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ABSTRACT 

Student responses to arithmetical questions that can be solved by using arithmetical 

structure can serve to reveal the extent and nature of relational, as opposed to 

computational thinking. Here, student responses to probes which require them to justify-on-

demand are analysed using a conceptual framework which highlights distinctions between 

different forms of attention. We analyse a number of actions observed in students in terms 

of forms of attention and shifts between them: in the short-term (in the moment), medium-

term (over several tasks), and long-term (over a year). The main factors conditioning 

students´ attention and its movement are identified and some didactical consequences are 

proposed. 
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In the context of elementary arithmetic, students´ thinking usually focuses on performing 

operations and getting a result. It is perfectly reasonable for students to display a 

computational mindset, since this is what is promoted by traditional ways of teaching 

arithmetic and may be favoured by informal pre-school arithmetic experience. Where little 

teaching time or attention is devoted to appreciating the structure of expressions, looking 
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for and expressing patterns, or using mathematical properties to justify calculation choices, 

computation is likely to dominate. This continues despite the wide recognition that 

understanding is just as important as facility (Kilpatrick, Swafford, & Findell, 2001; Pirie & 

Kieren, 1989; Sierpinska, 1994) which can be traced back at least to Plato (Republic II 

488ff) (see Hamilton & Cairns, 1961, pp. 353-384). 

In this paper we consider a particular arithmetic activity which aims to promote 

students´ development of awareness of arithmetic structure: to decide and provide 

justifications-on-demand about the truth or falsity of addition and subtraction statements 

which depend upon arithmetic properties (e.g., 104410  ; 12121113  ; 

1009494100  ). While it is the case that solving missing-number sentences (e.g.,  

12    413 ) seems to elicit computational approaches, justifying-on-demand the truth 

or falsity of number sentences can prompt students to look instead at the sentence as a 

whole and to recognize and make use of some relations between numbers (Molina & 

Ambrose, 2008). 

Our aim in this paper is to use the construct of `shifts of attention´ (Mason, 1998) to 

make sense of the approaches over time (short, middle and long term) to tasks involving 

number sentences based on arithmetic relations, displayed by a group of Spanish 

elementary students. We are not concerned here with whether the instructional intervention 

developed was helpful for students in acquiring and developing relational approaches 

(however see Molina, 2006). Rather our focus is on describing and analysing the extent and 

nature of relational thinking detectable in students´ productions overtime, by means of the 

analysis of the movement and structure of students´ attention (Mason, 1998). 
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Conceptual Framework 

Our approach is eclectic, combining analysis of previously collected and analysed empirical 

data, with a phenomenologically-based experiential stance. The data comes from a study on 

the use or presence of relational thinking (Molina, 2006). Here we re-analyse that data by 

making use of an analytical tool derived from phenomenological enquiries into the nature 

and role of attention, using the discipline of noticing (Mason, 2002). We share Marton and 

Booth´s (1997) view of learning as a change in the person’s way of experiencing a 

phenomenon/situation/object. Through the idea of the structure of attention, we try to 

capture how students experience number sentences in order to understand how they act in 

this context. We first present a theoretical description of relational thinking and of the 

notion of structure of attention. Afterwards, we invite the reader to work on an activity to 

let him/her experience how attention may shift when considering numerical statements.  

Relational Thinking 

Promoting the integration of arithmetic and algebra in the elementary curriculum is an issue 

of intense current interest (Becker & Rivera, 2008; Kaput, Carraher, & Blanton, 2007). 

These authors among others make the case for algebraic thinking to be promoted and 

supported in the earliest grades, and Hewitt (1998) makes the case that in order to 

understand arithmetic, it is necessary to engage in algebraic-type thinking by thinking in 

generalities. No-one expects students to memorise the results of all possible two and three 

digit additions and subtractions. Rather, the methods which students use for these are 

themselves generalities involving properties which can be perceived as being instantiated in 

each and every particular calculation.  
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Several researchers (Carpenter, Franke, & Levi, 2003; Molina, 2006; Stephens, 

2007) have drawn attention particularly to the use of relational thinking. This type of 

thinking has mainly been considered in the context of number sentences. It is deemed to be 

taking place when students use arithmetical relations between terms contained in a number 

sentence in order to expedite the calculation or to judge directly the validity of an 

arithmetical statement. For example, when asked to decide on the truth or falsity of 

sentences such as 43025734257   or 26484827  1, instead of performing 

the calculations and then checking for equality, students may recognize and make use of 

arithmetical relations so as to avoid computation. The sentence can be seen as a whole, its 

components and structure can be appreciated, and relations between its elements (e.g., some 

numbers and/or some operational signs are repeated in the sentence) together with 

knowledge of the structure of arithmetic can be used to conclude about its true value. Some 

students may even be able to justify their use of these relations by referring to general 

properties (such as 0 aa ).  

These two different approaches —one totally computational, the other making use 

of the structure of the expressions, with or without explicit awareness of instantiation of 

properties—, but in a broader context, have been referred to by Hejny, Jirotkova and 

Kratochvilova (2006) as procedural and conceptual meta-strategies, respectively. 

In the sentence 43025734257  , for example, the use of relational thinking 

would mean appreciating that two expressions are being related by the equal sign, 

considering those expressions as wholes and recognizing that in both of them the same 

quantity is being subtracted from 257. Thus both expressions are equal. Similarly, using 
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this type of thinking in the sentence 26484827   requires treating the expression on 

the left side as a whole and discerning the presence of 48 – 48. Being aware (implicitly or 

explicitly) that 0 aa , would allow obtaining the numeric value of the left side of the 

sentence and so, concluding the falsity of the sentence by comparing it to 26. 

In order to think relationally, students need to consider expressions from a structural 

perspective rather than simply from a procedural one. Sentences and parts of sentences 

need to be considered as wholes (sub-expressions) instead of as processes to carry out step 

by step. Substructures within the whole expression need to be identified and compared. In 

this way, relationships between them are recognized. All these are components of 

structural-sense as defined by Hoch and Dreyfus (2004). The use of relational thinking also 

implies drawing upon number-sense and operation-sense (Slavit, 1999) as relations 

between numbers, operations and expressions involved in the sentence are established and 

knowledge about the structure of the number system, properties of operations, and relations 

between operations, among other elements, are acted upon, implicitly or explicitly. 

Considering number sentences as a context to reveal and promote students´ use of 

relational thinking requires taking into account their understanding of the equal sign. 

According to previous studies (Behr, Erlwanger, & Nichols, 1980; Carpenter et al., 2003; 

Kieran, 1981; Molina & Ambrose, 2008; Warren, 2003), students tend to see and use the 

equal sign as a “do something” signal.  When confronting arithmetic expressions, they tend 

to focus on performing the operations expressed, usually by reading form left to right. 

However, both Carpenter et al. (2003) and Molina, Castro & Castro (2009) have observed 

that although elementary students initially tend to interpret the equal sign as an operational 
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symbol, if teaching is designed to promote a relational understanding of this symbol in the 

context of number sentences, they are able to develop this understanding.  

Structure of Attention 

We analyse students´ responses about the truth value of number sentences used in Molina 

(2006) by trying to detect evidence of subtly different ways of attending. Whatever the 

purposes and utility (Ainley & Pratt, 2002) perceived by students, once they engage with a 

task, what matters is both what they are attending to and how they are attending to it. 

Consider the statement 51515250  , as an example. When asked to determine 

the truth value of this statement, some students might detect that 51 is both 1 more than 50 

and 1 less than 52, in this particular situation without being explicitly aware of the general 

property that adding and subtracting the same amount leaves the sum invariant. Their 

attention may be concentrated on the particularities of 51 and 1. Some may be more or less 

explicitly aware, in the sense that they make confident and consistent use of the fact in 

multiple instances, perhaps telling someone else to do it, and some may offer an explicit 

articulation or formulation when asked to justify their actions. Some students may be aware 

that this is an instantiation of a general property. Of course when asked to justify why the 

sum is invariant, they may be led to make use of properties such as associativity of 

addition, either explicitly and articulately, or implicitly as a ‘theorem-in-action’ (Vergnaud, 

1981). In other words, they can be ‘reasoning on the basis of properties’ while at the same 

time unaware of a relationship as an instance of a property.  

In attending to something such as an arithmetic statement, it is possible to be 

predominantly gazing at or holding a whole (this may be literally ‘the whole sentence’ or 
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some component of it). It is also possible to be discerning details (which themselves may 

become 'wholes' which are not at the time further dissected into sub-details). It is possible 

to be (re)cognizing relationships between specific discerned details (such as noticing that 

14 is 2 less than 16), and it is possible to be aware of the relationships between specifics as 

instantiations of properties that hold in many different situations or contexts. It is important 

for learners to develop the flexibility to shift between these various forms of what can be 

attended to, and in what ways. 

Finally, it is possible to reason on the basis of perceived and agreed properties, that 

is, to engage in formal mathematical reasoning. These are different forms or states of 

attention identified by Mason (2004). He conjectured that one of the reasons that 

mathematical reasoning proves to be so difficult to teach is that students may not have 

accumulated necessary experience of the different forms of attention to have reached a 

point at which reasoning on the basis of specified agreed properties has sufficient 

foundation. Furthermore, they may not have developed sufficient flexibility of shifts 

between forms of attention. In other words, it is difficult to display formal reasoning if your 

attention does not readily perceive relationships as instances of properties. This in turn is 

difficult if the attention is on discerning details rather than on recognizing relationships, 

which depends on more than gazing at wholes.  

 The states of attention discerned in this framework are neither levelled nor ordered. 

They are often transitory states visited for micro-seconds, but they can also become stable 

and robust against alteration for varying periods of time. Indeed they can become ingrained 

habits which block further development. It is a matter of self-observation to discover that 

these states or structures of attention can be fleeting as well as stable, and that in different 
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situations they occur in different ways. In other words, different states can be triggered 

more prominently than others by different cues. 

Experiencing what it Might be Like for Students 

From a phenomenological perspective, and before looking at data from students, it is 

important as a researcher to try to enter for oneself something of the experience that 

students might have, in order to be sensitised to the sorts of things that students say and do 

and how to interpret them. In particular, it is important to become aware of how our own 

attention is differently and variously structured at different times when working on a 

mathematical problem or task. Here for example are two tasks taken from a Hungarian 

secondary problems book (Tankønyviado Budapest 1988): 

Calculate  10000 10004 10002 9998

10000 10000 100019999
 

and 1234321234321 24686424686411234321234320

1234321234320  24686424686411234321234321
 

These questions provide some initial phenomenological data by offering an opportunity to 

find yourself resisting calculation, and perhaps gazing, or ‘holding wholes’ while waiting 

for something to emerge, discerning details in the expressions, recognizing relationships 

amongst the discerned elements and perceiving those relationships as particular instances or 

instantiations of more general properties. Both tasks are constructed in such a way as to be 

quite “unfriendly” to calculation (even using calculator is likely to present difficulties in 

storing the numbers). The second one particularly absorbs a good deal of attention as you 

seek something invariant amongst discerned details. This gives a taste of the movements of 

attention which a young student might experience when facing simpler probes such as 
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43025734257   and 26484827  . Of course the relationships are somewhat 

more sophisticated here, but not significantly so. 

Some people who are familiar with algebra may choose to replace long strings of 

symbols with letters, displaying their awareness that complexity in number names often 

obscures relationships. Others, seeking a way to deal with the numerator of the first one, 

may think of 10004  as 210002   and expand before factoring, or by replacing the first 

product by )210002()210002(  , may then decide whether to do the same thing to the 

second product or to use the repetition of 10002  to achieve a simplification. These 

transformations are developed in the anticipation of reaching a simplified equivalent 

expression. The importance of anticipation in guiding algebraic thinking, and here, 

relational thinking, has been stressed by Boero (2001). 

Similar remarks apply to the second calculation. The size of the numbers provokes 

resistance to calculation and a search for some other relationships to use, an observation 

exploited by Zazkis (2001). Even checking how close the second number in the numerator 

is to being double the first number (having discerned the two and recognized a potential 

relationship), requires careful attention, successively discerning 'the next few digits' in each 

and checking the doubling relationship. 

In the context of simply being asked for an answer, many of us might accept a first 

‘intuitive sense’ of relationships and be content with our first conjecture about the true 

value of the sentence. Perhaps this is the experience of many students in classrooms. In the 

context of expecting to be asked to justify a response, it is likely that greater care would be 
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taken in the discerning of relevant details through recognizing relationships and using these 

as instantiations of familiar properties to achieve simplification. 

Research Setting and Probes 

The data analyzed in this paper come from a teaching experiment which shares the features 

of research design identified by Cobb and his colleagues (Cobb, Confrey, diSessa, Lehrer, 

& Schauble, 2003) as it consists of iterative attempts developed in a (complex and real) 

teaching/learning context, aiming to understand and improve educative processes (Steffe & 

Thompson, 2000). This methodology is characterized by recurrent cycles formed by the 

formulation of hypothesis and conjectures, the design of an in-class intervention, the 

experimentation in the classroom, the analysis of the data collected and the reconstruction 

of the hypotheses and conjectures to start a new cycle (Steffe & Thompson, 2000). 

Therefore, each session has its own aims depending on the particular hypothesis and 

conjectures to be tested in it in relation to the broader objective of the teaching experiment. 

In the teaching experiment we refer here, the guiding broad objective was the study 

of the use and development of relational thinking that third grade students display when 

being asked to determine the validity of addition and subtraction true/false number 

sentences (Molina, 2006). The first author acted as teacher for a group of twenty-six eight-

nine years old Spanish students during six one-hour in-class sessions, over a period of one 

year. The regular classroom teacher was present in all the sessions but did not participate 

because he had not become involved in the research process. In these conditions, it is 

frequent in teaching experiments that one of the researchers takes the role of the teacher in 

order to experience at first hand students´ learning and reasoning (Kelly & Lesh, 2000; 

Steffe & Thompson, 2000). 
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The chronology of the sessions was as follows. The second session was two months 

after the first one. The rest of the sessions were from one to two weeks apart except for the 

final session which took place at the beginning of the following academic year, eight 

months later. This timeline was chosen intentionally (except for vacation periods) so that 

(a) the intervention took place over a significant period of time so as to have some effect, 

(b) to reduce the probability of assessing a memory-based learning and, (c) to have 

sufficient time to analyze the data from each session and to make decisions about the next 

in-class intervention.  

The teacher-researcher proposed to the students various missing-number and 

true/false number sentences in individual written activities, whole group discussions and 

individual interviews. This variety of intervention formats was chosen to (a) provide time 

for individual work and reflection, (b) promote students´ exchange and comparison of 

ideas, and (c) have opportunities to more closely access some students´ thinking. 

The proposed sentences included numbers using one, two or three digits and the 

operations of addition and subtraction. Some were sentences with all the operations on one 

side of the equation (e.g., 154910  ) where the equal sign is mostly interpreted by 

students as indicating the answer to the computation on its left side (Behr, Erlwanger & 

Nichols, 1980). Others were sentences with operational symbols on both sides (e.g., 

1010614  ) or no operational symbols (e.g., 2727  ). These sentences were based on 

the arithmetic properties indicated in Table 1. Therefore, they could be solved by using 

relational thinking as well as by calculation.  

[INSERT TABLE 1] 
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Description of the Sessions 

Due to the different objectives of each session (described below) missing-number number 

sentences were used in session 1 and part of session 2, and true/false sentences in the other 

sessions (see the particular sentences considered in Table 2). Missing-number sentences 

have proven to be useful for revealing different conceptions and challenging children to 

reconsider their interpretations of the equal sign, while true/false sentences help challenge 

students’ computational mindset (Molina & Ambrose, 2008).  

[INSERT TABLE 2] 

Students were asked to complete the missing-number sentences and to explain how they 

solved it. In the true/false sentences, they were asked to determine their truth value and to 

be prepared to provide justifications-on-demand for their answers. In the discussions 

students were encouraged to articulate their strategies, to look for strategies different to 

those already proposed by the other students for the same sentence, and to provide 

justifications when asked. In this way everyone was exposed to a range of approaches, from 

the computational to the relational.  

Justifications for responses were sought as a way to access student thinking, their 

ways of “seeing” the sentences, and to elicit their appreciation and verbalization of relations 

as well as the recognition of properties. Seen in terms of attention, being asked for 

justifications can shift attention from the details of particular tasks to the actions that can be 

short-cut by making use of arithmetical properties. 

In session 1, students were asked to solve a written task individually concerning the 

sentences shown in Table 2. After this task, there was a plenary discussion about their 
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answers and the way they got them. In this way students´ conceptions about the equal sign 

were assessed and the approaches they used started to become explicit.  

In session 2, students solved individually a written task with another set of missing-

number sentences (see Table 2) which were designed to explore some of the difficulties 

evidenced by the students in the previous session and to examine the stability of students´ 

understanding of the equal sign. After having a whole group discussion about these 

sentences which involved justifications-on-demand, students were asked to construct their 

own addition and subtraction sentences with operations on both sides. The aim of this last 

task was to (a) test our assessment of each student’s understanding of the equal sign by 

asking them to make active use of this sign; and (b) to check whether they had noticed the 

richness in relations of the proposed sentences, even though only two students had so far 

evidenced relational thinking. Finally, in this session there was a short guided discussion of 

some students´ sentences which were considered to have the potential to lead to 

verbalizations of relational thinking: 001515  , 2010012010  , 11111111  , 

410410  , 01001000  . This discussion made explicit that some sentences could 

be solved without performing any operation.   

From the third session on, the use and display of relational thinking was promoted 

by encouraging the use of multiple ways of determining the truth value of a number 

sentence, asking students for ways of doing so without doing all the computations, and by 

showing a special appreciation of explanations based on relations. The learning of specific 

relational strategies was not promoted. Emphasis was placed on the development of a habit 

of looking for relations, trying to help students make explicit and apply the knowledge of 

structural properties which they had from their previous arithmetic experience. Sessions 3, 
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4, 5 and 6 aimed to identify students´ approaches when working on the sentences and to 

detect and analyze obstacles arising from shifts or absence of shifts of attention. Below we 

briefly describe the design of each of these sessions (see more in Molina, 2006).  

In session 3 a plenary discussion was developed in which justifications were 

demanded in response to students´ assertions as to whether various statements were true or 

false (see the statements used in Table 2). In the design of these sentences the following 

elements were balanced: (a) true and false sentences, (b) numbers lower than 30 or numbers 

from 50 to 326, (c) sentences based on each of the arithmetic properties before mentioned. 

Students were also asked to propose a correction for the sentences that they considered 

false. 

In session 4 students individually solved a written task consisting of true/false 

sentences similar to those used in session 3 (see the particular sentences considered in 

Table 3). Students had to decide if the sentences were true or false, justify their decision 

and, if they considered the sentence false, to propose a correction. 

 In session 5 semi-structured interviews were conducted with half of the students. 

The students were chosen depending on the use of relational thinking that they had 

evidenced, with the requirement of having attended all the previous sessions. At least two 

students of each of the following categories were selected:  (a) No use of relational thinking 

evidenced; (b) Use of relational thinking evidenced just occasionally; (c) Half use and half 

non-use of relational thinking evidenced; (d) Use of relational thinking evidenced in most 

sentences, (e) unclear behaviour. The aim of the interviews was to deepen the study of 

students´ use of relational thinking. These students were probed with sentences which were 

based on different arithmetic properties (see Table 1) than those sentences in which they 
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had evidenced use of relational thinking in previous sessions. The sentences considered 

were similar to those of session 3. As before, they were asked to be prepared to provide 

justifications-on-demand. 

Session 6 was an assessment session in which students were probed with the same 

individual written task used in session 4. 

Classroom Atmosphere 

During the six sessions of the teaching experiment, students actively participated in 

the discussions and written activities right from the start. They knew how to solve the open 

sentences through computation and enjoyed participating in discussions and getting 

opportunities to explain their thinking. The teacher-researcher asked them for different 

ways in which they could justify their answers, and they responded by making efforts to 

provide explanations different to the ones of the other students. They sometimes shifted the 

order in which the operations were performed or looked for different strategies to compute 

the same computation (e.g. by an addition instead of by a subtraction, through counting, 

etc.). By asking students for different ways of solving the same sentence, the teacher-

researcher tried to force them to listen to the other students´ explanation. They sometimes 

referred to other students´ explanations to try to show that theirs was different, but never 

asked for clarification of other students’ responses.   

Students evidenced more difficulties in explaining their thinking when it was based 

on relations. In many cases their explanations were less mathematically precise, so the 

teacher-researcher often translated them to the whole class in order to ease understanding. 
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As an example we present below an extract3 from the discussion of the sentence 

52505151   in session 3.  

Fran: Like fifty-one plus fifty-one are one hundred and two, but fifty-one, if you 

subtract fifty, you can add to fifty-one, one from the other, one more, and you get 

fifty-two.  

Teacher-Researcher: Ah, that is interesting. You said that you can take one from 

here [pointing to the first fifty] and add it to this one [pointing to the second fifty 

one]. Isn’t it? Is that what you said? 

F: And you get there, one hundred… fifty plus fifty-two.  

T-R: Ah, Did you understand what Fran said? He said that if we take one from the 

first fifty-one (pointing to the first fifty-one), we get fifty (pointing to the fifty), and if 

we give it to the other fifty-one (pointing to the second fifty-one), we get fifty-two 

(pointing to the fifty-two).  

 

Students with weak arithmetic skills rarely participated in the discussions. They seemed 

frightened to state their thinking to the whole group and displayed little trust in their 

mathematical competence. They were not forced to participate orally but their answers 

were noted whenever they were willing to provide them to the whole group. On several 

occasions they only stated the validity of the sentence and claimed not to be able to explain 

their thinking. The written activities and the interviews were good opportunities to access 

these students´ thinking as they seemed to feel less intimidated.  
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Students´ Previous Experience Related to These Tasks  

Unlike reports form various researchers (Behr et al., 1980; Carpenter et al., 2003; Kieran, 

1981; Molina & Ambrose, 2008; Warren, 2003) previously commented on, the group of 

elementary students that participated in the teaching experiment did not tend to perceive the 

equal sign as an operational symbol. In the first session assessment most students displayed 

evidence that they were looking for a number that would make the expressions in both sides 

of the equal sign to have the same numeric value. During the teaching experiment some 

students displayed an occasional instability in their understanding when the sentences 

involved computations which required a higher cognitive demand or which caused them 

some difficulties. It was then that they altered the structure of the sentence or ignored some 

of the terms. But, in general, students evidenced a relational understanding of the equal 

sign4. This is probably a consequence of the fact that their regular classroom teacher was 

especially concerned about learning the meaning of mathematical symbols and used to 

emphasize it in his daily teaching.  

Students were not, however, used to working on number sentences with operational 

signs on both sides, even though occasionally they would encounter this type of sentence in 

their textbook in activities or explanations regarding the use of brackets or the commutative 

property. Relational thinking was not promoted in their regular instruction. Only some 

mental computation strategies were addressed, presented as ‘tricks’, and they were not 

promoted in the regular practice. According to the regular classroom teacher, students´ 

previous experience about structural properties was reduced to direct instruction about 
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commutativity of addition and multiplication, and associativity of addition, as well as their 

own awareness about structural properties resulting of their personal arithmetic experience. 

The regular mathematics instruction in the classroom was very traditional and did 

include neither discussions nor group work. The communication in the classroom was 

based on the teacher explaining the lesson, asking for answers and giving feedback about 

their correctness. Students used to work individually at their desks and sometimes went to 

the blackboard to solve some computation or problem in front of all the students. The 

classroom teacher faithfully followed a textbook which was mainly centered on promoting 

computational practice and occasionally included some word problems.  

Data Collection and Analysis 

In all the sessions the students´ individual written work was collected. All the whole-group 

discussions were video-recorded and the interviews were audio-recorded. These recordings 

were complemented with the researchers´ field-notes about the in-class interventions as 

well as about the researchers´ meetings.  

The analysis combined data from the different sources: students´ written work and 

students´ oral explanations in discussions and interviews. Each students´ answer in each 

sentence was individually analyzed and also compared to his/her responses to other 

sentences in the same session and in other sessions, as well as to other students´ responses. 

Because the analysis reported here is a re-analysis of the data after it had all been 

collected, in order to identify where students were placing the attention when working on 

each sentence we focused on what the students said and wrote. The data collected does not 
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allow us to locate or observe all the ways in which students focused their attention, but only 

for those that the students displayed through their explanations or written work.  

We were especially careful about not over-reading or over-hearing in students´ 

productions; a characteristic challenge of the complex process of interpreting students´ talk 

and actions (Wallach & Even 2005). There are some instances in which the data do not 

reveal where students were placing their attention. For example, César’s work on the 

sentence  1223535122   does not reveal whether he recognized that the same number 

was added and subtracted to 122 (although it suggests so). In the rest of the sentences of the 

session 4 assessment, he computed and compared the numeric values of the expressions in 

both sides of the equal sign; however, no written computation appeared in his submitted 

paperwork for this sentence. In addition, his explanation for this sentence was fairly 

incomplete: “True because 35122   but if you 35 to 22, you get 122”.  

As a consequence of this limitation in identifying the students´ focus of attention 

from the data collected, when we comment on the result of this study in the next sections of 

the paper, we provide ranges of percentages and of numbers of students, instead of exact 

quantities.   

Movements of Attention Looking Across Students´ Thinking Over Time 

As might be expected, at least 50% of the time learners computed both sides of the 

equations and then declared whether the equality was true or false. In about 5% to 6 % of 

the time, they started to calculate but then something in what they said or did, led them to 

recognize or at least to act upon a relationship through which they could detect the truth or 

falsity of the equality. Between 25% to 30% of the time students made overt use of 

relationships without doing any computations at all.  
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The notion of shifts of attention or alterations in the structure of attention provides 

an explanation for this observed behaviour. When analyzing students´ structure of attention, 

we detect shifts over three different scales of time. Short-term shifts occurred while 

deciding the validity of a single sentence. Medium-term shifts took place while a student 

was working on a set of number sentences. Long-term shifts are detected when comparing a 

student’s behaviour in different sessions of the teaching experiment.  

Working on a Sentence. Short term shifts.  

Students´ responses show that, faced with an equation involving numbers, they discerned at 

least the numbers, the equal sign, and some operations. Some did not display recognition of 

any relationship. For example, in the sentence 43025734257   Clara’s work 

consisted of computing the numeric value of both sides using the addition standard 

algorithm for the computations 22730257  , 2234227   and 22334257  . She 

explained: “True because 34257   is 223 and it is equal to 430257   [that] is 223”. 

Noelia did similarly in the sentence 13125125  . She computed the numeric value of the 

left side using the subtraction standard algorithm and then concluded the falsity of the 

sentence by explaining that the result of the computation was zero and not thirteen. We 

conjecture that the equal sign or the presence of operation signs may have triggered them 

into a computational mindset to obtain the numeric value in order to test validity. Their 

attention seemed to be focused on, even absorbed by the calculations. As we later discuss, it 

may be that the more challenging the computation, the more attention is required to carry 

out the calculation, holding temporary results and so on, so that other features of the 

statement fade into the background.  
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Others, however, while performing a calculation For example, this was observed in 

Fabian´s work on the sentence 52505151  . He explained: “Like fifty-one plus fifty-

one are one hundred and two, but fifty-one, if you subtract fifty, you can add to fifty-one, 

one from the other, one more, and you get fifty-two”.  Maite´s work on the sentence 

75232375  also evidenced this shift in attention. She first wrote 2375  75 + 23 in a 

vertical format to add them by columns but suddenly stopped and explained “ 

In other cases such as in the sentence 914977  , initiating a calculation and 

getting a partial result suddenly resonated with what else was visible in the statement, 

prompting recognition of a relationship. For example in this sentence Clara explained: 

“adding seven plus seven…. adding seven plus seven you get fourteen, the same than there, 

nine the same than there too”. Having calculated or just by knowing the fact 1477  , the 

presence of the 14 was strong enough to lead Clara to direct attention to the right hand side, 

so she saw or became aware of two identical statements 914   and 914  , which can be 

seen to be equal without further computation. Not only is it a repetition of a specific 

number, but a particular instance of a general property.  

What we can't find out very easily is whether these students were aware of or 

perceived the general property explicitly, with the particular as an instantiation, or whether 

their action was more like a theorem-in-action (Vergnaud, 1981), in which they acted as if 

they knew the property, while only being explicitly aware of the relationship in the 

particular case. 

Between 25% to 30% of the time, students went directly and immediately to 

relationships without any evident attempt at computation and their thinking can be 
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described as being relational. This is for example the case of David in the 

1223535122   who did not perform any written work on this sentence and explained 

“True because it is as if you give the number and then you get [take] it back”. Another 

example of this use of relational thinking is provided by Carmen explanation to the 

sentence 12121113  : “I have thought that I can take one from thirteen and you get 

twelve, and I added that one to the eleven, and I get twelve plus twelve equals twelve plus 

twelve”. To do this, they would have held the sentence as a whole, directly discerning and 

attending to the numbers and operations involved and recognizing relations between 

them. Their attention would appear to have been dominated by recognizing relationships. 

Sameness was one of the relationships used and in sentences like 187718   

(mis)led some students to declare the result true. This can be result of having recognized a 

relationship but continued to hold the elements as wholes rather than checking details of 

the sameness. Similarly lack of sameness was used occasionally to conclude that a sentence 

was false (e.g., 410710  ; 40544153  ).  

In order to make use of relational thinking, a learner needs to have sufficient free 

attention so as not have it all taken up with any calculations that are initiated, or else to be 

centered in recognizing relationships rather than being drawn into calculating as a first 

response. Details need to be discerned on both sides of the equals sign, and relationships 

amongst these need to be recognized. The essence of relational thinking is the recognition 

of a relationship between some features of the statement, usually items from both sides but 

not necessarily. This in turn requires awareness of the equal sign not as a trigger to 

calculate, but rather as statement of relationship. Justification, when demanded, can either 
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be in terms of the particulars, or in terms of generality, indicating a perception of properties 

being instantiated. 

Medium-Term Shifts from one Sentence to another  

Sometimes students displayed evidence of a shift in the structure of their attention during 

the movement from one sentence to another. In Table 3 we have an example in the working 

of a student, Jose, in the written assessment of session 4. Although his thinking is not clear 

in some sentences, other responses suggest movement in his attention. Jose proceeded 

relationally in the sentences 3401475   and 18101846  . In the former he 

compared the relative size of the numbers in both terms and concluded that the equality was 

impossible; and in the latter he recognized the equivalence of both sides of the sentence by 

computing 1046   and recognizing sameness between both terms (which he expressed 

by writing 18101810  ). However, in the sentences 1223535122   and 

36141416   he computed the left side, from left to right, and compared the numeric 

value obtained with the number on the right side. Jose’s attention at any given moment may 

have been influenced by the type of sentence: with operations on both sides of the equal 

sign or just on one of them. His approach tended to be computational when addressing the 

later type of sentences and relational in the former type, with some exceptions.  

[INSERT TABLE 3] 

In other students’ responses to the same assessment we observe different patterns in the 

movement of their attention. David computed the numeric value of both sides in all except 

the sentences 187718   and 1223535122  . David’s thinking seems mainly 

computational but in 1223535122  , without doing any computation, he appreciated 
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that “it is as if you give it a number and later you get (take) it back”. In this case we 

conjecture that the bigger numbers in the sentence may have led him to attend to relations 

between the terms which he did not recognize again later in the sentence 36141416   

where his thinking might be more concrete and calculational, due to his familiarity with 

these smaller numbers. Although some students treated large numbers as obstacles, they 

can help students focus on form and structure rather than on computation. Zazkis (2001) 

uses this insight as a pedagogical tool to help students see the general in the particular and 

focus on noticing structure, reasoning with it and expressing it.   

In the case of Elena, we detect a different behaviour as she thought relationally 

when working on almost all the sentences in the assessment. She computed the values of 

each side to answer the sentence 11161217   but, after doing the same in the sentence 

40544153  , she explained that it was true because “we put the 1 from the 54 to the 

40 and you get the same”. In the sentence 158157   she also did the computation 

before appreciating that it could not be true due to a difference of size between the 

expressions on both sides. She seemed to recognize relationships as an after-thought rather 

than before she embarked on computation. In her case the size of the numbers in the 

sentence did not appear to influence her approach but the relations involved in the design of 

the sentences did. The sentences based on the compensation relation were for her the ones 

where relations were harder to recognize.  

Maite, in the same assessment, only showed evidence of use of relational thinking in 

the following sentences which include operations on both sides: 75232375  , 

158157   and 187718  . In the other sentences she computed and compared the 
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numeric value of each side, while in these three sentences recognized sameness or “almost 

sameness” between the expressions on both sides as she expressed (see Table 4). In these 

sentences she initially proceeded to compute one of the sides, or just to write it vertically, 

before recognizing any relation. With her behaviour Maite displayed a tendency to 

calculating when approaching the sentences but in some sentences her attention was not 

completely taken by the computations, allowing her to recognize some basic relations 

between both sides of the sentences, mostly when there was an operation on both sides of 

the equal sign.    

[INSERT TABLE 4] 

These examples illustrate a mid-term shift detectable in students´ attention as they worked 

by themselves in a set of sentences. The movement of their attention seems to be due to a 

variety of possible influences. As we further discuss below focusing on the arithmetic 

relations used in the design of the sentences, in some cases sentences with operations on 

both sides of the equal sign promoted more relational approaches than sentences with 

operations on just one side. In others, big numbers dissuaded students from initiating 

calculations and led their attention to the structure of the sentence.  

Some relations (e.g., sameness) were more easily recognized by the students than 

others (e.g., compensation). Even those students who were most likely to compute tended 

not to do so on number sentences which include zero relations ( aa  0 ; aa  0 ; 

0 aa ). Sentences involving the commutative property also seemed to promote 

relational approaches. In the discussion of session 3, none of the students that participated 

in the discussion of the sentence 104410   solved it by computing. In sessions 4 and 
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6, only 5 and 8 students, respectively, solved the sentence 75232375   by computing 

the numeric value of each side.  

In the sentences based on composition/decomposition relation as well as on the 

inverse relation of addition and subtraction, half of the students preceded computationally 

while the other half used relational thinking. However, in the latter we detected more use of 

computational approaches when the sentences included small numbers. In the sentences 

based on “relative size comparisons” initially, during the whole group discussion of session 

3, students evidenced both approaches but computational approached became more 

frequent in the sessions 4 and 6. This tendency was specially appreciated in the action 

sentences considered. We conjecture that this may be result of the fact that they did not 

include equal numbers in both sides, while the others did. The sentences based on the 

compensation relation were the ones least frequently approached relationally, especially 

those involving subtraction. 

Long-Term Shifts from one Session to another 

Initially, in sessions 1 and 2, computing and comparing the numeric values of each side was 

the most common strategy. When asked to solve the sentences in different ways, students 

tended to propose a different order in which to perform the computations. Only three 

students spontaneously evidenced some use of relational thinking in the sentences 

 7712 ,  49  3 ,  13412  and 001515  . However, from session 

3 on, when paying attention to recognizing relations was promoted and various strategies 

based on the use of relational thinking were made explicit, more students, and more 

frequently, recognized relations and perceived properties which they used to solve the 
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sentences. In all, about 14 out of 18, 19 out of 24, 11 out of 13 and 17 out of 24 students 

respectively, evidenced used of relational thinking in the third, forth, fifth and sixth 

sessions (See Table 5). 

[INSERT TABLE 5] 

By the time of the sixth session, all but two or three students solved the sentences at least 

once using this type of thinking instead of computing and comparing the numeric values of 

both sides. Interestingly, three students gave evidence of relational thinking only during the 

interview. For example Roberto used it in several sentences by providing the following 

explanations: “[ 135513  ] It is true because it is the same; just the other way around”, 

“[ 100826  ] It is false because if it were… it is twenty-six minus eight and it is equals to 

one hundred, and then as it is minus, it is to take away, and it has to be still one 

hundred…One hundred is higher than that one, than the subtraction”. This student did not 

provide any evidence of having attended to relations between terms in the sentences in 

previous sessions but, on the other hand, never displayed any special difficulty in the 

proposed tasks. From these results, we conjecture that relational thinking may not become 

evident unless students are immersed in a culture which explicitly values recognizing 

relationships and perceiving properties of which they are instantiations. It is not that 

students can’t, or even don’t, think relationally, but rather what is encouraged and promoted 

through classroom practices. 

In the interviews other students (5 of the 13 interviewed) displayed a more frequent 

use of relational thinking than in previous sessions. For example, David had provided just 

an isolated use of relational thinking in previous sessions (e.g., “True because it is as if you 
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give it the number and then you get (take) it back” in the sentence 1223535122  ) but 

in the interview he used relational thinking in all the sentences he encountered: 

135513  , 100826  , 64468  , 510611  , 810711  ,  

391319  .  

We conjecture that how frequently students used relational thinking or in which type 

of sentences they did, also depended on their arithmetic knowledge and on their awareness 

of this knowledge. Being asked to justify a conclusion, result, or conjecture can be 

responded to in many ways. At first there is the "it just is" response (Freudenthal, 1978) 

associated with students who take everything they are told at school as factual and 

requiring learning. It requires a change in their perception of the implicit contrat didactique 

(Brousseau, 1984) to recognize the socio-cultural practice of mathematics to provide 

reasons based on structural properties. But to engage in such a practice also requires an 

awareness of the fact of these properties as properties, with particular instantiations as 

relationships. A student whose attention is fully taken up by numbers, operations and 

calculations is not in a position to recognize relationships, much less to perceive them as 

instantiations of perceived properties.  

Conclusions  

The teaching intervention developed in this teaching experiment aimed to promote the 

display of relational thinking and tried to alter how students attended to calculations and 

expressions through justifications-on-demand in a classroom atmosphere where the focus 

was not on numeric results nor on calculations but on recognizing and expressing 

relationships, and using them to get an answer. In this context we identified changes in 

students´ attention by looking across their thinking over time.  
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It is clear from the data that students´ focus of attention varied from moment to 

moment and from time to time. We showed that these movements were influenced by the 

characteristics of the sentence: structure, size of the numbers and relations used in its 

design. The results presented here as well as others of previous studies (Molina & 

Ambrose, 2008) suggest that they also depended on the student’s previous arithmetic 

experience (which conditions the cognitive demand of a task, their conception of numbers 

and of the equal sign meaning, their conscious and unconscious awareness of arithmetic 

relations, and the strength of their disposition to compute) and on the classroom culture. 

Regarding this last element, we observed that our emphasis in getting justifications about 

the validity of a sentence which did not require computations encouraged students to look 

for relations between terms or parts of the sentences and try to reason using them. When the 

teacher-researcher worked individually with students in the interviews, this influence was 

even more evident. Our special appreciation of this type of explanation together with the 

particular design of the sentence considered (where the numbers are used as quasivariables 

to express properties, see Fujii & Stephens, 2001) naturally led to relational thinking being 

made explicit since it is well known that elementary students are capable of this type of 

reasoning (Carpenter, Franke, & Levi, 2003; Molina & Ambrose, 2008).  

By looking closely at students’ responses to a specific range of arithmetic 

statements, it seems reasonable that it would be of benefit to teachers to become attuned to 

subtle variations in how students are attending, in order to be in a better position to prompt 

students both to recognize relations, and to perceive properties as being instantiated. Thus 

one possible didactical consequence is that by working on their own awareness so as to 
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sensitise themselves to different ways students might attend, teachers can extend the 

didactic choices available to them for directing students´ attention appropriately.   

Martino and Maher (1999) found that, in general, students do not naturally seek to 

build a justification or proof of the validity of a solution as they tend to think that proposing 

a solution is sufficient evidence for justification. So, the teachers´ role in demanding 

justifications would appear to be essential in order to take students´ thinking further. Even 

if it is not addressed in teaching, many students (although not all) eventually tend to follow 

a developmental progression in the use of relational thinking as result of their arithmetic 

experience (Knuth, Alibali, McNeil, Weinberg & Stephens, 2005; Stephens, 2007). By 

incorporating justifications-on-demand into classroom practices, it may be that this vital 

shift in thinking can be accelerated and exploited to enrich and connect the learning of 

arithmetic and algebra. Rather than being the focus of a few specific lessons, attending, 

using and expressing relations and properties as well as providing justifications could 

become part of regular mathematical practice. Even if some students are disposed to think 

relationally, this may not be evident unless students are immersed in a cultural practice 

which calls upon the expression of relationships and properties.  
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FOOTNOTES 

1 Along this paper, we will refer to this type of sentences as “true/false number sentences”.   

2 Although we acknowledge that the compensation relation is not strictly the same property 

for both operations, addition and for subtraction, we present them together because both 

refer to how to compensate for an increment or decrease in one of the terms in a sum or 

subtraction.  

3 All extract from discussions as well as students´ explanations presented in this paper were 

translated from Spanish.  

4 See Molina, Castro, & Castro (2009) for a deeper and more detailed analysis of the 

students´ understanding of the equal sign evidenced along the teaching experiment.  


