distribuciones de re-
ferencia da lugar a una desigualdad que juega el papel de una generalización
de la segunda ley. Cuanto mejor es la aproximación de la distribución de
referncia a la estacionaria, más restringida es la desigualdad. Esto da lugar a
un procedimiento de optimización de la distribución de referencia que puede
ser implementado numérica o experimentalmente.



Introduction

Fluctuations arise universally in Nature as a reflection of the discrete micro-
scopic world at the macroscopic level. Despite their apparent noisy origin,
fluctuations encode fundamental aspects of the physics of the system at
hand. One of the first examples of the importance of fluctuations is given by
Einstein’s paper on brownian motion [1]. From the study of fluctuations in
the movement of a mesoscopic particle suspended in a liquid, Einstein was
able to determine the size of the molecules of the liquid, thus confirming
the molecular hypothesis. Another relevant examples range from the role
of fluctuations to understand critical phenomena beyond mean-field phe-
nomenological theories [2] to the study of fluctuations of spatio-temporal
correlations in glasses and amorphous materials, which has revealed the ex-
istence of universal dynamical heterogeneities [3]. Particularly interesting
are the fluctuations of the measured cosmic background radiation tempera-
ture in cosmology [4], whose origin goes back to the presence of small inho-
mogeneities in the matter distribution of the primordial universe, offering a
framework to understand the origin of the universe structure at a macroscale.
In addition, fluctuations inherit the microscopic symmetries, reflecting them
at the macroscopic level. Examples of these symmetries at the fluctuating
level are the Gallavotti-Cohen Fluctuation Theorem [8], or the recently in-
troduced Isometric Fluctuation Relation [10], which are deep statements on
the subtle consequences of time-reversal symmetry of microscopic dynamics
at the macroscopic, irreversible level.

Equilibrium statistical mechanics attempts to explain the macroscopic prop-
erties of matter in terms of the interaction of its microscopic constituents.
The basic paradigm of this theory states that in order to obtain the typical
value of macroscopic observables and their fluctuations we do not have to
solve any equation of motion of the microscopic constituents and the calcu-
lations can be performed by using the Gibbs distribution. Let us consider
for instance a sytem in contact with two heat baths at temperature TL and
TR, see figure 1.d. The system is in equilibrium when the heat baths are
at the same temperature (TL = TR = T ). In this case, the probability of
finding the system in a certain microscopic configuration C is given by the
Gibbs distribution

Pequilibrium(C) = Z−1 exp
[
−E(C)
kBT

]
(5)

7
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where E(C) is the internal energy of the system in configuration C, kB is
Boltzmann’s constant and Z is the partition function. Then the task of equi-
librium statistical mechanics is to derive macroscopic properties (equations
of states, phase transitions, critical points, etc) from (5) as a starting point.
A very simplifying aspect of (5) is that it depends neither on the precise na-
ture of the coupling with the heat baths nor on the details of the dynamics.
All we need to know are the energies of the microscopic configurations.

However, most of the systems we find in Nature are out of equilibrium: they
are open, hysteric systems, subject to thermal gradients, mass and/or energy
fluxes, which suffer the action of external agents, or are subject to several
sources of non-thermal noise. Non-equilibrium processes are also essential for
cell functioning, brain processing, etc. For instance, in the interior of a cell
there is a complex chemical activity, mediated by enzimes and motor pro-
teins, which is far from equilibrium. It can be stated that all living organisms
are non-equilibrium structures. In addition, non-equilibrium phenomena ap-
pear at all scales. Examples range from gravitational collapse of a star to the
escape of metastable electrons in nanoelectronic devices, mutations in DNA
or conformational changes in proteins. In fact, non-equilibrium phenomena
are the rule, being equilibrium systems a rather unlikely exception. It seems
that nonequilibrium is a fundamental ingredient for the observed structure
in Nature. As in equilibrium systems, those systems out of equilibrium
also show instabilities which give rise to spatio-temporal patterns, dissipa-
tive structures, self-organization, spontaneus-symmetry breaking, etc., all of
them commonly observed in Nature. Since the physics of the above exam-
ples is rather different, we will concentrate on the simplest situation in a
non-equilibrium system, i.e., on the steady state.

Let us come back to our first example consisting of a system in contact
with two heat baths. If the two temperatures TL and TR are different, the
system reaches in the long-time limit a non-equilibrium steady state (NESS)
[11] and, unlike the equilibrium system, there does not exist an expression
which generalizes (5) for the steady state weights P (C) of the microscopic
configurations

Pnon-equilibrium(C) =? (6)

In fact, for a non-equilibrium system, the steady state measure P (C) de-
pends in general on the dynamics of the system and on its coupling with
heat baths and its computation from microscopic dynamics is a really dif-
ficult problem which has been successfully carried out in very few simple
models [5, 6, 7]. Therefore the basic object to define analogs of entropy or
thermodynamic potentials which we need to construct a natural extension
of thermodynamics, is not immediately available.

Nevertheless, equilibrium statistical mechanics offers an alternative deriva-
tion of thermodynamic potentials by studying the fluctuating macroscopic
behavior of the system at hand. This crucial observation can be generalize
to non-equilibrium systems [8]-[20], where no general theory exists up to
date capable of predicting macroscopic and fluctuating behavior in terms of
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Figure 1: (a) Density fluctuations in a large subvolume v in an equilibrium
system. (b) Concentration of the probability of observing a certain observ-
able (e.g., density in a large subvolume, averaged current in long time interval
t, etc). (c) Typical form of a large deviation function (LDF). (d) System in
contact with two heat baths. If TL 6= TR the system is out of equilibrium
due to a gradient temperature and we can measure current fluctuations.

microscopic physics, in a way similar to equilibrium statistical mechanics.
In this way, the study of fluctuations out of equilibrium may open the door
to such a general theory. Actually, as we shall see, the large deviation func-
tion (LDF) which characterizes the fluctuations of macroscopic observables,
can be identified as the non-equilibrium analog of the free-energy functional
in equilibrium systems, from which macroscopic properties of a nonequilib-
rium system can be obtained (including its most prominent features, as for
instance the ubiquitous long range correlations [21, 22], etc). Thus, under-
standing large deviation functions in out of equilibrium systems has become
one of the main objectives of non-equilibrium statistical physics.

In order to understand what a large deviation is, let us start with a simple
example. If one considers a box of volume V containing N particles, as in
figure 1.a, the probability Pv(n) of observing n particles in a subsystem of
volume v has the following large v dependence

Pv(n) ∼ exp
[
+vI

(n
v

)]
(7)

This equation follows a large deviation principle [23, 24], and the function
I(ρ) ≤ 0 is the large deviation function. The approximation sign “∼” de-
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notes logarithmic equivalence as v →∞,

lim
v→∞

1
v

lnPv(n) = I
(n
v

)
Eq. (7) tells us that the probability of observing in our subsystem a density
fluctuation ρ = n/v, different from the average density ρ∗ = N/V , decays
exponentially with the volume v of the subsystem. In this way, the LDF I(ρ)
measures the rate at which the probability Pv(n) concentrates around the
mean ρ∗ as v grows1, see figure 1.b. One advantage of expressing Pv(n) in a
large deviation form is that the LDF I(ρ) gives a direct and complete picture
of the deviations or fluctuations of ρ around its typical value. In what follows,
we briefly list some general properties which characterize LDF’s. They are
negative in the whole domain except for the mean value of the observable
where they are null, I(ρ∗) = 0 see figure 1.c, reaching their maximum,
I ′(ρ∗) = 0. Around the mean value ρ∗, LDF’s are quadratic. This yields by
approximating I(ρ) up to the first quadratic term around ρ∗,

I(ρ) ≈ I(ρ∗) + I ′(ρ∗) +
1
2
I ′′(ρ∗)(ρ− ρ∗)2 =

1
2
I ′′(ρ∗)(ρ− ρ∗)2, (8)

leading to the Gaussian approximation

Pv(n) ∼ exp
[
+v

1
2
I ′′(ρ∗)(ρ− ρ∗)2

]
, (9)

which can be thought of as a weak form of the Central Limit Theorem.
This explains the meaning of the name large deviations. On the one hand,
a small deviation, ρ, is a value for which the quadratic approximation to
I(ρ) is a good approximation of I(ρ), and for which, therefore, the Central
Limit Theorem yields essentially the same information as the large deviation
principle. On the other hand, a large deviation, ρ, is a value for which I(ρ)
departs sensibly from its quadratic approximation, and for which, therefore,
the Central Limit theorem yields no useful information about the large fluc-
tuations of ρ away from its mean ρ∗. In this sense, large deviation theory
can be seen as a generalization of the Central Limit Theorem characterizing
the small as well as the large fluctuations of a random variable. For a further
study of large deviation theory see Ref. [24].

For equilibrium systems, the LDF is also closely related to the free energy.
In fact, if the volume v is sufficiently large, for short range interactions and
in the absence of external potential, the LDF is given by [14]

I(ρ) = −f(ρ)− f(ρ∗)− (ρ− ρ∗)f ′(ρ∗)
kBT

, (10)

where f(ρ) is the free energy per unit volume at density ρ, ρ∗ = N/V and T
is the temperature. This can be seen by noticing that, if v � V and v1/d is
much larger than the range of the interactions (being d the dimension), on
has

Pv(n) =
Zv(n)ZV−v(N − n)

ZV (N)
expO(v( d−1

d ), (11)

1For that reason, the LDF is also known in the mathematical literaure as rate function.
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where ZV (N) is the partition function of N particles in a volume V and
the term exp[O(v

d−1
d )] respresents the interactions between all pairs of par-

ticles, one of which is in the subsystem v and the other is in the rest of
the system V − v. Then taking the ln of (11) and using the definition of
the free energy per unit of volume, f(ρ) ≡ −kBTV −1 lnZV (V ρ), one gets
Eq. (10). A similar calculation allows to show that the probability for
the system to adopt a density profile ρ(r) obeys a large deviation principle,
P [ρ(r)] ∼ exp[+V I[ρ(r)]], where the large deviation functional I[ρ(r)] is
fully determined by the knowledge of the density free energy f [ρ(r)],

I[ρ(r)] = − 1
kBT

∫
Λ

dr[f [ρ(r)]− f(ρ∗)]. (12)

Where Λ is the space domain, Λ ∈ [0, 1]d. Notice that, as expected for
an equilibrium system, the functional I[ρ(r)] depends locally on the density
profile ρ(r), as well as being a convex functional of ρ(r).
It is remarkable that if one expands (10) near ρ∗ and one replaces it into (7)
one gets that the distribution of the number n of particles in the subvolume
v is Gaussian (if v is large enough)

Pv(n) ∼ exp
[
−v f

′′(ρ∗)
2kBT

(ρ− ρ∗)2

]
= exp

[
−v f

′′(ρ∗)
2vkBT

(n− vρ∗)2

]
, (13)

and its variance, as predicted by Smoluchowski and Einstein, is given by

〈n2〉 − 〈n〉2 = v
kBT

f ′′(ρ∗)
= vkBTκ(ρ∗) (14)

where the compressibility is defined by κ(ρ) ≡ ρ−1dρ/dp (and the pressure
is given as usual by p = −(d/dV )[V f(N/V )] = ρ∗f ′(ρ∗)− f(ρ∗))).

Thus, we have just shown how by studying the fluctuations of macro-
scopic observables (e.g. the density) in equilibrium systems, we are able to
relate univocally the LDF characterizing these fluctuations to the free energy
of the system. Note that key to do this, is to express the probability of a
fluctuation as a large deviation principle.

Far from equilibrium, we may also study the fluctuations of macroscopic
observables with the hope for LDF’s to be related to the non-equilibrium
analogs of thermodynamic potentials in equilibrium systems. A crucial point
to start working within this framework, is to identify the essential macro-
scopic observables which characterize the behavior of non-equilibrium sys-
tems. We are usually interested in system having a locally conserved mag-
nitude (e.g. energy, number of particles, charge, momentum). Hence, the
essential macroscopic observable is the current or flux which is established
when a system is driven out of equilibrium by the action of an external field
or by applying a gradient in its boundaries. This is why the understand-
ing of current statistics in terms of microscopic dynamics has become one
of the main objectives of non-equilibrium statistical physics in the last two
decades [8]-[20]. This activity has led to a number of groundbreaking re-
sults valid arbitrarily far from equilibrium (and therefore not restricted to
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the confining world of linear response), which are offering a glimpse of the
long-sought general theory of nonequilibrium phenomena. A main example
is the already mentioned Gallavotti-Cohen fluctuation theorem [8, 9, 12],
which express the subtle but enduring consequences of microscopic time re-
versibility at the macroscopic level. The list continues however, with further
breakthroughs ranging from the Jarzynski equality [25] or the Crooks fluc-
tuation theorem [26] to the Hatano-Sasa relation [27] or the recent extension
of Clausius inequality to nonequilibrium steady states [28], to mention just
a few.

As we have already seen, a paradigmatic non-equilibrium system is the one in
contact with two heat baths at different temperatures, see figure 1.d. In this
case, as time increases, and provided that the system is ergodic, the time-
averaged current J = τ−1

∫ τ
0
j(t) dt quickly converges toward its ensemble

average 〈J〉. For large (but finite) times, the measured J may fluctuate
and the probability of a given output follows in general a large-deviation
principle for long times, Pτ (J) ∼ exp[+τLdG(J)]. Here G(J) is the cur-
rent large deviation function (LDF), and measures the (exponential) rate at
which J → 〈J〉 as τ increases (notice that G(J) ≤ 0, with G(〈J〉) = 0).
We then see that the current in non-equilibrium follows a large deviation
principle similar to which the density does in equilibrium systems, see Eq.
(7), with time playing the role of the volume v in equilibrium.

Computing large deviations in non-equilibrium systems starting from mi-
croscopic dynamics, is an extraordinary complicated task which has been
successfully achieved in very few simple cases [5, 6, 7, 14]. However, L.
Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim have de-
veloped in the last ten years a macroscopic fluctuating theory (MFT) to
describe in detail dynamical fluctuations in diffusive systems. This theory
offers detailed predictions for relevant large deviations functions from the
knowledge of the macroscopic (or hydrodynamic) evolution equation of the
system at hand and two transport coefficients. It is worth noting that the
theoretical laboratory to test this theory is provided by stochastic lattice
gases. The dynamics of these stochastic lattice models is different from the
Hamiltonian dynamics that one would assume for a classical real gas, but
the hope is that the macroscopic behavior of a system, at least for certain
intervals of time, be qualitatively independent of this assumption. One ex-
pects that general properties like the type and number of conservations laws
should be the most relevant features. It is then here where computer sim-
ulations come into play, since they can be considered as the experimental
laboratory to test the MFT predictions by implementing the dynamics of
such stochastic lattice models and by measuring the observables in which
one is interested. Thus, simulation results become of central importance in
order to confirm and bound the validity of the MFT.

For all the reasons above exposed, the aim of this thesis is to investigate
fluctuations in out of equilibrium systems. Particularly, we focus on diffu-
sive systems, where there exists a locally conserved magnitude and where
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the time-averaged current is the relevant macroscopic observable. Thus,
we study the current large deviation function which is, as we have argued,
the best candidate from which macroscopic properties of a non-equilibrium
diffusive system can be obtained.

We start in chapter 1 by briefly introducing the MFT. The starting point
is a continuity equation which describes the macroscopic evolution of diffu-
sive systems. Then, by using a path integral formalism we get the large
deviation function controlling the probability of observing a time-average
current fluctuation. In that case, the MFT gives rise to a complex spatio-
temporal variational problem whose solution remains challenging. Therefore
we supplement the MFT with a simplifying additivity conjecture which leads
to manageable equations.

In chapter 2, we describe several stochastic lattice models in which the
MFT will be applied. We shall see how despite their different microscopic
dynamics, they lead to a macroscopic diffusive behavior well characterized
by their transport coefficients which are the two ingredients necessary to
exploit the MFT. Particularly we concentrate on the Kipnis-Marchioro-
Presutti (KMP) model and several exclusion models.

Chapter 3 is devoted to deeply analyze the additivity conjecture from
which we get theoretical predictions for the current LDF in the KMP model.
We test its range of validity of the additivity conjecture by measuring nu-
merically not only the current LDF but also the density profiles the system
adopts in order to sustain a given large current fluctuation. As we shall
see, it is pretty surprising that these measured optimal profiles actually cor-
respond to the theoretical profiles obtained by minimizing the functional
resulting from the additivity conjecture. This confirms the idea that the
system indeed modifies its density profile to facilitate the deviation of the
current, validating the power of the additivity conjecture to compute both
the current LDF and the associated optimal profiles.

In chapter 4 we show that by demanding invariance of optimal paths un-
der symmetry transformations, new and general fluctuation relations valid
arbitrarily far from equilibrium are unveiled. This opens an unexplored
route toward a deeper understanding of nonequilibrium physics by bring-
ing symmetry principles to the realm of fluctuations. We illustrate this
concept studying symmetries of the current distribution out of equilibrium.
In particular we derive an isometric fluctuation relation which links in a
strikingly simple manner the probabilities of any pair of isometric current
fluctuations. This relation, which results from the time-reversibility of the
dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation
theorem in this context but adds a completely new perspective on the high
level of symmetry imposed by time-reversibility on the statistics of nonequi-
librium fluctuations. The new symmetry implies remarkable hierarchies of
equations for the current cumulants and the nonlinear response coefficients,
going far beyond Onsager’s reciprocity relations and Green-Kubo formulas.
We confirm the validity of the new symmetry relation in extensive numer-
ical simulations, and suggest that the idea of symmetry in fluctuations as
invariance of optimal paths has far-reaching consequences in diverse fields.

Another recent discovery concerns the existence of coherent structures
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associated to large, rare fluctuations which enhance their probability [39,
40]. Such coherent, self-organized patterns emerge via a dynamical phase
transition at the fluctuating level, which is accompanied by spontaneous
symmetry breaking event. In chapter 5 we investigate in detail this last
phenomenon in the weakly-asymmetric simple exclusion process, where we
study fluctuations of the time-averaged current. As we also analyze the two-
dimensional case, we have observed that the isometric fluctuation relation
still holds in the time-dependent regime.

Finally, in chapter 6 we derive a natural extension of the already men-
tioned Hatano-Sasa theorem. This theorem, which is in turn an extension
of the Jarzynski equality, gives rise to a generalization of the second law
which holds for transitions between steady states. However, it relies on the
a priori knowdlege of the stationary probability distribution. Instead, ar-
bitrary ‘trial’ smooth distributions can be used, thus allowing one to treat
systems whose stationary distribution is too difficult to calculate, as gener-
ically occurs in out of equilibrium systems with many degrees of freedom.
We show here [29] that every set of trial distributions yields an inequality
playing the role of a generalization of the Second Law. The better the ap-
proximation, the more constraining the inequality becomes: this suggests
a criterion for its accuracy, as well as an optimization procedure that may
be implemented numerically and even experimentally. As an illustration,
we numerically approximate the stationary distribution of a paradigmatic
non-equilibrium driven system with many degrees of freedom, the Simple
Symmetric Exclusion Process in one dimension.



Chapter 1

Macroscopic fluctuation
theory

1.1 Introduction

Recent years are witnessing a quiet revolution in nonequilibrium statistical
physics. At the core of this revolution is the realization of the essential
role played by macroscopic fluctuations to understand the fully nonequilib-
rium behavior of a system of interest. This activity has led to a number of
groundbreaking results valid arbitrarily far from equilibrium (and therefore
not restricted to the confining world of linear response), which are offering a
glimpse of the long-sought general theory of nonequilibrium phenomena [8]-
[20]. One of the main contributions along the last ten years has been done
by L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim,
which have developed the Macroscopic Fluctuation Theory (MFT) [15]-[18].
In this chapter we briefly introduce the MFT and its main results.

In general, this theory offers detailed predictions for relevant large de-
viations functions (LDF’s) from the knowledge of the macroscopic (or hy-
drodynamic) evolution equation of the system at hand and two transport
coefficients. It has been inspired by and tested on stochastic models of in-
teracting particles systems (stochastic lattice gases).

One of the most important tasks in out of equilibrium systems, is to iden-
tify the relevant macroscopic observable whose LDF plays the role of a ther-
modynamic potential. In nonequilibrium diffusive systems where there exits
a locally conserved magnitude (e.g. energy, particle density, charge, momen-
tum, etc), this good macroscopic observable may be the current. However,
the density could also play a fundamental role, as it does in equilibrium sys-
tems (see Introduction). The MFT was firstly developed for the density as
the relevant observable [15] and later for the current [16]. Note that these
two observables are related by the continuity equation

∂tρ(r, t) = −∇ · j(r, t) (1.1)

One of the starting points of this theory is to assume local equilibrium in
the following sense: Locally on a macroscopic scale it is possible to define

15
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thermodynamic variables like density, temperature, chemical potentials, etc,
which vary smoothly on the same scale. Microscopically this implies for
the system to reach local equilibrium in a shorter time compared to the
times typical of the macroscopic evolutions, as described for example by
hydrodynamic equations. So what characterizes situations in which this
description applies is a separation of scales both in space and time.

As mentioned above, a theoretical laboratory where to test this theory
is provided by stochastic lattice gases. For several models local equilibrium
has been proved and hydrodynamic evolution equations have been derived.
The microscopic dynamics of these models is different from the Hamiltonian
dynamics that one would assume for a classical real gas but the hope is that
the macroscopic behavior of a system, at least for certain intervals of time,
be qualitatively independent of this assumption

The microscopic evolution of each stochastic model from which the macro-
scopic theory has been developed, is given by a Markov process Xt which
represents the configuration of the system at time t. If the system is in
equilibrium, the stationary state is an equilibrium state. However, if the
system is driven out of equilibrium through the interaction with boundary
reservoirs and/or under the action, one assumes that the system reaches in
the long-time limit a non-equilibrium stationary state (NESS) characterized
by a probability distribution Pst over the trajectories of Xt invariant with
respect to time shifts.

Before introducing the basic assumptions of the MFT, recall that for
non-equilibrium systems by expressing the probability of macroscopic fluc-
tuations of a relevant observable as a large deviation principle one naturally
identifies the large deviation function (LDF) with a non-equilibrium ther-
modynamic function (see Introduction). Thus, the goal of the MFT is to
derive relevant LDF’s.

The MFT assumes the following basic axioms

• The macroscopic state is completely described by the local density
ρ(r, t) and the associated current j(r, t)

• The macroscopic evolution is given by the following continuity equa-
tion,

∂tρ(r, t) = −∇ ·
(
QE[ρ(r, t)] + ξ(r, t)

)
. (1.2)

This equation describes the macroscopic evolution of a wide class of d-
dimensional systems characterized by a locally-conserved magnitude (e.g.
energy, particle density, momentum, etc.) and derives from the underlying
microscopic dynamics through an appropriate scaling limit in which the mi-
croscopic time and space coordinates t̃, r̃ are rescaled diffusively: t = t̃/L2,
r = r̃/L where L is the linear size of the system. The macroscopic coordi-
nates are then (r, t) ∈ Λ× [0, τ ]. Where Λ is the spatial domain, Λ ∈ [0, 1]d,
being d the dimensionality of the system In Eq. (1.2), ρ(r, t) is the density
field and

j(r, t) ≡ QE[ρ(r, t)] + ξ(r, t) (1.3)
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is the fluctuating current, with local average QE[ρ(r, t)], and ξ(r, t) is a
Gaussian white noise which scales as L−d/2. This noise is characterized by
a variance (or mobility) σ[ρ(r, t)], i.e.,

〈ξ(r, t)〉 = 0

〈ξ(r, t)ξ(r′, t′)〉 = L−dσ[ρ]δijδ(r− r′)δ(t− t′)
(1.4)

being i, j ∈ [0, d] the components of the spatial coordinates. This (conserved)
noise term accounts for microscopic random fluctuations at the macroscopic
level. This noise source represents the many fast microscopic degrees of
freedom which are averaged out in the coarse-graining procedure resulting
in Eq. (1.2), and whose net effect on the macroscopic evolution amounts
to a Gaussian random perturbation according to the central limit theorem.
Since ξ(r, t) scales as L−d/2, in the limit L→∞ we recover the deterministic
hydrodynamic equation, but as we want to study the fluctuating behavior,
we consider large (but finite) system sizes, i.e., we are interested in the limit
ξ → 0. Notice that the current functional includes in general the effect of a
conservative external field,

QE[ρ(r, t)] = Q[ρ(r, t)] + σ[ρ(r, t)]E. (1.5)

Examples of systems described by Eq. (1.2) range from diffusive systems
[14, 15, 16, 17, 34, 36, 37, 39], where Q[ρ(r, t)] is given by Fourier’s (or
equivalently Fick’s) law,

Q[ρ(r, t)] = −D[ρ]∇ρ(r, t), (1.6)

to most interacting-particle fluids [2, 33], characterized by a Ginzburg-Landau-
type theory for the locally-conserved particle density. To completely define
the problem, the above evolution equation (1.2)-(1.5) must be supplemented
with appropriate boundary conditions, which are either periodic when Λ is
the torus or the the non-homogeneous condition

ϕ(ρ(r, t)) = ϕ0(r), r ∈ ∂Λ (1.7)

in the case of boundary-driven systems in which the driving is due to an
external gradient. Here ∂Λ is the boundary of Λ and ϕ0 is the chemical
potential of the boundary reservoirs. Finally the initial condition for (1.2)
is the limiting empirical density of the chosen microscopic configuration of
particles. The diffusion coefficient D[ρ] and the mobility σ[ρ], can be readily
obtained experimentally and satisfy the local Einstein relation

D[ρ] = κ[ρ]−1σ[ρ] (1.8)

where κ[ρ] is the compressibility: κ[ρ]−1 = f ′′0 [ρ], being f0 the equilibrium
free energy of the system.
We obtain an equilibrium model either if Λ is the torus and there is no
external field or in the case of boundary-driven systems in which the external
field in the bulk matches the driving from the boundary. We are also in
equilibrium if the chemical potentials of the boundaries are the same. In
the other cases the stationary state yields a non-vanishing current and the
system is out of equilibrium.
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1.2 Large deviation of the density and current

We consider now the probability that the system follows a particular tra-
jectory during a time τ for the density and current fields, {ρ(r, t), j(r, t)}τ0 ,
which can be different from the hydrodynamic trajectory. This probabil-
ity can be written as a path integral over all possible noise realizations,
{ξ(r, t)}τ0 , weighted by its Gaussian measure and restricted to those realiza-
tions compatible with Eq. (1.2)

P ({ρ, j}τ0) =
∫
Dξ exp

[
−Ld

∫ τ

0

dt

∫
Λ

dr
ξ2

2σ[ρ]

] ∏
t

∏
r

δ
[
ξ − (j−QE[ρ])

]
,

(1.9)
with ρ(r, t) and j(r, t) coupled via the continuity equation,

∂tρ+ ∇ · j = 0. (1.10)

Notice that this coupling does not determine univocally the relation be-
tween ρ and j. For instance, the fields ρ̃(r, t) = ρ(r, t) + χ(r) and j̃(r, t) =
j(r, t) + g(r, t), with χ(r) arbitrary and g(r, t) divergenceless, satisfy the
same continuity equation. This means that from a density field we can de-
termine the current field up to a divergence free vector field. This freedom
can be traced back to the loss of information during the coarse-graining from
the microscale to the macroscale [16]. Eq. (1.9) naturally leads to

P ({ρ, j}τ0) = exp
(
+LdIτ [ρ, j]

)
, (1.11)

which has the form of a large deviation principle. Here the rate functional
Iτ [ρ, j] is given by

Iτ [ρ, j] = −
∫ τ

0

dt

∫
Λ

dr
(j(r, t)−QE[ρ])2

2σ[ρ]
. (1.12)

This functional plays a fundamental role because starting from this form we
can compute the large deviation of one of the most relevant observables in
nonequilibrium systems: The time-averaged current J.

1.2.1 Large deviations of the time-averaged current

Nonequilibrium systems typically exhibit currents of different observables
(e.g., mass or energy) which characterize their macroscopic behavior. Un-
derstanding how micoscopic dynamics determine the long-time averages of
these currents and their fluctuations is one of the main objectives of nonequi-
librium statistical physics [8]-[20]. Therefore we focus now on the probability
Pτ (J) of observing an averaged current J = τ−1

∫ τ
0
dt
∫

Λ
drj(r, t). This prob-

ability can be written as

Pτ (J) =
∫ ∗
DρDj P ({ρ, j}τ0) δ

(
J− τ−1

∫ τ

0

dt

∫
Λ

dr j(r, t)
)
,

where the asterisk means that this path integral is restricted to histories
{ρ, j}τ0 coupled via Eq. (1.10). As the exponent of P ({ρ, j}τ0) is extensive in
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both τ and Ld [43], see Eq. (1.11), for long times and large system sizes the
above path integral is dominated by the associated saddle point, resulting
in the following large deviation principle

Pτ (J) ∼ exp[+τLdG(J)], (1.13)

where the rate functional G(J) is the current large deviation function (LDF)
given by

G(J) = lim
τ→∞

1
τ

max
ρ(r,t),j(r,t)

Iτ [ρ, j] (1.14)

with the constraints J = τ−1
∫ τ

0
dt
∫

Λ
dr j(r, t) and ∂tρ+∇ · j = 0. The opti-

mal density and current fields solution of this variational problem, denoted
here as ρ0(r, t; J) and j0(r, t; J), can be interpreted in mesoscopic phase space
as the optimal path the system follows in order to sustain a long-time cur-
rent fluctuation J. It is worth emphasizing here that the existence of an
optimal path rests on the presence of a selection principle at play, namely a
long time, large size limit which selects, among all possible paths compatible
with a given fluctuation, an optimal one via a saddle point mechanism.

1.2.2 Large deviations of the density field

Beside the current, there is another interesting observable which is the den-
sity field. In equilibrium, we have seen that the density LDF is univocally
related to the free energy of the system (see Eq. (10) in the Introduction).
In addition, this LDF depends locally on the density profile ρ(r), as well
as being a convex functional of ρ(r). In non-equilibrium systems it may be
non-local, reflecting the presence of long range correlations. Hence, we are
now interested in the probability of a particular trajectory during a time
interval [0, τ ] for the density profile, {ρ}τ0 , starting in the initial state ρ(r, 0).
To compute this probability we start from Eq. (1.2)

∂tρ(r, t) = −∇ ·QE[ρ(r, t)] + ν(r, t) , (1.15)

where the new random variable is ν(r, t) = −∇ · ξ(r, t). After some cal-
culations one can show that the probability distribution of ν(r, t) starting
from the gaussian measure for the noise field ξ(r, t) is given by the following
quadratic form

Pτ (ν(r, t)) = exp
[
−1

2

∫ τ

0

dt

∫
Λ

drdr′ν(r, t)M(r, r′; t)−1ν(r′, t)
]
, (1.16)

where M(r, r′; t) = L−d∂ri∂r′iσ[ρ(r, t)]δ(r − r′). Thus, the probability of a
particular trajectory exclusively for the density, {ρ}τ0 , is now written as a
path integral over all realizations of the noise field ν(r, t),

P ({ρ}τ0) =
∫
Dν Pτ (ν(r, t))

∏
t

∏
r

δ
[
ν − (∂tρ+ ∇ ·QE[ρ])

]
, (1.17)

Using Eq. (1.16) into Eq. (1.17) we get that

P ({ρ}τ0) ∼ exp[LdIτ [ρ]], (1.18)
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with

Iτ [ρ] = − 1
2Ld

∫ τ

0

dt

∫
Λ

drdr′ (∂tρ+ ∇ ·QE[ρ])M(r, r′; t)−1 (∂tρ+ ∇ ·QE[ρ])

(1.19)
Iτ [ρ] is a functional which vanishes in the stationary state, ρst, and repre-
sents the cost necessary to follow the trajectory {ρ}τ0 [15].

Now we consider the following situation. The system is macroscopically
in the stationary state ρst ≡ ρst(r), r ∈ Λ (a stationary solution to Eq.
(1.2)) at t = −∞, but at t = 0 we find it in the state ρ̂. Thus, using Eq.
(1.18), the probability of a trajectory connecting this two states is

P({ρ}0−∞) ∼ exp
[
LdI[−∞,0][ρ]

]
(1.20)

We want to determine the most probable trajectory in the spontaneous cre-
ation of this fluctuation. According to (1.20) the most probable trajectory
is the one that maximizes I among all trajectories ρ(r, t) connecting ρst to
ρ̂ in the interval t ∈ [0,−∞],

G[ρ̂] = max
ρ
I[−∞,0][ρ] (1.21)

which can be interpreted as the non-equilibrium analog of the free energy,
from which macroscopic properties of our nonequilibrium system can be ob-
tained, including its most prominent features, as for instance the ubiquitous
long range correlations [21, 22].

We have seen so far how the MFT offers predicitions for the density (1.21)
as well as for the time-averaged current (1.14). As we have already men-
tioned, we shall focus on the study of the current LDF in several diffusive
models which are described in next chapter. It is worth noting that the
MFT predicts in general time-dependent optimal profiles, ρ(r, t) and j(r, t),
in order to sustain a large current fluctuation J. These time-dependent pro-
files result from the maximization of the functional given by Eq. (1.12).
However, this variational problem is a complex spatio-temporal problem
whose solution remains challenging in most cases. Therefore, in chapter 3
we shall see how by doing two simplifying hypotheses we are able to obtain
explicit predictions for the current LDF in a paradigmatic diffusive model:
the Kipnis-Marchioro-Presutti Model (KMP) [35]. These hypotheses con-
situte the additivity conjecture and consist in assuming that the optimal
current and density fields are time independent and that the current field is,
in particular, constant across the space. Furthermore, we test the validity
of this additivity conjecture in extensive numerical simulations. We concen-
trate on the current LDF of the 2D-KMP model and we shall derive that
provided the additiviy conjecture, the optimal density profiles associated to
a given current fluctuation only depend on the magnitud of the curret and
not on its orientation with respect to the gradient direction. In chapter 4 we
unveil a new fluctuation relation as a consequence of this invariance of the
optimal density field under current rotations. The new fluctuation relation
implies remarkable hierarchies of equations for the current cumulants and
the non-linear response coefficients, going far beyond Onsager’s reciprocity
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relations and Green-Kubo formulas. Although the time independence of the
optimal profiles, namely the additivity conjecture, holds in a broad regime,
we show in chapter 5 that in some particular cases the optimal fields become
time-dependent, as is predicted by the MFT in general (see Eq. (1.14)).
This fact is interpreted as a dynamical phase transition.
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Chapter 2

Models of transport out of
equilibrium

In this chapter we describe some stochastic lattice models in which the
MFT can be applied. Although the microscopic dynamics of these models
is different from the Hamiltonian dynamics that one would assume for a
classical real gas, it captures the most relevant features which characterize
realistic systems. In these models local equilibrium has been proved and
hydrodynamic diffusive macroscopic equations have been derived.

2.1 Kipnis-Marchioro-Presutti (KMP) model

In 1982, C. Kipnis, C. Marchioro and E. Presutti [35] proposed a simple
lattice model in order to understand energy transport in systems with many
degrees of freedom. This model has become one of the paradigmatic energy
transport models of nonequilibrium statistical physics. In particular, KMP
were able to show rigurously from microscopic dynamics that this model
obeys Fourier’s law. The KMP is then an optimal model to test the MFT
and its extensions.

It is a one-dimensional chain with N sites in which each site models an
harmonic oscillator mechanically uncoupled from its nearest neighbors but
interacts with them through a random process which redistributes energy
locally. The microscopic configuration of the system is defined by C ≡
{ρi, i = 1, ...L}, where ρi ≥ 0 is the energy of the site i ∈ [1, N ]. The
system undergoes a stochastic dynamics proceeding through random energy
exchanges between randomly chosen nearest-neighbors according to a ran-
dom microcanonical procedure, i.e., the energy is kept constant. Hence,
(ρi, ρi+1)→ (ρ′i, ρ

′
i+1) ∀i such that,

ρ′i = p(ρi + ρi+1)
(2.1)

ρ′i+1 = (1− p)(ρi + ρi+1)

23
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Figure 2.1: One dimensional KMP model with different temperatures with
boundary gradient conditions (TL 6= TR)

where p ∈ [0, 1] is an uniform random number. In addition, we must complete
the model with the appropriate boundary conditions. In the original paper
[35], KMP consider open boundary conditions where extremal (i ∈ 1, N)
sites of the chain are connected to thermal baths (see figure 2.1). In this
case, the extremal sites (i ∈ 1, N) may interchange energy with thermal
baths at temperatures TL for i = 1 and TR for i = N , i.e., ρ1,N → ρ′1,N such
that

ρ′1,N = p(ρ̃L,R + ρ1,N ) (2.2)

where p ∈ [0, 1] is again an uniform random number and ρ̃L,R is a random
number drawn from a Gibbs distribution at the corresponding temperature,
P (ρk) = βk exp(−βk), k = L,R. In the general case, as we mentioned
above, Kipnis, Marchioro andPresutti showed [35] that the system reaches a
nonequilibrium steady state described by Fourier’s law in the hydrodynamic
limit. In this case the average energy current is given by

〈J〉 = −D[ρ]
ρst(x)
dx

, x ∈ [0, 1] (2.3)

where D[ρ] = 1
2 is the conductivity or diffusivity for the KMP model. It was

also show that the stationary energy density profile is

ρst(x) = TL + x(TR − TL) (2.4)

In Ref. [35] it was also proved that in the hydrodynamic limit there is a
convergence of the stationary probability distribution toward the local Gibbs
measure. This means that ρi with i ∈ [1, N ] obeys locally an exponential
distribution with local temperature ρst( i

L+1 ) in the thermodynamic limit.
Despite this convergence, corrections to local equilibrium can be observed in
the fluctuating behavior of this model [36, 37]. The macroscopic evolution
equation for this model is

∂tρ(x, t) = ∂x(
1
2
∂xρ(x, t)) (2.5)

which is nothing but the dynamical expression of the Fourier’s law. Accord-
ing to the MFT a second transport coefficient must be provided in order to
complete the macroscopic description of this model. This second coefficient
is the mobility, which measures the variance of local energy current fluctu-
ations in equilibrium (ρL = ρR). For the KMP model σ[ρ] = ρ2. It is also
worth noting that the micrscopic dynamics in the KMP model obeys the
local detailed balance condition [13], thus being time-reversible. In chapter
3 and 4 we shall study the macroscopic fluctuating behavior of the KMP
model.
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Figure 2.2: Top: Skecth of a system in contact with two reservoirs at densi-
ties ρa and ρb. Bottom: The symmetric simple exclusion process

2.2 Symmetric Simple Exclusion Process (SSEP)

We now set out to describe anoter paradigmatic nonequilibrium model: the
symmetric simple exclussion process (SSEP) [30, 31, 32]. It is one of the
simplest models of a system maintained out of equilibrium by contact with
two reservoirs at densities ρa and ρb (see top sketch in figure 2.2). The model
is defined as a one-dimensional lattice of L sites with open boundaries, see
bottom skecth in figure 2.2. Sites are either occupied by a single particle or
empty. A microscopic configuration is defined by the vector of occupation
numbers n = (n1, ..., nL) where ni = 0 or 1 is a binary variable indicating
whether site i ∈ [1, L] empty or occupied with. Each particle in the bulk
independently attempts to jump to an empty site to its right or to its left
site. At the two boundaries the dynamics is modified to mimic the coupling
with the reservoirs of particles: at the left boundary each particle is injected
at site 1 at rate α (if this site is empty) and removed from site 1 at rate γ
(if this site is occupied). Similarly on site L, particles are injected at rate
δ and removed at rate β. We will see below that these choices of the rates
α, γ, β, δ correspond to the left boundary being connected to a reservoir at
density ρa and the right boundary to a reservoir at density ρb given by

ρa =
α

α+ γ
; ρb =

δ

β + δ
(2.6)

If ρa = ρb = ρ the system is in equilibrium and the distribution is of product
form: ρeq(n) =

∏L
i=1 ρ

ni(1 − ρ)1−ni = e
PL
i=1 µni/(1 + eµ)L, where µ =

log(ρ/(1 − ρ)) is the chemical potential. As soon as ρa 6= ρb, the system is
out of equilibrium, a current is established, and the problem becomes non
trivial, with long range correlations. For the SSEP, the calculation of the
average profile or the correlation functions, can be done directly from the
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definition of the model. One can write the time evolution of the average
occupation 〈ni〉 as,

d〈n1〉
dt

= α− (α+ γ + 1)〈n1〉+ 〈n2〉

d〈ni〉
dt

= 〈ni−1〉 − 2〈ni〉+ 〈ni+1〉 for 2 ≤ i ≤ L− 1

d〈nL〉
dt

= 〈nL−1〉 − (1 + β + δ)〈nL〉+ δ.

It has been shown that this model reaches a steady state density profile
(obtained by writing that d〈ni〉/dt = 0) given by [32]

〈ni〉 =
ρa(L+ 1

β+δ − i) + ρb(i− 1 + 1
α+γ )

L+ 1
α+γ + 1

β+δ − 1
. (2.7)

with ρa and ρb defined as in (2.6). Notice that for large L, if one introduces
a macroscopic coordinate i = Lx, the above equation becomes

〈ni〉 = ρst(x) = (1− x)ρa + xρb (2.8)

which is the is the stationary density profile. Remarkably for large L one
also obtains 〈n1〉 → ρa and 〈nL〉 → ρb, indicating that ρa and ρb defined
by 2.6 represent the densities of the left and right reservoirs. The average
current in the steady state is given by

〈J〉 = 〈ni(1− ni+1)− ni+1(1− ni)〉 = 〈ni − ni+1〉 =
ρa − ρb

L+ 1
α+γ + 1

β+δ − 1
.

(2.9)
This shows that for large L, the current 〈J〉 ' (ρa − ρb)/L is prportional
to the gradient of the density (with a coefficient of proportionality which is
simply one) and therefore follows Fick’s law,

〈J〉 = −D[ρ]
ρst(x)
dx

, x ∈ [0, 1], (2.10)

with D[ρ] = 1. One can write down the equations which generalize (2.7) and
govern the time evolution of the two-point correlation function or higher
correlations. For example one finds [32, 33] in the steady state for 1 ≤ i <
j ≤ L

〈ninj〉c =
−(ρ0 − ρ1)2( 1

α+γ + i− 1)( 1
β+δ + L− j)

( 1
α+γ + 1

β+δ + L− 1)2( 1
α+γ + 1

β+δ + L− 2)
. (2.11)

For large L, introducing macroscopic coordinates i = Lx and j = Ly, this
becomes for x < y, 〈nLxnLy〉c = −x(1−y)(ρ0−ρ1)2/L. As stated in [32], one
may think that these weak, but long range, correlations play no role in the
macroscopic limit. However, they are responsible for a leading contribution
in the variance of a macroscopic quantity such as the number of particles.
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Figure 2.3: Top: Skecth of the weakly assymetric exclusion process with a
weak external field, E, to the right

In chapter 6 we shall measure numerically the two-point correlation func-
tion (2.11) to test the quality of the approximated SSEP non-equilibrium
stationary distribution obtained by using an optimization procedure. It is
remarkable that all the correlation functions can be derived by knowing the
non-equilibrium steady state measure of the SSEP. This distribution may be
computed analytically through the so-called matrix method [6].

Finally the macroscopic equation for the SSEP is given by [33]

∂tρ(x, t) = −∂x(∂xρ(x, t)) (2.12)

which corresponds to the dynamical expression of the Fick’s law with D[ρ] =
1. In order to apply the MFT to this model, one also needs to know the
mobility which, for the SSEP [33], is σ[ρ] = 2ρ(1− ρ). It is remarkable that
if each particle jumps to its right at rate 1

2 (instead of at rate 1) and to its
left at rate 1

2 (instead of at rate 1), then D[ρ] = 1
2 and σ[ρ] = ρ(1− ρ).

2.3 Weakly Assymmetric Exclusion Process (WASEP)

Finally, we consider the weakly assymetric exclusion process (WASEP). This
model is analogous to SSEP except that one introduces a weak external
field, E, to any direction (e.g. to the right). In this case we consider pe-
riodic boundary conditions. Thus, this model is one-dimensional ring of N
sites with P = Nρ particles, being ρ the density of the system. The num-
ber of particles is then fixed because there are no density reservoirs at the
boundaries, see figure 2.3. In the absence of the external field this model
corresponds the SSEP. We have seen for this model that, if each particle
jumps at rate 1

2 to its right or to its left site (whenever they are empty),
the transport coefficients become D = 1

2 and σ[ρ] = ρ(1 − ρ). If one one
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introduces a weak field, E, to the right, the model becomes the WASEP and
the rates become r+ = 1

2 +E/2L to the right and r− = 1
2 −E/2L, see figure

2.3. It has been shown [33] that the average current for the WASEP is given
by 〈J〉 = σ[ρ]E and that the macroscopic evolution takes the form

∂tρ(x, t) = ∂x(−D[ρ]∂xρ(x, t) + σ[ρ]E) (2.13)

with D[ρ] = 1
2 and σ[ρ] = ρ(1 − ρ). In chapter 5 we shall derive the cur-

rent LDF by applying the MFT for this model and we shall observe how a
dynamical phase transition emerges at the fluctuating level.



Chapter 3

Additivity of current
fluctuations

3.1 Introduction

As we have seen, large deviation functions measure the rate at which the em-
piric average of an observable converges toward its asymptotic value. Think
for instance on the time-averaged current in a d-dimensional system of linear
size L. As time increases, and provided that the system is ergodic, the time-
averaged current J = τ−1

∫ τ
0

j(t) dt quickly converges toward its ensemble
average 〈J〉, given for instance by Fourier’s law, 〈J〉 = −D[ρst]∇ρst, with
ρst being the stationary profile. For finite times, the measured J may fluctu-
ate and the probability of a given output follows in general a large-deviation
principle [23, 24] for long times, Pτ (J) ∼ exp[+τLdG(J)]. Here G(J) is the
current large deviation function (LDF), and measures the (exponential) rate
at which J → 〈J〉 as τ increases (notice that G(J) ≤ 0, with G(〈J〉) = 0).
The MFT provides a variational principle (see Eq. (1.14)) to get this LDF in
which the only input parameters are the transport coefficients D[ρ] and σ[ρ].
The solution of this variational problem yields the optimal path for the den-
sity and current fields associated to a given current fluctuation, which might
be in general time-dependent. Thus, in order to obtain explicit predictions
for the current LDF, we assume the following hypotheses

1. We assume that the optimal profiles responsible of a given current
fluctuation are time-independent, ρ0(r; J) and j0(r; J). This, together
with the continuity equation 1.10, implies that the optimal current
vector field is divergence-free, ∇ · j0(r; J) = 0.

2. A further simplification consists in assuming that this optimal current
field has no spatial structure, i.e. is constant across space, so j0(r; J) =
J.

These hypothesis constitute the additivity conjecture. It allow us to make
the initial variational problem (1.14) manageable and get explicit predictions
for the current LDF given the diffusivity and the mobility. In this chapter we

29
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assumes this additivity conjecture to predict the current LDF in the KMP
model (already introduced in chapter 2) when subject to a boundary gradi-
ent. In addition, we test and bound its validity using extensive numerical
simulations. In chapter 4 we shall see the importance of this conjecture to
unveil a new fluctuation relation for the d-dimensional systems with d higher
than one.

Provided that these hypotheses hold, the current LDF (1.14) can be written
as

G(J) = −min
ρ(r)

∫
Λ

(J−QE[ρ])2

2σ[ρ(r)]
dr , (3.1)

which expresses the locally-Gaussian nature of fluctuations [10, 14]. In this
way the probability Pτ (J) is simply the Gaussian weight associated to the
optimal density profile responsible of such fluctuation. Note however that
the minimization procedure gives rise to a nonlinear problem which results
in general in a current distribution with non-Gaussian tails [14, 15, 16, 36].
As opposed to the general problem in Eq. (1.14), its simplified version, Eq.
(3.1), can be readily used to obtain quantitative predictions for the current
statistics in a large variety of non-equilibrium systems. This minimization
procedure yields a partial differential equation for the optimal density profile
ρ0(r; J). This optimal profile is solution of the following equation

δω2[ρ(r)]
δρ(r′)

− 2J · δω1[ρ(r)]
δρ(r′)

+ J2 δω0[ρ(r)]
δρ(r′)

= 0 , (3.2)

which must be supplemented with appropriate boundary conditions. In the
above equation, δ

δρ(r′) stands for functional derivative, and

ωn[ρ(r)] ≡
∫

Λ

dr Wn[ρ(r)] with Wn[ρ(r)] ≡ Qn
E[ρ(r)]
σ[ρ(r)]

. (3.3)

For a diffusive system without external field for which QE=0[ρ] = −D[ρ]∇[ρ],
the resulting differential equation (3.2) for the optimal profile, ρ0 ≡ ρ0(r; J),
takes the form

J2a′[ρ0]− c′[ρ0](∇ρ0)2 − 2c[ρ0]∇2ρ0 = 0, (3.4)

where a[ρ0] = (2σ[ρ0])−1 and c[ρ0] = D2[ρ0]a[ρ0]. Here ′ denotes the deriva-
tive. Multiplying the above equation by ∇ρ0, we obtain after one integration

(∇ρ0)2 =
J2 + 2σ[ρ0]K

D2[ρ0]
(3.5)

where K is a constant of integration which guarantees the correct boundary
conditions. Eqs. (3.1) and (3.5) completely determine the current distribu-
tion Pτ (J), which is in general non-Gaussian (except for very small current
fluctuations).

One observes that the optimal density profile solution of Eq. (3.5) only
depends on the magnitude of J via J2. Hence it remains invariant under
arbitrary rotations of the current vector, i.e., ρ0(r; J) = ρ0(r; |J|) providing



3.2 Current LDF for 1D diffusive systems 31

a detailed example of the recently introduced Isometric Fluctuation Relation
(IFR) [10]. In chapter 4 we shall study the origin of this invariance and its
important consequences.

It is worth noting that in 2004 Bodineau and Derrida [34] conjectured an
additivity principle for current fluctuations in 1D diffusive systems which can
be readily applied to obtain quantitative predictions. As can be seen in ap-
pendix A, this additivity principle is equivalent to assume time-independent
optimal energy density profiles within the MFT. Interestingly, for 1D systems
the conjecture of time-independent optimal profiles implies that the optimal
current profile must be constant, because they are coupled via the continuity
equation ∂tρ+ ∂xj = 0. This is no longer true in higher dimensions, as any
divergence-free current field with spatial integral equal to J is compatible
with the continuity equation ∂tρ+ ∇ · j = 0. This gives rise to a variational
problem with respect to the (time-independent) energy density and current
fields which still poses many technical difficulties. Therefore an additional
assumption is needed, namely the constancy of the optimal current vector
field across space. Hence, the hypotheses (1) and (2) are the straightforward
generalization to d-dimensional systems of the additivity principle conjec-
tured by Bodineau and Derrida for one-dimesional diffusive systems.

Before studying the current LDF for the 2D-KMP model within the addi-
tivity scenario, we firstly describe the previous results obtained by Hurtado
and Garrido [36, 37] for the one-dimensional case by assuming the addivity
principle.

3.2 Current LDF for 1D diffusive systems

In this section, we are interested in computing the probability of observing
a time-averaged current fluctuation, J = τ−1

∫ τ
0
dt
∫ 1

0
dx j(x, t), in a one-

dimensional diffusive system subject to a boundary gradient, i.e., ρ(0) = ρL
and ρ(1) = ρR with ρL 6= ρR. In general, the MFT shows that the current
LDF can be written as Eq. (1.14) particularized for a one-dimensional system
obeying the Fourier’s law and without external field, namely with Q[ρ]E=0 =
Q[ρ] = −D[ρ]ρ′(x). Thus,

G(J, ρL, ρR) = − lim
τ→∞

1
τ

min
ρ(x,t),j(x,t)

{∫ τ

0

dt

∫ 1

0

[j(x, t) +D[ρ]ρ′(x)]2

2σ[ρ]
dx

}
,

(3.6)
with the constraints J = τ−1

∫ τ
0
dt
∫ 1

0
dx j(x, t) and ∂tρ+ ∂xj = 0. We have

made explicit in (3.6) the dependence of G on the boundary baths, ρL and
ρR, for convenience. By using now the additivity conjecture this complex
variational problem is greatly simplified, and Eq. (3.6) takes the form

G(J, ρL, ρR) = −min
ρ(x)

{∫ 1

0

[J +D[ρ]ρ′(x)]2

2σ[ρ]
dx

}
, (3.7)

This expression is the same as the one obtained assuming the additivity
principle by Bodineau and Derrida [34] (see appendix A). The variational
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problem (3.7) gives rise to the following differential equation for the optimal
energy density profile ρ0(x; J)(

dρ0(x; J)
dx

)2

=
J2
(
1 + 2Kρ2

0(x; J)
)

D2[ρ0]
, (3.8)

which corresponds to the one-dimensional version of Eq. (3.5). In the se-
quel we drop the dependence on J for the optimal profile. Notice that
the optimal energy density profile, solution of Eq. (3.8), only depends on
the magnitude of the current fluctuation via J2 whatever its sign is, i.e,
ρ0(x; J) = ρ0(x;−J), reflecting the Gallavotti-Cohen symmetry [8]. Actu-
ally, using this invariance of the energy density profile under the current sign
into Eq. (3.7), one gets the GC fluctuation theorem for the current LDF,

G(J)−G(−J) = −2J
∫ 1

0

D[ρ0]ρ′0(x)
σ[ρ0]

dx = 2J
∫ ρL

ρR

D[ρ0]
σ[ρ0]

dρ0 = 2Jε

(3.9)

where ρL = ρ(0), ρR = ρ(1) and ε ≡
∫ ρL
ρR

D[ρ]
σ[ρ] dρ ≥ 0. Hence, the GC sym-

metry states that the odd part of G(J) is linear with a universal coefficient
ε.

3.3 Results for the 1D-KMP Model

In chapter 2 we have shown that in the KMP model is characterized by
a diffusivity D[ρ] = 1

2 , and a mobility σ[ρ] = ρ2 which characterizes the
variance of energy current fluctuations in equilibrium (ρL = ρR). Recall
that it is a microscopic stochastic lattice model of energy transport in which
Fourier’s law holds. Each site on the lattice models an harmonic oscillator
which is mechanically uncoupled from its nearest neighbors but interacts
with them through a random process which redistributes energy locally. The
system is coupled to boundary heat baths. For ρL 6= ρR the system reaches
a nonequilibrium steady state with a nonzero rescaled average current 〈J〉 =
(ρL − ρR)/2 and a stationary profile ρst(x) = ρL + x (ρR − ρL). Hence,
in order to get the current LDF one just have to substitute the transport
coefficients into Eq. (3.8)(

dρ0(x)
dx

)2

= 4J2
(
1 + 2Kρ2

0(x)
)
, (3.10)

where K is a constant which guarantees the correct boundary conditions,
ρ0(0) = ρL and ρ0(1) = ρR. In this case the GC symmetry holds,

G(J)−G(−J) = 2Jε, (3.11)

with ε = 1
2 (ρ−1

R − ρ
−1
L ).

According to Eq. (3.10), two different scenarios appear. On one hand,
for large enough K the rhs of Eq. (3.10) does not vanish ∀x ∈ [0, 1] and the
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resulting profile is monotone. In this case, and assuming ρL > ρR henceforth
without loss of generality,

dρ0(x)
dx

= −2|J |
√

1 + 2ρ2
0(x)K . (3.12)

On the other hand, for K < 0 the rhs of Eq. (3.10) may vanish at some
points, resulting in a ρ0(x) that is non-monotone and takes an unique value
ρ∗0 ≡

√
−1/2K in the extrema. Notice that the rhs of Eq. (3.10) may be

written in this case as 4|J |2[1 − (ρ0(x)/ρ∗0)2]. It is then clear that, if non-
monotone, the profile ρ0(x) can only have a single maximum because: (i)
ρ0(x) ≤ ρ∗0 ∀x ∈ [0, 1] for the profile to be a real function, and (ii) several
maxima are not possible because they should be separated by a minimum,
which is not allowed because of (i). Hence for the non-monotone case (recall
ρL > ρR)

dρ0(x)
dx

=


+2|J |

√
1−

(
ρ0(x)
ρ∗0

)2

, x < x∗

−2|J |

√
1−

(
ρ0(x)
ρ∗0

)2

, x > x∗

(3.13)

where x∗ locates the profile maximum. This leaves us with two separated
regimes for current fluctuations, with the crossover happening for |J | =
ρL
2

[
π
2 − sin−1

(
ρR
ρL

)]
≡ |Jc|. This crossover current can be obtained from

Eq. (3.16) below by letting ρ∗0 → ρL

3.3.1 Region I: Monotonous Regime (|J | < |Jc|)

Notice that, for ρ0(x) to be monotone, 1 + 2Kρ2
0 > 0 being K > −(2ρ2

L)−1.
Integrating now Eq. (3.12) we obtain the following implicit equation for
ρ0(x) in this regime

2x|J |=



1√
2K

ln

 ρL +
√
ρ2
L + 1

2K

ρ0(x) +
√
ρ0(x)2 + 1

2K

 , K > 0

sin−1
[
ρL
√
−2K

]
− sin−1

[
ρ0(x)

√
−2K

]
√
−2K

, − 1
2ρ2
L

< K < 0

(3.14)

Making x = 1 and ρ0(x = 1) = ρR in the previous equation, we obtain
the implicit expression for the constant K. To get a feeling on how it depends
on |J |, note that in the limit K → (−1/2ρ2

L), the current |J | → |Jc|, while
for K → ∞ one gets |J | → 0. In addition, from Eq. (3.14) we see that for
K → 0 we find |J | = (ρL − ρR)/2 = 〈J〉. Thus, Eq. (3.14) allows us to
compute the optimal profiles in the monotone regime.
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3.3.2 Region II: Non-Monotonous Regime (|J | > |Jc|)
In this case the optimal profile has a single maximum ρ∗0 ≡ ρ0(x = x∗) with
ρ∗0 = 1/

√
−2K and −1/2ρ2

L < K < 0. Integrating Eq. (3.13) one gets an
implicit equation for the non-monotone optimal profile

2x|J |=


ρ∗0

[
sin−1

(
ρ0(x)
ρ∗0

)
− sin−1

(
ρL
ρ∗0

)]
for 0 ≤ x < x∗

2|J |+ ρ∗0

[
sin−1

(
ρR
ρ∗0

)
− sin−1

(
ρ0(x)
ρ∗0

)]
for x∗ < x ≤ 1

(3.15)

At x = x∗ both branches of the above equation must coincide, and this
condition provides simple equations for both x∗ and ρ∗0

|J | = ρ∗0
2

[
π − sin−1

(
ρL
ρ∗0

)
− sin−1

(
ρR
ρ∗0

)]
;

x∗ =

π

2
− sin−1

(
ρL
ρ∗0

)
π − sin−1

(
ρL
ρ∗0

)
− sin−1

(
ρR
ρ∗0

) . (3.16)

The above equations are the implicit expressions for the constant K in
the non-monotone regime. In figure 3.1 we show the value of constant K as
a function of |J | for both regimes.
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Figure 3.1: Constant K as a function of |J | for ρL = 2 and ρR = 1.

In this way, given a value of K, such that −1/2ρ2
L < K < 0, we get ρ∗0,

|J | and x∗ from Eq. (3.16). Hence, we are able to obtain the optimal pro-
file for the non-monotonous regime implicitely defined by (3.15). In figure
3.2 several optimal energy density profiles corresponding to different cur-
rent fluctuations |J | are displayed, both in the monotone and non-monotone
regimes.
To calculate the LDF, G(J), we insert Eq. (3.10) into Eq. (3.7) and do the
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tone and non-monotone regimes.

integral. In the monotone regime, i.e. for |J | < |Jc|, we use particularly Eq.
(3.12) into Eq. (3.7). Then, G(J) reads

G(J) =
J

2

(
1
ρR
− 1
ρL

)
− |J |2K +

|J |
2

[√
1 + 2Kρ2

L

ρL
−
√

1 + 2Kρ2
R

ρR

]
,

(3.17)
whereas in the non-monotonous regime, i.e. for |J | < |Jc|, we split the
integral in Eq. (3.7) at x = x∗ and use Eq. (3.13). Thus, G(J) is given by

G(J) =
J

2

(
1
ρR
− 1
ρL

)
− |J |

2

[
1
ρL

√
1−

(
ρL
ρ∗0

)2

+
1
ρR

√
1−

(
ρR
ρ∗0

)2

− 1
2ρ∗0

(
π − sin−1

(
ρL
ρ∗0

)
− sin−1

(
ρR
ρ∗0

))]
, (3.18)

where ρ∗0 is an implicit function of J , see Eq. (3.16). As expected, we
can readily check that the GC symmetry (3.11) holds in the whole current
interval. Figure 3.3 shows G(J) in both regimes. Notice that the LDF is
zero for J = 〈J〉 = (ρL − ρR)/2 and negative elsewhere. For small current
fluctuations, J ≈ 〈J〉 (i.e. K → 0), G(J) obeys the following quadratic form

G(J) ≈ −1
2

(
(|J | − (ρL − ρR)/2)2

σ2

)
, (3.19)

with σ2 = (ρ2
L + ρLρR + ρ2

R)/3, resulting in Gaussian statistics for currents
near the average as expected from the central limit theorem.
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to non-monotone (|J | > π/3) optimal profiles. The Gaussian approximation
for J ≈ 〈J〉, G(J) ≈ 3(|J | − 1

2 )2/14, is also shown.

3.3.3 Numerical Test of the Additivity Conjecture in
1D

Large deviation functions are very hard to measure in experiments or simu-
lations because they involve by definition exponentially-unlikely events, see
Eq. (1.13). Recently, Giardina, Kurchan and Peliti [41] have introduced an
efficient algorithm to measure the probability of a large deviation for ob-
servables such as the current or energy density in stochastic many-particle
systems. The algorithm is based on a modification of the underlying stochas-
tic dynamics so that the rare events responsible of the large deviation are
no longer rare, and it requires the simulation of multiple clones of the sys-
tem. This method, as well as its extension to systems with continuous-time
stochastic dynamics [42], is described in Appendix B. This algorithm yields
the Legendre transform of the large deviation function, which for a 1D sys-
tem of linear size L is given by

µ(λ) =
1
L

max
J

[G(J) + Jλ] =
1
L

[G(J∗) + λJ∗], (3.20)

where λ is the parameter conjugated to the current and J∗(λ) is given by
∂JG(J)|J=J∗ + λ = 0. Hence, using Eqs. (3.17) and (3.18) we get for both
regimes

µ(λ) = −K
L

[J∗(λ)]2, (3.21)

In λ-space, monotone profiles are expected for |λ+ ε| ≤ 1
2ρR

√
1− (ρR/ρL)2

with ε = 1
2 (ρ−1

R −ρ
−1
L ), whereas non-monotone profiles appear for 1

2ρR

√
1− (ρR/ρL)2 ≤
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Figure 3.4: Left panel: Measured µ(λ) for the 1D-KMP model with for
ρL = 2 and ρR = 1. Right panel: Measured µ(λ) and µ(λ−2ε) superimposed.
The GC symmetry is satisfied for a wide current interval. The inset shows
the difference µ(λ)− µ(λ− 2ε). Figure obtained from Refs. [36, 37]

|λ+ε| ≤ 1
2

(
1
ρL

+ 1
ρR

)
. Notice that the GC symmetry (3.9) can be rewritten

now as
µ(λ) = µ(−λ− 2ε) (3.22)

Taking into account the equality (3.22) and Eq. (3.21) we arrive at

J∗(λ) = −J∗(−λ− 2ε). (3.23)

Consequently, the invariance under the current sign for the energy profile
turns into ρ(x;λ) = ρ(x;−λ−2ε) in λ-space. For small current fluctuations,
λ ≈ 0, an expansion similar to (3.19) for µ(λ) yields

µ(λ) ≈ λ

2
[(ρL − ρR) + σ2λ] (3.24)

with σ2 = (ρ2
L + ρLρR + ρ2

R)/3.
In Refs. [36, 37] Hurtado and Garrido carried out numerical simulations

using the algorithm above described in order to test the additivity conjecture
in the 1D-KMP model. The results they obtained for µ(λ) with L = 50,
ρL = 2 and ρR = 1 are displayed in left panel of figure 3.4. It was shown,
that the agreement with Bodineau and Derrida (BD) theory was excellent
for a wide λ-interval, say −0.8 < λ < 0.3, which corresponded to a very
large range of current fluctuations. Moreover, the deviations observed for
extreme current fluctuations were due to known limitations of the algorithm
[36, 37, 38, 41, 42], so no violations of additivity are observed. In fact, they
used the Gallavotti-Cohen symmetry (3.22) to bound the range of validity
of the algorithm: Violations of the fluctuation relation indicate a systematic
bias in the estimations provided by the method of Ref. [41], see also [38].
Right panel of figure 3.4 shows that the Gallavotti-Cohen symmetry holds
in the large current interval for which the additivity principle predictions
agree with measurements, thus confirming its validity in this range. The
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additivity principle leads to the minimization of a functional of the energy
density profile, ρ(x), see Eqs. (3.7) and (3.10). A relevant question was
whether this optimal profile is actually observable. One naturally defines
empirically ρ0(x) as the average energy profile adopted by the system during
a large deviation event of (long) duration τ and time-integrated current Jτ ,
measured at an intermediate time 0 � τ � t, i.e. ρ0(x) ≡ ρmid

0 (x). In
Figure 3.5 they showed [36] the measured ρmid

0 (x) for the nonequilibrium
setting, and the agreement with BD predictions was again very good in all
cases, with discrepancies appearing only for extreme current fluctuations,
as otherwise expected. This confirmed the idea that the system indeed
modifies its energy density profile to facilitate the deviation of the current,
validating the additivity principle as a powerful conjecture to compute both
the current LDF and the associated optimal profiles. The numerical results
showed also that optimal profiles are indeed independent of the sign of the
current, ρ0(x;λ) = ρ0(x;−λ − 2ε) or equivalently ρ0(x; J) = ρ0(x;−J), a
counter-intuitive symmetry resulting from the reversibility of microscopic
dynamics.

3.4 Current fluctuations for 2D diffusive sys-
tems

We now set out to derive the current LDF in a two-dimensional diffusive
system, particularly in the 2D-KMP model. We have seen that the expres-
sion for this LDF (3.1) in a d-dimensional diffusive system without external
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field (QE=0[ρ] = −D[ρ]∇ρ) is given by,

G(J) = −min
ρ(r)

∫
Λ

(J +D[ρ]∇ρ)2

2σ[ρ(r)]
dr . (3.25)

This variational problem gives rise to the following non-linear partial differ-
ential equation for the optimal profile (3.5) ρ0(r, t; J) (in the sequel we drop
the J dependence of the optimal profile)

(∇ρ0)2 =
J2 + 2σ[ρ0]K

D2[ρ0]
. (3.26)

where K is a constant of integration which guarantees the correct boundary
conditions. Notice that the time-independent optimal profile only depends
on the magnitude of J via J2 and not on its orientation. Hence, all the
isometric current fluctuations characterized by a constant |J| have the same
associated optimal profile, ρ0(r; J) = ρ0(r; |J|). We insist on that this ob-
servation will be further exploited in chapter 4.

We now investigate the current statistics in the 2D KMP model. In this
case the system is coupled to boundary heat baths along the x-direction
at temperatures ρL and ρR, whereas periodic boundary conditions hold in
the y-direction. For ρL 6= ρR the system reaches a nonequilibrium steady
state with a nonzero rescaled average current 〈J〉 = x̂(ρL − ρR)/2 and a
stationary profile ρst(x, y) = ρL + x (ρR − ρL). At the macroscopic level
the KMP model is characterized by a diffusivity D[ρ] = 1

2 , and a mobility
σ[ρ] = ρ2 which measures the variance of local energy current fluctuations
in equilibrium (ρL = ρR).

To study the statistics of the time-averaged current, we have to solve the
partial differential equation (PDE) (3.26), subject to the aforementioned
boundary conditions, to get the optimal energy density profile. In principle,
this PDE may have several possible solutions. However, the symmetry of
the problem suggests that the optimal energy density profile associated to
a given current fluctuation depends exclusively on x, with no structure in
the y-direction, i.e. ρ0(x, y) = ρ0(x), compatible with the presence of an
external gradient along the x-direction. This will be checked numerically
below. Under these considerations, Eq. (3.26) becomes(

dρ0(x)
dx

)2

= 4J2
(
1 + 2Kρ2

0(x)
)
, (3.27)

which corresponds to the same equation (3.10) for the optimal profile in the
1D case with |J | = |J|. Here, K is the same constant which guarantees the
correct boundary conditions, ρ0(0, y) = ρL and ρ0(1, y) = ρR ∀y ∈ [0, 1].
Hence, the optimal energy density profile associated to a fluctuation, J, is
the 1D optimal profile calulated in the previous section along the x̂-direction,
ρ0(x, y; |J|) = ρ0(x; |J|). Figure 3.2 shows the x-dependence of optimal
energy density profiles for different values of |J|, including both the monotone
and non-monotone regimes. Thus, Eq. (3.27) together with Eq. (3.25)
completely determine the probability Pτ (J) of observing during a long time
τ a time-averaged current J. As in 1D, the optimal energy profile may be
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now monotone or non-monotone, with a single maximum. In the former
case, i.e. |J| < |Jc|, using Eq. (3.12) into Eq. (3.25) we have

G(J) =
∫ ρR

ρL

dρ0
1

4|J|ρ2
0

√
1 + 2Kρ2

0

[(
Jx − |J|

√
1 + 2Kρ2

0

)2

+ J2
y

]
,

(3.28)
with Jx and Jy the components of vector J. This results in

G(J) =
Jx
2

(
1
ρR
− 1
ρL

)
− |J|2K +

|J|
2

[√
1 + 2Kρ2

L

ρL
−
√

1 + 2Kρ2
R

ρR

]
.

(3.29)
For the non-monotonous regime (|J| > |Jc|) we split the integral in Eq.
(3.25) at x∗, and using Eq. (3.13) to change variables we arrive at

G(J) =
Jx
2

(
1
ρR
− 1
ρL

)
− |J|

2

[
1
ρL

√
1−

(
ρL
ρ∗0

)2

+
1
ρR

√
1−

(
ρR
ρ∗0

)2

− 1
2ρ∗0

(
π − sin−1

(
ρL
ρ∗0

)
− sin−1

(
ρR
ρ∗0

))]
. (3.30)

Recall that ρ∗0 ≡ ρ0(x = x∗) with ρ∗0 = 1/
√
−2K which depends implicitely

on |J|. This constant can be calculated using Eqs. (3.16). In Figure 3.6 we
show G(J) for the 2D-KMP model with ρL = 2 and ρR = 1. Notice that
the LDF is zero for J = 〈J〉 = ((ρL − ρR)/2, 0) and negative elsewhere. For
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small current fluctuations, J ≈ 〈J〉, G(J) obeys the following quadratic form

G(J) ≈ −1
2

(
(Jx − (ρL − ρR)/2)2

σ2
x

+
J2
y

σ2
y

)
, (3.31)

with σ2
x = (ρ2

L+ρLρR+ρ2
R)/3 and σ2

y = ρLρR, resulting in Gaussian statistics
for currents near the average as expected from the central limit theorem.
Notice that beyond this restricted Gaussian regime, current statistics is in
general non-Gaussian. In particular, for large enough current deviations,
G(J) decays linearly, meaning that the probability of such fluctuations is
exponentially small in |J|. Therefore large current fluctuations are far more
probable than expected with Gaussian statistics. Sometimes it is interesting
to work with the Legendre transform of the current LDF [15, 16, 36, 14],

µ(λ) = max
J

[G(J) + λ · J] = G(J∗) + λ · J∗, (3.32)

where λ is a vector parameter conjugate to the current and J∗(λ) can be
derived from the equation ∂G(J)/∂Jα|Jα=J∗α +λα = 0, with λα and Jα being
the components of λ and J respectively (α = x̂, ŷ). Using the previous results
for G(J) it is easy to show that for both regimes

µ(λ) = −K[J∗(λ)]2, (3.33)

where J∗(λ) is the current associated to a given λ and can be obtained
using Eqs. (3.12) and (3.13) into Eq. (3.27) for the monotonous and non-
monotonus regime respectively. Once we have λx and λy, one can readily
show using (3.29) and (3.30) that for the monotonous regime the following
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equality holds

|λ+ ε| = 1
2

(√
1 + 2Kρ2

L

ρL
−
√

1 + 2Kρ2
R

ρR

)
, (3.34)

which in the non-monotonous regime reads

|λ+ ε| = 1
2

(√
1 + 2Kρ2

L

ρL
+

√
1 + 2Kρ2

R

ρR

)
, (3.35)

where ε ≡ ( 1
2

(
ρ−1
R − ρ

−1
L

)
, 0) is a constant vector. Hence, since the constant

K just depends on |J|, we have that each value of |J| corresponds to a given
value of |λ + ε| in λ-space. Note that, in λ-space, monotone profiles are

expected for |λ+ε| ≤ 1
2ρR

√
1−

(
ρR
ρL

)2

, while non-monotone profiles appear

for 1
2ρR

√
1−

(
ρR
ρL

)2

≤ |λ+ ε| ≤ 1
2

(
1
ρL

+ 1
ρR

)
(in particular, for ρL = 2 and

ρR = 1, see the blue and red circles in λ-space of left panel of figure 3.7).
For small current fluctuations, λ ≈ 0, an expansion similar to (3.31) for µ(λ)
yields

µ(λ) ≈ λx
2
[
(ρL − ρR) + σ2

xλx
]

+
σ2
y

2
λ2
y. (3.36)

In left panel of figure 3.7 we show the Legendre transform of the theoretical
LDF, µ(λ), as well as its gaussian approximation in λ-space.

3.5 Testing additivity in two dimensions

Once we have derived the analytical predictions for the 2D-KMP model
based on the additivity conjecture, we now compare them with results ob-
tained from numerical simulations.

As we have already described in chapter 2, the 2D-KMP model is defined
on a two-dimensional square lattice with L2 sites. Each site is characterized
by an energy ei, i ∈ [1, L2], and models a harmonic oscillator which is
mechanically uncoupled from its nearest neighbors but interact with them
via a stochastic energy-redistribution process (see chapter 2). Dynamics
thus proceeds through random energy exchanges between randomly-chosen
nearest neighbors. In addition, left and right boundary sites may interchange
energy with boundary baths at temperatures ρL and ρR, respectively, while
periodic boundary conditions hold in the vertical direction. We performed a
large number of steady-state simulations of long duration τ > L2 (the unit
of time is the Monte Carlo step) for L = 20, ρL = 2 and ρR = 1. This is
a diffusive time scale in which the hydrodynamic behavior should prevoil.
These simulations have been performed using the same advanced Monte
Carlo algorithm as we used for the 1D case [41], thus yielding the Legendre
transform of the LDF of the space- and time-averaged current J. First of
all we measured the 2D structure of the optimal profiles for different current
fluctuations to check that the optimal energy density profile has structure
only along the gradient direction (see figure 3.8). As the gradient is along
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the x̂-direction, all current fluctuations with λy 6= 0 have a non-zero vertical
component (Jy 6= 0). Furthermore, the angle φ formed by a current vector

J = (Jx, Jy) with respect to the gradient direction, i.e. φ = tan−1
(
Jy
Jx

)
, is



44 Chapter 3 Additivity of current fluctuations

-0.2

 0

 0.2

 0.4

 0.6

 0.8

0 0.2 0.4 0.6 0.8

µ
(λ

x
,λ

y
)

|λ+ε|

φ=π/3 rad

-0.2

 0

 0.2

 0.4

 0.6

 0.8

0 0.2 0.4 0.6 0.8

µ
(λ

x
,λ

y
)

|λ+ε|

φ=π/3 rad

φ=-2π/3 rad

-0.2

 0

 0.2

 0.4

 0.6

 0.8

0 0.2 0.4 0.6 0.8

µ
(λ

x
,λ

y
)

|λ+ε|

φ=π/3 rad

φ=-2π/3 rad

Theory

-0.2

 0

 0.2

 0.4

 0.6

 0.8

0 0.2 0.4 0.6 0.8

µ
(λ

x
,λ

y
)

|λ+ε|

φ=π/3 rad

φ=-2π/3 rad

Theory

-0.2

 0

 0.2

 0.4

 0.6

 0.8

µ
(λ

x
,λ

y
)

φ=0 rad

-0.2

 0

 0.2

 0.4

 0.6

 0.8

µ
(λ

x
,λ

y
)

φ=0 rad

φ=π rad

-0.2

 0

 0.2

 0.4

 0.6

 0.8

µ
(λ

x
,λ

y
)

φ=0 rad

φ=π rad

Theory

-0.2

 0

 0.2

 0.4

 0.6

 0.8

µ
(λ

x
,λ

y
)

φ=0 rad

φ=π rad

Theory

φ=π/6 radφ=π/6 rad

φ=-5π/6 rad

φ=π/6 rad

φ=-5π/6 rad

Theory

φ=π/6 rad

φ=-5π/6 rad

Theory

0 0.2 0.4 0.6 0.8

|λ+ε|

φ=π/2 rad

0 0.2 0.4 0.6 0.8

|λ+ε|

φ=π/2 rad

φ=-π/2 rad

0 0.2 0.4 0.6 0.8

|λ+ε|

φ=π/2 rad

φ=-π/2 rad

Theory

Figure 3.10: Measured µ(λ) with ρL = 2, ρR = 1, L = 20 and 1000 clones for
opposite currents (see left panel figure 3.9). The red vertical line indicates
the threshold value of |λ+ ε| up to which the GC symmetry holds.

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

µ
(λ

x
,λ

y
)

|λ+ε|

L=10

L=20

L=32

Theory

Figure 3.11: Measured µ(λ) with ρL = 2, ρR = 1, L = 20 and 1000 clones
versus |λ+ ε| for φ = π/2 and three different system sizes. The solid line is
the theoretical prediction

given in λ-space by

φ = tan−1

(
λy

λx + εx

)
(3.37)
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In figure 3.8 we can see how optimal profiles associated to current fluctu-
ations have structure only along the gradient direction, regardless of the
orientation φ and modolus |J| of the current fluctuation, confirming the hy-
pothesis ρ(r; J) = ρ(x; J).

Regarding now the Legendre transform of the LDF, we measured it for dif-
ferent angles with respect to the gradient direction (see right panel of figure
3.7). The theoretical prediction derived for µ(λ), Eq. (3.33), is based on
the additivity conjecture and gives rise to a function which is independent of
the angle φ. This is a consequence of the fact that µ(λ) depends exclusively
on the magnitude of J via J2 (see Eq. (3.33)) and not on its orientation
respect to the gradient direction. Since for each |J| there is an associated
|λ+ ε| (see Eqs. (3.34) and (3.35)), we conclude that µ(λ) just depends on
|λ + ε| and not on φ. In the right panel of figure 3.9 we plot the measured
µ(λ) versus |λ+ ε| together with the theoretical prediction for different an-
gles. We observe that there is a good agreement for a broad interval current
fluctuations such that |λ+ ε| ≤ 0.25, which corresponds to |J| ≤ |〈J〉| = 1

2 .
From this value on we see that the measurements deviate from the theory
and that these deviation depends on φ. The origin of such disagreement is
twofold: (i) finite size effects, as the theory formally applies in the contin-
uum limit but we are unable to simulate reliably systems with L > 20, and
(ii) a different class of finite size effects related to the finite number of clones
used to sample the large-deviation statistics [38]. As the Gallavotti-Cohen
(GC) symmetry (3.22) is known to hold for any current fluctuation, we can
state that numerical violations of this symmetry indicate that simulation re-
sults are biased and hence unreliable. The GC symmetry (3.22) implies that
µφ(|λ+ε|) = µ−π+φ(|λ+ε|). Consequently, in figure 3.10 we plot the curves
displayed in figure 3.9 in four different plots. In each plot we display the
value of µ(λ) versus the magnitude of a fluctuation, |λ+ε|, for a fixed angle
(φ) and for the oppossite angle (−π + φ) (see left panel of figure 3.9). This
is equivalent to compare opposite current fluctuations which are coupled be-
cause of time reversibility. Looking at the top panels and the left bottom
panel of figure 3.10, we see that GC holds to a good degree of accuray for
|λ+ ε| . 0.3125. As the right bottom panel corresponds to φ = π/2,−π/2,
the GC symmetry holds trivially for the whole current interval due to the
±y symmetry of the problem (recall that we have periodic boundary condi-
tions along the ŷ-direction). Thus, we conclude that for |λ+ε| & 0.3125 the
algorithm results are biased due to the finite population of clones. On the
other hand, the disagreement with the theory for |λ+ ε| ≤ 0.3125 is caused
exclusively by finite size effects (small L). We corroborate this in figure 3.11
where we show µ(λ) versus |λ + ε| for three system sizes (L = 10, 20, 32)
and φ = π/2. A clear convergence towards the theory as the system size
increases is observed.

Attending now the optimal energy density profile, we compare the analyt-
ical predicitions with the measured profiles averaged along the y-direction.
This comparison is done in figure 3.12, where we show the excess optimal
energy density profiles (∆ρ0(x;λ) = ρ0(x;λ)− ρst(x)) given an angle for six
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Figure 3.12: Measured optimal energy density profiles with ρL = 2, ρR = 1,
L = 20 and 1000 clones for different angles versus |λ + ε|. The solid lines
correspond to the theoretical profiles.

different values of |λ+ ε| which correspond to six different values of |J|. We
see how along the gradient direction (φ = 0) the agreement with the theo-
retical profiles is perfect for all current fluctuations. However, as the current
fluctuation deviates from the x̂-direction, there is only good agreement for
moderate current fluctuations, particularly for |J| = 0.265 and |J| = 0.0185.
Although the additivity conjecture leads to the invariance of the optimal pro-
files under current rotations (see Eq. (3.26)), these violations here observed
are a result of the finite, discrete character of the lattice system.

3.6 Conclusions

In this chapter, we have investigated the statistics of current fluctuations in
a simple but very general model of diffusive energy transport in one and two
dimensions, the KMP model [35].

We have derived theoretical predictions using the MFT, supplemented
with an additivity conjecture which amounts to assume that (in d-dimensions)

(i) The optimal profiles responsible of a given current fluctuation are time-
independent.

(ii) The resulting divergence-free optimal current profile is in fact constant
across space.

In 1D this is equivalent to the additivity principle of Bodineau and Derrida
[34] (see appendix A). In this case, it was shown [36, 37] that numerical sim-
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ulations agree with theoretical predictions for a wide current interval. In the
2D case and provided that the additivity conjecture holds, we have obtained
explicitely the current distribution for this model, which exhibits in general
non-Gaussian tails. We have found good agreement for the theoretical LDF
with numerical simulations. Furthermore, we also measured the optimal en-
ergy density profiles associated to a given current fluctuation finding again
good agreement with the theoretical prediction. Profiles can be either mono-
tone for small current fluctuations, or non-monotone with a single maximum
for large enough fluctuations. It is remarkable that in this case, due to the
periodicity in the vertical direction, these optimal profiles have structure
only along the gradient direction. This symplifies considerably the calcu-
lations up to the point that the 2D optimal profiles associated to a given
current fluctuation, J, have the same structure along the x̂-direction as in
the 1D case (for |J | = |J|). In addition, they are invariant under current
rotations with respect to the gradient direction because they only depend
on the magnitude of |J| and not on its orientation. In the next chapter
we will see how this invariance has important consequences at the level of
symmetries of the current distribution.

To conclude we can state that all the results here obtained strongly sup-
port the validity of the additivity conjecture in d-dimensional systems. How-
ever, assumption (i) is known to break down for extreme current fluctuations
in some particular cases [16, 39, 40]. In chapter 5 we will study this break-
down for a periodic system in one and two dimensions, and we will observe
the emergence of time-dependent optimal profiles. It could be also interest-
ing to explore the range of validity of hypothesis (ii) in the time-independent
regime. This could be achieved using a local stability analysis in the spirit
of the results in [39].
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Chapter 4

Symmetries in fluctuations
far from equilibrium

4.1 Introduction

Large fluctuations, though rare, play an important role in many fields of sci-
ence as they crucially determine the fate of a system [44]. Examples range
from chemical reaction kinetics or the escape of metastable electrons in nano-
electronic devices to conformational changes in proteins, mutations in DNA,
and nucleation events in the primordial universe. Remarkably, the statistics
of these large fluctuations contains deep information on the physics of the
system of interest [14, 17]. This is particularly important for systems far from
equilibrium, where no general theory exists up to date capable of predict-
ing macroscopic and fluctuating behavior in terms of microscopic physics, in
a way similar to equilibrium statistical physics. The consensus is that the
study of fluctuations out of equilibrium may open the door to such general
theory. As most nonequilibrium systems are characterized by currents of lo-
cally conserved observables, understanding current statistics in terms of mi-
croscopic dynamics has become one of the main objectives of nonequilibrium
statistical physics [8, 9, 11, 13, 14, 12, 15, 16, 17, 34, 36, 37, 39, 45, 46, 47].
Pursuing this line of research is both of fundamental as well as practical
importance. At the theoretical level, the function controlling current fluc-
tuations can be identified as the nonequilibrium analog of the free energy
functional in equilibrium systems [14, 15, 16, 17], from which macroscopic
properties of a nonequilibrium system can be obtained (including its most
prominent features, as for instance the ubiquitous long range correlations
[21, 22], etc.) On the other hand, the physics of most modern mesoscopic
devices is characterized by large fluctuations which determine their behavior
and function. In this way understanding current statistics in these systems
is of great practical significance.

Despite the considerable interest and efforts on these issues, exact and
general results valid arbitrarily far from equilibrium are still very scarce. The
reason is that, while in equilibrium phenomena dynamics is irrelevant and the
Gibbs distribution provides all the necessary information, in nonequilibrium

49
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physics dynamics plays a dominant role, even in the simplest situation of a
nonequilibrium steady state [14, 15, 16, 17]. However, there is a remarkable
exception to this absence of general results which has triggered an important
surge in activity since its formulation in the mid nineties. This is the fluctu-
ation theorem, first discussed in the context of simulations of sheared fluids
[9], and formulated rigorously by Gallavotti and Cohen under very general
assumptions [8]. This theorem, which implies a relation between the proba-
bilities of a given current fluctuation and the inverse event, is a deep state-
ment on the subtle consequences of time-reversal symmetry of microscopic
dynamics at the macroscopic, irreversible level. Particularly important here
is the observation that symmetries are reflected at the fluctuating macro-
scopic level arbitrarily far from equilibrium. Inspired by this illuminating
result, we explore in this chapter the behavior of the current distribution un-
der symmetry transformations [48]. Key to our analysis is the observation
that, in order to facilitate a given current fluctuation, the system traverses
a well-defined optimal path in phase space [14, 15, 16, 17, 36, 37, 49]. This
path is, under very general conditions, invariant under certain symmetry
transformations on the current. Using this invariance we show that for d-
dimensional, time-reversible systems described by a locally-conserved field
and possibly subject to a boundary-induced gradient and an external field
E, the probability Pτ (J) of observing a current J averaged over a long time
τ obeys an isometric fluctuation relation (IFR)

lim
τ→∞

1
τ

ln
[

Pτ (J)
Pτ (J′)

]
= ε · (J− J′) , (4.1)

for any pair of isometric current vectors, |J| = |J′|. Here ε = ε + E is
a constant vector directly related to the rate of entropy production in the
system, which depends on the boundary baths via ε (see below).

The above equation, which includes as a particular case the Gallavotti-
Cohen (GC) result for J′ = −J, relates in a strikingly simple manner the
probability of a given fluctuation J with the likelihood of any other cur-
rent fluctuation on the d-dimensional hypersphere of radius |J|, see figure
4.1, projecting a complex d-dimensional problem onto a much simpler one-
dimensional theory. Unlike the GC relation which is a non-differentiable
symmetry involving the inversion of the current sign, J → −J, Eq. (4.1) is
valid for arbitrary changes in orientation of the current vector. This makes
the experimental test of the above relation a feasible problem, as data for
current fluctuations involving different orientations around the average can
be gathered with enough statistics to ensure experimental accuracy. It is also
important to notice that the isometric fluctuation relation is valid for arbi-
trarily large fluctuations, i.e. even for the non-Gaussian far tails of current
distribution. We confirm here the validity of the new symmetry in extensive
numerical simulations of two different nonequilibrium systems: (i) A simple
and very general lattice model of energy diffusion [36, 37, 35], and (ii) a
hard-disk fluid in a temperature gradient [50].
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Figure 4.1: The isometric fluctuation relation at a glance. Sketch of the
current distribution in two dimensions, peaked around its average 〈J〉ε, and
isometric contour lines for different |J|’s. The isometric fluctuation rela-
tion, Eq. (4.1), establishes a simple relation for the probability of current
fluctuations along each of these contour lines.

4.2 The Isometric Fluctuation Relation

Our starting point is the continuity equation given by Eq. (1.2), which
describes the macroscopic evolution of a wide class of systems characterized
by a locally-conserved magnitude (e.g. energy, particle density, momentum,
etc.)

∂tρ(r, t) = −∇ ·
(
QE[ρ(r, t)] + ξ(r, t)

)
. (4.2)

We are interested in the probability Pτ (J) of observing a space- and time-
averaged empirical current J, defined as

J =
1
τ

∫ τ

0

dt

∫
Λ

dr j(r, t) . (4.3)

where Λ ∈ [0, 1]d is the space domain, being d the dimensionality of the
system. This probability obeys a large deviation principle for long times
[23, 24], Pτ (J) ∼ exp[+τLdG(J)], where L is the system linear size and
G(J) ≤ 0 is the current large-deviation function (LDF), meaning that cur-
rent fluctuations away from the average are exponentially unlikely in time.
According to macroscopic fluctuation theory described in chapter 1 we have

G(J) = −min
ρ(r)

∫
Λ

(J−QE[ρ(r)])2

2σ[ρ(r)]
dr , (4.4)

which expresses the locally-Gaussian nature of fluctuations [34, 36, 37]. The
optimal profile ρ0(r; J) solution of the above variational problem can be
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interpreted as the density profile the system adopts to facilitate a current
fluctuation J [36, 37, 49]. To derive Eq. (4.4) we assumed the additivity
conjecture, namely that (i) the optimal profiles associated to a given current
fluctuation are time-independent , and (ii) the optimal current field has no
spatial structure. This last hypothesis, which greatly simplifies the calcula-
tion of current statistics, can be however relaxed for our purposes (as shown
below). The probability Pτ (J) is thus simply the Gaussian weight associated
to the optimal profile. Note however that the minimization procedure gives
rise to a nonlinear problem which results in general in a current distribution
with non-Gaussian tails [14, 15, 16, 17, 34, 36, 37].

The optimal profile is solution of the following equation

δω2[ρ(r)]
δρ(r′)

− 2J · δω1[ρ(r)]
δρ(r′)

+ J2 δω0[ρ(r)]
δρ(r′)

= 0 , (4.5)

where δ
δρ(r′) stands for functional derivative, and

ωn[ρ(r)] ≡
∫

Λ

dr Wn[ρ(r)] with Wn[ρ(r)] ≡ Qn
E[ρ(r)]
σ[ρ(r)]

. (4.6)

Remarkably, the optimal profile ρ0(r; J) solution of Eq. (4.5) depends ex-
clusively on J and J2. Such a simple quadratic dependence, inherited from
the locally-Gaussian nature of fluctuations, has important consequences at
the level of symmetries of the current distribution. In fact, it is clear from
Eq. (4.5) that the condition

δω1[ρ(r)]
δρ(r′)

= 0 , (4.7)

implies that ρ0(r; J) will depend exclusively on the magnitude of the current
vector, via J2, not on its orientation. In this way, all isometric current
fluctuations characterized by a constant |J| will have the same associated
optimal profile, ρ0(r; J) = ρ0(r; |J|), independently of whether the current
vector J points along the gradient direction, against it, or along any arbitrary
direction. In other words, the optimal profile is invariant under current
rotations if Eq. (4.7) holds.

It turns out that condition (4.7) follows from the time-reversibility of
the dynamics, in the sense that the evolution operator in the Fokker-Planck
formulation of Eq. (4.2) obeys a local detailed balance condition [12, 13]. In
this case

W1[ρ(r)] =
QE[ρ(r)]
σ[ρ(r)]

= −∇δH[ρ]
δρ

, (4.8)

where H[ρ(r)] is the system Hamiltonian. In this case, by using vector
integration by parts, it is easy to show that

δ

δρ(r′)

∫
Λ

drW1[ρ(r)] ·A(r) = − δ

δρ(r′)

∫
∂Λ

dΓ
δH[ρ]
δρ

A(r) · n̂ = 0 , (4.9)

for any divergence-free vector field A(r). The second integral is taken over
the boundary ∂Λ of the domain Λ where the system is defined, and n̂ is the
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unit vector normal to the boundary at each point. In particular, by taking
A(r) = J constant, Eq. (4.9) implies that δω1[ρ(r)]/δρ(r′) = 0. Hence for
time-reversible systems the optimal profile ρ0(r; J) remains invariant under
rotations of the current J, see Eq. (4.5), and this allows us to prove the
isometric fluctuation relation (IFR) given by Eq. (4.1). The invariance of
the optimal profile can be now used in Eq. (4.4) to relate in a simple way
the current LDF of any pair of isometric current fluctuations J and J′, with
|J| = |J′|,

G(J)−G(J′) = |ε||J|(cos θ − cos θ′) , (4.10)

where θ and θ′ are the angles formed by vectors J and J′, respectively, with
a constant vector ε = ε + E, see below. Eq. (4.10) is just an alternative
formulation of the isometric fluctuation relation (4.1). By letting J and J′

differ by an infinitesimal angle, the IFR can be cast in a simple differential
form, ∂θG(J) = |ε||J| sin θ, which reflects the high level of symmetry imposed
by time-reversibility on the current distribution.

The condition δω1[ρ(r)]/δρ(r′) = 0 can be seen as a conservation law.
It implies that the observable ω1[ρ(r)] is in fact a constant of motion, ε ≡
ω1[ρ(r)], independent of the profile ρ(r), which can be related with the rate
of entropy production via the Gallavotti-Cohen theorem [8, 12, 13]. In a way
similar to Noether’s theorem, the conservation law for ε implies a symmetry
for the optimal profiles under rotations of the current and a fluctuation
relation for the current LDF. This constant can be easily computed under
very general assumptions (see Sec. 4.4).

4.3 Implications and Generalizations

The isometric fluctuation relation, Eq. (4.1), has far-reaching and nontriv-
ial consequences. As we shall see, the IFR implies remarkable hierarchies
of equations for the current cumulants, see Eq. (4.14), and the nonlinear
response coefficients, see eqs. (4.16)-(4.19), going far beyond Onsager’s reci-
procity relations and Green-Kubo formulas.

4.3.1 Hierarchies for the cumulants and response coef-
ficients

The moment-generating function associated to Pτ (J), defined as

Πτ (λ) =
∫

Pτ (J) exp(τLdλ · J)dJ, (4.11)

scales for long times as Πτ (λ) ∼ exp[+τLdµ(λ)], where µ(λ) = maxJ[G(J)+
λ · J] is the cumulant generating function and corresponds to the Legendre
transform of the current LDF. The cumulants of the current distribution can
be obtained from the derivatives of µ(λ) evaluated at λ = 0, i.e.

µ
(n)
(n1...nd) ≡

[
∂nµ(λ)

∂λn1
1 ...λndd

]
λ=0

= (τLd)n−1〈∆Jn1
1 ...∆Jndd 〉ε for n ≥ 1,

(4.12)
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where ∆Jα ≡ Jα − (1 − δn,1)〈Jα〉ε and δn,m is the Kronecker symbol. In
virtue of the IFR, which states that G(J) − G(RJ) = ε · (J − RJ), the
Legendre transform of the current LDF fullfills

µ(λ) = max
J

[G(J)+λ·J] = max
J′

[G(J′)+(R(λ+ε)−ε)·J′] = µ[R(λ+ε)−ε)],

where we have used the change of variables J′ = RJ. Hence, the IFR can
be stated for µ(λ) as

µ(λ) = µ[R(λ+ ε)− ε], (4.13)

whereR is any d-dimensional rotation. Using this relation in the definition of
the n-th order cumulant in the limit of infinitesimal rotations, R = I+∆θL,
it is easy to show that

nαLβαµ(n)
(n1...nα−1...nβ+1...nd) + ενLγνµ(n+1)

(n1...nγ+1...nd) = 0 , (4.14)

where L is any generator of d-dimensional rotations, and summation over
repeated Greek indices (∈ [1, d]) is assumed. The above hierarchy relates in
a simple way cumulants of orders n and n+1 ∀n ≥ 1, and is valid arbitrarily
far from equilibrium. As an example, eqs. (4.20) and (4.21) below show the
first two sets of relations (n = 1, 2) of the above hierarchy in two dimensions.

In a similar way, we can explore the consequences of the IFR on the linear
and nonlinear response coefficients. For that, we now expand the cumulants
of the current in powers of ε

µ
(n)
(n1...nd)(ε) =

∞∑
k=0

1
k!

k∑
k1...kd=0P

i ki=k

(k)
(n)χ

(k1...kd)
(n1...nd) ε

k1
1 ...ε

kd
d (4.15)

Inserting expansion (4.15) into the cumulant hierarchy, Eq. (4.14), and
matching order by order in k, we derive another interesting hierarchy for the
response coefficients of the different cumulants. For k = 0 this reads

nαLβα (0)
(n)χ

(0...0)
(n1...nα−1...nβ+1...nd) = 0 , (4.16)

which is a symmetry relation for the equilibrium (ε = 0) current cumulants.
For k ≥ 1 we obtain

k∑
k1...kd=0P
i ki=k≥1

[
nα
k
Lβα (k)

(n)χ
(k1...kd)
(n1...nα−1...nβ+1...nd) + Lγν (k−1)

(n+1)χ
(k1...kν−1...kd)
(n1...nγ+1...nd)

]
= 0 ,

(4.17)

which relates k-order response coefficients of n-order cumulants with (k−1)-
order coefficients of (n + 1)-order cumulants. Relations (4.16)-(4.17) for
the response coefficients result from the IFR in the limit of infinitesimal
rotations. For a finite rotation R = −I, which is equivalent to a current
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inversion, we have µ(λ) = µ(−λ− 2ε) and we may use this in the definition
of response coefficients,

(k)
(n)χ

(k1...kd)
(n1...nd) ≡ k!

[
∂n+kµ(λ)

∂λn1
1 ...λndd ∂εk1

1 ...ε
kd
d

]
λ=0=ε

, (4.18)

see Eq. (4.15), to obtain a complementary relation for the response coeffi-
cients

(k)
(n)χ

(k1...kd)
(n1...nd) = k!

k1∑
p1=0

...

kd∑
pd=0

(−1)n+p2p

(k − p)!
(k−p)
(n+p)χ

(k1−p1...kd−pd)
(n1+p1...nd+pd) , (4.19)

where p =
∑
i pi. A similar equation was derived in [51] from the standard

fluctuation theorem, although the IFR adds further relations. All together,
eqs. (4.16)-(4.19) imply deep relations between the response coefficients at
arbitrary orders which go far beyond Onsager’s reciprocity relations and
Green-Kubo formulae.

As an example, the cumulant hierarchy in two dimensions implies the
following relations

〈Jx〉ε = τL2
[
εx〈∆J2

y 〉ε − εy〈∆Jx∆Jy〉ε
]

(4.20)

〈Jy〉ε = τL2
[
εy〈∆J2

x〉ε − εx〈∆Jx∆Jy〉ε
]

2〈∆Jx∆Jy〉ε = τL2
[
εy〈∆J3

x〉ε − εx〈∆J2
x∆Jy〉ε

]
(4.21)

= τL2
[
εx〈∆J3

y 〉ε − εy〈∆Jx∆J2
y 〉ε
]

〈∆J2
x〉ε − 〈∆J2

y 〉ε = τL2
[
εx〈∆Jx∆J2

y 〉ε − εy〈∆J2
x∆Jy〉ε

]
,

for the first cumulants, with ∆Jα ≡ Jα − 〈Jα〉ε. It is worth stressing that
the cumulant hierarchy is valid arbitrarily far from equilibrium.

In a similar way, the IFR implies a set of hierarchies for the nonlinear re-
sponse coefficients, see eqs. (4.16)-(4.19) above. In our two-dimensional ex-
ample, let (k)

(n)χ
(kx,ky)

(nx,ny) be the response coefficient of the cumulant 〈∆Jnxx ∆Jnyy 〉ε
to order εkxx ε

ky
y , with n = nx + ny and k = kx + ky. To the lowest order

these hierarchies imply Onsager’s reciprocity symmetries and Green-Kubo
relations for the linear response coefficients of the current. They further pre-
dict that in fact the linear response matrix is proportional to the identity,
so

(1)
(1)χ

(1,0)
(1,0) = (1)

(1)χ
(0,1)
(0,1) = (0)

(2)χ
(0,0)
(2,0) = (0)

(2)χ
(0,0)
(0,2),

while
(1)
(1)χ

(0,1)
(1,0) = 0 = (1)

(1)χ
(1,0)
(0,1).

The first nonlinear coefficients of the current can be simply written in terms
of the linear coefficients of the second cumulants as

(2)
(1)χ

(2,0)
(1,0) = 2(1)

(2)χ
(1,0)
(2,0) and (2)

(1)χ
(0,2)
(1,0) = −2(1)

(2)χ
(1,0)
(1,1),
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while the cross-coefficient reads

(2)
(1)χ

(1,1)
(1,0) = 2

[
(1)
(2)χ

(0,1)
(2,0) + (1)

(2)χ
(0,1)
(1,1)

]
(symmetric results hold for nx = 0, ny = 1). Linear response coefficients for
the second-order cumulants also obey simple relations, e.g.

(1)
(2)χ

(1,0)
(1,1) = −(1)

(2)χ
(0,1)
(1,1) and (1)

(2)χ
(1,0)
(2,0) + (1)

(2)χ
(0,1)
(2,0) = (1)

(2)χ
(1,0)
(0,2) + (1)

(2)χ
(0,1)
(0,2),

and the set of relations continues to arbitrary high orders. In this way hier-
archies (4.16)-(4.19), which derive from microreversibility as reflected in the
IFR, provide deep insights into nonlinear response theory for nonequilibrium
systems [51].

4.3.2 Generalized IFR

The IFR and the above hierarchies all follow from the invariance of optimal
profiles under certain transformations. This idea can be further exploited in
more general settings. In fact, by writing explicitly the dependence on the
external field E in Eq. (4.5) for the optimal profile, one realizes that if

δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0, (4.22)

together with the time-reversibility condition, Eq. (4.7), the resulting op-
timal profiles are invariant under independent rotations of the current and
the external field. It thus follows that the current LDFs for pairs (J,E) and
(J′ = RJ,E∗ = SE), with R, S independent rotations, obey a generalized
isometric fluctuation relation

GE(J)−GE∗(J′) = ε · (J− J′)− ν · (E−E∗) + J ·E− J′ ·E∗ , (4.23)

where we write explicitly the dependence of the current LDF on the external
field. The vector ν ≡

∫
Λ

Q[ρ(r)]dr is now another constant of motion,
independent of ρ(r), which can be easily computed (see Sec. 4.4). For a
fixed boundary gradient, the above equation relates any current fluctuation
J in the presence of an external field E with any other isometric current
fluctuation J′ in the presence of an arbitrarily-rotated external field E∗, and
reduces to the standard IFR for E = E∗. Condition δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0
is rather general, as most time-reversible systems with a local mobility σ[ρ]
do fulfill this condition (e.g., diffusive systems).

The IFR can be further generalized to cases where the current profile is
not constant, relaxing hypothesis (ii) above. Let Pτ [J (r)] be the probability
of observing a time-averaged current field J (r) = τ−1

∫ τ
0
dt j(r, t). Notice

that this vector field must be divergence-free because it is coupled via the
continuity equation to an optimal density profile which is assumed to be
time-independent, see hypothesis (i) above. This probability also obeys a
large deviation principle,

Pτ [J (r)] ∼ exp
(
+τLdG[J (r)]

)
, (4.24)
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with a current LDF equivalent to that in Eq. (4.4) but with a space-
dependent current field J (r). The optimal density profile ρ0[r; J (r)] is
now solution of

δ

δρ(r′)

∫
Λ

dr
(
W2[ρ(r)]− 2J (r) ·W1[ρ(r)] + J 2(r)W0[ρ(r)]

)
= 0 , (4.25)

which is the equivalent to Eq. (4.5) in this case. For time-reversible systems
condition (4.9) holds and ρ0[r; J (r)] remains invariant under (local or global)
rotations of J (r). In this way we can simply relate Pτ [J (r)] with the
probability of any other divergence-free current field J ′(r) locally-isometric
to J (r), i.e. J ′(r)2 = J (r)2 ∀r, via a generalized isometric fluctuation
relation,

lim
τ→∞

1
τ

ln
[

Pτ [J (r)]
Pτ [J ′(r)]

]
=
∫
∂Λ

dΓ
δH[ρ]
δρ

n̂ · [J ′(r)−J (r)] , (4.26)

where the integral (whose result is independent of ρ(r)) is taken over the
boundary ∂Λ of the domain Λ where the system is defined, and n̂ is the
unit vector normal to the boundary at each point. Notice that in general an
arbitrary local or global rotation of a divergence-free vector field does not
conserve the zero-divergence property, so this constraints the current fields
and/or local rotations for which this generalized IFR applies. Note that the
probability of observing a time averaged integrated current, Pτ (J), is given
by

Pτ (J) =
∫
DJ Pτ [J (r)]δ

(
J−

∫
Λ

dr J (r)
)
. (4.27)

Hence, taking into account the above equation and that for long times Eq.
(4.24) holds and Pτ (J) ∼ exp

(
+τLdG(J)

)
, we can relate the large deviation

function for the space- and time-averaged current, G(J), to G[J (r)] via a
contraction principle

G(J) = max
J (r):∇·J (r)=0
J=

R
Λ dr J (r)

G[J (r)] . (4.28)

The optimal, divergence-free current field J 0(r; J) solution of this varia-
tional problem may have spatial structure in general. Eq. (4.26) generalizes
the IFR to situations where hypothesis (ii) is violated, opening the door
to isometries based on local (in addition to global) rotations. However, nu-
merical results and phenomenological arguments strongly suggest that the
constant solution, J 0(r; J) = J, is the optimizer at least for a wide inter-
val of current fluctuations, showing that hypothesis (ii) above is not only
plausible but also well justified on physical grounds. In any case, the range
of validity of this hypothesis can be explored by studying the limit of local
stability of the constant current solution using tools similar to those in Ref.
[39].

Hypotheses (i) and (ii) are the straightforward generalization to d-dimensional
systems of the Additivity Principle recently conjectured by Bodineau and
Derrida for one-dimensional diffusive systems [34]. This conjecture, which
has been recently confirmed for a broad current interval in extensive simula-
tions of a general diffusion model [36, 37], is however known to break down
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in some special cases for extreme current fluctuations, where time-dependent
profiles in the form of traveling waves propagating along the current direc-
tion may emerge [15, 16, 17, 39, 40]. As in previous cases, we can now study
the probability P ({j(r, t)}τ0) of observing a particular history for the current
field, which can be written as the path integral of the probability in Eq.
(1.11) over histories of the density field {ρ(r, t)}τ0 coupled to the desired cur-
rent field via the continuity Eq. (4.2) at every point in space and time. This
probability obeys another large deviation principle, with an optimal history
of the density field {ρ0(r, t)}τ0 which is solution of an equation similar to
Eq. (4.25) but with time-dependent profiles. However, as opposed to the
cases above, the current field j(r, t) is not necessarily divergence-free because
of the time-dependence of the associated ρ0(r, t), resulting in a violation of
condition (4.9). In this way the optimal ρ0(r, t) depends on both j(r, t) and
j(r, t)2 so it does not remain invariant under (local or global) instantaneous
rotations of the current field, resulting in a violation of the generalized iso-
metric fluctuation relation in the time-dependent regime. Nevertheless, as
we shall show in chapter 5, if we consider a d-dimensional periodic system,
there is particular spatio-temporal structure for the optimal profiles that still
fullfills the IFR. This structure which emerges for extreme current fluctua-
tions consists in traveling profiles with a fixed shape moving at a constant
velocity. We will show how in this case, due to the periodicity of the system,
Eq. (4.9) still holds and consequently the IFR (4.1) is also vaild.

4.4 Constants of motion

A sufficient condition for the IFR to hold is that

δω1[ρ(r)]
δρ(r′)

= 0 , (4.29)

with the functional ω1[ρ(r)] defined in Eq. (4.6) above. We have shown that
condition (4.29) follows from the time-reversibility of the dynamics, in the
sense that the evolution operator in the Fokker-Planck formulation of Eq.
(4.2) obeys a local detailed balance condition, see Eq. (4.9). Condition (4.29)
implies that ω1[ρ(r)] is in fact a constant of motion, ε, independent of the
profile ρ(r). Therefore we can use an arbitrary profile ρ(r), compatible with
boundary conditions, to compute ε. We now choose boundary conditions to
be gradient-like in the x̂-direction, with densities ρL and ρR at the left and
right reservoirs, respectively, and periodic boundary conditions in all other
directions. Given these boundaries, we now select a linear profile

ρ(r) = ρL + (ρR − ρL)x , (4.30)

to compute ε, with x ∈ [0, 1], and assume very general forms for the current
and mobility functionals

Q[ρ(r)] ≡ D0,0[ρ]∇ρ+
∑
n,m>0

Dnm[ρ](∇mρ)2n∇ρ ,

σ[ρ(r)] ≡ σ0,0[ρ] +
∑
n,m>0

σnm[ρ](∇mρ)2n ,
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where as a convention we denote as F [ρ] a generic functional of the profile
but not of its derivatives. It is now easy to show that ε = εx̂+ E, with

ε =
∫ ρR

ρL

dρ
D0,0(ρ) +

∑
n>0Dn1(ρ)(ρR − ρL)2n

σ0,0(ρ) +
∑
m>0 σm1(ρ)(ρR − ρL)2m

, (4.31)

and x̂ the unit vector along the gradient direction. In a similar way, if the
following condition holds

δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0 , (4.32)

together with time-reversibility, Eq. (4.29), the system can be shown to obey
an extended isometric fluctuation relation which links any current fluctuation
J in the presence of an external field E with any other isometric current
fluctuation J′ in the presence of an arbitrarily-rotated external field E∗,
and reduces to the standard IFR for E = E∗, see Eq. (11) in the chapter.
Condition (4.32) implies that ν ≡

∫
Q[ρ(r)]dr is another constant of motion,

which can be now written as ν = νx̂, with

ν =
∫ ρR

ρL

dρ

[
D0,0(ρ) +

∑
n>0

Dn1(ρ)(ρR − ρL)2n

]
, (4.33)

As an example, for a diffusive system Q[ρ(r)] = −D[ρ]∇ρ(r), with D[ρ] the
diffusivity functional, and the above equations yield the familiar results

ε =
∫ ρL

ρR

D(ρ)
σ(ρ)

dρ ,

ν =
∫ ρL

ρR

D(ρ)dρ ,

for a standard local mobility σ[ρ].

4.5 Checking the Isometric Fluctuation Rela-
tion

We have tested the validity of the IFR in extensive numerical simulations
of two different nonequilibrium systems. The first one is the already de-
scribed in chapter 3 two-dimensional KMP model [43, 36, 37, 35] coupled to
boundary heat baths along the x-direction at temperatures ρL and ρR and
periodic boundary conditions in the y-direction. Recall that this model is
described at the macroscopic level by Eq. (4.2) with a diffusive current term
Q[ρ(r, t)] = −D[ρ]∇ρ with D[ρ] = 1

2 and σ[ρ] = ρ2, and it turns out to be an
optimal candidate to test the IFR because: (1) the associated macroscopic
fluctuation theory can be solved analytically (see Ref. [43] and chapter 3),
and (2) its dynamics is simple enough to allow for a detailed numerical study
of current fluctuations (see chapter 3).
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In order to test the IFR in this model we performed a large number
of steady-state simulations of long duration τ > L2 (the unit of time is
the Monte Carlo step) for L = 20, TL = 2 and TR = 1, accumulating
statistics for the space- and time-averaged current vector J. The measured
current distribution is shown in the bottom inset to figure 4.2, together with
a fine polar binning which allows us to compare the probabilities of isometric
current fluctuations along each polar corona, see Eq. (4.1). Taking G(J) =
(τLd)−1 ln Pτ (J), figure 4.2 confirms the IFR prediction that G(J)−G(J′),
once scaled by |J|−1, collapses onto a linear function of cos θ − cos θ′ for all
values of |J|, see Eq. (4.10). Here θ, θ′ are the angles formed by the isometric
current vectors J, J′ with the x-axis (E = 0 in our case). We also measured
the average energy profile associated to each current fluctuation, ρ0(r; J), see
top inset to figure 4.2. As predicted above, profiles for different but isometric
current fluctuations all collapse onto a single curve, confirming the invariance
of optimal profiles under current rotations. Standard simulations allow us

Figure 4.2: Confirmation of IFR in a diffusive system. The IFR predicts that
|J|−1[G(J) − G(J′)] collapses onto a linear function of cos θ − cos θ′ for all
values of |J|. This collapse is confirmed here in the energy diffusion model for
a wide range of values for |J|. Bottom inset: Measured current distribution
together with the polar binning used to test the IFR. Top inset: Average
profiles for different but isometric current fluctuations all collapse onto single
curves, confirming the invariance of optimal profiles under current rotations.
Angle range is |θ| ≤ 16.6◦, see marked region in the histogram.

to explore moderate fluctuations of the current around the average. In order
to test the IFR in the far tails of the current distribution, corresponding
to exponentially unlikely rare events, we implemented the method already
introduced in chapter 3 to measure large deviation functions in many-particle
systems [41]. Recall that this method, which yields the Legendre transform of
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the current LDF, µ(λ), is based on a modification of the dynamics so that the
rare events responsible of the large deviation are no longer rare [41], and has
been recently used with success to confirm an additivity conjecture regarding
large fluctuations in nonequilibrium systems [36, 37]. Using this method we
measured µ(λ) in increasing manifolds of constant |λ + ε|, see figure 4.3.
The IFR implies that µ(λ) is constant along each of these manifolds, or
equivalently µ(λ) = µ[Rφ(λ+ε)−ε], ∀φ ∈ [0, 2π], with Rφ a rotation in 2D
of angle φ. figure 4.3 shows the measured µ(λ) for different values of |λ+ ε|
corresponding to very large current fluctuations, different rotation angles φ
and increasing system sizes, together with the theoretical predictions [43]
already obtained in chapter 3. As a result of the finite, discrete character
of the lattice system studied here, we observe weak violations of IFR in
the far tails of the current distribution, specially for currents orthogonal
to ε. These weak violations are expected since a prerequisite for the IFR
to hold is the existence of a macroscopic limit, i.e. Eq. (4.2) should hold
strictly, which is not the case for the relatively small values of L studied here.
However, as L increases, a clear convergence toward the IFR prediction
is observed as the effects associated to the underlying lattice fade away,
strongly supporting the validity of IFR in the macroscopic limit. We also

Figure 4.3: IFR for large current fluctuations. Legendre transform of the
current LDF for the energy diffusion model, for different values of |λ + ε|
corresponding to very large current fluctuations, different rotation angles
φ such that λ′ = Rφ(λ + ε) − ε, and increasing system sizes. Lines are
theoretical predictions. The IFR predicts that µ(λ) = µ[Rφ(λ + ε) − ε]
∀φ ∈ [0, 2π]. The isometric fluctuation symmetry emerges in the macroscopic
limit as the effects associated to the underlying lattice fade away.

measured current fluctuations in a Hamiltonian hard-disk fluid subject to a
temperature gradient [50]. This model is a paradigm in liquid state theory,
condensed matter and statistical physics, and has been widely studied during
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last decades. The model consists in N hard disks of unit diameter interacting
via instantaneous collisions and confined to a box of linear size L such that
the particle density is fixed to Φ = N/L2 = 0.58. Here we choose N =
320. The box is divided in three parts: a central, bulk region of width
L− 2α with periodic boundary conditions in the vertical direction, and two
lateral stripes of width α = L/4 which act as deterministic heat baths,
see bottom inset to figure 4.4. This is achieved by keeping constant the
total kinetic energy within each lateral band via a global, instantaneous
rescaling of the velocity of bath particles after bath-bulk particle collisions.
This heat bath mechanism has been shown to efficiently thermostat the
fluid [50], and has the important advantage of being deterministic. As for
the previous diffusive model, we performed a large number of steady state
simulations of long duration (τ > 2N collisions per particle) for TL = 4 and
TR = 1, accumulating statistics for the current J and measuring the average
temperature profile associated to each J. figure 4.4 shows the linear collapse
of |J|−1[G(J)−G(J′)] as a function of cos θ−cos θ′ for different values of |J|,
confirming the validity of the IFR for this hard-disk fluid in the moderate
range of current fluctuations that we could access. Moreover, the measured
optimal profiles for different isometric current fluctuations all nicely collapse
onto single curves, see top inset to figure 4.4, confirming their rotational
invariance.

It is interesting to notice that the hard-disk fluid is a fully macroscopic
system, with 4 different locally-conserved coupled fields possibly subject to
memory effects, defining a far more complex situation than the one studied
here, see Eq. (4.2). Therefore the validity of IFR in this context suggests
that this fluctuation relation, based on the invariance of optimal profiles
under symmetry transformations, is in fact a rather general result valid for
arbitrary fluctuating macroscopic systems.

A few remarks are now in order. First, as a corollary to the IFR, it should
be noted that for time-reversible systems with additive fluctuations, i.e. with
a constant, profile-independent mobility σ, the optimal profile associated to a
given current fluctuation is in fact independent of J, see Eq. (4.5), and hence
equal to the stationary profile. In this case it is easy to show that current
fluctuations are Gaussian, with G(J) = ε · (J− 〈J〉ε) + σ−1(J2− 〈J〉2ε). This
is the case, for instance, of model B in the Hohenberg-Halperin classification
[2] 1. On the other hand, it should be noticed that the time-reversibility
condition for the IFR to hold, Eq. (4.7) , is just a sufficient but not necessary
condition. In fact, we cannot discard the possibility of time-irreversible
systems such that, only for the optimal profiles, δω1[ρ(r)]/δρ(r′)|ρ0 = 0.

4.6 Conclusions

The IFR is a consequence of time-reversibility for systems in the hydrody-
namic scaling limit, and reveals an unexpected high level of symmetry in the
statistics of nonequilibrium fluctuations. It generalizes and comprises the

1Notice that ρ-dependent corrections to a constant mobility σ, which are typically
irrelevant from a renormalization-group point of view [2], turn out to be essential for
current fluctuations as they give rise to non-Gaussian tails in the current distribution.
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Figure 4.4: IFR in a macroscopic hard-disk fluid. Confirmation of IFR
in a two dimensional hard-disk fluid under a temperature gradient after a
polar binning of the measured current distribution. As predicted by IFR,
the difference of current LDFs for different isometric current fluctuations,
once scaled by the current norm, collapses in a line when plotted against
cos θ − cos θ′. Top inset: Optimal temperature profiles associated to dif-
ferent current fluctuations. Profiles for a given |J| and different angles
θ ∈ [−7.5◦,+7.5◦] all collapse onto a single curve, thus confirming the in-
variance of optimal profiles under current rotations. Notice that the profiles
smoothly penetrate into the heat baths. Bottom inset: Snapshot of the 2D
hard-disk fluid with Gaussian heat baths.

Gallavotti-Cohen fluctuation theorem for currents, relating the probabilities
of an event not only with its time-reversal but with any other isometric
fluctuation. This has important consequences in the form of hierarchies for
the current cumulants and the linear and nonlinear response coefficients,
which hold arbitrarily far from equilibrium and can be readily tested in ex-
periments. A natural question thus concerns the level of generality of the
isometric fluctuation relation. In this chapter we have demonstrated the IFR
for a broad class of systems characterized at the macroscale by a single con-
served field, using the tools of macroscopic fluctuation theory (MFT). This
theoretical framework, summarized in the path large deviation functional,
Eq. (1.11), has been rigorously proven for a number of interacting particle
systems [14, 15, 16, 17], but it is believed to remain valid for a much larger
class of systems. The key is that the Gaussian nature of local fluctuations,
which lies at the heart of the approach, is expected to emerge for most sit-
uations in the appropriate macroscopic limit as a result of a central limit
theorem: although microscopic interactions can be extremely complicated,
the ensuing fluctuations of the slow macroscopic fields result from the sum
of an enormous amount of random events at the microscale which give rise
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to Gaussian statistics. There exist of course anomalous systems for which
local fluctuations at the macroscale can be non-Gaussian. In these cases
we cannot discard that a modified version of the IFR could remain valid,
though the analysis would be certainly more complicated. Furthermore, our
numerical results show that the IFR remains true even in cases where it is
not clear whether the MFT applies, strongly supporting the validity of this
symmetry for arbitrary fluctuating macroscopic systems.

A related question is the demonstration of the IFR starting from mi-
croscopic dynamics. Techniques similar to those in Refs. [13, 38], which
derive the Gallavotti-Cohen fluctuation theorem from the spectral proper-
ties of the microscopic stochastic evolution operator, can prove useful for
this task. However, in order to prove the IFR these techniques must be
supplemented with additional insights on the asymptotic properties of the
microscopic transition rates as the macroscopic limit is approached. In this
way we expect finite-size corrections to the IFR which decay with the sys-
tem size, as it is in fact observed in our simulations for the energy diffusion
model, see figure 4.3. Also interesting is the possibility of an IFR for discrete
isometries related with the underlying lattice in stochastic models. These
open questions call for further study.

We have shown in this chapter how symmetry principles come forth in
fluctuations far from equilibrium. By demanding invariance of the optimal
path responsible of a given fluctuation under symmetry transformations, we
unveiled a novel and very general isometric fluctuation relation for time-
reversible systems which relates in a simple manner the probability of any
pair of isometric current fluctuations. Invariance principles of this kind can
be applied with great generality in diverse fields where fluctuations play a
fundamental role, opening the door to further exact and general results valid
arbitrarily far from equilibrium. This is particularly relevant in mesoscopic
biophysical systems, where relations similar to the isometric fluctuation re-
lation might be used to efficiently measure free-energy differences in terms
of work distributions [52]. Other interesting issues concern the study of gen-
eral fluctuation relations emerging from the invariance of optimal paths in
full hydrodynamical systems with several conserved fields, or the quantum
analog of the isometric fluctuation relation in full counting statistics.



Chapter 5

Spontaneous symmetry
breaking at the fluctuating
level

5.1 Introduction

As we have seen in chapter 1, the MFT offers predicitions for both the LDF
and the optimal path in phase space responsible of a given fluctuation (see
Eq. 1.14), which can be in general time-dependent [16]. However, we have
shown in chapter 3 that this optimal path is in fact time-independent in a
broad regime [34, 36, 43], supporting the validity of the additivity conjecture.
As we shall see, this scenario eventually breaks down for large fluctuations
via a dynamical phase transition at the fluctuating level, where the opti-
mal fields become time-dependent. In this chapter we report compelling
evidences of this phenomenon in a paradigmatic non-equilibrium model in
one and two dimensions, namely the weakly assymetric exclusion process
(WASEP, see chapter 2), where we study fluctuations of the time-averaged
current. We find that small current fluctuations result indeed from the sum
of weakly-correlated local random events in the density field, thus giving
rise to Gaussian statistics as dictated by the central limit theorem, see left
panels of figure 5.1. However, for large enough currents, the system self-
organizes into a coherent traveling wave which facilitates this rare event by
accumulating energy in a localized packet, thus breaking translational in-
variance [16, 39, 40], see right panels of figure 5.1), with a critical current
|Jc| separating both regimes. It is worth emphasizing that this phenomenon
may also occur in an isolated equilibrium system in the absence of external
field, as for instance in the KMP model. In this way, phase transitions not
allowed in equilibrium steady states may happen however at the fluctuating
level. In Ref. [40] Hurtado and Garrido observed for the first time this strik-
ing and general phenomenon measuring current fluctuations in the periodic
1D-KMP model.

65
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Figure 5.1: Typical evolution of the density profile for current fluctuations
above and below the critical current for three different densities in the 1D-
WASEP on a ring. Left panels correspond to currents above the critical one
where there is no phase transition. Right panels correspond to subcritical
current fluctuations where a travelling wave emerges. The velocity of the
traveling wave of the top right panel (ρ0 = 0.3) is positive. The travelling
wave of the middle right panel does not move in average for corresponding
to ρ0 = 1/2 and the moving profile of the bottom left panel (ρ0 = 0.7) moves
with negative velocity
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In the first part of this chapter we characterize this dynamical phase tran-
sition in the periodic one-dimensional weakly assymetric simple exclusion
process (WASEP). In this case we measure using numerical simulations the
time integrated current large deviation function as well as the traveling wave-
like profiles associated to those configurations. We find very good agreement
with the analytical results based on the prediction of T. Bodineau and B.
Derrida in Ref. [39].

In the second part, we focus on the study of the dynamical phase tran-
sition in higher dimensional systems. In particular, we show that this phase
transition does exist in the periodic 2D-WASEP, giving rise to a traveling
profile moving at constant velocity for current fluctuations beyond a critical
threshold. In addition, we show that the IFR (4.1) derived in chapter 4
still holds in this case, thus extending its validity to d-dimensional periodic
systems which adopt time-dependent optimal profiles in order to sustain a
given current fluctuation.

5.2 Periodic one-dimensional diffusive system

According to the MFT described in chapter 1, the LDF of the space- and
time- integrated current, J = 1

τ

∫ τ
0
dt
∫ 1

0
j(x, t)dx, is given by Eq. (1.14),

which for a one-dimensional driven diffusive system reads

G(J) = lim
τ→∞

1
τ

max
ρ(x,t),j(x,t)

{
−
∫ τ

0

dt

∫ 1

0

dx
(j(x, t) +D[ρ]∂xρ− Eσ[ρ])2

2σ[ρ]

}
,

(5.1)
with the constraints J = 1

τ

∫ τ
0
dt
∫ 1

0
j(x, t)dx and ∂tρ(x, t) + ∂xj(x, t) = 0.

As we are considering a system with periodic boundary conditions, we have
ρ(0, t) = ρ(1, t) and j(0, t) = j(1, t), where the total density is a conserved
quantity

∫ 1

0
ρ(x, t) = ρ0. The stationary profile is the flat one (uniformly

equal to ρ0) and the average current is 〈J〉 = σ[ρ0]E. Hence, for small current
fluctuations away from the average resulting from weakly-correlated local
fluctuations, the average density profile associated to these small fluctuations
corresponds still to the flat, stationary one,

ρ0(x; J) = ρ0 (5.2)

Thus, the large deviation function (5.1) for small current fluctuations is given
by

Gflat(J) = − (J − Eσ[ρ0])2

2σ[ρ0]
, (5.3)

resulting in Gaussian current statistics. We are also interested not only in
the LDF but also in its Legendre transform

µ(λ) = − 1
L

max
J

[λJ +G(J)], (5.4)

where λ is the parameter conjugated to the current.
Thus, for time-independent optimal density profiles we have

µflat(λ) =
λ(λ+ 2E)σ[ρ0]

2L
. (5.5)
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One can now consider if there are optimal time-dependent density and current
fields which increase the value of the probability of observing a given current
fluctuation J , i.e, if G(J) > Gflat(J), with G(J) is given by Eq. (5.1).

5.3 Stability criteria and time dependent op-
timal profile

Bodineau and Derrida [39] showed by adding a small space and time de-
pendent perturbation to the constant profiles, that the value of G(J) was
increased for current fluctuations away from a critical value. They proved
that the flat profile becomes unstable whenever

8π2D2[ρ0]σ[ρ0] + (E2σ2[ρ0]− J2)σ′′[ρ0] < 0, (5.6)

where σ′′ denotes the second derivative. The above equation can be rewritten
in terms of λ as

4π2D2[ρ0] < Lµflat(λ)σ′′[ρ0]. (5.7)

The inequality (5.6) defines a critical current for the instability to dominate,

|Jc| =

√
8π2D2[ρ0]σ[ρ0]

σ′′[ρ0]
+ E2σ2[ρ0]. (5.8)

Recall that λ = −∂G(J)/∂J |J=J∗ , hence in the flat region one has J∗(λ) =
σ[ρ0](λ+E). Therefore the time-dependent regime in terms of λ corresponds
to

|λ+ E| < |Jc|
σ[ρ0]

(5.9)

with |Jc| given by Eq. (5.8). Once the flat profile is unstable, the form of
the associated perturbation suggests a traveling wave-like profile moving at
a constant velocity v

ρ(x, t;J) = ω(x− vt; J), (5.10)

which implies via the continuity equation

j(x, t;J) = J − vρ0 + vω(x− vt; J). (5.11)

In the sequel we drop the dependence of ω(x−vt; J) on J from the notation.
With these profiles, the variational principle (5.1) reduces to

G(J) = − min
ω(x),v

∫ 1

0

dx

2σ[ω]
[J − vρ0 + vω(x) +D[ω]ω′(x)− σ[ω]E]2 (5.12)

where we have dropped the time dependence because if F (x) is an arbitrary
periodic function with period 1 then

∫ τ
0
dt
∫ 1

0
F (x − vt)dx = τ

∫ 1

0
F (x)dx.

Expanding the square the terms linear in ω′(x) give a null contribution, due
again to the periodicity, and taking also into account that

∫ 1

0
ω(x)dx = ρ0

one gets

G(J) = − min
ω(x),v

[∫ 1

0

dx(X[ω] + ω′(x)2Y [ω])
]

+ JE, (5.13)
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where

X[ω] =
[J − v(ρ0 − ω)]2

2σ[ω]
+
E2σ[ω]

2
(5.14)

and

Y [ω] =
D[ω]2

2σ[ω]
. (5.15)

By performing the variational problem around ω(x) and v, the resulting
differential equation for the optimal profile, ω0 ≡ ω0(x), is

X[ω0]− ω′0(x)2Y [ω0] = C1 + C2ω0 (5.16)

where C1 and C2 are constants. For the optimal velocity, v0, we get

v0 = −J

∫ 1

0

dx
(ω0 − ρ0)
σ[ω0]∫ 1

0

dx
(ω0 − ρ0)2

σ[ω0]

. (5.17)

It is worth to emphasize that the optimal velocity is proportional to J . This
implies for the optimal profile solution of Eq. (5.16) to depend exclusively
on J2 and not on its sign, reflecting that the Gallavotti-Cohen symmetry
holds. This invariance of the optimal profile under the sign of the integrated
current can now be used in Eq. (5.13) to show explicitely the GC symmetry

G(J)−G(−J) = 2JE. (5.18)

The GC symmetry in terms of the parameter conjugated to the current reads

µ(λ) = µ(−λ− 2E). (5.19)

As we are interested in getting the optimal profile, we proceed to solve
Eq. (5.16). The differential equation (5.16) generically yields a symmetric
optimal profile with a single minimum ω1 = ω(x1) and a single maximum
ω2 = ω(x2) such that |x2 − x1| = 1/2. The constants can be expressed in
terms of the extrema ω1 and ω2

X[ω1] = C1 + C2ω1 (5.20)
X[ω2] = C1 + C2ω2 (5.21)

and the extrema are fixed by the constraints on the distance between them
and the total density, ρ0, of the system,

1
2

=
∫ x2

x1

dx =
∫ ω2

ω1

dω0

ω′0
=
∫ ω2

ω1

√
Y [ω0]

X[ω0]− C1 − C2[ω0]
dω0

(5.22)

and

ρ0

2
=
∫ ω2

ω1

√
Y [ω0]

X[ω0]− C1 − C2[ω0]
dω0. (5.23)
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In this way, given our input external constants J and ρ0 we use Eqs. (5.20)-
(5.23) and Eq. (5.17) in order to determine ω1, ω2, C1, C2, v and get the
whole optimal profile ω(x). Notice that in order to proceed we need to
know the macroscopic parameters D[σ] and σ, specific of each considered
model. Once we have the optimal shape of the time-dependent optimal
density profile, ω(x), and the constant velocity at which it moves, we are
able to compute using Eq. (5.13) the large deviation function G(J).

5.4 Analytical solution for the 1D-WASEP

We study now the analytical solution of the time-dependent optimal profile
in the weakly asymmetric exclusion process (WASEP). First of all, it is
worth comparing it with the KMP model [35]. Notice that for both models
D[ρ0] = 1/2. However, for the WASEP σ[ρ0] = ρ0(1 − ρ0) whereas for the
KMP model σ[ρ0] = ρ2

0. This has important consequences on the way the
dynamical phase transition emerges in each model. In the WASEP case, the
time-dependent regime occurs for a magnitude of current fluctuations below
the critical value (5.8)

|J | <
√
ρ0(1− ρ0)(E2ρ0(1− ρ0)− π2), (5.24)

and by using Eqs. (5.7) and (5.9) it can be rewritten in terms of λ,

Lµflat(λ) < −π
2

2
⇐⇒ |λ+ E| <

√
E2 − π2

ρ0(1− ρ0)
. (5.25)

This means that in order to have a dynamical phase transition we need the
magnitude of the external field to satisfy |E| > π/

√
ρ0(1− ρ0). Hence, in the

absence of external field we do not have any time dependent regime for any
current fluctuation. Nevertheless, for the KMP model the time-dependent
regime takes place for a magnitude of the current fluctuations above the
critical value (5.8)

|J | >
√
ρ2

0(π2 + E2ρ2
0) (5.26)

or

Lµflat(λ) >
π2

2ρ0
⇐⇒ |λ+ E| >

√
E2 +

π2

ρ2
0

, (5.27)

meaning that for any value of the external field, even in the absence of it, we
can have a time-dependent regime whenever the associated current fluctua-
tion is large enough (|J | > |Jc|). As we have mentioned in the introduction
of this chapter, Hurtado and Garrido [40] observed this phenomenon for the
KMP model in the absence of external field, confirming the theoretical pre-
dictions of the MFT with numerical simulations. In what follows we extend
the analytical results captured by the MFT for the WASEP. We have done
the calculations for a external field E = 10 and for three different values of
the density ρ0 = 0.3, ρ0 = 1/2 and ρ0 = 0.7. It is worth noting that due
to the particle-hole symmetry present in the WASEP, the optimal density
profile ω0(x) associated to a current fluctuation J given a density ρ0, is the
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Figure 5.2: (q ≡ J) Theoretical density profiles associated to different cur-
rent fluctuations for ρ0 = 0.3. Below the dashed green line corresponding
to the critical current |Jc| = 1.52885 the profiles stop being flat and the
traveling wave profiles emerge

correponding complementary optimal profile associated to the same value of
J for a density 1− ρ0, i.e.

ω0(x; ρ0) = 1− ω0(x; 1− ρ0). (5.28)

The above relation implies via Eq. (5.17) that an optimal profile travels with
the same velocity of its complementary profile but in opposite direction

v0[ω0(x; ρ0)] = −v0[ω0(x; 1− ρ0)]. (5.29)

In the particular case of ρ0 = 1/2, any profile and its complementary are the
same. Thus, due to Eq. (5.29) the average velocity for the optimal profiles
with ρ0 = 1/2 is null. For this particular density, the configurations in the
time-dependent regime have a well defined structure given by Eq. (5.16)
which does not move in average. This can be observed in figure 5.1 where
the evolution of a typical configuration above and below the critical current
is displayed for ρ0 = 0.3, 1/2, 0.7. Notice that for |J | < |Jc| there is a well
defined structure which travels in opposite velocities for ρ0 = 0.3 and 0.7
and which does not move when ρ0 = 1/2. Furthermore, by replacing ρ0 by
1−ρ0, ω0(x) by 1−ω0(x) in Eq. (5.13) and using Eqs. (5.28)-(5.29), we get
that the LDF, G(J), is the same for a density ρ0 and 1− ρ0,

G(J ; ρ0) = G(J ; 1− ρ0). (5.30)

Hence, given a external field it is enough to compute the LDF for ρ0 ∈
[0, 1/2].
To determine the time-dependent optimal profile we proceed as indicated at
the end of Sec. 5.3. The profiles obtained for ρ0 = 0.3 versus J are shown
in figure 5.2. We can see how for |J | < |Jc| = 1.52885 the profile stops
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Figure 5.4: (q ≡ J) Left: Large Deviation Function for ρ0 = 0.3 and ρ0 = 0.7.
They are the same in virtue of Eq. (5.30). Right: LDF for ρ0 = 1/2. For the
three densities the traveling profiles enhance the probability for |J | < |Jc|
(solid red line) with respect to the flat profiles (dashed black line)

being flat and becomes a travelling wave. One obtains the same profiles for
J < 0 due to the invariance of them under the current sign. In figure 5.3
we show the velocities at which the travelling profiles cheking how they are
opposite for ρ0 = 0.3 and 0.7 and null for ρ = 1/2 (Eq. (5.29)). Once we
have calculated the profile and the constant velocity at wich it moves, we
use it in Eq. (5.13) to get G(q), see figure 5.4. We see how the LDF is the
same for ρ0 = 0.3 and 0.7 (Eq. (5.30)) and how the GC symmetry (5.18)
holds. As expected, G(q) is maximum (null) for the stationary value of the
current 〈q〉 = σ[ρ0]E.
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Figure 5.5: Top: Skecth of the weakly assymetric exclusion process with a
weak external field, E, to the right

5.5 Numerical results for the 1D-WASEP

We have tested the theoretical predictions of the previous section with nu-
merical simulations on a ring with L sites with P = Lρ particles for an
external field E = 10 to the right, see figure 5.5. Unlike the simple sym-
metric exclusion process (SSEP), where each particle attempts to jump to
an empty site to its right or to its left at rate 1/2, in the WASEP (e.g.
with a external field, E, to the right) the rates become r+ = 1/2 + E/2L
to the right and r− = 1/2 − E/2L to the left. Standard simulations allow
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Figure 5.6: (N ≡ L) Legendre transform of the LDF, µ(λ). Left: Measured
µ(λ) for ρ0 = 0.3 and increasing L, together with the MFT result (solid
red line) and the Gaussian approximation (dashed blue line). Right: Same
results for ρ0 = 1/2

us to explore very moderate current fluctuations around the average. For
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Figure 5.7: (N ≡ L) Left: Measured time integrated current q as a function
of λ for ρ0 = 0.3 and increasing L, together with the analytical prediction
base on the MFT. Right: Same results for ρ0 = 1/2

that reason, we implemented a direct continuous-time algorithm to measure
large deviations in many particle systems [42]. This method (see appendix
B), which is an extension of the already mentioned discrete-time algorithm
[41], is based on a modified dynamics so that the rare events responsible of
the large deviation are no longer rare, and requires the simulation of mul-
tiple clones of the system. Using this method, we measured the Legendre
transform of the current LDF, µ(λ), for L = 8, 16, 32 and 64 for ρ0 = 0.3 and
0.5. In the same way as in Ref. [39], we replaced in our program the rates
1/2±E/2L by exp[±E/L]/2 in order to avoid negative rates for small sizes.
As λ is our input parameter in our simulations, we are going to work from
now on in λ − space instead of J − space. The results for µ(λ) are shown
in figure 5.6. We observe the convergence to the theoretical prediction with
the system size. For L = 64, there is a perfect agreement with the theory.
Moreover, the GC symmetry (5.19) holds in the whole current range. To get
these results we performed a large number of stead-state simulations of long
duration τ > L2. As well as the LDF, we also meausured the time integrated
current J versus its conjugated parameter λ, see figure 5.7. It is remark-
able to see how the dependence of J respect to λ becomes non-linear for the
time-dependent regime. We see again a good agreement as the size of the
system increases. We also measured the average velocity corresponding to a
given current fluctuation by fitting the motion center of mass during small
time intervals ∆t to a ballistic law, xCM (t+ ∆t)−xCM (t) = vt. The result-
ing velocities for ∆t = 200 are displayed in figure 5.8, where once again the
concordance with the theory becomes very good for L = 64. Notice again
how the non-linear dependence of the velocity with the current emerges for
the time-dependent regime for ρ0 = 0.3 and how is null for the whole current
interval when ρ0 = 1/2.
To conclude our numerical analysis, we measured the profiles associated to
a given current fluctuation. Because of the periodicity of the system, if we
average the resulting configurations without taking into account their move-
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Figure 5.8: (N ≡ L) Left: Measured velocity as a function of λ for ρ0 = 0.3
and increasing L, together with the MFT result. Right: Same results for
ρ0 = 1/2

ment, we do not observe any structure but the flat one. For that reason, it
is necessary to average the configurations around their instantaneous cen-
ter of mass above mentioned. To do that, we consider the system as a 1D
ring embeded in two-dimensional space, and compute the angular position
of the center of mass, shifting it to the origin before averaging. One has to
be aware that this way of averaging yields for the time-independent regime
a spurious structure equivalent to averaging random profiles around their
(random) center of mass. This spurious structure is independent of J and
can be subtracted in the subcritical region (J > |Jc|). On the other hand,
for the time-dependent regime, the resulting structure is much more pro-
nounced due to the appearance of the traveling wave. In the left panel of
figure 5.9 we show for ρ0 = 0.3 the profiles associated to supercritical current
fluctuations (|λ + 10| < 7.2802). For L = 64 the simulated profile fits very
well with the theoretical one. In the right panel we display the measured
profiles for different values of λ appreciating the appearance of the traveling
wave for currents below the critical one. In figure 5.10 we show the same as
the previous figure but for ρ0 = 1/2. We find again a very good agreement
for the travelling profiles for L = 64 (left panel). In the right panel the emer-
gence of this travelling wave for supercritical currents (|λ+ 10| < 7.7796) is
displayed.
It is worth showing how the optimal time-dependent profiles are invariant
under the current fluctuation sign, i.e. ω0(x; J) = ω0(x;−J), or equivalently,
ω0(x;λ) = ω0(x;−λ− 2E) (see figure 5.11) reflecting the GC symmetry. In
the left panel of figure 5.11 this invariance is shown for ρ0 = 0.3, where the
profile of a given current fluctuation ω0(x;λ) overlap the profile associated
to the opposite current ω0(x;−λ − 2E). This invariance is also shown for
different current fluctuations for ρ0 = 1/2, see right panel of figure 5.11.
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Figure 5.9: (, N ≡ L) Left: Time-dependent profiles for ρ0 = 0.3 and differ-
ent λ and increasing L, and MFT predictions. Right: Measured profiles as
a function of λ for L = 64. Profiles are flat up to a critical current where a
travelling wave emerges
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Figure 5.10: (N ≡ L)Left: Time-dependent profiles for ρ0 = 1/2 and differ-
ent λ and increasing L, together with the MFT predictions. Right: Measured
profiles as a function of λ for L = 64. Profiles are flat up to a critical current
where a travelling wave emerges

5.6 Periodic two-dimensional diffusive system

It is also insteresting to study whether higher dimensional systems also ex-
hibit a dynamical phase transition for large enough current fluctuations.
If that is the case, another interesting issue is to see whether there is an
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Figure 5.11: (N ≡ L) Left: Measured profiles associated to different current
fluctuations ω0(x;λ) and their opposite fluctuation ω0(x;−λ−2E) for L = 64
and ρ0 = 0.3. Right: Same results for ρ0 = 1/2

extension of the Isometric Fluctuation Relation (IFR), already derived in
chapter 4 for time-independent optimal profiles. Therefore, we now proceed
to study the probability of the time-averaged integrated in a two dimesional
diffusive system with periodic boundary conditions. Here, the total density
is a conserved quantity ∫

Λ

ρ(r, t)dr = ρ0 (5.31)

where Λ ∈ [0, 1]× [0, 1]. According to the MFT described in chapter 1, the
LDF of the space- and time- integrated current, J = 1

τ

∫ τ
0
dt
∫

Λ
j(r, t)dx, is

given by Eq. (1.14), which for a two-dimensional driven diffusive system
(where Q[ρ] = −D[ρ]∇ρ) reads

G(J) = lim
τ→∞

1
τ

max
ρ(r,t),j(r,t)

{
−
∫ τ

0

dt

∫
Λ

dr
(j(r, t) +D[ρ]∇ρ−Eσ[ρ])2

2σ[ρ]

}
,

(5.32)
Again, the optimal density profile associated to small current fluctuations
away from the stationary current, 〈J〉 = σ[ρ]E, is still the stationary flat one
ρ0(r, t; J) = ρ0. Hence, we have that Eq. (5.32) turns into

Gflat(J) = − (J−Eσ[ρ0])2

2σ[ρ0]
. (5.33)

We now may ask if one could increase the probability of observing a given
J considering time-dependent profiles. Applying again, in a similar way as
in 1D, a spatio temporal periodic perturbation to the stationary solution
and studying the local stability of it, we get that the flat profile becomes
unstable if the following inequality is satisfied

8π2D2[ρ0]σ[ρ0] + (|E|2σ2[ρ0]− |J|2)σ′′[ρ0] < 0, (5.34)
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where σ′′ denotes the second derivative. The inequality (5.34) defines a
critical current for the instability to dominate,

|Jc| =

√
8π2D2[ρ0]σ[ρ0]

σ′′[ρ0]
+ |E|2σ2[ρ0]. (5.35)

Thus, getting into the time-dependent regime only depends on the magnitude
of the current fluctuations and the magnitude of the external fields and not
on their respective orientations. The form of the perturbation beyond the
critical value suggests a fixed non-flat profile moving at constant velocity,

ρ(r, t; J) = ω(r− vt; J). (5.36)

Due to the continuity equation, ∂tρ(r, t) = ∇ · j(r, t), the current field then
is

j(r, t; J) = vω(r− vt) +ϕ(r− vt), (5.37)

being ϕ(r− vt) a free divergence vector field.

5.7 IFR for periodic time-dependent optimal
profiles

In this section we show how for time-dependent density and current fields
with a travelling structure given by Eqs. (5.36) and (5.37), the IFR still
holds. This means an extension of its validity to time-dependent optimal
profiles. To do that, we have to make another hypothesis which is to assume
that the free divergence vector field ϕ(r − vt) of Eq. (5.37) is constant.
Hence, in virtue of the continuity equation, the current field (5.37) then
reads

j(r, t; J) = J− vρ0 + vω(r− vt; J). (5.38)

In the sequel we drop the dependence of ω(r−vt; J) and j(r, t; J) on J from
the notation. With these fields (Eqs. (5.36) and (5.38)), the LDF (5.32)
takes the form

G(J) = − min
ω(r),v

∫
Λ

dr
2σ[ω]

[J− vρ0 + vω(r) +D[ω]∇ω(r)− σ[ω]E]2, (5.39)

where we have dropped the time dependence (r− vt→ r) because if F (r) is
an arbitrary periodic function with period 1 in all directions, it then holds
that

∫ τ
0
dt
∫

Λ
F (r − vt)dx = τ

∫
Λ
F (r)dr. Expanding the square we have

a null contribution of the linear terms in ∇ω due again to the periodicity.
Taking finally into account that

∫
Λ
ω(r)dr = ρ0, Eq. (5.39) reads

G(J) = − min
ω(r),v

[∫
Λ

dr(X[ω] + (∇ω)2Y [ω])
]

+ J ·E, (5.40)

where

Y [ω] =
D[ω]2

2σ[ω]
(5.41)
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and

X[ω] =
[J− v(ρ0 − ω)]2

2σ[ω]
+
|E|2σ[ω]

2
. (5.42)

By performing the variational problem around ω(r) and v, the resulting
differential equation for the optimal profile ω0(r) is

(∇ω0)2 =
(
∂ω0

∂x

)2

+
(
∂ω0

∂y

)2

= F [ω0] (5.43)

where
F [ω0] ≡ (X[ω0]− C1 − C2ω0)/Y [ω0], (5.44)

being C1 and C2 constants of integration. The optimal velocity is given
implicitely by

v0 = −J

∫
Λ

dr
(ω0 − ρ0)
σ[ω0]∫

Λ

dr
(ω0 − ρ0)2

σ[ω0]

. (5.45)

Remarkably, as the optimal velocity is proportional to J, the optimal profile
solution of Eq. (5.45) depends exclusively on the magnitude of J via |J|2,
and not on its orientation respect to the external field E. Consequently, all
the isometric current fluctuations characterized by a constant |J| will have
the same associated optimal profile ω0(r; J) = ω0(r; |J|), independently of
weather the current vector J points along the external field, against it, or
along any arbitrary direction. This invariance of the optimal profile under
current rotations has important consequences at the level of symmetries of
the current distribution, because it can be used in Eq. (5.13) to relate in a
simple way the LDF of any pair of isometric current fluctuations J and J′,
with |J| = |J′|

G(J)−G(J′) = |E||J|(cos θ − cos θ′), (5.46)

where θ and θ′ are the angles formed by vectors J and J′, respectively, with
the constant external field vector E. In this way, we extend the previously
(see chapter 4) introduced IFR [10] to time-dependent density profiles. The
IFR (5.46) can be rewritten in terms of the probability Pτ (J) of observing
a current J averaged over a long time τ as

lim
τ→∞

1
τ

ln
[
Pτ (J)
Pτ (J′)

]
= E · (J− J′). (5.47)

Notice that the IFR is also present in a trivial way for the time-independent
regime via Eq. (5.33), Gflat(J)−Gflat(J′) = |E||J|(cos θ− cos θ′), where the
optimal profiles associated to any current fluctuation are flat.

5.8 Possible solutions for the optimal density
profile

In order to get G(J) for the time dependent-regime, we have to solve for a
given value of J, E and ρ0, Eq. (5.43) together with Eq. (5.45). However,
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Figure 5.12: Skecth of the first possible solution (5.48) to Eq. (5.43). Inset:
Top view where we can appreciate the radial symmetry around (1/2, 1/2)

Eq. (5.43) is a non linear partial differential equation and may have several
solutions. We could find three possibles solutions to analyze.

1. To explore the first possible solution we have to do the change of

variables (x, y)→ (r, θ) where r =
√

(x− 1
2 )2 + (y − 1

2 )2, with (r, θ) ∈
[0, 1/2]× [0, 2π]. This possible solution of Eq. (5.43) has the following
form ∫

dω√
F (ω)

= r; for r < Rc,∀θ

ω(r, θ) = K; for r ≥ Rc,∀θ
(5.48)

where Rc is a given radius and K is a constant such that ω(Rc) = K.
It is easy to check that this kind of solution fullfills Eq. (5.43). This
solution (5.48) has radial symmetry, i.e., ω(r, θ) = ω(r). Figure 5.12
shows a sketch of it.

2. The second possible solution takes the form

ω(x, y) = ω(x); if |x− 1
2 | > |y −

1
2 |

ω(x, y) = ω(y); if |x− 1
2 | ≤ |y −

1
2 |

(5.49)

with (x, y) ∈ [0, 1]× [0, 1]. It is easy to prove that Eq.(5.43) holds and
can be rewritten as

ω′(x)2 = F [ω(x)]; if |x− 1
2 | > |y −

1
2 |

ω′(y)2 = F [ω(y)]; if |x− 1
2 | ≤ |y −

1
2 |

(5.50)
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Figure 5.13: Skecth of the second possible solution (5.50) to Eq. (5.43).
Inset: Top view.

Figure 5.14: Skecth of the second possible solution (5.51) to Eq. (5.43). Left
panel: ω(x, y) = ω(x). Right panel: ω(x, y) = ω(y)

In figure 5.13 a sketch of this kind of solution is displayed.

3. The third possible solution is the wave, i.e., ω(x, y) = ω(x) or ω(x, y) =
ω(y), with (x, y) ∈ [0, 1]× [0, 1]. In this case Eq.(5.43) reads

ω′(x)2 = F [ω(x)] ∀y, or ω′(y)2 = F [ω(y)] ∀x, (5.51)

which is equivalent to solve the 1D problem. In figure 5.14 we show a
sketch of this possible solution.

As we have three possible solutions, we will be guided by the measured
profiles using numerical simulations in order to study analytically the right
solution.
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Figure 5.15: Measured optimal profile for L = 10 averaging configurations
during a long time interval around (xCM , yCM ).

5.9 Results for the 2D-WASEP

In order to check the theoretical predicitions for two-dimensional systems
above derived, we focused on a paradigmatic diffusive system: the 2D weakly
assymetric exclusion process (2D-WASEP) with periodic boundary condi-
tions, where D[ρ0] = 1/2 and σ[ρ0] = ρ0(1 − ρ0). In this case the time-
dependent regime yields for (see Eq. (5.8))

|J| <
√
ρ0(1− ρ0)(|E|2ρ0(1− ρ0)− π2),

meaning that to have a phase transition we need a external field |E| >
π/
√
ρ0(1− ρ0). As Eq. (5.43) has several possible solutions for the optimal

profile, we performed numerical simulations to see how the shape of ω0(r; J)
was. The simulations were carried out in a 2D torus of N = L × L sites
with P = Nρ0 particles. Considering a external field to the right (E =
(Ex, 0)), each particle attempts to jump to an empty site to its right at rate
1/2 + Ex/2L or to its left at rate 1/2 − Ex/2L, whereas in the y-direction
the particles jump up or down at rate 1/2 whenever there is an empty site.
In the same way as in Ref. [39], we replaced in our program the rates
1/2 ± Ex/2L by exp[±Ex/L]/2 in order to avoid negative rates for small
sizes. To measure the profiles associated to a given current fluctuation we
implemented a direct continuous-time algorithm to measure large deviations
in many particle systems [42] (see appendix B). This method, which yields
the Legendre transform of the current LDF, µ(λ) = maxJ[G(J) + λ · J],
being λ the paramter conjugated to J, is based on a modified dynamics so
that the rare events responsible of the large deviation are no longer rare, and
requires the simulation of multiple clones of the system. As λ is the input
parameter in our simulations, we work from now on in λ-space where the
time-dependent regime occurs for

|λ+ E| < |Jc|/σ[ρ0], (5.52)

with |Jc| given by Eq. (5.8).

In order to correctly measure the shape of ωλ(r) in the supercritical regime



5.9 Results for the 2D-WASEP 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

σ2 x C
M
,σ

2 y C
M

|λ+E|

σ2
xCM

σ2
yCM

|λc+E|

L=8,φ=0 rad

L=8,φ=0 rad

L=10,φ=0 rad

L=10,φ=0 rad

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

|λ+E|

σ2
xCM

σ2
yCM

L=10

|λc+E|

φ=0 rad

φ=0 rad

φ=π/4 rad

φ=π/4 rad

φ=π/2 rad

φ=π/2 rad

Figure 5.16: Measured variance in each direction, σ2
xCM and σ2

yCM , as a
function of |λ + E| for a field pointing in the x-direction, i.e., E = (10, 0).
Left panel: Results for increasing L and φ = 0 rad. Right panel: Results for
L = 10 and different orientations, φ, of the current fluctuations with respect
to the field.

(|J| < |Jc|), we averaged the configurations associated to a large fluctua-
tion |λ + E| during a long time interval τ > L2 taking into account their
movement. Therefore we averaged them around their instantaneous center
of mass (xCM , yCM ). If we do not consider this, the structure blurs away
due to the periodicity of the system and we get the flat profile. As occured
in the 1D case, one has to be aware that this way of averaging yields for the
time-independent regime a spurious structure equivalent to averaging ran-
dom profiles around their (random) center of mass. This spurious structure
is independent of J and can be subtracted in the subcritical region (J > |Jc|).
On the other hand, for the time-dependent regime, the resulting structure is
much more pronounced due to the appearance of the traveling profile. In fig-
ure 5.15 we show for ρ0 = 0.3, L = 10 and E = (10, 0) the profile associated
to a supercritical current fluctuation with |λ + E| = 2 pointing along the
field direction, i.e., λ = (−8, 0). Nevertheless, this way of measuring may be
misleading because we actually have to average the profiles, for an external
field pointing along the x-direction, around (1/2, yCM ) since the structure
we get taking into account xCM is spurius. This can be shown by measuring
the variance of the center of mass in each direction over many configurations
for a given fluctuation, i.e.,

σ2
yCM = 〈y2

CM 〉 − 〈yCM 〉2 = 〈(
L∑
i

yCMi
/L)2〉 − 〈

L∑
i

yCMi
/L〉2, (5.53)

where yCMi
is the center of mass of the i-th column (recall N = L-rows ×

L-columns), and

σ2
xCM = 〈x2

CM 〉 − 〈xCM 〉2 = 〈(
L∑
i

xCMi
/L)2〉 − 〈

L∑
i

xCMi
/L〉2, (5.54)
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where xCMi is the center of mass of the i-th row. Using the method above
described, with E = (10, 0), ρ0 = 0.3 and 2 × 105 clones, we measured this
variance for different system sizes (N = 8× 8, 10× 10), and different orien-
tations of the current respect to the field (φ = 0, π/4, π/2 rad) for L = 10,
see figure 5.16. We can observe how σ2

yCM decreases as |λ + E| diminishes
and how this change is more pronounced for increasing L, see left panel of
figure 5.16, meaning that a well defined structure in the y-direction is formed
below the critical current (|λc + E| = |Jc|/σ[ρ0]). However, σ2

xCM remains
constant for the whole current interval, which means that no structure is
formed in that direction. The behaviour is the same independently of φ, see
right panel of figure 5.16, so the travelling profile has only structure in the
perpendicular direction to the field (y-direction) no matter the orientation
of the current with respect to the field is. Hence, the right way of averaging
the configurations is around (1/2, yCM ), namely around the center of mass
of the coordinate perpendiacular to the field.

The exclusive dependence of the optimal demsity profile on the magnitude
of the current, |J|, and on the perpendicular coordinate to the field, i.e.,
ω0(x, y; J) = ω0(y; |J|), allow us to simplify Eqs. (5.43) and (5.45) into the
1D-WASEP problem (see Sec. 5.4)

X[ω0]− ω′0(y)2Y [ω0] = C1 + C2ω0. (5.55)

In λ-space, the exclusive dependence of the optimal profile on |J| and on the
y-coordinate (if E points along the x-direction), turns into

ω0(x, y;λ) = ω0(y;λ) = ω0(y; |λ+ E|).

In figure 5.17 we show the measured profiles for ρ0 = 0.3, E = (10, 0) and
N = 10 × 10 with 2 × 105 clones for a current fluctuation |λ + E| = 2 and
different rotation angles φ with respect to the external field E. This cur-
rent fluctuation belongs to the time-dependent regime because |λ + E| =
2 < |λc + E| = 7.2802. Therefore we observe that the profiles, which were
correctly averaged, i.e. around (1/2, yCM ), have a travelling-wave form. We
can appreciate how they remain invariant independently of φ how they only
have structure in the y-direction.

We now focus on the Legendre transform of the current LDF. One the one
hand, the IFR (5.46) implies for µ(λ) to satisfy µ(λ) = µ[Rφ(λ + E) − E],
∀φ ∈ [0, 2π], being Rφ a rotation in 2D of angle φ. Notice that for φ = π we
recover the GC symmetry, µ(λ) = µ(−λ− 2E). Thus the µ(λ) fullfills

µ(λ) = µ(|λ+ E|)

On the other hand, as the 2D optimal density profiles are the same as in one
dimension (taking |J| = |J |), the 2D µ(λ) reads

µ(λ) = µ(|λ+ E|) = µ1D(|λ+ E|)

Hence, the IFR implies for µ(λ) and ωλ(r) to be constant along the manifold
|λ + E|. The invariance of the profile along this manifold has been already
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Figure 5.17: Measured optimal profiles during a long time interval averaging
configurations around (1/2, yCM ). Left panel: Measured optimal profile for
|λ+E| = 2 and φ = 0 rad, corresponding to a current fluctuation parallel to
the field. Right panel: Measured optimal profile for |λ+E| = 2 and φ = π/2
rad, corresponding to a current fluctuation perpendicular to the field.
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Figure 5.18: Legendre transform of the current LDF as a function |λ + E|
for different system sizes, together with the MFT prediction. We observe
how for increasing L the data accumulate to the value predicted.

shown in figure 5.17. Hence, we proceed to check numerically the IFR by
measuring µ(λ) as a fuction of |λ + E| for different angles. Firstly, we
measured µ(λ) for φ = 0 rad. The numerical results, together with the
theoretical predicition, are displayed in figure 5.18. We observe how for
increasing L, the data accumulate to the value predicted. Then, we measured
µ(λ) as a fuction of |λ + E| for different angles for the maximum size we
could reach (L = 12 and 5.12 × 105 clones). We show these results in
figure 5.19, where we can observe that µ(λ) remains constant for a given
current fluctuation, |λ + E|, independently of the angle φ with respect to
the external field. These results show that the IFR holds even in the time-
dependent regime. We can observe weak violations of the IFR for large
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Figure 5.19: Legendre transform of the current LDF as a function |λ + E|
for L = 12, 5.12× 105 clones and different angles
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Figure 5.20: Legendre transform of the current LDF as a function |λ+E| for
L = 12, φ = 0 rad and different number of clones. The solid line corresponds
to the MFT prediction.

currents orthogonal to the field (φ = π/2 rad). These weak violations are
again expected due to the small value of L. Recall that a prerequisite for the
IFR to hold is the existence of a macroscopic limit. This is also confirms that
the time-dependent optimal density profiles adopt a traveling wave form in
order to sustain a large current fluctuation. It is remarkable that, in order
the simulations to converge for large sizes in the time-dependent regime, we
need to use a huge number of clones in the algorithm (see appendix B). In
figure 5.20 the measured µ(λ) as a function of |λ+E| for L = 12 and different
number of clones is displayed. We can appreciate that 5.12× 105 clones are
necessary in order to converge to the clone-free regime. This can be also
seen in figure 5.21, where the measured value of µ(λ) for several |λ+E| as a
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Figure 5.21: Left panel: Legendre transform of the current LDF as a function
of the number of clones for L = 8, φ = 0 rad and several |λ+ E|. The solid
lines correspond to the MFT prediction. Right panel: Same results for
L = 12.

function of the number of clones and different system sizes is displayed. We
observe that the larger the system is, the more number of clones we need.
For that reason, we could simulate a maximum size of N = 12 × 12 with
5.12× 105 clones.

5.10 Conclusions

In this chapter we have studied how time-dependent profiles enhance the
probability of observing a large current fluctuation. This gives rise to a dy-
namical phase transition between a time-independent and a time-dependent
regime. We have analyzed it for both one and two dimensional systems.
In the former case, we have measured the optimal density profiles for the
periodic one-dimensional weakly assymetric exlusions process (WASEP). In
this case, for a large enough value of the field, there is a critical current |Jc|
below which a traveling wave emerges. This time-dependent profile moves
at constant velocity which we could also measure following the movement of
the center of mass of the system. We found a very good agreement with the
theoretical predictions based on the previous calculations done in Ref [39].
It is worth noting that these profiles are invariant under the current sign as
predicted by the Gallavotti-Cohen symmetry. We have also measured the
Legendre transform of the LDF, and again our numerical results fit very well
with theory obtained from the MFT. These results suggest that a traveling
wave is in fact the most favorable time-dependent profile in the supercrit-
ical regime. This observation may greatly simplify general time-dependent
calculations, but the question remains to whether this is the whole story
or other, more complex solutions may play a dominant role for even larger
fluctuations. In any case, it seems clear that rare events call in general for
coherent, self-organized patterns in order to be sustained
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In the two dimensional case, particularly, in the periodic 2D-WASEP, we
have observed that there is again a dynamical phase transition below a crit-
ical current fluctuation |Jc|. It is surprising that the time-dependent regime
emerges for magnitudes of the current fluctuation such that |J| < |Jc|, and is
independent of its orientation with respect to the external field E. According
to the theory, the optimal time-dependent density profiles could in princi-
ple have several possible shapes. Nevertheless, the numerical results show
that they are travelling waves with structure only along the perpendicular
direction to the field. These profiles are invariant under current rotations
and depend only on the magnitude of the current fluctuation, proving that
the IFR holds even in the time-dependent regime. Actually, we have also
theoretically derived the IFR (see Eq. (5.47)) for a periodic d-dimensional
system assuming periodic time-dependent optimal current and density fields
of the form given by Eqs. (5.36) and (5.38). Our numerical results strongly
support that the system adopt these kind of time-dependent profiles in order
to sustain a large current fluctuation.



Chapter 6

Infinite family of
second-law-like inequalities

6.1 Introduction

As we have so far discussed, the probability distribution function for an out of
equilibrium system is very hard to compute. However, as we shall see in this
chapter, it may sometimes be approximated by a physically motivated ‘trial’
distribution [29]. A particularly interesting case is when a driven system
(e.g. active matter) is approximated by a thermodynamic one. We show here
that every set of trial distributions yields an inequality playing the role of a
generalization of the Second Law. The better the approximation, the more
constraining the inequality becomes: this suggests a criterion for its accuracy,
as well as an optimization procedure that may be implemented numerically
and even experimentally. The fluctuation relation behind this inequality –a
natural and practical extension of the Hatano-Sasa theorem– does not rely
on the a priori knowledge of the stationary probability distribution.

A recurring strategy applied to out of equilibrium systems is to represent
the complex energy and dissipation sources by a bath with ‘good’ equilib-
rium thermal properties. Two examples are the Edwards ‘thermodynamic’
approach to granular matter [57], and recent developments for active matter
(see Ref. [58, 59, 60] for a recent examples), in which the combination of
rapid energy bursts and friction is mimicked by a thermal bath. The aim of
such pursuits is not necessarily to make the problem more easily solvable,
but rather to cast it in a form that provides thermodynamic intuition and
constraints. In this chapter we derive some simple relations that help make
this mapping more systematic and controlled. The method is based on the
use of inequalities of the form of the Second-Law, associated to each guess
for the distribution function.

In these last two decades there has been a development of a family of
relations valid for out of equilibrium systems [61], starting from the Fluc-
tuation Theorem in its various forms [8, 9, 12, 10], the Jarzynski [25] and
Crooks [26] relations. A later and extremely simple result is the Hatano-

89
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Sasa equality [27]1, which applies to systems that are continuously driven
by time-dependent potentials inducing currents, so that even the station-
ary regimes are out of equilibrium. Their result is essentially a version of
Jarzynski equality and the Second Principle, but with the energy replaced
by the logarithm of the stationary distribution.

In this chapter we derive an extension of the Hatano-Sasa theorem for
Markovian systems, which has the practical advantage that it does not rely
on the a priori knowledge of the stationary probability distribution. Instead,
arbitrary ‘trial’ smooth distributions can be used, thus allowing one to treat
systems whose stationary distribution is either (i) too difficult to calculate,
as generically occurs in out of equilibrium systems with many degrees of
freedom, or (ii) unwieldy, as for instance in the deterministic limit, where
the non-equilibrium steady-state distributions are nonzero only over a fractal
support. Our approach leads in particular to an inequality that can be used
as a variational principle for improving, in a controlled way, physically mo-
tivated approximations to non-equilibrium steady-state distributions. The
optimization procedure might be implemented numerically or even exper-
imentally. As an illustration, we numerically approximate the stationary
distribution of a paradigmatic non-equilibrium driven system with many de-
grees of freedom, the Simple Symmetric Exclusion Process in one dimension.

Just as in the case of the Hatano-Sasa equality [27, 69, 70, 71], there is
a ‘dual’ (or adjoint) ‘backward’ process that yields, when compared to the
forward process of the original dynamics, a trajectory-dependent quantity
playing the role of an entropy production, that satisfies a form of Fluc-
tuation Theorem. For systems described by a Langevin / Fokker-Planck
dynamics, the dual ‘backward’ process is obtained easily, since it is given
by a Langevin dynamics involving only additional a priori known external
forces derived from the trial function itself. This remarkable property offers
the possibility to explore numerically or even experimentally the interest-
ing consequences of the associated detailed fluctuation relations, valid for
systems which spontaneously relax to non-equilibrium steady-states.

The organization of the chapter is as follows. In Sec. 6.2 we review the
derivation of the Hatano-Sasa fluctuation theorem [27]. After motivating
a more general approach we provide in Sec. 6.3.1 a first derivation of the
integral version of our fluctuation relation along the same lines of the orig-
inal Hatano-Sasa derivation. In Sec. 6.3.2 we give a second, more general
derivation, which yields the detailed version of the theorem (containing the
integral version as a particular case), and in Sec. 6.3.3 we discuss the phys-
ical interpretation of the dual dynamics behind it. In Sec. 6.3.4 we discuss
a family of inequalities that play the role of the Second-Law. In Sec. 6.4 we
propose an optimization procedure for approximating steady-state distribu-
tions. As an example, we apply it to the paradigmatic symmetric exclusion
process in one dimension. In Sec. 6.5 we give conclusion and perspectives.

1see also Y. Oono, and M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998) and
S. Sasa and H. Tasaki, J. of Stat. Phys. 125, 125 (2006).
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6.2 The Hatano-Sasa relation

Consider a driven system with dynamic variables x with time-dependent
external fields α(t) (e.g. shear rate, temperature gradient, etc), with dis-
tribution ρ(x, t) evolving through a generator Hα:

ρ̇(x, t) = −Hα(t) ρ(x, t). (6.1)

Let us assume the dynamics admit, for every fixed value of the parameter
α, a non-equilibrium steady state with distribution

ρss(x;α) = e−φ(x;α) ; Hαρss(x;α) = 0. (6.2)

The Hatano-Sasa [27] result may be written〈
e−

R τ
0 dt

∂φ(x;α)
∂α α̇

〉
ρss(x;α1)

= 1 (6.3)

which implies, by virtue of Jensen’s inequality:〈∫ α(τ)

α1

∂φ(x;α)
∂α

dα

〉
ρss(x;α1)

≥ 0. (6.4)

The average 〈•〉 is over all trajectories x(t) of duration τ , starting with an
initial configuration chosen with the distribution ρss(x;α1) with α1 ≡ α(0).
We shall refer to (6.3) and (6.4) as the Hatano-Sasa equality and inequality,
respectively. In the particular case in which the stationary states ρss(x;α)
are Gibbs states we have:

ρss(x;α) =
e−βE(x,α)

e−βF (α)
;φ(x;α) = β[E(x, α)− F (α)] (6.5)

and the Hatano-Sasa equality and inequality become the Jarzynski equality
and the Second Law, respectively.

The proof is extremely simple. We start by decomposing the evolution
in a large number M of time steps and compute, in operator (bra-ket) for-
malism, the quantity:

〈 −|e− τ
MH(αM ) ρ̂ss(αM )

ρ̂ss(αM−1)
...
ρ̂ss(α3)
ρ̂ss(α2)

e−
τ
MH(α2)

ρ̂ss(α2)
ρ̂ss(α1)

e−
τ
MH(α1)|ρss(α1)〉 = 〈−|ρss(αM )〉 = 1 (6.6)

We denote ρ̂(α) the operator such that 〈x|ρ̂(α)|x′〉 = δ(x− x′) ρ(x;α), and
|ρ(α)〉 the state such that ρ(x;α) ≡ 〈x|ρ(α)〉. The state |−〉 corresponds to
the flat distribution 〈x|−〉 = 1; i.e. the left eigenvector of Hα having zero
eigenvalue.

Now, using that the time step τ/M is small, we can write

ρss(x;αk+1)
ρss(x;αk)

≈ e−
τ
M

∂φ(x;αk)
∂α α̇. (6.7)
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Therefore (6.6) may be written as Eq. (6.3), and the result is proven. The
exponential of the term

[
−
∫
dt ∂φ(x;α)

∂α α̇
]
, a functional of the trajectory, is

thus weighted in (6.3) with the probability of each dynamical trajectory x(t)
such that x(0) is sampled from ρss(x, α1).

In the Hatano-Sasa inequality (6.4), the equality holds in the quasi-
stationary limit, when the probability distribution may be assumed to be,
at each time t, the stationary one ρss(x;α) corresponding to the value of α
at that time: 〈∫

∂φ(x;α)
∂α

dα

〉
=
∫
dx dα e−φ(x;α) ∂φ(x;α)

∂α

=
∫
dx[ρss(x;αM )− ρss(x;α1)] = 0. (6.8)

This result is the generalization of the entropy change S(αM ) − S(α1) =
〈
∫ τ

0
dt ẋ·∇φ〉, under reversible transformations, with S(α) ≡ −

∫
dxρss(x;α) ln ρss(x;α)

the generalized Shannon entropy [27].

6.3 A more general approach

The quantity φ(x;α) = − ln ρss(x;α) plays a role similar to the one of the
energy function in a system with detailed balance, but it may become in-
tractable as soon as we consider a driven system. A first difficulty is that it
is in general impossible to obtain analytically. This is aggravated by the fact
that in order to use (6.3) and (6.4), we need to know ρss also where it is ex-
ponentially small. Another, more serious problem, arises from the fact that
the function φ(x;α) may only be small in a limited domain, and very large
everywhere else. An extreme form of this situation arises in the deterministic
limit. Consider a noisy dynamics with a (Hoover [63]) thermostat:

q̇i = pi

ṗi = −∂H∂qi + γ(t)pi︸ ︷︷ ︸
thermostat

− fi(q)︸ ︷︷ ︸
forcing

− ηi(t)︸︷︷︸
noise

(6.9)

where η(t) is a Gaussian white noise of variance ε. Energy is conserved
provided γ(t) = (f+η)·p

p2 . When there is forcing f 6= 0, the stationary dis-
tribution is not flat. Indeed, in the limit of zero noise ε → 0, ρss has in
fact fractal support, and φ(x;α) is infinity almost everywhere on the energy
surface! If we attempt to apply the Hatano-Sasa inequality for a small noise
amplitude in a process with varying α, because the region on the energy shell
where φ(x;α) is small is sparse and strongly dependent on α, almost all of
the process takes place in regions in which φ(x;α) is large: the trajectories
are very far from quasi-stationary and the Hatano-Sasa inequality, though
true, becomes useless.

A similar situation arises when the potential is rapidly oscillating, as
in vibrated granular matter – which we may think of as subjected to an
oscillating gravity field. Here again, the system is always very far from the
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stationary situation corresponding to any instantaneous value of the field,
because it does not have the time to catch up with the oscillating stationary
measure. And yet, we still observe that rapidly vibrated granular matter
behaves in a manner that resembles motion in contact with a heat bath, and
would expect some form of Second Law to apply in that case.

With the above motivations, we look for a more flexible approach. In-
stead of working with the true stationary distributions ρss(x;α), we choose
an arbitrary family of smooth functions as reference states, ρref(x;α), and
the corresponding φref(x;α) ≡ − ln ρref(x;α). In the following we derive
an extension of the Hatano-Sasa integral and detailed fluctuation relations,
using only these smooth functions.

6.3.1 Integral fluctuation theorem

In order to obtain a relation, we go through the same steps as in Sec. 6.2.
Starting from the initial distribution φref(x;α1), we compute, just as in
(6.6):

〈 − |e− τ
MH(αM ) ρ̂ref(αM )

ρ̃ref(αM−1)
...
ρ̂ref(α2)
ρ̃ref(α1)

e−
τ
MH(α1)|ρref(α1)〉

= 〈−|ρref(αM )〉 = 1, (6.10)

but with ρ̃(α) the operator associated with the state evolved by one time-step
e−

τ
MHα |ρ(α)〉. We can thus write, for large M :

ρ̃ref(x;α)
ρref(x;α)

≈ e τM ϕ(x;α) (6.11)

with
ϕ(x;α) ≡ − 1

ρref(x;α)
{Hα ρref(x;α)} (6.12)

Here Hα acts over the function ρref(x;α), so that it is in fact ϕ(x;α) =
−〈x| 1

ρ̂ref(α)Hα|ρref(α)〉. We hence have:

ρref(x;αk+1)
ρ̃ref(x;αk)

≈ e− τ
M

∂φref(x;αk)
∂α α̇− τ

M ϕ(x,α) (6.13)

and we obtain a new equality, valid for all sets φref(x;α)〈
e−

R
dt

∂φref(x;α)
∂α α̇ −

R
dt ϕ(x;α)

〉
ρref(x;α1)

= 1. (6.14)

which is the first main result of this chapter. Defining

Y ≡
∫
dt
∂φref(x;α)

∂α
α̇ +

∫
dt ϕ(x;α) (6.15)

it can be simply written as 〈e−Y〉 = 1. This integral fluctuation theorem is
valid for any protocol α(t) and arbitrary times τ , as the Hatano-Sasa equality
— to which it reduces if the reference state is chosen as ρref(x;α) = ρss(x;α)
— but it holds for arbitrary smooth functions ρref [81].

As we shall see, this immediately implies an inequality 〈Y〉 ≥ 0 of the
form of the Second Law.
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6.3.2 Detailed fluctuation theorem

Just as in the case of the Hatano-Sasa relation, the result of Eq. (6.14)
can be alternatively derived as a particular case of a detailed Fluctuation
Theorem. We will use here a procedure that generalizes the one used for
obtaining the detailed fluctuation theorem associated to the Hatano-Sasa
theorem [27, 80, 69, 70, 71, 74].

We are looking for a time-reversed form of the dynamics. Let us start by
a rewriting of (6.10):

〈 − |e− τ
MH(αM ) ρ̂ref(αM )

ρ̃ref(αM−1)
...
ρ̂ref(α2)
ρ̃ref(α1)

e−
τ
MH(α1)|ρref(α1)〉

= 〈ρref(αM )| 1
ρ̃ref(αM−1)

...
ρ̂ref(α2)
ρ̃ref(α1)

e−
τ
MH(α1)ρ̂ref(α1)|−〉

= 〈ρref(αM )|ΠM−1
k=1

[
1

ρ̃ref(αk)
e−

τ
MH(αk)ρ̂ref(αk)

]
|−〉

We may now take the adjoint, in order to reverse time:

〈 −|Π1
k=M−1

[
1

ρ̃ref(αk)
e−

τ
MH(αk)ρ̂ref(αk)

]†
|ρref(αM )〉 =

〈− | Π1
k=M−1

[
1

ρ̂ref(αk)
e−

τ
M {H(αk)+ϕ(αk)}ρ̂ref(αk)

]†
|ρref(αM )〉

= 〈−|Π1
k=M−1

[
e−

τ
MHadj(αk)

]
|ρref(αM )〉

This is a time-reversed dynamics with generator:

[Hadj(α)]† ≡ 1
ρ̂ref(α)

{H(α) + ϕ(α)} ρ̂ref(α) (6.16)

We shall see below that it corresponds in fact to a Langevin process, with a
modified force field (Cfr. Eq. (6.27)).

In terms of the original and the adjoint dynamics, the evolution in a
time-step τ/M is:

P (x′|x;α) ≡ 〈x′|e− τ
MHα |x〉, (6.17)

P adj(x′|x;α) ≡ 〈x′|e− τ
MHadjα |x〉 (6.18)

The construction (6.16) tells us that , for each trajectory T ≡ {x1,x2, ...,xM}
with initial condition chosen with probability ρref(x1;α1), there is a time-
reversed (R) trajectory, with initial condition chosen with probability ρref(xM ;αM ),
and their respective weights are:

P[T ;α] =
M−1∏
n=1

P (xn+1|xn;αn)ρref(x1;α1),

and

[
Padj [T ;α]

]R
=

M−1∏
n=1

P adj(xn|xn+1;αn)ρref(xM ;αM ).
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We thus may define a quantity Ξ[T ;α] associated to each path, having an
interpretation analogous to the entropy production

Ξ[T ;α] ≡ ln
P[T , α]

[Padj [T , α]]R
. (6.19)

In the large M -limit, it becomes

Ξ[T ;α] ≈
∫ τ

0

dt [ϕ(x;α) + α̇∂αφref(x, α)] , (6.20)

It is clear from Eq. (6.19) that in terms of Ξ, there is a detailed fluctuation
theorem:

〈O[T ]e−Ξ[T ,α]〉 = 〈O[T ]e−
R τ
0 dt [ϕ(x;α)+α̇∂αφref(x,α)]〉

=
[
〈O[T ]〉adj

]R
(6.21)

valid for an arbitrary fuctional O[T ] of the trajectory. The averages in (6.21)
are performed with the real forward dynamics in the first term, and with
the time-reversed (R) adjoint dynamics of Eq. (6.18) in the second term.

Equation (6.21) is a very general result. It represents a broad family of
fluctuation theorems with a trajectory dependent ‘entropy production’ of the
form of Eq. (6.20), completely determined by the distributions ρref(x;α).

Clearly, choosing O = 1 in this equation we get the integral fluctuation
relation of Eq (6.14). This detailed fluctuation theorem, which can be used
to derive a variety of Crooks-like relations, is the second main result of this
chapter.

6.3.3 Generalized dual (adjoint) dynamics

In order to give a simple physical interpretation of the dual dynamics let us
now assume that our system is governed by a Langevin equation

ẋ = f(x;α) + ξ(t) (6.22)

with f(x;α) an arbitrary force (conservative or non-conservative), and ξ(t)
a Gaussian uncorrelated noise at temperature T , such that 〈ξ(t)〉 = 0 and
〈ξn(t)ξm(t′)〉 = 2Tδ(t − t′)δnm. To this is associated the Fokker-Planck
process:

dρ

dt
= ∇ · [[T∇− f(x;α)] ρ] = −Hαρ (6.23)

Using Eq. (6.12) ϕ is given in this case by

ϕ = −∇ · f − T∇2φref + T |∇φref|2 + f · ∇φref (6.24)

The expression for a path probability is:

P[T ;α] ∼ e− 1
4T

R τ
0 dt [(ẋ−f(x;α))2+4T ∇·f2 ], (6.25)
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The last term in the argument of the integral comes from the Stratonovich
discretization scheme. Then, using equations (6.19) and (6.15), and time-
reversing in order to obtain the dynamical weight (that is [Pe−Y ]R =

[
[Padj ]R

]R =
Padj), we have,

Padj [x;α] ∼ (6.26)

e−
1

4T

R τ
0 dt [(ẋ+f(x;α))2+4T (ϕ(x,α)−α̇∂αφref(x,α)+∇·f2 )] ∼

e−
1

4T

R τ
0 dt [(ẋ+f(x;α))2+4Tϕ(x,α)+4T ẋ·∇φref(x,α)+2T∇·f ]

where in the last step we have dropped all reference to the boundary term,
irrelevant for our present purposes.

Is there a Langevin equation associated with the weight of Eq. (6.26)?. In
order to answer such a question, we follow a procedure analogous to the one
used recently in Ref. [74] for the standard dual dynamic weight. Plugging
expression (6.24) into Eq. (6.26) leads to a simple expression

Padj [T ;α] ∼ e−
1

4T

R τ
0 dt [(ẋ+f+2T∇φref)

2−2T∇·[f+2T∇φref]].

where we can clearly identify the action of the following Langevin equation
(in Stratonovich scheme):

ẋ = −f(x;α)− 2T∇φref(x;α) + ξ(t) (6.27)

The dual (adjoint) dynamics corresponds to a Langevin process with oppo-
site force, and an additional external potential φref(x;α) which depends on
the choice of ρref.

All the results obtained so far reduce to the Hatano-Sasa results if we
choose ρref = ρss, in which case, ϕ = 0, Ξ becomes the Hatano-Sasa func-
tional YHS =

∫ τ
0
dt α̇∂αφ(x, α), and the extended dual dynamics becomes

the well known (†) standard dual dynamics [15, 27, 69, 70, 71, 80], which
in terms of transition probabilities reads P †(x|x′;α) ≡ P (x′|x;α) ρss(x,α)

ρss(x′;α) ,
as can easily be obtained from Eq. (6.18). The Langevin equation for the
usual Hatano-Sasa dual dynamics (see for instance its derivation in Ref.[74])
coincides with Eq. (6.27) replacing φref by φ = − ln ρss.

Finally it is worth noting that the extended dual dynamics derived above
has the advantage over the standard dual dynamics that all the forces are
known, so that it might be implemented in practice, numerically or even
experimentally, by applying appropriate external fields. It should thus be
possible to verify, numerically or experimentally, the detailed fluctuation
theorem of Eq. (6.19), as well as other extended Crooks-like [26] relations
that easily follow from Eq.(6.19) and concern systems with non-equilibrium
steady-states. It would also be interesting to explore further the implica-
tions of the extended dual dynamics, generalizing the results based on dual
dynamics approaches in Refs. [15, 27, 69, 70, 71, 80]).

6.3.4 Generalizations of the Second Law

As we did in Section 6.2 we use the Jensen’s inequality in Eq. (6.14) to
obtain: 〈∫

∂φref(x;α)
∂α

dα +
∫
dt ϕ(x;α)

〉
ρref(x;α1)

≥ 0. (6.28)



6.4 Introduction 97

The relation is true for arbitrary ρref(x;α), a bad choice only makes the
inequality less constraining. This is the third main result of this chapter
and central formula we will exploit for applications. The function ϕ(x;α)
is a known, well-behaved extensive function of the dynamic variables, which
vanishes if ρref(x;α) = ρss(x;α). For example, for a Langevin / Fokker-
Planck process (6.22) it is given by Eq (6.24).

If at constant α the system is able to converge to a stationary non-
equilibrium regime, the inequality has to hold for large times such that the
initial condition is forgotten. We thus get the stationary-state expectation:

〈ϕ〉ss = −
〈

1
ρref

H ρref

〉
ss

≥ 0 ∀ρref. (6.29)

This inequality is already implicit in the work of Lebowitz and Bergmann [64].
If we define ẇref = −Hwref with wref(t = 0) = ρref, we can rewrite (6.29)
as:

〈ϕ〉ss = −
[
d

dt

∫
dx ρss ln

(
ρss

wref(t)

)]
t=0

= −
[
d

dt
DKL(ρss ‖ wref(t))

]
t=0

≥ 0 (6.30)

by virtue of the general result ḊKL(w1(t) ‖ w2(t)) ≤ 0 valid for all times
t ≥ 0 with w1(t) and w2(t) any two distributions evolving through H [64].
The positively defined Kullback-Leibler distance DKL used above is often
an actor in these problems, see [65, 66, 69, 70, 71, 72, 73].

For a purely Hamiltonian system ḊKL(w1(t) ‖ w2(t)) = 0 independently
of w1 and w2: irreversibility in this case inescapably requires some form of
coarse graining, which this method does not provide. Instead, in the case of
a Langevin process (6.23), a short computation [75] gives:

〈ϕ〉ss = T 〈|∇(φref − φ)|2〉ss ≥ 0, (6.31)

where φ = − ln ρss. We have easy access to the l.h.s. of the above equation
numerically or even experimentally , because we know φref and the dynamics,
but not to the r.h.s.

Let us consider now a system that is perturbed periodically, such as the
granular system described above. Assume further that the system reaches
after a long time a periodic state. We then have:〈∮

∂φref(x;α)
∂α

dα +
∮
dt ϕ(x;α)

〉
≥ 0 (6.32)

where the time integral is over one cycle, in the regime in which the distri-
bution becomes periodic in time. If we make the further simplification that
ρref is constant in time, we get:〈∮

dt ϕ(x;α)
〉
≥ 0 (6.33)

where the dependence of ϕ on α comes from Hα.
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6.4 A variational scheme

The preceding section suggests an iterative variational procedure to optimize
ρref at fixed α:

• Propose a change to ρref(x).

• Compute the new ϕ = −ρref−1Hρref (immediate).

• Run 〈ϕ(x)〉stationary and accept the change if the result is smaller.

The resulting ϕ yields directly a second-law like constraint, which is
optimized. The optimization procedure we propose might be indeed imple-
mented numerically or even experimentally to calculate, for instance, optimal
effective interactions from steady-state measurements [76].

6.4.1 An application

As an illustrative and non-trivial example, we consider the simple symmetric
exclusion process (SSEP), a one dimensional lattice of L sites which are either
occupied by a single particle or empty. A configuration at time t is defined
by the vector of occupation numbers n(t) = (n1(t), ..., nL(t)) (ni(t)=0,1).
Each particle in the bulk independently attempts to jump to an empty site
to its right or to its left site. At the left boundary each particle is injected
at site 1 at rate α and removed from site 1 at rate γ, whereas at the right
boundary particles are injected at site L at rate δ and removed from site L
at rate β.

The choice of the rates α, γ, δ and β corresponds to the system being in
contact with infinite left and right reservoirs at densities ρ0 = α/(α+γ) and
ρ1 = δ/(δ + β) respectively [32]. If ρ0 = ρ1 = ρ the system is in equilibrium
and the distribution is of product form: ρeq(n) =

∏L
i=1 ρ

ni(1 − ρ)1−ni =
e

PL
i=1 µni/(1 + eµ)L, where µ = log(ρ/(1− ρ)) is the chemical potential. As

soon as ρ0 6= ρ1, a current is established, and the problem becomes non
trivial, with long range correlations. The evolution of the probability ρ(n)
of observing a configuration n, is given by the master equation (n+

k = nk+1
and n−k = nk − 1)

∂ρ(n)
∂t

=
L−1∑
k=1

[δnk,1δnk+1,0ρ(..., n−k , n
+
k+1, ...)

+δnk,0δnk+1,1ρ(..., n+
k , n

−
k+1, ...)

−(δnk,1δnk+1,0 + δnk,0δnk+1,1)ρ(..., nk, nk+1, ...)]
+αδn1,1ρ(n−1 , ...) + γδn1,0ρ(n+

1 , ...)
+δδnL,1ρ(..., n−L ) + βδnL,0ρ(..., n+

L)
−(γδn1,1 + αδn1,0 + βδnL,1 + δδnL,0)ρ(n1, ..., nL).

(6.34)

The full measure on the microscopic configurations in the steady state,
ρss(n), may be computed analytically through the so-called matrix method
[6]. Here we propose an approximate form φref(n) =

∑
i hini+

∑
i6=j Jijninj .

Using the master equation, we evaluate ϕ = 1
ρref(n)

∂ρref(n)
∂t (Eq. (6.12)) as:
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ϕ =
L−1∑
k=1

[δnk,1δnk+1,0e
hk−hk+1+

P
j 6=k,k+1 2(Jkj−Jk+1,j)nj

+ δnk,0δnk+1,1e
hk+1−hk−

P
j 6=k,k+1 2(Jkj−Jk+1,j)nj

− (δnk,1δnk+1,0 + δnk,0δnk+1,1)]

+ αδn1,1e
h1+

P
j 6=1 2J1jnj + γδn1,0e

−h1−
P
j 6=1 2J1jnj

+ δδnL,1e
hL+

P
j 6=L 2JLjnj + βδnL,0e

−hL−
P
j 6=L 2JLjnj

− (γδn1,1 + αδn1,0 + βδnL,1 + δδnL,0) (6.35)

We compute the expectation value of this ϕ with the true SSEP dynamics,
and minimize with respect to the [hi, Jij ] using a suitable algorithm [77].
Clearly, for ρ0 = ρ1 = ρ the system is in equilibrium and we have for each
site hi = h = −µ = log((1−ρ)/ρ) and Jij = 0 (see ρeq(n) above). Unlike the
equilibrium case, as soon as ρ0 6= ρ1 we obtain nonzero Jij corresponding to
the long-range correlations characteristic of the stationary non-equilibrium
state, see Figure 6.1. These correlations extend over macroscopic distances
and reflect the intrinsic non-additivity of non-equilibrium systems [32]. The
optimized measure ρopt(n) = e−φopt(n) obtained with the [hi, Jij ] which min-
imize the expectation value of ϕ is not the exact solution of [6], but we have
checked the quality of the approximation by computing expectation values
with this measure: this is most easily done with a Monte Carlo procedure
with ‘energy’ φopt(n). To do that one starts from a random initial con-
figuration n(t = 0) and evolves it with a Metropolis algorithm where the
probability to go from a configuration n to a configuration n′ in a single

jump is W (n→ n′) = min
[
ρopt(n′)
ρopt(n)

, 1
]

(note that there are no reservois in

this calculation). The configuration n′ is the same as the configuration n ex-
cept for the randomly chosen node k which changes its value to n′k = 1−nk.
We then have

ρopt(n′)
ρopt(n)

= exp

(2nk − 1)

hk + 2
∑
j 6=k

Jkjnj

 . (6.36)

Applying this dynamics we measured the steady state density profile ρi ≡
〈ni〉 shown in figure 6.2, and compared it with the analytical result obtained
using the exact stationary state measure ρss(n), which is (see [32]):

〈ni〉 =
ρ0(L+ 1

β+δ − i) + ρ1(i− 1 + 1
α+γ )

L+ 1
α+γ + 1

β+δ − 1
. (6.37)

We also compared with the result obtained assuming local equilibrium con-
sidering no reservoirs at the boundaries and a spatially varying chemical
potential, which is adjusted to maintain the same steady state density pro-
file (6.37). We then have that the local equilibrium measure is ρLE(n) =∏L
i=1 e

−hini/(1 + e−hi), where hi = −µi = log((1 − 〈ni〉)/〈ni〉), with 〈ni〉
given by (6.37). Notice that this local equilibrium measure for ρ0 6= ρ1 turns
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Figure 6.1: Optimized Jij for the SSEP model with open boundaries for
ρ0 = ρ1 (red) and for ρ0 6= ρ1 (blue). Inset: Similar results for the optimized
hi

into the equilibrium measure by doing ρ0 = ρ1. In figure 6.2 we can see
that there is a perfect agreement with the exact analytical results for both
ρ0 = ρ1 and ρ0 6= ρ1, and in this latter case, for the optimized measure and,
very surprisingly, for the local equilibrium measure. We also measured
the two-point correlation function 〈ninj〉c ≡ 〈ninj〉− 〈ni〉〈nj〉 obtaining the
results shown in Figure 6.3. Using again the exact measure ρss(n),one finds
that the analytical prediction in the steady state for 1 ≤ i < j ≤ L is [32]

〈ninj〉c =
−(ρ0 − ρ1)2( 1

α+γ + i− 1)( 1
β+δ + L− j)

( 1
α+γ + 1

β+δ + L− 1)2( 1
α+γ + 1

β+δ + L− 2)
. (6.38)

For large L, introducing macroscopic coordinates i = Lx and j = Ly, this
becomes for x < y, 〈nLxnLy〉c = −x(1−y)(ρ0−ρ1)2/L. As stated in [32], one
may think that these weak, but long range, correlations play no role in the
macroscopic limit. However, they are responsible for a leading contribution
in the variance of a macroscopic quantity such as the number of particles.
As expected, figure 6.3 shows how the Monte Carlo procedure fits exactly
with the analytical results for ρ0 = ρ1 (〈ninj〉c = 0) because we are using the
equilibrium measure in which no spatial correlations are present. Besides,
for ρ0 6= ρ1 we see how the results obtained with the optimized measure
are much closer to the exact analytical ones than those obtained with the
local equilibrium assumption. This reflects the fact that with the optimized
measure we are taking into account at least the two-site long range corre-
lations which are not considered in the local equilibrium case. This shows
that the physically motivated optimized trial is very good, at least regarding
one and two point static spatial correlation functions. In this sense the out
of equilibrium state of the SSEP can be thus fairly approximated by simple
and intuitive quantities such as the local effective fields and two-site long-
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Figure 6.2: Analytical and simulation results for the steady state density
profile 〈ni〉. Red squares � and orange crosses × correspond to the Monte
Carlo procedure for densities ρ0 = 0.8, ρ1 = 0.2 using the optimized trial
ρopt(n) and the local equilibrium measure ρLE(n) respectively, whereas blue
diamonds 3 are the analytical results, see Eq. (6.37). Purple triangles 4
correspond to the Monte Carlo procedure for densities ρ0 = ρ1 = 0.3 using
the equilibrium measure ρeq(n), whereas black circles © are the analytical
results.

range interactions. Although more difficult to guess, one might of course
add other terms to the trial function to improve the present agreement, for
instance, higher order interaction terms, but the difficulty of the numerical
minimization problem increases very rapidly.

6.5 Conclusions

We have derived an exact relation for Markovian systems which generalizes
the Hatano-Sasa relation but does not rely on the a priori knowledge of the
stationary probability distribution, but rather on arbitrary ‘trial’ functions
for the stationary distribution. More generally, we have derived the de-
tailed version of the fluctuation relation by identifying a generalized form
of dual (adjoint) dynamics, generating the backward process that yields
a trajectory-dependent ‘entropy production’ . For systems described by
Langevin dynamics, we have showed that the dual dynamics is also gov-
erned by a simple Langevin dynamics, which may be expressed directly in
terms of the ‘trial’ functions. One may also obtain in this context a version
of the three extended ‘detailed’ fluctuation theorems of Refs. [69]-[71].

Our approach leads to an infinite family of inequalities that generalize the
Second Law, and suggests a variational principle for optimizing trial mea-
sures, in a quantitative and controlled way, to approximate non-equilibrium
probability distributions. The optimization procedure we propose might
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Figure 6.3: Analytical and simulation results for the two-point correlation
function 〈ninj〉c in the steady state. Red squares � and orange crosses ×
correspond to the Monte Carlo procedure for densities ρ0 = 0.8, ρ1 = 0.2
using the optimized trial ρopt(n) and the local equilibrium measure ρLE(n)
respectively, whereas blue diamonds 3 are the analytical results, see Eq.
(6.38). Purple triangles 4 correspond to the Monte Carlo procedure for
densities ρ0 = ρ1 = 0.3 using the equilibrium measure ρeq(n), whereas black
circles © are the analytical results.

be implemented numerically or even experimentally in order to infer non-
equilibrium steady-state distributions in terms of intuitive physical quanti-
ties. To illustrate this, we have implemented this approximating scheme for
the Simple Symmetric Exclusion Process in one dimension.

A particularly interesting case for applying this variational approach is
to Active Matter [78], where it has been proposed recently to represent the
complex energy exchanges in the system by a bath with equilibrium-like
properties Refs. [58, 59, 60]. Another interesting and somewhat related sys-
tem is that of current-driven vortices in superconductors with pinning. In
this case the complex interplay of driving, quenched disorder and vortex-
vortex interactions yields a variety of non-equilibrium dynamical regimes
and transitions that may sometimes be successfully described by effective
temperatures [79]. At any rate, the important property of these approxima-
tions is that there is a Second Law-type inequality associated with them.
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In this thesis we have deeply studied the role of macroscopic fluctuations to
understand the behavior of nonequilibrium systems. This consists in estimat-
ing the probability that the evolution of a macroscopic observable, e.g. the
current or density field, deviates from the solution of hydrodynamics. Key to
this analysis, is to express this probability in a large deviation principle form
(see Eq. 7 and Ref. [24]). By doing this, one can naturally identify the large
deviation function (LDF) with a nonequilibrium thermodynamic potential,
from which all macroscopic properties of the system can be obtained. This
identification is inspired by the fact that in equilibrium systems the LDF
is univocally related to the free energy. Unlike the equilibrium case, where
the LDF depends locally on the density field and is convex, the nonequilib-
rium LDF may be non-local and non-convex. The non-locality is indicative
of one of the most prominent features of nonequilibrium systems which are
the ubiquitous long range correlations [21, 22]. It is also remarkable that
in equilibrium systems we known (by Landau argument), with short range-
range interactions, there is no phase transition if the dimension of space is
one dimensional. However, in non-equilibrium systems nothing prevents the
existence of phase transitions in one dimension [39, 40], as we have shown
in chapter 5.

Another example that reinforces the importance of fluctuations and par-
ticularly the role of the LDF, is the Gallavotti-Cohen fluctuation theorem
[8, 9, 12] which express the subtle but enduring consequences of microscopic
time reversibility at the macroscopic level. The list continues however, with
further breakthroughs ranging from the Jarzynski equality [25] or the Crooks
fluctuation theorem [26] to the Hatano-Sasa relation [27] or the recent exten-
sion of Clausius inequality to nonequilibrium steady states [28], to mention
just a few.

For all these reasons we have focused on the study of macroscopic fluc-
tuations in out of equilibrium diffusive systems. The chosen macroscopic
observable has been the time-averaged current. It can be considered as the
most characteristic observable, together with the density, in nonequilibrium
diffusive system characterized by a locally conserved magnitude (e.g. energy,
particle density, momemtum, etc). The theoretical framework in which we
have worked, has been the macroscopic fluctuation theory (MFT) of Bertini
and coworkers [15]-[18]. This theory briefly introduced in chapter 1 has been
developed to understand the fluctuating behavior of diffusive systems far
from equilibrium and offers predictions for the LDF of certain observables,
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e.g. the time-averaged current, from the knowledge of two transport coef-
ficients (D[ρ], σ[ρ]) which can be readly obtained from experiments. Some
of the models in which we have applied this theory have been described
in chapter 2. They are all diffusive models in which local equilibrium has
been proved and hydrodynamic evolution equations have been derived. How-
ever, the MFT leads to a difficult variational problem whose solution, in the
particular case of the time-averaged current, remains challenging in most
cases. Therefore, some symplifying hypotheses are necessary in order to get
manageable equations. These hypotheses constitute the additivity conjec-
ture, which is introduced in chapter 3. Hence, the main objective of this
chapter has been to obtain by assuming the additivity conjecture, explicit
predictions for the current LDF in a paradigmatic diffusive model as is the
Kipnis-Marchioro-Presutti (KMP) model. Recall that the additivity conjec-
ture consists in assuming the following hypotheses

1. The optimal profiles responsible of a given current fluctuation are time-
independent.

2. The resulting divergence-free optimal current profile is in fact constant
across space.

Provided this two hypotheses, we have been able to compute analytically
the time-averaged current LDF in the two-dimensional KMP model with
open boundaries at different energy densities in one direction and periodic
boundary conditions in the other direction. For the 1D-KMP model this has
been already done by Hurtado and Garrido [36, 37]. Our aim in this chapter
was to see what happens in higher dimensions. Hence, once we predicted
the current ditribution for the 2D-KMP model we tested the validity of the
additivity conjecture by performing extended numerical simulations. It is
worth remarking the role of numerical simulations here because they can be
considered as the experimental laboratory to confirm if the hypotheses one
makes are correct. As we were interested in large current fluctuations in
the long time limit, standard simulations were not useful because they just
allow us to explore moderate fluctuations around the average. Recall that
the probability of observing a large current fluctuation decays exponentially
in time. Hence, we had to implement an elegant method recently introduced
to measure large deviation functions in many particle systems [41]. This
method is based on a modification of the dynamics so that the rare events
responsible of the large-deviation are no longer rare (see appendix B). Thus,
we performed a large number of steady-state simulations of long duration to
measure the LDF. From the analysis of our numerical results we concluded
that the additivity conjecture for the 2D-KMP model was valid for a wide
current interval. Remarkably the current distribution exhibits non-Gaussian
tails for large current fluctuations away from the average. Furthermore, we
also measured the optimal density profiles associated to a given current fluc-
tuation. They happened to be either monotone for small current fluctua-
tions, or non-monotone with a single maximum for large enough deviations.
It is remarkable that these measured optimal profiles actually correspond to
the theoretical profiles obtained by minimizing the functional resulting from
the additivity conjecture. This confirms the idea that the system indeed
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modifies its density profile to facilitate the deviation of the current, validat-
ing the power of the additivity conjecture to compute both the current LDF
and the associated optimal profiles. In addition, they are invariant under
current rotations with respect to the gradient direction because they only
depend on the magnitude of |J| and not on its orientation. The origin of this
invariance was studied in chapter 4 where we derived the Isometric Fluctu-
ation Relation (IFR). A possible continuation of the research developed in
chapter 3 could be the following:

• Analyze and test the additivity conjecture in low dimensional systems
with anomalous, non-diffusive transport models [46], or to systems
with several conserved fields.

In chapter 4 we have shown how symmetry principles come forth in fluc-
tuations far from equilibrium. By demanding invariance of the optimal
path responsible of a given fluctuation under symmetry transformations,
we unveiled a novel and very general isometric fluctuation relation for time-
reversible systems which relates in a simple manner the probability of any
pair of isometric current fluctuations. Invariance principles of this kind can
be applied with great generality in diverse fields where fluctuations play a
fundamental role, opening the door to further exact and general results valid
arbitrarily far from equilibrium. We proved that the IFR is a consequence of
time-reversibility for systems in the hydrodynamic scaling limit, and reveals
an unexpected high level of symmetry in the statistics of nonequilibrium
fluctuations. It generalizes and comprises the Gallavotti-Cohen fluctuation
theorem for currents, relating the probabilities of an event not only with its
time-reversal but with any other isometric fluctuation. The new symmetry
implies remarkable hierarchies of equations for the current cumulants and
the nonlinear response coefficients, going far beyond Onsager’s reciprocity
relations and Green-Kubo formulas. The following open questions derived
from chapter 4 call for further study

• It would be interesting to test in experiments the new hierarchies for
the current cumulants and the nonlinear response coefficients which
hold arbitrarily far from equilibrium.

• A natural question concerns the level of generality of the isometric fluc-
tuation relation. In this chapter we have demonstrated the IFR for a
broad class of systems characterized at the macroscale by a single con-
served field, using the tools of macroscopic fluctuation theory (MFT).
This theoretical framework, summarized in the path large deviation
functional, Eq. (1.11), has been rigorously proven for a number of in-
teracting particle systems [14, 15, 16, 17], but it is believed to remain
valid for a much larger class of systems. The key is that the Gaussian
nature of local fluctuations, which lies at the heart of the approach, is
expected to emerge for most situations in the appropriate macroscopic
limit as a result of a central limit theorem: although microscopic inter-
actions can be extremely complicated, the ensuing fluctuations of the
slow macroscopic fields result from the sum of an enormous amount of
random events at the microscale which give rise to Gaussian statistics.
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There exist of course anomalous systems for which local fluctuations at
the macroscale can be non-Gaussian. In these cases we cannot discard
that a modified version of the IFR could remain valid, though the anal-
ysis would be certainly more complicated. Furthermore, our numerical
results have shown that the IFR remains true even in cases where it
is not clear whether the MFT applies, strongly supporting the validity
of this symmetry for arbitrary fluctuating macroscopic systems.

• A related question is the demonstration of the IFR starting from mi-
croscopic dynamics. Techniques similar to those in Refs. [13, 38],
which derive the Gallavotti-Cohen fluctuation theorem from the spec-
tral properties of the microscopic stochastic evolution operator, can
prove useful for this task. However, in order to prove the IFR these
techniques must be supplemented with additional insights on the asymp-
totic properties of the microscopic transition rates as the macroscopic
limit is approached. In this way we expect finite-size corrections to
the IFR which decay with the system size, as it is in fact observed
in our simulations for the energy diffusion model, see Fig. 4.3. Also
interesting is the possibility of an IFR for discrete isometries related
with the underlying lattice in stochastic models.

• Demanding also invariance of the optimal path under symmetry trans-
formations could be particularly relevant in mesoscopic biophysical
systems, where relations similar to the isometric fluctuation relation
might be used to efficiently measure free-energy differences in terms of
work distributions [52].

• Other interesting issues concern the study of general fluctuation rela-
tions emerging from the invariance of optimal paths in full hydrody-
namical systems with several conserved fields, or the quantum analog
of the isometric fluctuation relation in full counting statistics.

In chapter 5 we have studied how optimal time-dependent profiles enhance
the probability of observing a large current fluctuation. This gives rise
to a dynamical phase transition between a time-independent and a time-
dependent regime. We have analyzed it for both one and two dimensional
systems. In one dimension, we have measured the optimal density profiles for
the periodic one-dimensional weakly assymetric exlusions process (WASEP).
In this case, for a large enough value of the field, there is a critical current
below which a traveling wave emerges. This time-dependent profile moves
at constant velocity which we could also measure following the movement of
the center of mass of the system. We found a very good agreement with the
theoretical predictions based on the previous calculations done in Ref [39].
It is worth noting that these profiles are invariant under the current sign as
predicted by the Gallavotti-Cohen symmetry. We have also measured the
Legendre transform of the LDF, and again our numerical results fit very well
with theory obtained from the MFT. These results suggest that a traveling
wave is in fact the most favorable time-dependent profile in the supercrit-
ical regime. This observation may greatly simplify general time-dependent
calculations, but the question remains to whether this is the whole story
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or other, more complex solutions may play a dominant role for even larger
fluctuations. In any case, it seems clear that rare events call in general for
coherent, self-organized patterns in order to be sustained In the two dimen-
sional case, particularly, in the periodic 2D-WASEP, we have observed that
there is again a dynamical phase transition below a critical current fluctua-
tion.The numerical results have shown that the optimal profiles are travel-
ling waves with structure only along the perpendicular direction to the field.
These profiles are invariant under current rotations and depend only on the
magnitude of the current fluctuation, proving that the IFR holds even in the
time-dependent regime. Actually, we have also theoretically derived the IFR
for a periodic d-dimensional system assuming periodic time-dependent opti-
mal current and density fields with a travelling wave form. Our numerical
results strongly support that the system adopt these kind of time-dependent
profiles in order to sustain a large current fluctuation. As future lines of
research we propose the following

• It would be interesting to extend this study to open boundaries ge-
ometries and test numerically if any time-dependent profile emerges in
those situations for extreme current deviations. Nevertheless in a re-
cent work [53] for the 1D-WASEP with open boundaries, no numerical
evidence for dynamical phase transition has been found.

As we have mentioned above, the Jarzinsky equality [25] is a very im-
portant result which has been experimentally verified using small thermo-
dynamic systems such as biomolecules or colloidal particles [54, 55]. This
equality which holds for transitions between isothermal equilibrium states,
was extended by Hatano and Sasa [27], thus establishing a generalization of
the second law holding for transitions between steady states. The Hatano-
Sasa theorem which has also been experimentally verfied [56], relies on the
a priori knowdlege of the stationary probability distribution. Instead, ar-
bitrary ‘trial’ smooth distributions can be used, thus allowing one to treat
systems whose stationary distribution is too difficult to calculate, as gener-
ically occurs in out of equilibrium systems with many degrees of freedom.
That is what we have done in chapter 6. We show that every set of trial
distributions yields an inequality playing the role of a generalization of the
Second Law. This suggests a variational principle for optimizing trial mea-
sures, in a quantitative and controlled way, to approximate non-equilibrium
probability distributions. The optimization procedure we propose might
be implemented numerically or even experimentally in order to infer non-
equilibrium steady-state distributions in terms of intuitive physical quanti-
ties. To illustrate this, we have implemented this approximating scheme for
the Simple Symmetric Exclusion Process in one dimension. as future work
we propose the following research lines

• A particularly interesting case for applying this variational approach
is to Active Matter [78], where it has been proposed recently to rep-
resent the complex energy exchanges in the system by a bath with
equilibrium-like properties Refs. [58, 59, 60].

• Another interesting and somewhat related system is that of current-
driven vortices in superconductors with pinning. In this case the
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complex interplay of driving, quenched disorder and vortex-vortex in-
teractions yields a variety of non-equilibrium dynamical regimes and
transitions that may sometimes be successfully described by effective
temperatures [79]. At any rate, the important property of these ap-
proximations is that there is a Second Law-type inequality associated
with them.



Conclusiones

En esta tesis hemos estudiado en profundidad el papel fundamental que
desempeñan las fluctuaciones de observables macroscópicos en los sistemas
fuera del equilibrio. El marco teórico en el que nos hemos basado, es la
llamada teoŕıa macroscópica fluctante (MFT, por sus siglas en inglés), de-
sarrollada por Bertini y colaboradores en los últimos diez años [15]-[18].
Esta teoŕıa, descrita en el caṕıtulo 1, describe en detalle las fluctuaciones
dinámicas en sistemas difusivos, ofreciendo predicciones para la LDF a partir
del conocimiento de la ecuación de evolución macróscopica (o hidrodinḿica)
del sistema y sólo dos coeficientes de transporte. La MFT es un marco teórico
muy general y de amplia aplicación que normalmente desemboca en un prob-
lema variacional complicado cuya solución exacta es dif́ıcil en la mayoŕıa de
los casos. Como consecuencia, en el caṕıtulo 3 de esta tesis, se suponen dos
hipótesis simplificadoras que nos permiten resolver el problema variacional.
Con estas dos hipótesis, que constituyen la conjetura de aditividad, hemos
sido capaces de calcular expĺıcitamente la función de grandes desviaciones de
la corriente integrada en el tiempo, obteniendo aśı la probabilidad de obser-
var dicha corriente transcurrido un tiempo largo pero finito. En particular,
hemos calculado de manera teórica la LDF de la corriente integrada en un
modelo paradigmático de transporte difusivo. Este es el modelo de Kipnis-
Marchioro-Presutti (KMP), descrito en detalle en el caṕıtulo 2. Una vez
obtenida la predicción teórica de la LDF de la corriente suponiendo la con-
jetura de aditividad, hemos comprobado la validez de la misma realizando
sofisticadas simulaciones numéricas para un rango amplio de fluctuaciones
de la corriente. También hemos medido el perfil de densidad (independiente
del tiempo) asociado a una fluctuación de la corriente dada, y hemos com-
probado que se corresponde con el perfil teórico que minimiza el funcional
para dicha fluctuación. Esto es indicativo de que el sistema adopta precisa-
mente ese perfil para producir tal fluctuación.

En el caṕıtulo 4 se muestra el papel que juegan los principios de simetŕıa
en las fluctuaciones lejos del equilibrio. Para producir una fluctuación, un
sistema con muchos grados de libertad transita por un camino óptimo en
el espacio de las fases mesoscópico. Tal y como ha quedado demostrado
en los tests de la conjetura de aditividad realizados en el caṕıtulo 3, este
camino óptimo es un observable f́ısico bien definido. En el caṕıtulo 4 se
ha demostrado, usando las herramientas de la MFT, que bajo condiciones
muy generales y en dimensión arbitraria, este camino óptimo permanece in-
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variante bajo ciertas transformaciones de simetŕıa sobre el vector corriente.
Usando esta invarianza se ha derivado una nueva relación de fluctuación
isómetrica (IFR, por sus siglas en inglés) [10] para fluctuaciones de la corri-
ente en sistemas d-dimensionales reversibles temporalmente y descritos por
un único campo localmente conservado. Cabe destacar, que la IFR se ha
demostrado en el marco de la MFT suplementado con el conjetura de adi-
tividad. A su vez, se demuestra que la IFR no es más que una consecuencia
de la reversibilidad temporal de la dinámica. También se comprueba que
la IFR tiene implicaciones profundas en las propiedades de no-equilibrio de
un sistema. En particular, la IFR implica una familia sorprendente de jer-
arqúıas en los cumulantes de la distribución de corriente y los coeficientes de
respuesta no-lineal del sistema, válidas arbitrariamente lejos del equilibrio,
y que van mucho más allá que las relaciones de reciprocidad de Onsager y
las fórmulas de Green-Kubo.

Como hemos visto en el caṕıtulo 3, de acuerdo con el conjetura de aditividad,
el camino óptimo resulta ser independiente del tiempo para un rango amplio
de fluctuaciones. Sin embargo, este camino óptimo, según la MFT, es en
general un objeto dinámico que puede depender del tiempo. En el caṕıtulo
5 hemos demostrado que en sistemas periódicos los caminos óptimos pasa
a ser dependientes del tiempo para valores de las fluctuaciones muy desvi-
ados del valor estacionario. Esto se interpreta como una transición de fase
dinámica. Además hemos observado dicha transición de fase en otro modelo
difusivo paradigmático: el proceso de exclusión simple débilmente asimétrico
(WASEP). En particular hemos corroborado que los perfiles adoptan una es-
tructura de tipo onda viajera que se mueve a velocidad constante. También
se ha demostrado que en el régimen dependiente del tiempo, la IFR se sigue
cumpliendo, haciendo aśı extensiva su validez para perfiles dependientes del
tiempo con estructura tipo onda viajera.

Por último, en el caṕıtulo 6, nos hemos salido del marco de la MFT y
hemos explotado la relación de Hatano-Sasa [27]. Dicha relación supone el
conocimiento a priori de la distribución estacionaria de probabilidad. En lu-
gar de esto, hemos propuesto usar distribuciones de probabilidad arbitrarias
“de referencia” que sean suaves. De esta forma podemos tratar sistemas
cuya distribución estacionaria es demasiado dif́ıcil de calcular, como gen-
eralmente ocurre en los sistemas fuera del equilibrio con muchos grados de
libertad. Haciendo esto, hemos demostrado [29] que cada conjunto de dis-
tribuciones de referencia da lugar a una desigualdad que juega el papel de
una generalización de la segunda ley. Cuanto mejor es la aproximación de
la distribución de referncia a la estacionaria, más restringida es la desigual-
dad. Esto da lugar a un procedimiento de optimización de la distribución
de referencia que puede ser implementado numérica o experimentalmente.
Como ejemplo, hemos aproximado numéricamente la distribución de prob-
abilidad estacionaria en otro modelo protot́ıpico de no-equilibro: el proceso
de exclusión simétrico simple (SSEP).
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Futuras ĺıneas de investigación

Los resultados obtenidos hasta la fecha nos hacen ser optimistas sobre el fu-
turo de la teoŕıa macroscópica fluctuante (MFT) como marco teórico general
para entender la f́ısica de los fenómenos de no-equilibrio. De manera parecida
a la teoŕıa de colectividades en equilibrio, donde dado el hamiltoniano mi-
croscópico del sistema podemos definir una función de partición con conexión
directa con la termodinámica, el programa teórico propuesto en esta tesis
consiste en derivar, a partir de la dinámica microscópica y con métodos de
coarse-graining, las ecuaciones de evolución mesoscṕicas del sistema y unos
pocos coeficientes de transporte. Partiendo de esta información, la MFT nos
ofrece predicciones expĺıcitas para las funciones de grandes desviaciones que
caracterizan al sistema en cuestión. Estas LDFs juegan fuera del equilibrio
un papel equivalente al de la enerǵıa libre (o la entroṕıa) en equilibrio, y
contienen información esencial para entender la f́ısica del sistema de interés.

A continuación se exponen algunas de las muchas ĺıneas de invesigación
que aún quedan por explorar.

• Los resultados de los caṕıtulos 3, 4 y 5 han demostrado el potencial
de la MFT para describir la f́ısica de diferentes sistemas fuera del
equilibrio. Sin embargo, tal y como está formulada a d́ıa de hoy, la
MFT aplica a sistemas caracterizados por un único campo conservado
localmente. Una de las prioridades actuales consiste por tanto en gen-
eralizar la HFT a casos más realistas, de tipo hidrodinámico, donde la
presencia de varios campos localmente conservados y acoplados entre
śı determina la f́ısica del sistema

• La generalización anterior nos permitirá a su vez escribir una relación
de fluctuación isométrica en el caso hidrodinámico. Esta extensión de
la IFR resulta muy interesante ya que esta simetŕıa constriñe fuerte-
mente la forma de las distribuciones de corriente, ligando de manera
jerárquica los coeficientes de respuesta no-lineales asociados a los difer-
entes observables que caracterizan el sistema. Esperamos por tanto
que la generalización del IFR al caso hidrodinámico arroje relaciones
cruzadas, inesperadas y sorprendentes, entre diferentes coeficientes de
respuesta.

• La idea de aplicar principios de simetŕıa para los perfiles óptimos en el
estudio del comportamiento fluctuante macroscṕico de diferentes sis-
temas fuera del equilibrio es muy general. Queremos usar esta idea
en sistema biof́ısicos mesoscṕicos, donde las fluctuaciones juegan un
papel esencial. Un ejemplo protot́ıpico es el plegado de protéınas y
otras macromoléculas, donde las fluctuaciones intŕınsecas del sistema
provocan el plegado o lo inhiben. Aplicando principios de invariancia
a los caminos óptimos responsables de las fluctuaciones raras en este
caso, esperamos diseñar protocolos eficientes para medir diferencias de
enerǵıa libre entre los diferentes estados de la macromolécula usando
una generalización apropiada de la IFR en este contexto. Los métodos
actuales, que se basan en observar sucesos conjugados por reversibili-
dad temporal, sufren graves problemas de muestreo ya que unos de los
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dos sucesos es siempre altamente improbable. Sin embargo, la IFR y
sus generalizaciones son simetŕıas diferenciables, lo que garantiza un
muestreo experimental adecuado [10].

• La relación de fluctuación isométrica ha sido demostrada en el marco
de la teoŕıa macroscópica fluctuante. Su validez ha quedado clara-
mente demostrada en diferentes tests numéricos, que sugieren además
que esta relación sigue siendo válido incluso en reǵımenes para los
cuales la MFT no rige en principio. Una pregunta fundamental es por
tanto la demostración de esta relación desde un punto de vista pura-
mente microscópico, partiendo de la dinámica microscṕica del sistema.
Técnicas similares a las usadas en las Refs. [12, 13], en las que se
deriva el teorema de fluctuación de Gallavotti y Cohen a partir de las
propiedades espectrales del operador de evolución estocástico, pueden
resultar de utilidad en esta tarea.



Appendix A

Additivity Principle of
current fluctuations in
one-dimensional diffusive
system

In this appendix, we present the original formulation of the additiv-
ity principle conjectured by Bodineau and Derrida [34] and we show its
equivalence to the assumption of assuming time-independent optimal pro-
files within the context of the MFT. We consider a system of size L in contact
with boundary reservoirs at densities ρL and ρR. Let Qτ =

∫ τ
0
dt
∫ 1

0
dxj(x, t)

be the integrated current up to a time τ , i.e., the number of particles or the
energy that went through the system during a time τ . Hence, the time-
averaged current in which we are interested is J = Qτ/τ . The whole current
distribution, P (J), depends only on two microscopic parameters D[ρ] and
σ[ρ] defined as follows: Assuming that for ρL = ρ+ ∆ρ and ρR = ρ with ∆ρ
small, we know that the Fick’s (or Fourier’s) law holds in the steady state,

〈Qτ 〉
τ

= 〈J〉 =
1
L
D[ρ]∆ρ. (A.1)

For ρL = ρR = ρ (in which case 〈Qτ 〉 = 0) and large t the variance is

〈Q2
τ 〉
τ

= 〈J2〉τ =
1
L
σ[ρ]. (A.2)

We are interested in PL(J, ρL, ρR, τ), which is the probability of observing
a time-averaged current J during a long time τ . We have done explicit the
dependence on ρL and ρR for convenience. This probability obeys a large
deviation principle for large τ ,

PL(J, ρL, ρR) ∼ exp[τFL(J, ρL, ρR)], (A.3)

where FL(J, ρL, ρR) is the current LDF. Bodineau and Derrida assumed that,
for large L and J of order 1/L, the large deviation function FL(J, ρL, ρR)
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Figure A.1: (T ≡ ρ) Iterative slicing procedure used in the Additivity Prin-
ciple

satisfies the following additivity principle

FL(J, ρL, ρR, τ) ' max
ρ
{FL−`(J, ρL, ρ, τ) + F`(J, ρ, ρR, τ)}. (A.4)

This property simply means that the two subsystems are independent, ex-
cept that they try to adjust the density ρ at their contact to maximize the
following product

PL(J, ρL, ρR, τ) ∼ max
ρ

[PL−`(J, ρL, ρ, τ)× P`(J, ρ, ρR, τ)]. (A.5)

Notice that we are assuming that the time-averaged integrated current J is
the same for the two subsystems, i.e, J is constant across the space. That is
why in Eqs. (A.4,A.5) one only maximizes over the density at their contact.
As this is a 1D system, the constancy of the current implies for the density
to be time independent because of the continuity equation. The additivity
principle is then equivalent for 1D diffusive systems to assume the above
hypothesis (1), i.e., ρ(x, t) = ρ(x) and j(x, t) = J .

It is also necessary to make the following scaling hypothesis:

FL(J, ρL, ρR) ' L−1G(LJ, ρL, ρR), (A.6)

which has been shown to be valid,in particular, for the symmetric simple
exclusion process [82]. If we split the system of macroscopic unit length into
two parts of lengths x and 1 − x, i.e., if we write ` = L(1 − x), then (A.4)
and (A.6), lead to

G(J̃ , ρL, ρR) ' max
ρ

{
G(J̃x, ρL, ρ)

x
+
G(J̃(1− x), ρ, ρR)

1− x

}
, (A.7)

where J̃ = LJ is the time-averaged current independent of the size. If we
keep dividing the system into N smaller (macroscopic) subsystems of size
∆x with L = N∆x (see figure A.1), the LDF is given by

FN∆x(J, ρL, ρR) ' max
ρ̃i:i=1,...,N−1

{
N∑
i=1

F∆x(J, ρ̃i−1, ρ̃i)

}
, (A.8)
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which is equivalent to

1
N∆x

G(N∆xJ, ρL, ρR) ' max
ρ̃i:i=1,...,N−1

{
N∑
i=1

1
∆x

G(∆xJ, ρ̃i−1, ρ̃i)

}
, (A.9)

being ρ̃0 = ρL, ρ̃N = ρR and ρ̃i − ρ̃i−1 = ∆ρ. Assuming locally-Gaussian
current fluctuations in each subsystem, i.e.,

1
∆x

G(∆xJ, ρ̃i, ρ̃i + ∆ρ̃) ' − (J∆x+D[ρ̃i]∆ρ̃i)2

2σ[ρ̃i]∆x
, (A.10)

we get in the continuum limit the following variational form for G,

G(J, ρL, ρR) = −min
ρ(x)

{∫ 1

0

[J +D[ρ]ρ′(x)]2

2σ[ρ]
dx

}
, (A.11)

which is just the 1D counterpart of Eq. (3.1) for Q[ρ] = −D[ρ]ρ′(x) with-
out external field. We emphasize that, equivalently to the MFT, we can
get the whole distribution of the current fluctuations kowing only the two
macroscopic parameters D[ρ] and σ[ρ].
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Appendix B

AppendixB

B.1 Evaluation of Large-Deviation Functions:
Cloning Algorithm

Large deviation functions are very hard to measure in experiments or simu-
lations because they involve by definition exponentially-unlikely events. Re-
cently, Giardinà, Kurchan and Peliti [41] have introduced an efficient algo-
rithm to measure the probability of a large deviation for observables such as
the current or density in stochastic many-particle systems. The algorithm
is based on a modification of the underlying stochastic dynamics so that the
rare events responsible of the large deviation are no longer rare, and it has
been extended for systems with continuous-time stochastic dynamics [42].
Let UC′C be the transition rate from configuration C to C ′. The probability
of measuring a time-integrated current Qt after a time t starting from a
configuration C0 can be written as

P (Qt, t;C0) =
∑
Ct..C1

UCtCt−1 ..UC1C0 δ(Qt −
t−1∑
k=0

JCk+1Ck) , (B.1)

where JC′C is the elementary current involved in the transition C → C ′.
For long times we expect the information on the initial state C0 to be lost,
P (Qt, t;C0) → P (Qt, t). In this limit P (Qt, t) obeys the usual large devia-
tion principle P (Qt, t) ∼ exp[+tG(J = Qt/t)]. In most cases it is convenient
to work with the moment-generating function of the above distribution

Π(λ, t) =
∑
Qt

eλ·QtP (Qt, t) (B.2)

=
∑
Ct..C1

UCtCt−1 ..UC1C0 eλ·
Pt−1
k=0 JCk+1Ck .

For long t, we have Π(λ, t)→ exp[+tµ(λ)], with µ(λ) = maxJ[G(J) +λ · J].
We can now define a modified dynamics, ŨC′C ≡ eλ·JC′C UC′C , so

Π(λ, t) =
∑

Ct...C1

ŨCtCt−1 . . . ŨC1C0 . (B.3)
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Figure B.1: Sketch of the evolution and cloning of the copies during the
evaluation of the large deviation function.

This dynamics is however not normalized,
∑
C′ ŨC′C 6= 1.

We now introduce Dirac’s bra and ket notation, useful in the context
of the quantum Hamiltonian formalism for the master equation [84, 85],
see also [41, 86]. The idea is to assign to each system configuration C a
vector |C〉 in phase space, which together with its transposed vector 〈C|,
form an orthogonal basis of a complex space and its dual [84, 85]. For
instance, in the simpler case of systems with a finite number of available
configurations (which is not the case for the KMP model), one could write
|C〉T = 〈C| = (. . . 0 . . . 0, 1, 0 . . . 0 . . .), i.e. all components equal to zero ex-
cept for the component corresponding to configuration C, which is 1. In this
notation, ŨC′C = 〈C ′|Ũ |C〉, and a probability distribution can be written as
a probability vector

|P (t)〉 =
∑
C

P (C, t)|C〉 ,

where P (C, t) = 〈C|P (t)〉 with the scalar product 〈C ′|C〉 = δC′C . If 〈s| =
(1 . . . 1), normalization then implies 〈s|P (t)〉 = 1.

With the above notation, we can write the spectral decomposition Ũ(λ) =∑
j eΛj(λ)|ΛRj (λ)〉〈ΛLj (λ)|, where we assume that a complete biorthogonal

basis of right and left eigenvectors for matrix Ũ exists, Ũ |ΛRj (λ)〉 = eΛj(λ)|ΛRj (λ)〉
and 〈ΛLj (λ)|Ũ = eΛj(λ)〈ΛLj (λ)|. Denoting as eΛ(λ) the largest eigenvalue of
Ũ(λ), with associated right and left eigenvectors |ΛR(λ)〉 and 〈ΛL(λ)|, re-
spectively, and writing Π(λ, t) =

∑
Ct
〈Ct|Ũ t|C0〉, we find for long times

Π(λ, t) t�1−−−→ e+tΛ(λ)〈ΛL(λ)|C0〉

(∑
Ct

〈Ct|ΛR(λ)〉

)
. (B.4)

In this way we have µ(λ) = Λ(λ), so the Legendre transform of the current
LDF is given by the natural logarithm of the largest eigenvalue of Ũ(λ). In
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order to evaluate this eigenvalue, and given that dynamics Ũ is not normal-
ized, we introduce the exit rates YC =

∑
C′ ŨC′C , and define the normalized

dynamics U ′C′C ≡ Y
−1
C ŨC′C . Now

Π(λ, t) =
∑

Ct...C1

YCt−1U
′
CtCt−1

. . . YC0U
′
C1C0

(B.5)

This sum over paths can be realized by considering an ensemble of M �
1 copies (or clones) of the system, evolving sequentially according to the
following Monte Carlo scheme [41]:

I Each copy evolves independently according to modified normalized dy-
namics U ′C′C .

II Each copy m ∈ [1,M ] (in configuration Ct[m] at time t) is cloned with
rate YCt[m]. This means that, for each copy m ∈ [1,M ], we generate
a number KCt[m] = bYCt[m]c + 1 of identical clones with probability
YCt[m]−bYCt[m]c, or KCt[m] = bYCt[m]c otherwise (here bxc represents
the integer part of x). Note that if KCt[m] = 0 the copy may be
killed and leave no offspring. This procedure gives rise to a total of
M ′t =

∑M
m=1KCt[m] copies after cloning all of the original M copies.

III Once all copies evolve and clone, the total number of copies M ′t is sent
back to M by an uniform cloning probability Xt = M/M ′t .

Fig. B.1 sketches this procedure. It then can be shown that, for long times,
we recover µ(λ) via

µ(λ) = −1
t

ln (Xt · · ·X0) for t� 1 (B.6)

To derive this expression, first consider the cloning dynamics above, but
without keeping the total number of clones constant, i.e. forgetting about
step III. In this case, for a given history {Ct, Ct−1 . . . C1, C0}, the number
N (Ct . . . C0, t) of copies in configuration Ct at time t obeys N (Ct . . . C0, t) =
YCt−1U

′
CtCt−1

N (Ct−1 . . . C0, t− 1), so that

N (Ct . . . C0, t) = YCt−1U
′
CtCt−1

. . . YC0U
′
C1C0
N (C0, 0) . (B.7)

Summing over all histories of duration t, see eq. (B.5), we find that the
average of the total number of clones at long times shows exponential be-
havior, 〈N (t)〉 =

∑
Ct...C1

N (Ct . . . C0, t) ∼ N (C0, 0) exp[+tµ(λ)]. Now,
going back to step III above, when the fixed number of copies M is large
enough, we have Xt = 〈N (t − 1)〉/〈N (t)〉 for the global cloning factors, so
Xt · · ·X1 = N (C0, 0)/〈N (t)〉 and we recover expression (B.6) for µ(λ).

In this thesis we used the above method to measure the current LDF
for the Kipnis-Marchioro-Presutti model in two dimensions, described in
chapters 2 and 3. For this model the transition rate from a configuration
C = {e1 . . . eN} to another configuration C ′k = {e1 . . . e

′
k, e
′
k+1 . . . eN}, with

k ∈ [0, N ] and the pair (e′k, e
′
k+1), being N = L×L the number of sites and
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k the kind of par selected (k ∈ bulk or k ∈ boundaries) , can be written as

UC′kC =



(2N + L)−1 , k ∈ bulk

βLeβLek

2N + L
E1 [βL max(ek, e′k)] , k ∈ left bath

βReβRek

2N + L
E1 [βR max(ek, e′k)] , k ∈ right bath .

where βL = ρ−1
L and βR = ρ−1

R . Here E1(x) = −Ei(−x), where Ei(x) is the
exponential integral function, or

E1(x) =
∫ ∞
x

du
e−u

u
. (B.8)

It appears when integrating over all possible pairs (p, ẽL,R) that can result
on a given e′1,N , respectively . It is easy to show that UC′kC is normalized as
it should, so

∑
C′k
UC′kC = 1.

In order to measure current fluctuations we need to provide a microscopic
definition of the energy current involved in an elementary move. There are
many different ways to define this current: the energy exchanged per unit
time with one of the boundary heat baths, the current flowing between two
given nearest neighbors, or its spatial average, etc. Assuming that energy
cannot accumulate in the system ad infinitum[14, 83, 86], all these definitions
give equivalent results for the current large deviation function in the long
time limit. However, this is not so for some observables different from the
large deviation function (e.g. for average profiles measured at the end of the
large deviation event; see Ref. [38]). In our case, the following choice turns
out to be convenient

JC′kC = (JxC′kC , J
y
C′kC

)=



(
ek − e′k
N − L

, 0
)
, k ∈ bulk (horizontal exchange)

(
0,
ek − e′k
N

)
, k ∈ bulk (vertical exchange)

0 , k ∈ boundary baths

That is, we measure the energy current flowing through the bulk of the
system. Using this current definition and eq. (B.9), we may write the
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modified normalized dynamics U ′C′kC ≡ Y
−1
C UC′kC exp[λ ·JC′kC ], which reads

U ′C′kC
=



eλ̄x(ek−e′k)

YC(2N + L)
, k ∈ bulk (horizontal exchange)

eλ̄y(ek−e′k)

YC(2N + L)
, k ∈ bulk (vertical exchange)

βLe
βLe1

YC(2N + L)
E1 [βL max(ek, e′k)] , k ∈ left bath

βRe
βLeN

YC(2N + L)
E1 [βR max(ek, e′k)] , k ∈ right bath

with λ̄ = (λ̄x, λ̄y) = (λx/(N − L), λy/N). The exit rate is given by

YC =
2L

2N + L
+

2N−L∑
k=1

eλ̄ek − e−λ̄ek+1

λ̄(2N + L)(ek + ek+1)
, (B.9)

where 2N −L are the total number of pairs in the bulk, λ̄ = λ̄x if the chosen
k-pair corresponds to a horizontal bulk pair and λ̄ = λ̄y if the chosen k-pair
corresponds to a vertical bulk pair. In chapter 3 we simulated a system
of size N = 20, with ρL = 2 and ρR = 1, using M = 103 copies of the
system and a maximum time of t = 104 Monte Carlo steps. For a given
initial condition, we averaged the measured µ(λ) for different times once in
the steady state, after a relaxation time of 2 × 103 Monte Carlo steps. In
addition, we averaged results over many independent initial conditions, in
which local initial energies ei are randomly drawn according to the Gibbs
distribution with temperature parameter ρst[x = i/(L + 1)] corresponding
to the linear, steady energy density profile.

B.2 Time Reversibility and Statistics during
a Large Fluctuation

In this section we use the time reversibility of the underlying stochastic
dynamics to study the system statistics during a large deviation event and
the symmetries of the large deviation function and the associated optimal
profiles, using the previously described formalism. In particular, we describe
a relation between system statistics at the end of the large deviation event
and for intermediate times. First, consider the probability P (Ct,Qt, t) that
the system is in configuration Ct at time t with a total time-integrated
current Qt. As previously, we drop the dependence of this probability on
the initial state C0, which we assume lost for long enough times. This
probability obeys the following master equation

P (Ct,Qt, t) =
∑
C′

UCtC′P (C ′,Qt − JCtC′ , t− 1) . (B.10)
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which by iterating in time leads to

P (Ct,Qt, t) =
∑

Ct−1..C1

UCtCt−1 ..UC1C0 δ(Qt −
t−1∑
k=0

JCk+1Ck) , (B.11)

and it is clear that P (Qt, t) =
∑
Ct
P (Ct,Qt, t), see eq. (B.1) in the previous

section. Now, P end
q (Ct) ≡ P (Ct,Qt, t)/P (Qt, t;C0) is the probability of

having a configuration Ct at the end of a large deviation event associated
to a current q = Qt/t. Defining Π(Ct,λ, t) =

∑
Qt

exp(λQt)P (Ct,Qt, t) so
that

Π(Ct,λ, t) =
∑

Ct−1...C1

ŨCtCt−1 . . . ŨC1C0 , (B.12)

with ŨC′C(λ) = UC′C exp(λJC′C), one can easily show that, for long times t,
P end
λ (Ct) ≡ Π(Ct,λ, t)/Π(λ, t) = P end

qo(λ)
(Ct), where qo(λ) is the current con-

jugated to parameter λ, and Π(λ, t) is defined in eq. (B.3). Using the previ-
ous spectral decomposition, it is simple to show that P end

q (Ct) ∝ 〈Ct|ΛR(λ)〉,
so the right eigenvector |ΛR(λ)〉 associated to the largest eigenvalue of ma-
trix Ũ(λ) gives the probability of having any configuration at the end of
the large deviation event. Noticing that, for the Monte Carlo algorithm de-
scribed in the previous section, the fraction of clones or copies in state Ct
is proportional to 〈Ct|ΛR(λ)〉 for long times, see eq. (B.7), we deduce that
the the average profile among the set of clones yields the mean temperature
profile at the end of the large deviation event, ρend

λ (x).
The initial and final time regimes during a large deviation event show

transient behavior which differs from the behavior in the bulk of the large
deviation event, i.e. for intermediate times [14]. In particular, as we will
show here, midtime and endtime statistics are different, though intimately
related as a result of the time reversibility of the microscopic dynamics. Let
P̄ (Cτ ,λ, τ, t) be the probability that the system was in configuration Cτ at
time τ when at time t the total integrated current is Qt. Timescales are
such that 1� τ � t, so all times involved are long enough for the memory
of the initial state C0 to be lost. We can write now

P̄ (Cτ ,Qt, τ, t) =
∑

Ct...Cτ+1Cτ−1...C1

UCtCt−1 · · ·UCτ+1Cτ (B.13)

UCτCτ−1 · · ·UC1C0 δ
(
Qt −

t−1∑
k=0

JCk+1Ck

)
,

where we do not sum over Cτ . Defining the moment-generating function
of the above distribution, Π̄(Cτ ,λ, τ, t) =

∑
Qt

exp(λQt)P̄ (Cτ ,Qt, τ, t), we
can again check that the probability weight of configuration Cτ at interme-
diate time τ in a large deviation event of current q = Qt/t, Pmid

q (Cτ ) ≡
P̄ (Cτ ,Qt, τ, t)/P (Qt, t), is also given by Pmid

λ (Cτ ) ≡ Π̄(Cτ ,λ, τ, t)/Π(λ, t)
for long times such that 1� τ � t, with q = qo(λ). In this long-time limit
one thus finds

Pmid
λ (Cτ ) ∝ 〈ΛL(λ)|Cτ 〉〈Cτ |ΛR(λ)〉 , (B.14)
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in contrast to P end
λ (C), which is proportional to 〈C|ΛR(λ)〉, see above. Here

|ΛR(λ)〉 and 〈ΛL(λ)| are the right and left eigenvectors associated to the
largest eigenvalue eΛ(λ) of modified transition rate Ũ(λ), respectively. They
are different because Ũ is not symmetric. In order to compute the left
eigenvector, notice that |ΛL(λ)〉 is the right eigenvector of the transpose
matrix ŨT(λ) with eigenvalue eΛ(λ). This right eigenvector of ŨT(λ) can
be in turn related to the corresponding right eigenvector of Ũ(−λ− 2E) by
noticing that the local detailed balance condition holds for the KMP model,
guaranteeing the time reversibility of microscopic dynamics. This condition
states that UC′Cpeq(C) = UCC′peq(C ′)e2EJC′C , where peq(C) is an effective
equilibrium weight which for the KMP model takes the value peq(C) =
exp(−

∑N
y=1 βyey) with C = {ey, y = 1 . . . N} and βy = ρ−1

L +2E y−1
N−1 . Local

detailed balance then implies a symmetry between the forward modified
dynamics for a current fluctuation and the time-reversed modified dynamics
for the negative current fluctuation, i.e. ŨCC′ = p−1

eq (C ′)Ũ(−λ− 2E)peq(C),
or in matrix form

ŨT(λ) = P−1
eq Ũ(−λ− 2E)Peq , (B.15)

where Peq is a diagonal matrix with entries peq(C). Eq. (B.15) implies
that all eigenvalues of Ũ(λ) and Ũ(−λ − 2E) are equal, and in particular
the largest, so µ(λ) = µ(−λ − 2E) and this proves the Gallavotti-Cohen
fluctuation relation. Moreover, if |ΛRj (−λ − 2E)〉 is a right eigenvector of
Ũ(−λ− 2E), which can be expanded as |ΛRj (−λ− 2E)〉 =

∑
C〈C|ΛRj (−λ−

2E)〉|C〉, then

|ΛLj (λ)〉 =
∑
C

(peq
C )−1〈C|ΛRj (−λ− 2E)〉|C〉 (B.16)

is the right eigenvector of ŨT(λ) associated to the same eigenvalue. In this
way, by plugging this into eq. (B.17) we find

Pmid
λ (C) ∝ (peq

C )−1〈C|ΛR(−λ− 2E)〉〈C|ΛR(λ)〉 ,

where we assumed real components for the eigenvectors associated to the
largest eigenvalue. Equivalently

Pmid
λ (C) = A

P end
λ (C)P end

−λ−2E
(C)

peq
C

, (B.17)

with A a normalization constant. This relation implies that configurations
with a significant contribution to the average profile at intermediate times
are those with an important probabilistic weight at the end of both the large
deviation event and its time-reversed process. Supplementing the above rela-
tion with a local equilibrium hypothesis, one can obtain average temperature
profiles at intermediate times in terms of profile statistics at the end of the
large deviation event.
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