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Chapter 1

Overview

Since James Clerk Maxwell’s fundamental achievement, A Treatise on Elec-
tricity and Magnetism in 1873, electromagnetic wave theory has allowed plenty
of developments. However, complex internal constitution or boundary conditions
of media can render several electromagnetic problems arduous, or even impossi-
ble, to be analytically derivable. This difficulty is usually overcome by employing
computational numerical methods. The concern of this thesis is the modeling of
complex media with the Transmission Line Modeling (TLM) method [1].

An important part of numerical methods starts with the derivation of an inte-
gral equation which is later numerically solved by means of different well-known
methods, such as the Finite Element Method [2] or the Method of Moments [3].
In a certain way, the above mentioned approaches may be considered as semi-
analytical or of integral nature in the sense that an important theoretical task
is developed first to obtain the integral equation, prior to the specific numerical
treatment is applied. These semi-analytical methods provide good results, but the
theoretical part requires an important reformulation if different problems or new
effects are to be considered. Let us think, for example, of a problem devised for
a static or quasi-static situation, the integral equation describing the phenomenon
has nothing to do with the same problem for a high-frequency case.

A different approach is provided by differential equation solvers working in
the time domain, such as the Finite Differences in the Time Domain (FDTD)
method [4, 5] or TLM. In their basic version, these techniques directly consider
Maxwell’s equations together with boundary conditions to numerically model a
certain phenomenon. Of course, considering the problem through basic equations
in their most fundamental form, i.e., Maxwell and constitutive equations, may
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be considered of limited elegance because most of the work is performed by the
computer, requiring an almost negligible amount of theoretical work. The main
drawback of differential methods is that the computing burden is relatively high
when compared to the requirements of semi-analytical methods. Nevertheless the
strength of time domain methods are multiple:

• They are easily adaptable to new situations by only adding minor changes
to the code.

• Solutions can cover a wide frequency range with a single simulation run by
using a simple Fourier transform.

• Since the electromagnetic field is calculated everywhere in the computa-
tional domain, animated displays of its movements through the time process
is available. This dynamical picture may be useful in understanding what
is going on in the model, or simply to help confirm that the simulation is
correctly working.

This feature makes these intuitive methods attractive tools for the modeling of di-
verse electromagnetic problems.

In this dissertation, TLM will be discussed, developed, and used for problem
involving complex media. TLM is, as FDTD, a low-frequency numerical method
well-suited for the modeling of wave propagation problems. Even if it has been
mainly applied to solve questions of electromagnetic concern, it has been used
in the realm of acoustic [6], particle diffusion [7], or propagation of electromag-
netic waves in celestial body’s atmosphere [8]. Due to many similarities between
TLM and FDTD, both methods were often compared to each other [9–12]; these
analysis showed that the performance of TLM and FDTD are actually compara-
ble. Nevertheless, some advantages of the former over the latter method should
be emphasized:

• TLM defines all the field quantities at the same point, precisely at the center
of the basic building blocks (transmission line segments forming a node),
and at the same time. In FDTD, such a versatility is not allowed given that
the electromagnetic field components are spatially separated. Furthermore,
the electric and magnetic fields are not solved at the same time, meaning
that the FDTD routine is a two-step technique.
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• The most significant disparity is the way both methods address the physical
system to be simulate. FDTD discretizes Maxwell’s equations, and is, there-
fore, basically an approximate technique to solve differential equations that
represent the system under consideration. On the contrary, TLM is directly
a numerical model of the physical system through equivalent transmission
line circuits. In this manner, the approximations made when using TLM lie
in the model rather than in the discretization of equations.

The main weakness of TLM compared to FDTD lies in the fact that it has not been
extensively used like the latter method. Accordingly, there are relatively few tools
and prior development to assist a physicist that wishes to perform numerical mod-
eling with TLM. Thus, using TLM requires a good understanding of the method
because such a physicist will certainly have to develop his own implementations
in the aim of solving challenging issues.

The results presented in this thesis are mainly based on published articles con-
tributed by the author in journals and conferences [13–26]. The first simulated
media, in chapter 3, will be dielectric composite materials, the objective being
the determination of the effective permittivity of the mixture. Second, the inter-
action between invisibility cloaks and electromagnetic waves will be investigated
in chapter 4. Prior to these contributions, chapter 2 will be devoted to a large re-
view on TLM, useful developments to the study of dispersive metamaterials will
be reported, as well.
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Chapter 2

The Transmission Line Modeling
method (TLM)

2.1 Introduction

Employing electrical networks to solve problems that involve the propagation
of electromagnetic fields is a well-established technique since the 1940s when
Kron [27] and Whinnery [28] presented their precursor works. Inspired by these
contributions, Johns and Beurle created the transmission line modeling (TLM)
method in 1971 [1]. TLM is a numerical time-domain method that can be viewed
as the circuit equivalent of Huygens’ principle for light propagation. This princi-
ple states that each point on a primary wavefront can be considered to be a new
source of a secondary spherical wave and that a secondary wavefront can be con-
structed as the envelope of these secondary spherical waves. In the same manner,
the discretization of space leads to the TLM mesh in which each propagating volt-
age pulse is a new source of radiation. One of the most significant properties of
TLM is that the mesh is a network of intersecting transmission lines, meaning
that it should be regarded as a modeling procedure rather than a direct numerical
solution of the electromagnetic field equations. Indeed, no differential or integral
equations are solved, TLM is directly a numerical model of a physical system.

• In section 2.2 of this chapter, we will introduce TLM from an historical
point of view. The two-dimensional (2D) parallel node, which was proposed
in Johns and Beurle’s pioneering article [1], and the three-dimensional (3D)
Symmetrical Condensed Node [29] are briefly presented. The aim of this
section is not to give too many details; instead, some basic and useful con-
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(a) (b)

Figure 2.1: 2D parallel node: (a) without stub, (b) with stub.

cepts will be introduced. Furthermore, the limitations of the historical ap-
proach will be emphasized.

• In section 2.3, a more modern description will be presented with extensive
details.

• In section 2.4, it will be shown that the usual Cartesian nodes can be sub-
stituted by curved nodes that allow the modeling of curved geometries very
conveniently.

• In section 2.5, TLM will be extended to simulated metamaterials whose
permittivity and/or permeability are less than the usual unitary values of
free space.

• In section 2.6, we will focus on the frequency response of the modified TLM
mesh for the modeling of metamaterials.

2.2 Historic representation of the TLM nodes

In their pioneering work, Johns and Beurle presented the TLM elementary
cell, called node, as a junction between a pair of transmission lines [1] with char-
acteristic impedance Z0 or, equivalently, with admittance Y0 = 1/Z0. As a result,
the first calculations were carried out in the structure depicted in Fig. 2.1(a), the
complete network being made up of a large number of such building blocks. The
node shown in Fig. 2.1(a) is a shunt circuit, that is why it was referred to it as
parallel node. At low frequencies, Johns showed that the node can be represented
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by a network made of lumped inductors, with inductance L, and capacitors, with
capacitance C. It turns out that the equations applying in such a network are
analogous to those of Maxwell for an electromagnetic wave propagating with the
electric field normal to the plane of propagation, i.e., the transverse-electric (TE)
mode. Note that it is wise to be aware that in other realms of physics or other
authors use different conventions for the meaning of TE or transverse-magnetic
(TM) modes. Our convention is common, but it should be kept in mind that the
TE mode may represent a mode in which the electric field is confined to the plane
of propagation. The analogy between Maxwell’s equations and the equations of
transmission lines theory constitutes the base of TLM, the calculation of the elec-
tric and magnetic field being substituted by the calculation of tension and intensity
pulses that propagate in the mesh. The incident pulses penetrate into the node in
Fig. 2.1(a) from the four ports; the information is grouped in the voltage vector,

V i =


V1

V2

V3

V4


i

.

(2.1)

When reaching the center of the node, the incoming pulses are scattered along the
four available directions, which gives rise to a set of reflected pulses we will refer
to as

V r =


V1

V2

V3

V4


r

.

(2.2)

This redistribution of the incident pulses is determined by a scattering matrix, S,
such that,

V r = SV i
. (2.3)

The determination of S is an important step of the method. Given a unitary pulse
incident from one port, it reaches the parallel connection of three lines, or equiv-
alently, sees an effective admittance 3Y0. Therefore, the reflection, Γ, and trans-
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mission, τ, coefficients are,

Γ =
Y0−3Y0

Y0 +3Y0
=−1

2
, (2.4a)

τ =
2Y0

Y0 +3Y0
=

1
2
, (2.4b)

The voltage reflected at the incident port equals Γ, while the pulses transmitted to
the rest of lines equals τ. Doing so for unitary pulses incident for all the lines in
the node, it results that

S =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (2.5)

Due to the simple topology of the parallel node, the determination of S is straight-
forward. Nonetheless, the derivation of the scattering matrix for a more compli-
cated node can be very difficult. In section 2.3.1, a technique that considerably
simplifies the obtention of S will be presented [30].

The circuit parameters (L and C) are adjusted to account for the local value
of permittivity and permeability; in this manner, the simple node in Fig. 2.1(a)
is only capable of simulating homogeneous media because the capacitance and
inductance of the constitutive transmission lines remain constant throughout the
mesh. However, extra capacitance can be introduced to the node by equipping the
node with a supplementary transmission line, i.e., a stub such that the permittivity
can be variable. Note that the stub is only connected to the center of the node, no
line of adjacent nodes is connected to it. This relates with the fact that this stub
does not model propagation, but it serves as a means of controlling the speed of
propagation. The stubbed parallel node is depicted in Fig. 2.1(b), where it can be
seen that a fifth line has been added. However, this treatment does not allow vari-
ation on the permeability, which constitutes a significant limitation. An important
point that should be emphasized is that the node is usually represented by a single
equivalent electrical circuit in order to calculate the electromagnetic field in terms
of the voltage and intensity pulses [31].

A fundamental contribution to TLM was the development of the Symmetri-
cal Condensed Node (SCN), also proposed by Johns [29], to solve 3D problems.
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Figure 2.2: The symmetrical condensed node.

The node without stubs, as it appeared in Johns’ original paper, is depicted in
Fig. 2.2. Johns claimed that SCN can no longer be represented by an equiva-
lent electrical circuit [29] because the transmission lines may couple with each
other, in agreement with the fact that the components of the electromagnetic field
couple in Maxwell’s equations. Johns’ statement was certainly true: no single
equivalent circuit can be drawn up to represent SCN. However, it was shown by
Naylor [30, 32] that SCN can be represented by a set of equivalent shunt-only
and series-only circuits, where the particular pair of transmission lines under con-
sideration are common to both circuits. This vision has long been unique to the
description of 3D nodes. Nonetheless, we have recently pointed out [14] that even
2D nodes must be represented by a set of coupled shunt- and series-circuits. Ac-
tually, as pointed out in the preceding paragraph, the representation of the parallel
node by a single circuit limits its validity to media for which only capacitive terms
(as the permittivity) are variable. In contrast, describing the parallel node as a set
of coupled parallel and series nodes provides more versatility to the node; allow-
ing inductive magnitudes, such as the permeability, to be simulated. Section 2.3.1
will be devoted to what should be named a global node for TE modes, instead of
parallel node, since it no longer makes sense to refer to it as parallel. Furthermore,
the global node for TM modes will be presented in section 2.3.2; such a node is
the generalization of the historical series node [33] that may be considered as the
counterpart of the parallel node.
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For further reading, more details can be found in [1, 31]. However, it is useful
to derive important relations for the next sections. Let us consider the structure
displayed in Fig. 2.2, where the node represents a cube of space of dimension ∆x,
∆y, ∆z, and the total capacitance and inductance associated with a certain consti-
tutive transmission line are Ci, Li, respectively. To model a medium with permit-
tivity εiε0 and permeability µiµ0, the capacitance and inductance are required to
be:

Ci = εiε0
∆ j∆k

∆i
, (2.6a)

Li = µiµ0
∆ j∆k

∆i
, (2.6b)

respectively, where (i, j,k) = {x,y,z}. Details on Eqs. 2.6a and 2.6b are given in
section 2.3.3; concretely, the result is proven in Eqs. 2.72 and 2.75.

Let Yi be the characteristic admittance of a particular constitutive transmission
line. If we assume that ∆x = ∆y = ∆z = ∆l, the length of the individual line is
∆l/2. Moreover, ∆t is the complete time step of the calculation, i.e., the time
required for a pulse to traverse the transmission lines that link the adjacent nodes
of a certain node. Thus, the propagation time on each line is ∆t/2. Hence, the
distributed capacitance and inductance are given by

Cd
i =

Ci
∆l
2

, (2.7a)

Ld
i =

Li
∆l
2

; (2.7b)

while the velocity of propagation on each transmission line is

vT L =
∆l/2
∆t/2

=
∆l
∆t

=
1√

Cd
i Ld

i

=
∆l

2
√

CiLi

⇒ ∆t = 2
√

CiLi.

(2.8)

Thus, the total admittance and impedance of line i in terms of Ci and Li is naturally
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derived from Eq. 2.8:

YiY0 =
√

Ci

Li
=

2Ci

∆t
, (2.9a)

ZiZ0 =
√

Li

Ci
=

2Li

∆t
. (2.9b)

Hence,

Ci = YiY0
∆t
2

, (2.10a)

Li = ZiZ0
∆t
2

. (2.10b)

In practice, a purely capacitive line, as the stub of the node in Fig. 2.1(b), adds a
capacitance given by Eq. 2.10a to the node. Similarly, Eq. 2.10b may describe
the inductance generated by the inductive stub of a series node.

Finally, it has been mentioned at the beginning of this section that a transmis-
sion line can be represented by an equivalent distributed network at low frequency.
TLM is thus a low frequency method that have an upper limit for the frequency re-
sponse, this limit depends on the coarseness of the mesh. Usually, we ensure that
the smallest wavelength involved in the problem under consideration is greater
than ten times max(∆x,∆y,∆x):

λ≥ 10max(∆x,∆y,∆x). (2.11)

The practical rule given by Eq. 2.11 is actually based on rigorous analysis of the
relation of dispersion associated with TLM [34].

2.3 TLM Cartesian nodes

2.3.1 Nodes for transverse electric modes

When P. B. Johns introduced the SCN in 1987, he emphasized that a break
must be made with the traditional representation of nodes by an equivalent elec-
trical circuit obtained by replacing the transmission lines and incident pulses by
Thevenin equivalent circuits [29]. Indeed, SCN can no longer be represented by a
single lumped circuit.

On the contrary, the usual 2D shunt and series nodes presented in section 2.2
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Figure 2.3: 2D global node for TE modes. Note that the propagation of the pulses
is effectuated through the link lines (blue color), the other lines allow a control on
the constitutive parameters of the medium under consideration.

are represented by an equivalent circuit. However, it has been shown that this
circuit representation leads to limitations, particularly if one wants to consider
more general cases, such as magnetic or electric losses. We published a paper in
which it is pointed out that a 2D node cannot be directly represented as a single
circuit neither [14]. It is more appropriate to consider the node as the multi-
port system or formal circuit shown (for the case of a TE mode) in Fig. 2.3,
in which the black box at the node center represents the formal connection of
the lines that describe Maxwell’s equations. The global node describes all the
non-trivial component of Maxwell’s equations, i.e., it can be split into three sub-
circuits, each one of them describing a component of the electromagnetic field
and being equivalent to a component of Maxwell’s equations. Let us consider an
electromagnetic wave that propagates with TE polarization; when the shunt node
was required in the historical description, we have instead three coupled circuits:
a shunt sub-circuit for Ez, and two series sub-circuits for Hx and Hy, as depicted
in Fig. 2.4.

The Ez sub-circuit shown in Fig. 2.4(a) is made up of four connecting or link
lines (lines 1-4) of admittance Y0. It is worth noting that Y0 is not necessarily
the admittance of free space which we will refer to as 1

η0
=
√

ε0/µ0, where η0 is

16



(a) Parallel sub-circuit for the z-
component of Ampère’s law to de-
fine Ez.

(b) Series sub-circuit for the x-
component of Faraday’s law to de-
fine Hx.

(c) Series sub-circuit for the y-
component of Faraday’s law to de-
fine Hy.

Figure 2.4: Splitting of the 2D global node into into three sub-circuits.
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the impedance of free space. Instead, the value of Y0 can be judiciously chosen
depending on the problem under consideration, however we will show later that
some restrictions may apply. The sub-circuit is also equipped by a capacitive
stub (line 5), with admittance YzY0, which allows independent control of εz. A
lossy stub (line 8), which may be regarded as infinitely long or, equivalently, as
terminated by its own characteristic impedance, is also connected to the node in
order to incorporate electric conductivity σe

z . Any pulse scattered into the lossy
stub is then absorbed, with no possibility of being readmitted into the circuit. The
admittance of line 8 is given by GzY0, and the expression of Gz in terms of σe

z will
be given and proven in section 2.3.3 at Eq. 2.73c.

The Hx and Hy sub-circuits, shown in Figs. 2.4(b) and 2.4(c), are each made
up of two connecting lines (lines 1 and 3, and lines 2 and 4; respectively) whose
impedance is Z0 = 1/Y0. Furthermore, they are each equipped with an inductive
stub (line 6 and line 7, respectively), with impedances ZxZ0 and ZyZ0, which al-
lows independent control of µx and µy. Since E is not involved here, there is no
lossy stub for electric conductivity. Nonetheless, we can introduce an even more
versatile node by adding magnetic losses along the x- and y-directions; that re-
sults in another infinite stub in both sub-circuits (line 9 and line 10, respectively)
to take into account the magnetic resistivities σm

x and σm
x . Impedances of lines 9

and 10 are given by RxZ0 and RyZ0, respectively. Even if such a general situation
is unlikely, we do consider magnetic resistivity for the sake of generality, and also
because new materials do have magnetic losses. However, note that such a gen-
eral node leads to high computational requirements and should be sparingly used.
Furthermore, the expression of Rx and Ry in terms of σm

x and σm
y will be given and

proven in section 2.3.3 at Eqs. 2.76a and 2.76b, respectively.
The total capacitance associated with lines 1-5 in Fig. 2.4(a) is given by Cz =

4Y0
∆t
2 +YzY0

∆t
2 ; the total inductance associated with lines 1, 3, and 6 in Fig. 2.4(b)

turns out to be Lx = 2Z0
∆t
2 + ZxZ0

∆t
2 ; while we calculate that the total inductance

associated with lines 2, 4, and 7 in Fig. 2.4(c) is Ly = 2Z0
∆t
2 +ZyZ0

∆t
2 . Given that

the circuits in Fig. 2.4 must model a medium with Cz = εz
∆x∆y

∆z , Lx = µx
∆y∆z
∆x , and

Ly = µy
∆x∆z

∆y , simple operations provide the following expressions for Zx, Zy, and
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Yz:

Zx =
2µxµ0

Z0∆t
∆y∆z
∆x
−2, (2.12a)

Zy =
2µyµ0

Z0∆t
∆x∆z

∆y
−2, (2.12b)

Yz =
2εzε0

Y0∆t
∆x∆y

∆z
−4. (2.12c)

Since the above parameters represent the admittances and impedances of a
transmission line, they must be positive. That has direct consequences on the
TLM time-step, ∆t, and on Z0; both must be chosen so that Zx, Zy, and Yz are
nonnegative. Let ε−z , µ−x , and µ−y , be the lowest constitutive parameters of the
modeled space. Note that as long as only usual materials are involved, these three
parameters are greater than unity. We get:

∆t ≤ ∆tx =
µ−x µ0

Z0

∆y∆z
∆x

, (2.13a)

∆t ≤ ∆ty =
µ−y µ0

Z0

∆x∆z
∆y

, (2.13b)

∆t ≤ ∆tz =
ε−z ε0

2Y0

∆x∆y
∆z

. (2.13c)

In order to eliminate one of the two inductive stubs,

∆t = min(∆tx,∆ty). (2.14)

Furthermore, the capacitive stub is canceled, i.e., Yz = 0 if the value

Y0 =
1
2

ε−z ε0

∆t
∆x∆y

∆z
(2.15)

is selected. If we take into account the choice of ∆t, it turns out that

Z0 =
√

2η
−

η0
∆z
∆ι

, (2.16)

where ι is either x or y depending on the ∆t that has been elected, and where

η− =
√

µ−ι
ε
−
z

. It is possible that η− be the impedance of no constitutive material of

the simulated space; indeed the space with the smallest permittivity and the space
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with the smallest permeability may no coincide. However, if such a space exists,
it should be noted that this space in particular is entirely described by using only
a single inductive stub if the above ∆t and Z0 are chosen. A situation very often
met is ∆x = ∆y = ∆z = ∆l, ε−z = 1, µ−x = 1, and µ−y = 1; in this case,

Z0 =
√

2η0. (2.17)

With this approach, it is possible to simulate a certain class of metamaterials
whose optics constants ranges from zero to one. All we have to do is to decrease
the TLM time step, ∆t. However, this prescription no longer holds if ε and/or µ are
negative; moreover, decreasing ∆t increases the computational requirements. We
will present in section 2.5 a better way to model metamaterials: negative values
will be allowed and ∆t will not have to be decreased.

Obtaining the scattering matrix S that connects the incident and reflected pulses
at the node center according to V r = SV i, is not a straightforward task. We use
the method of common and uncommon lines presented by Portı́ et al. [30] that
simplifies the derivation of S. First, it is worth noting that the node is made up of
a total of 10 lines that should lead to a 10×10 matrix. But, since no incident volt-
ages are coming from the lossy stubs, S can be reduced to a 7 columns, 10 rows
matrix. Moreover, the pulses that are reflected from the node center to the lossy
stubs are usually not of valuable interest, except for energy conservation reasons,
S is consequently a 7×7 matrix.

Let us suppose that a voltage pulse V i
1 of unit amplitude is incident upon port

1 of the structure in Fig. 2.4. This pulse only excites Hx and Ez and propagates
along the y-direction. In terms of Maxwell’s equations, only the x-component of
Faraday’s law (associated with Fig. 2.4(b)) and the z-component of Ampère’s law
(associated with Fig. 2.4(a)) are involved. Thus, logically, port 1 is only present
in the two above-mentioned sub-circuits.

1. Uncommon lines: Shunt sub-circuit in Fig. 2.4(a).
The pulse is scattered into ports 1, 2, 3, 4, 5, and 8. Obviously, ports 1 and
3 are common with the other sub-node, determining V r

1 and V r
3 is then not

trivial given that circuit is not the only information to be considered. On the
other hand, ports 2, 4, 5, and 8 are uncommon: they are completely defined
by the circuit and, therefore, V r

2 , V r
4 , V r

5 , and V r
8 are equal to the transmission
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coefficient given here by

τ =
2Y1

Y1 +YL
, (2.18)

where
YL = Y2 +Y3 +Y4 +Y5 +Y8

= 3Y0 +YzY0 +GzY0
(2.19)

is the load admittance. Let the amplitude scattered into ports 2, 4, 5, and 8
be c = V r

2 = V r
4 = V r

5 = V r
8 = τ, we get:

c =
2

4+Yz +Gz
. (2.20)

Although there is no need to evaluate V r
8 as an element of S, its value will

be of interest for defining the common voltages as we will see hereinafter.

2. Uncommon lines: Series sub-circuit in Fig. 2.4(b).
Here, the pulse is scattered into ports 1, 3, 6, and 9. Only ports 6 and 9
are uncommon to the shunt subcircuit; we obtain V r

6 and V r
9 by using the

transmission coefficient that applies to this series node:

τ =
2ZL

Z1 +ZL
, (2.21)

where
ZL = Z3 +Z6 +Z9

= Z0 +ZxZ0 +RxZ0.
(2.22)

At this stage, a voltage divider has to been employed in this series circuit to
define the part of the transmitted voltage in each line. This results in:

V r
6 =−τ

ZxZ0

ZL
, (2.23a)

V r
9 =−τ

RxZ0

ZL
. (2.23b)

If the amplitude scattered into the inductive stub (port 6) is −ex, we finally
calculate that:

ex =
2Zx

2+Zx +Rx
. (2.24)

Again, it is not necessary to name the amplitude scattered into the lossy stub
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(port 9), i.e.,

V r
9 =− 2Rx

2+Zx +Rx
. (2.25)

because it will not appear in S, but it will be useful for defining voltages at
the common lines.

3. Common lines to both sub-circuits.
The situation is quite different for pulses reflected at ports 1 and 3, common
to the series and parallel sub-circuits. Both must be simultaneously consid-
ered in order to represent the coupling between Maxwell’s equations. The
difficulty is that the circuits do not describe this coupling; consequently,
a more traditional derivation, involving the flux of Ampère’s law and the
circulation of Faraday’s law, has to be carried out. However, it is shown
in [14] that these two conditions are equivalent to circuit conditions that en-
sure continuity of potential at the series sub-circuit and charge conservation
at the shunt sub-circuit. Let the amplitudes of the pulses scattered into ports
1 and 3 be ax and bx, respectively. On the one hand, the continuity of the
electric potential for the series node yields

V1−V3 +V6 +V9 = 0

⇒ (1+ax)−bx− ex +V9 = 0.
(2.26)

On the other hand, the conservation of charge for the parallel node yields

Ii
1 = Ir

1 + Ir
2 + Ir

3 + Ir
4 + Ir

5 + Ir
8

⇒ Y0 = axY0 + cY0 +bxY0 + cY0 + cYzY0 + cGzY0.
(2.27)

Calculations that involve Eqs. 2.20, 2.24, 2.25, 2.26, and 2.27, give

ax =
2

4+Yz +Gz
− 2

2+Zx +Rx
, (2.28)

bx =
2

4+Yz +Gz
− Zx +Rx

2+Zx +Rx
. (2.29)

It is worth putting the emphasis on that, in a general situation, coefficients
a and b, which correspond to common lines, cannot be calculated by sim-
ply using the reflection or transmission coefficients of sub-circuits in Fig.
2.4(a) or 2.4(b). This enforces the idea that a single circuit is not valid for
representing not only three but also 2D TLM nodes [14].
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We have examined the scattering that occurs into the node if a pulse enters port 1.
The analysis for a pulse that excites any other connecting line (2, 3, or 4) would
be the same.

However, there are still remaining concerns: what happens if a unitary pulse
is coming from the stubs?

1. Suppose that a voltage pulse V i
5 of unit amplitude is incident upon port 5 of

the structure in Fig. 2.4. In this case, only one circuit is to be considered
and, therefore, V r

1 , V r
2 , V r

3 , V r
4 are obtained from the transmission coefficient,

τ =
2Y5

Y5 +YL
, (2.30)

while V r
5 = Γ, the reflection coefficient, given by

Γ =
Y5−YL

Y5 +YL
, (2.31)

where, in both expressions,

YL = Y1 +Y2 +Y3 +Y4 +Y8

= 4Y0 +GzY0.
(2.32)

Let the amplitude of the pulses scattered into port 5 be f , and the amplitude
of the pulses scattered into ports 1, 2, 3, and 4 be g. Then it may be shown:

f =
Yz−Gz−4
Yz +Gz +4

, (2.33a)

g =
2Yz

4+Yz +Gz
. (2.33b)

(2.33c)

2. Let us consider that a voltage pulse V i
6 of unit amplitude is incident upon

port 6 of the structure in Fig. 2.4(b). Again, only the circuit of Fig. 2.4(b)
must be taken into account. Thus, on the one hand, V r

1 , V r
3 , V r

9 , are obtained
from the transmission coefficient,

τ =
2ZL

Z6 +ZL
, (2.34)
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which, from a voltage divider, leads to:

V r
1 =−τ

Z1

ZL
=− 2

2+Zx +Rx
, (2.35a)

V r
3 = +τ

Z3

ZL
= +

2
2+Zx +Rx

, (2.35b)

V r
9 =−τ

Z9

ZL
=− 2Rx

2+Zx +Rx
, (2.35c)

(2.35d)

where ZL = Z1 +Z3 +Z9. In the following, ix will be the quantity 2
2+Zx+Rx

.
On the other hand, V r

6 is given by the reflection coefficient,

Γ =
ZL−Z6

ZL +Z6
. (2.36)

We will refer to this quantity as hx, which simplifies as:

hx =
2−Zx +Rx

2+Zx +Rx
. (2.37)

This completes the description of all possibilities.

The complete scattering matrix, which connects the reflected and the incident
pulses at the center of a node, according to V r = SV i, is finally shown to be:

S =



ax c bx c g −ix 0
c ay c by g 0 iy
bx c ax c g ix 0
c by c ay g 0 −iy
c c c c f 0 0
−ex 0 ex 0 0 hx 0

0 ey 0 −ey 0 0 hy


. (2.38)

The elements of S, given by the preceding development, are summarized in the
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following expressions:

ak = 2
4+Yz+Gz

− 2
2+Zk+Rk

, f = Yz−Gz−4
Yz+Gz+4 ,

bk = 2
4+Yz+Gz

− Zk+Rk
2+Zk+Rk

, g = 2Yz
4+Yz+Gz

,

c = 2
4+Yz+Gz

, hk = 2−Zk+Rk
2+Zk+Rk

,

ek = 2Zk
2+Zk+Rk

, ik = 2
2+Zk+Rk

,

(2.39)

with k = {x,y}.

A general approach, based on replacing each of the eight transmission lines
by a Thevenin equivalent circuit [31], the propagating incident pulse V i and line
being substituted by a voltage source 2V i and a series admittance or impedance,
is used to derive the expression of the electromagnetic and magnetic fields. The
Thevenin equivalent circuit for the three sub-nodes describing Ez, Hx, and Hy are
shown in Fig. 2.5.

Let us first consider Fig. 2.5(a); it consists of a parallel circuit for which
each segment represents one of the six ports of the equivalent parallel sub-node
depicted in Fig. 2.4(a). From Fig. 2.5(a), we derive the set of equations:

Vz = 2V i
1− I1Z0,

Vz = 2V i
2− I2Z0,

Vz = 2V i
3− I3Z0,

Vz = 2V i
4− I4Z0,

Vz = 2V i
5− I5ZzZ0,

Vz = I8Z8,

⇒



I1 = (2V i
1−Vz)Y0,

I2 = (2V i
2−Vz)Y0,

I3 = (2V i
3−Vz)Y0,

I4 = (2V i
4−Vz)Y0,

I5 = (2V i
5−Vz)YzY0,

I8 = VzGzY0.

(2.40)

From Eq. 2.40:

5

∑
i=1

Ii = 2(V i
1 +V i

2 +V i
3 +V i

4 +YzV i
5)Y0−Vz(4Y0 +YzY0), (2.41)

and
5

∑
i=1

Ii =−I8 =−VzGzY0. (2.42)

25



(a) Parallel sub-circuit for the z-component of Ampere’s
law, i.e, Ez.

(b) Parallel sub-circuit for the x-
component of Faraday’s law, i.e, Hx.

(c) Parallel sub-circuit for the y-
component of Faraday’s law, i.e, Hy.

Figure 2.5: Splitting of the 2D global node into three sub-circuits.
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Equating Eq. 2.41 and Eq. 2.42 gives:

Vz =
2(V i

1 +V i
2 +V i

3 +V i
4 +YzV i

5)
4+Yz +Gz

. (2.43)

Hence, the electric field is easily obtained by identifying the voltage of Eq. 2.43
per unit length along the z-direction:

Ez ≡
Vz

∆z
=

2(V i
1 +V i

2 +V i
3 +V i

4 +YzV i
5)

∆z(4+Yz +Gz)
. (2.44)

Let us now consider Fig. 2.5(b); it consists of a series circuit that is equiv-
alent to the series sub-node depicted in Fig. 2.4(b). In Fig. 2.5(b), note that
the orientation of the current Ix is chosen along the −x direction. This choice is
due to historic reasons and corrects the relation Ez ≡ Vz

∆z that should actually be
Ez ≡−Vz

∆z . But, historically, the electric field has been defined in the literature rel-
ative to TLM without the negative sign, we will maintain this criterion. Assuming
that, it is plain from Fig. 2.5(b) that

Ix =
2(V i

1−V i
3 +V i

6)
2Z0 +ZxZ0 +RxZ0

. (2.45)

Hence

Hx ≡
Ix

∆x
=

2(V i
1−V i

3 +V i
6)

∆xZ0(2+Zx +Rx)
. (2.46)

In the same manner, we obtain

Hy ≡
Iy

∆y
=

2(−V i
2 +V i

4 +V i
7)

∆yZ0(2+Zy +Ry)
. (2.47)

In order to excite a particular component of the electromagnetic field, it is nec-
essary to inject a certain voltage into the appropriate ports. For instance, imagine
that component Ez has to be excited. In this case, Eq. 2.44 suggests that pulses
have to be injected into ports 1, 2, 3, 4, and 5. These pulses must have the same
amplitude in order to not excite any magnetic field component. Supposing that

V i
1 = V i

2 = V i
3 = V i

4 = V i
5 = ξz, (2.48)
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Eq. 2.44 becomes

Ez =
2

∆z
ξz, (2.49)

which implies that

ξz =
1
2

Ez∆z
4+Yz +Gz

4+Yz
. (2.50)

In the same manner, suppose that only Hx has to be excited and let us assume that

V i
1 =−V i

3 =
V i

6
Zx

= ξx⇒ Hx =
2

∆xZ0
ξx. (2.51)

Obviously, V i
1 =−V i

3 ensures that no electric field is excited.

ξx =
1
2

HxZ0∆x
2+Zx +Rx

2+Zx
. (2.52)

is obtained. Finally, let us suppose that only Hy has to be excited and let us assume
that

−V i
2 = V i

4 =
V i

7
Zy

= ξy⇒ Hy =
2

∆yZ0
ξy, (2.53)

which leads to
ξy =

1
2

HyZ0∆y
2+Zy +Ry

2+Zy
. (2.54)

Therefore, it can be deduced from Eqs. 2.50, 2.52, and 2.54 that a possible set of
incident pulses is given by:

V i
1 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
+Z0∆xHx

2+Zx +Rx

2+Zx
), (2.55a)

V i
2 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
−Z0∆yHy

2+Zy +Ry

2+Zy
), (2.55b)

V i
3 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
−Z0∆xHx

2+Zx +Rx

2+Zx
), (2.55c)

V i
4 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
+Z0∆yHy

2+Zy +Ry

2+Zy
), (2.55d)

V i
5 =

1
2

∆zEz
4+Yz +Gz

4+Yz
, (2.55e)

V i
6 =

1
2

ZxZ0∆xHx
2+Zx +Rx

2+Zx
, (2.55f)
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V i
7 =

1
2

ZyZ0∆yHy
2+Zy +Ry

2+Zy
. (2.55g)

This set of equations is very general and takes into account the possibility of
locating the source within a dissipative region. If the electromagnetic wave is
incident from a lossless region, free space for instance, Eq. 2.55 significantly
simplifies since Gz, Rx, and Ry are then equal to zero. The new set of equations
becomes:

V i
1 =

1
2
(∆zEz +Z0∆xHx), (2.56a)

V i
2 =

1
2
(∆zEz−Z0∆yHy), (2.56b)

V i
3 =

1
2
(∆zEz−Z0∆xHx), (2.56c)

V i
4 =

1
2
(∆zEz +Z0∆yHy), (2.56d)

V i
5 =

1
2

∆zEz, (2.56e)

V i
6 =

1
2

ZxZ0∆xHx, (2.56f)

V i
7 =

1
2

ZyZ0∆yHy. (2.56g)

2.3.2 Nodes for transverse magnetic modes

If the components of the incoming electromagnetic wave are {Ex,Ey,Hz}, the
historical description required a series node. As pointed out in section 2.3.1, such
an historical description is not capable of dealing with a general situation; we
present in this section a more versatile node that we shall call node for TM po-
larization, or simply TM-node. The TM-node must be regarded as three coupled
sub-circuits, as shown in Fig. 2.6.

The series sub-circuit of Fig. 2.6(a) describes the component Hz of the field.
It is made up of four main lines (lines 1-4) whose impedance is Z0 (it is not nec-
essarily that of free space). The sub-circuit is also equipped by an inductive stub
(line 5), with impedance ZzZ0, which allows an independent control of µz. Fur-
thermore, magnetic losses (σmz) are taken into account by an infinitely long lossy
stub (line 8), which impedance is RzZ0.
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(a) Series sub-circuit for the z-
component of Faraday’s law to de-
fine Hz.

(b) Parallel sub-circuit for the x-
component of Ampère’s law to de-
fine Ex.

(c) Parallel sub-circuit for the y-
component of Ampère’s law to de-
fine Ey.

Figure 2.6: Splitting of the TM-node into three sub-circuits.
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The two parallel sub-circuits depicted in Figs. 2.6(b) and 2.6(c) describe the
components Hx and Hy, respectively. Besides the two connecting lines (lines 2 and
4, and 1 and 3), they are each equipped by a capacitive stub (line 6 and 7), with
admittance YxY0 and YyY0, respectively. These two capacitive stubs allow an inde-
pendent control of εx and εy. Furthermore, electric conductivity (σex and σey) can
be taken into account by adding a lossy stub (line 9 and 10) to each sub-circuit.
Their admittances are given by GxY0 and GyY0, respectively.

Following the same process we used in section 2.3.1 to define the stub param-
eters for the TE node, we obtain:

Yx =
2εxε0

Y0∆t
∆y∆z
∆x
−2, (2.57a)

Yy =
2εyε0

Y0∆t
∆x∆z

∆y
−2, (2.57b)

Zz =
2µzµ0

Z0∆t
∆x∆y

∆z
−4. (2.57c)

The parameters of Eq. 2.57 must be positive, which restricts the choice of ∆t
and Z0. Let µ−z , ε−x , and ε−y , be the lowest constitutive parameters of the modeled
space. According to Eq. 2.57, we can write that

∆t ≤ ∆tx =
ε−x ε0

Y0

∆y∆z
∆x

, (2.58a)

∆t ≤ ∆ty =
ε−y ε0

Y0

∆x∆z
∆y

, (2.58b)

∆t ≤ ∆tz =
µ−z µ0

2Z0

∆x∆y
∆z

. (2.58c)

In order to eliminate one of the two capacitive stubs,

∆t = min(∆tx,∆ty). (2.59)

Furthermore, the inductive stub is canceled, i.e. Zz = 0, if the value

Z0 =
1
2

µ−z µ0

∆t
∆x∆y

∆z
(2.60)
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is selected. If we take into account the choice of ∆t, it turns out that

Z0 =
1√
2

η
−

η0
∆ι

∆z
, (2.61)

where ι is either x or y depending on the ∆t that has been elected, and where

η− =
√

µ−z
ε
−
i

. It is possible that η− be the impedance of no constitutive material of

the simulated space; indeed the space with the smallest permittivity and the space
with the smallest permeability may no coincide. However, if such a space exists,
it should be note that this space in particular is entirely described by using only a
single inductive stub if the above ∆t and Z0 are chosen. A situation very often met
is ∆x = ∆y = ∆z = ∆l, µ−z = 1, ε−x = 1, and ε−y = 1; in this case,

Z0 =
η0√

2
, (2.62a)

∆t =
ε0∆l
Y0

, (2.62b)

The process allowing the determination of the scattering matrix, the value of
its elements, as well as the expression of the electromagnetic field in terms of the
incident pulses, is very similar to the development presented in section 2.3.1. In
the following, we simply give the results without demonstration.

For the TM-node, the scattering matrix turns out to be

S =



ax c bx −c g ix 0
c ay −c by −g 0 iy
bx −c ax c −g ix 0
−c by c ay g 0 iy
d −d −d d f 0 0
ex 0 ex 0 0 hx 0
0 ey 0 ey 0 0 hy


, (2.63)
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where
ak = 2

2+Yk+Gk
− 2

4+Rz+Zz
, f = 4+Rz−Zz

4+Rz+Zz
,

bk =− Yk+Gk
2+Yk+Gk

+ 2
4+Rz+Zz

, g = 2
4+Zz+Rz

,

c = 2
4+Zz+Rz

, hk = Yk−2−Gk
Yk+2+Gk

,

d = 2Zz
4+Zz+Rz

, ik = 2Yk
Yk+2+Gk

,

ek = 2
2+Yk+Gk

,

(2.64)

with k = {x,y}.

The expression of the electric and magnetic fields in terms of the incident
voltage is given by

Hz ≡
Iz

∆z
=

2(−V i
1 +V i

2 +V i
3−V i

4 +V i
5)

∆zZ0(4+Zz +Rz)
, (2.65a)

Ex ≡
Vx

∆x
=

2(V i
1 +V i

3 +YxV i
6)

∆x(2+Yx +Gx)
, (2.65b)

Ey ≡
Vy

∆y
=

2(V i
2 +V i

4 +YyV i
7)

∆y(2+Yy +Gy)
. (2.65c)

Furthermore, the different ports must be excited according to the following
equations

V i
1 =

1
2
(∆xEx

2+Yx +Gx

2+Yx
−Z0∆zHz

4+Zz +Rz

4+Zz
), (2.66a)

V i
2 =

1
2
(∆yEy

2+Yz +Gz

2+Yz
+Z0∆zHz

4+Zz +Rz

4+Zz
), (2.66b)

V i
3 =

1
2
(∆xEx

2+Yz +Gz

2+Yz
+Z0∆zHz

4+Zz +Rz

4+Zz
), (2.66c)

V i
4 =

1
2
(∆yEy

2+Yz +Gz

2+Yz
−Z0∆zHz

4+Zz +Rz

4+Zz
), (2.66d)

V i
5 =

1
2

ZzZ0∆zHz
4+Zz +Rz

4+Zz
, (2.66e)
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V i
6 =

1
2

∆xEx
2+Yx +Gx

2+Yx
, (2.66f)

V i
7 =

1
2

∆yEy
2+Yy +Gy

2+Yy
; (2.66g)

which reduces to

V i
1 =

1
2
(∆xEx−Z0∆zHz), (2.67a)

V i
2 =

1
2
(∆yEy +Z0∆zHz), (2.67b)

V i
3 =

1
2
(∆xEx +Z0∆zHz), (2.67c)

V i
4 =

1
2
(∆yEy−Z0∆zHz), (2.67d)

V i
5 =

1
2

ZzZ0∆zHz, (2.67e)

V i
6 =

1
2

∆xEx, (2.67f)

V i
7 =

1
2

∆yEy, (2.67g)

if the source is located in a lossless medium.

2.3.3 The symmetrical condensed node

Having a 3D TLM node capable of taking into account all spatial directions is
essential. As pointed out in section 2.2, 3D materials have long been simulated by
interconnecting 2D series and parallel nodes, leading to a complicated topology
of the network [35]. Furthermore, as it is the case for FDTD, the components of
the electromagnetic field have the disadvantage to be calculated at points that are
spatially separated. Johns introduced the Symmetrical Condensed Node (SCN), a
more satisfactory node that has the significant advantage of being totally symmet-
rical, and allowing the calculation of the components of the electromagnetic field
at the same point, i.e., at the center of the node. SCN has roughly been evoked in
section 2.2. Because of its neatness and efficiency, other 3D outdated versions are
no longer employed.

SCN is depicted in Fig. 2.7. It is represented without stubs, implying that
this simple structure, made up of 12 connecting lines, can only represent a cubic
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Figure 2.7: The Symmetrical Condensed Node without stubs.

block of homogeneous space. Inhomogeneous and/or lossy problems are solved
by equipping SCN with capacitive, inductive, electric-wise lossy, and magnetic-
wise lossy stubs. Given the 3Dity of the node, we may add three capacitive and
three inductive stubs, capable of providing extra capacitance or inductance, re-
spectively, to the node, to account for εx, εy, εz, µx, µy, and µz; as well as six lossy
stubs (infinitely long) to allow independent control on the electric and magnetic
conductivity σe

x, σe
y, σe

z , σm
x , σm

y , and σm
z . Therefore, the node, in its most versatile

form, has a total of 24 lines. The characteristics of each line, such as its capac-
itance or inductance (see Eqs. 2.10a and 2.10b), are summarized in Table 2.1.
Furthermore, it should be noted that there are two ports, which do not couple with
each other, along any direction of propagation that represent the two polarizations
(TE or TM). Given the large number of constitutive lines of SCN, it is noteworthy
to relate them to Maxwell’s equations.

In differential form, the Faraday- and Ampère-Maxwell’s equations can be
written as:

∇×E(r, t) =− ∂

∂t
B(r, t)−M(r, t), (2.68a)
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Table 2.1: Magnitudes related to the link and stub transmission lines

Line E H k Capacitance Inductance

1 Ex ≡V1/∆x Hz ≡−I1/∆z y Y0∆t/2 Z0∆t/2
2 Ex ≡V2/∆x Hy ≡ I2/∆y z Y0∆t/2 Z0∆t/2
3 Ey ≡V3/∆y Hz ≡ I3/∆z x Y0∆t/2 Z0∆t/2
4 Ey ≡V4/∆y Hx ≡−I4/∆x z Y0∆t/2 Z0∆t/2
5 Ez ≡V5/∆z Hx ≡ I5/∆x y Y0∆t/2 Z0∆t/2
6 Ez ≡V6/∆z Hy ≡−I6/∆y x Y0∆t/2 Z0∆t/2
7 Ez ≡V7/∆z Hx ≡−I7/∆x y Y0∆t/2 Z0∆t/2
8 Ey ≡V8/∆y Hx ≡ I8/∆x z Y0∆t/2 Z0∆t/2
9 Ex ≡V9/∆x Hy ≡−I9/∆y z Y0∆t/2 Z0∆t/2

10 Ez ≡V10/∆z Hy ≡ I10/∆y x Y0∆t/2 Z0∆t/2
11 Ey ≡V11/∆y Hz ≡−I11/∆z x Y0∆t/2 Z0∆t/2
12 Ex ≡V12/∆x Hz ≡ I12/∆z y Y0∆t/2 Z0∆t/2
13 Ex ≡V13/∆y YxY0∆t/2
14 Ey ≡V14/∆y YyY0∆t/2
15 Ez ≡V15/∆y YzY0∆t/2
16 Hx ≡ I16/∆x ZxZ0∆t/2
17 Hy ≡ I17/∆y ZyZ0∆t/2
18 Hz ≡ I18/∆z ZzZ0∆t/2
19 Ex ≡V19/∆y GxY0∆t/2
20 Ey ≡V20/∆y GyY0∆t/2
21 Ez ≡V21/∆y GzY0∆t/2
22 Hx ≡ I22/∆x RxZ0∆t/2
23 Hy ≡ I23/∆y RyZ0∆t/2
24 Hz ≡ I24/∆z RzZ0∆t/2
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∇×H(r, t) =
∂

∂t
D(r, t)+ J(r, t), (2.68b)

where

J(r, t) = electric current density,

M(r, t) = magnetic current density,

D(r, t) = electric flux density,

B(r, t) = magnetic flux density,

Taking into account the constitutive relations,

D(r, t) = ε(r)ε0E(r, t), (2.69a)

B(r, t) = µ(r)µ0H(r, t), (2.69b)

J(r, t) = σe(r)E(r, t), (2.69c)

M(r, t) = σm(r)H(r, t), (2.69d)

Eqs. 2.68a and 2.68b may be expanded in Cartesian coordinates as

∂Ez

∂y
−

∂Ey

∂z
=−µxµ0

∂Hx

∂t
−σ

m
x Hx, (2.70a)

∂Ex

∂z
− ∂Ez

∂x
=−µyµ0

∂Hy

∂t
−σ

m
y Hy, (2.70b)

∂Ey

∂x
− ∂Ex

∂y
=−µzµ0

∂Hz

∂t
−−σ

m
z Hz, (2.70c)

∂Hz

∂y
−

∂Hy

∂z
= εxε0

∂Ex

∂t
+σ

e
xEx, (2.70d)

∂Hx

∂z
− ∂Hz

∂x
= εyε0

∂Ey

∂t
+σ

e
yEy, (2.70e)

∂Hy

∂x
− ∂Hx

∂y
= εzε0

∂Ez

∂t
+σ

e
zEz. (2.70f)

Following the same process as in section 2.3.1, let us now suppose that a
voltage pulse V i

1 = 1 enters port 1 of the structure in Fig. 2.7. In agreement with
Table 2.1, this pulse is associated with {Ex,Hz,ky}, and consequently scatters into
ports 1, 12, 13, 18, 19, and 24. From the description resulting from Maxwell’s
equations, Ex and Hz appear together in Eqs. 2.70c and 2.70d, in which they
couple with other components:

1. According to the former equation, {Ex,Hy} is also involved, meaning that
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(a) (b)

Figure 2.8: (a) Parallel sub-circuit for Ex. (b) Series sub-circuit for Hz.

the pulse is scattered into the ports associated with these magnitudes, i.e., 2
and 9.

2. According to the latter equation, {Ey,Hz} is also involved, and the pulse is
consequently scattered into the ports associated with these magnitudes, i.e.,
3 and 11.

It is precisely this multiple coupling between the components of the electromag-
netic field that pushed P. B. Johns to claim that a break should be made with the
traditional representation of the node by an equivalent circuit [29], as mentioned
in section 2.2. Actually, the coupling between Maxwell’s equations may be treated
by coupling electrical circuits as described in sections 2.3.1 and 2.3.2. As a result,
SCN can be represented by six coupled sub-circuits, each one corresponding to a
component of the electromagnetic field. Actually, an individual sub-circuit rep-
resents an individual Maxwell’s equation in the set of Eqs. 2.70. In our current
example, exciting V1 involves the two sub-circuits depicted in Figs. 2.8(a) and
2.8(b). The former figure represents Eq. 2.70d, while the latter represents Eq.
2.70c.

By identifying the fields with their electrical analogs according to Table 2.1,
we can transform Eq. 2.70d to its finite difference form:

( I12
∆z )− (− I1

∆z)
∆y

−
(− I9

∆y)− ( I2
∆y)

∆z
= εxε0

∂
Vx
∆x

∂t
+σ

e
x

Vx

∆x

⇒I1 + I2 + I9 + I12 = εxε0
∆y∆z
∆x

∂Vx

∂t
+σ

e
x
∆y∆z
∆x

Vx.

(2.71)
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This equation establishes the current loss in lines 1, 2, 9, and 12, which is due to
charge accumulation in the capacitive stubs. By using the analogy with the usual
relation I = C ∂V

∂t , we can naturally define the capacitive term

Cx = εxε0
∆y∆z
∆x

, (2.72)

which demonstrates for the x-component Eq. 2.6a that was previously introduced.
Cy (from Eq. 2.70e) and Cz (from Eq. 2.70f) are similarly obtained. Moreover, the
value of the characteristic admittance of the electric lossy stub, Gx, which derives
from Eq. 2.71, is given by Eq. 2.73a

Gx =
σe

x
Y0

∆y∆z
∆x

, (2.73a)

Gy =
σe

y

Y0

∆x∆z
∆y

, (2.73b)

Gz =
σe

z

Y0

∆x∆y
∆z

. (2.73c)

while Eqs. 2.73b and 2.73c are obtained by considering the other components,
Eqs. 2.70e and 2.70f, of Ampère’s equations.

In the same manner, we transform Eq. 2.70c as:

(V11
∆y )− (V3

∆y)

∆x
−

(V12
∆x )− (V1

∆x)
∆y

=−µzµ0
∂

Iz
∆z

∂t
−σ

m
z

Iz

∆z

⇒V1−V3 +V11−V12 =−µzµ0
∆x∆y

∆z
∂Iz

∂t
+σ

m
z

∆x∆y
∆z

Iz,

(2.74)

which provides the relations

Lz = µzµ0
∆x∆y

∆z
(2.75)

by using V = L∂I
∂t . The process would be similar to get Lx and Ly. This expression

was already given, without demonstration, in Eq. 2.6b. As well, the expression of
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Rz can be obtained and is given in Eq. 2.76c:

Rx =
σm

x
Z0

∆y∆z
∆x

, (2.76a)

Ry =
σm

y

Z0

∆x∆z
∆y

, (2.76b)

Rz =
σm

z

Z0

∆x∆y
∆z

; (2.76c)

Rx and Ry are also given and their derivation follows the same process using Eqs.
2.70a and 2.70b. Note that Eq. 2.74 describes the discontinuity of the potential
due to the inductive stubs.

The scattering matrix, S, is derived using the method of common and uncom-
mon lines [30], as in section 2.3.1. Since, no pulse can return from the lossy stub,
S is a 18×18 matrix.

1. Uncommon lines: pulse incident from a link line of the parallel sub-
circuit of Fig. 2.8(a). When entering port 1, V i

1 connects to an effective
admittance

YL = Y2 +Y9 +Y12 +Y13 +Y19 = 3Y0 +YxY0 +GxY0, (2.77)

which is the load admittance. Let τ be the transmission coefficient,

τ =
2Y1

Y1 +YL
; (2.78)

V i
1 is simply scattered into the uncommon lines (the ones which are not

involved in the series circuit of Fig. 2.8(b)), i.e., 2, 9, 13, and 19, with an
amplitude we will refer to as cx,

cx = V r
2 = V r

9 = V r
13 = V r

19 = τ =
2

4+Yx +Gx
. (2.79)

2. Uncommon lines: pulse incident from a link line of the series sub-circuit
of Fig. 2.8(b). V i

1 connects to a load impedance given by

ZL = Z3 +Z11 +Z12 +Z18 +Z24 = 3Z0 +ZzZ0 +RzZ0. (2.80)
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The transmission coefficient is given by

τ =
2ZL

Z1 +ZL
. (2.81)

V i
1 spreads out into the uncommon lines 3 (with amplitude dz), 11 (with

amplitude−dz), 18 (with amplitude ez), and 24 (no need to assign it a name)
according to a simple voltage division

dz = V r
3 =−V r

11 = τ
Z0

ZL
=

2
4+Zz +Rz

, (2.82a)

ez = V r
18 = τ

ZzZ0

ZL
=

2Zz

4+Zz +Rz
, (2.82b)

V r
24 = τ

RzZ0

ZL
=

2Rz

4+Zz +Rz
. (2.82c)

3. Common lines to both sub-circuits. Since lines 1 and 12 are common to
both circuits, their coupling requires another method to determine how V i

1
scatters into them. Let axz and bxz be the amplitude of the pulses scattered
into port 1 and 12, respectively. Note the two subscripts denoting that these
two magnitudes are involved in both Ex- and Hz-sub-circuits. More practi-
cally, the two subscripts are useful to make the distinction between pulses
which could be incident from other ports. For example, in the case of a
pulse incident from port 2 of the structure of Fig. 2.8(a), the series circuit of
Fig. 2.8(b) would no be longer involved. Instead, the pertinent series sub-
circuit would be that associated with Hy, meaning that the amplitudes would
be axy and bxy. This parenthesis being finished, the charge conservation at
the parallel sub-circuit ensures that

Ii
1 = Ir

1 + Ir
2 + Ir

9 + Ir
12 + Ir

13 + Ir
19

⇒Y0 = axzY0 +2cxY0 +bxzY0 + cxYxY0 +V r
19GxY0,

(2.83)

while continuity of potential at the series sub-circuit yields

−V1 +V3−V11 +V12 +V18 +V24 = 0

⇒− (1+axz)+2dz +bxz + ez +V r
24 = 0.

(2.84)
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Simultaneously solving these two equations leads to

axz =− Yx +Gx

2(4+Yx +Gx)
+

Zz +Rz

2(4+Zz +Rz)
, (2.85a)

bxz =− Yx +Gx

2(4+Yx +Gx)
− Zz +Rz

2(4+Zz +Rz)
. (2.85b)

4. Pulse incident from a stub line of the parallel sub-circuit of Fig. 2.8(a).
Let us suppose now that a voltage pulse V i

13 = 1 is incident upon the capac-
itive stub, i.e., port 13 of the structure in Fig. 2.8(a). This pulse connects to
a load admittance determined by

YL = Y1 +Y2 +Y9 +Y12 +Y19 = 4Y0 +GxY0, (2.86)

while the reflection and transmission coefficient are

Γ =
Y13−YL

Y13 +YL
, (2.87a)

τ =
2Y13

Y13 +YL
, (2.87b)

respectively. Since no other coupled circuit must be accounted for, V i
13 is

simply reflected into port 13, with a magnitude we will refer to as fx, so that

fx = V r
13 = Γ =

Yx−4−Gx

Yx +4+Gx
, (2.88)

while it is scattered, with magnitude gx, into the other involved ports, i.e.,
1, 2, 9, 12, and 19 according to

gx = V r
1 = V r

2 = V r
9 = V r

12 = V r
19 = τ =

2Yx

Yx +4+Gx
, (2.89)

although it was not necessary to mention V r
19 given that it does not enter into

account for S.

5. Pulse incident from a stub line of the series sub-circuit of Fig. 2.8(b). A
pulse V i

18 = 1, which sees a load impedance

ZL = Z1 +Z3 +Z11 +Z12 +Z24 = 4Z0 +RzZ0, (2.90)
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is incident from the inductive stub, i.e., port 18. The reflection and trans-
mission coefficients are

Γ =
ZL−Z18

ZL +Z18
, (2.91a)

τ =
2ZL

ZL +Z18
, (2.91b)

respectively. Again, no other coupled circuits must be regarded, which
means that this pair of coefficients completely define the scattered pulses.
Let hz be the amplitude scattered back into port 18, we find

hz = V r
18 = Γ =

4−Zz +Rz

4+Zz +Rz
. (2.92)

V i
18 is scattered into ports 1 (with amplitude iz), 3 (with amplitude −iz),

11 (with amplitude iz), and 12 (with amplitude −iz) according to a simple
voltage division

iz = V r
1 =−V r

3 = V r
11 =−V r

12 =
Z0

ZL
τ =

2
4+Zz +Rz

, (2.93)

This completes the description of all possibilities. If the incoming pulse is incident
from other ports, the process to get the scattering at the center of the node is
rigourously the same. We can thus write the scattering matrix as



axz cx dz 0 0 0 0 0 cx 0 −dz bxz gx 0 0 0 0 iz
cx axy 0 0 0 dy 0 0 bxy −dy 0 cx gx 0 0 0 −iy 0
dz 0 ayz cy 0 0 0 cy 0 0 byz −dz 0 gy 0 0 0 −iz
0 0 cy ayx dx 0 −dx byx 0 0 cy 0 0 gy 0 ix 0 0
0 0 0 dx azx cz bzx −dx 0 cz 0 0 0 0 gz −ix 0 0
0 dy 0 0 cz azy cz 0 −dy bzy 0 0 0 0 gz 0 iy 0
0 0 0 −dx bzx cz azx dx 0 cz 0 0 0 0 gz ix 0 0
0 0 cy byx −dx 0 dx ayx 0 0 cy 0 0 gy 0 −ix 0 0
cx bxy 0 0 0 −dy 0 0 axy dy 0 cx gx 0 0 0 iy 0
0 −dy 0 0 cz bzy cz 0 dy azy 0 0 0 0 gz 0 −iy 0
−dz 0 byz cy 0 0 0 cy 0 0 ayz dz 0 gy 0 0 0 iz
bxz cx −dz 0 0 0 0 0 cx 0 dz axz gx 0 0 0 0 −iz
cx cx 0 0 0 0 0 0 cx 0 0 cx fx 0 0 0 0 0
0 0 cy cy 0 0 0 cy 0 0 cy 0 0 fy 0 0 0 0
0 0 0 0 cz cz cz 0 0 cz 0 0 0 0 fz 0 0 0
0 0 0 ex −ex 0 ex −ex 0 0 0 0 0 0 0 hx 0 0
0 −ey 0 0 0 ey 0 0 ey −ey 0 0 0 0 0 0 hy 0
ez 0 −ez 0 0 0 0 0 0 0 ez −ez 0 0 0 0 0 hz



, (2.94)
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where the elements of the matrix S are hereinafter summarized:

apq =− Yp+Gp
2(4+Yp+Gp)

+ Zq+Rq
2(4+Zq+Rq)

, fp = −4+Yp−Gp
4+Yp+Gp

,

bpq =− Yp+Gp
2(4+Yp+Gp)

− Zq+Rq
2(4+Zq+Rq)

, gp = 2Yp
4+Yp+Gp

,

cp = 2
4+Yp+Gp

, hq = 4−Zq+Rq
4+Zq+Rq

,

dq = 2
4+Zq+Rq

, iq = 2
4+Zq+Rq

,

eq = 2Zq
4+Zq+Rq

,

(2.95)

with (p,q) = {x,y}.

In agreement with Table 2.1, and Eq. 2.72 and Eq. 2.75, the total capacitance
associated with lines 1, 2, 9, 12, and 13 for the parallel circuit depicted in Fig.
2.8(a), and the total inductance associated with lines 1, 3, 11, 12, and 18 for the
series circuit depicted in Fig. 2.8(b), are given by

Cx = εxε0
∆y∆z
∆x

= 4Y0
∆t
2

+YxY0
∆t
2

, (2.96a)

Lz = µzµ0
∆x∆y

∆z
= 4Z0

∆t
2

+ZzZ0
∆t
2

, (2.96b)

respectively. Generalizing to the other coordinates, we can get the form of the
admittances and impedances of the capacitive and inductive stubs, respectively:

Yx =
2εxε0

Y0∆t
∆y∆z
∆x
−4, (2.97a)

Yy =
2εyε0

Y0∆t
∆x∆z

∆y
−4, (2.97b)

Yz =
2εzε0

Y0∆t
∆x∆y

∆z
−4, (2.97c)

Zx =
2µxµ0

Z0∆t
∆y∆z
∆x
−4, (2.97d)

Zy =
2µyµ0

Z0∆t
∆x∆z

∆y
−4, (2.97e)

Zz =
2µzµ0

Z0∆t
∆x∆y

∆z
−4. (2.97f)
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All these magnitudes must be positive, which is of direct consequence on Z0 =
1/Y0 and ∆t. In particular, the latter must be selected such that:

∆t ≤ ∆tC
x =

ε−x ε0

2Y0

∆y∆z
∆x

, (2.98a)

∆t ≤ ∆tC
y =

ε−y ε0

2Y0

∆x∆z
∆y

, (2.98b)

∆t ≤ ∆tC
z =

ε−z ε0

2Y0

∆x∆y
∆z

, (2.98c)

∆t ≤ ∆tL
x =

µ−x µ0

2Z0

∆y∆z
∆x

, (2.98d)

∆t ≤ ∆tL
y =

µ−y µ0

2Z0

∆x∆z
∆y

, (2.98e)

∆t ≤ ∆tL
z =

µ−z µ0

2Z0

∆x∆y
∆z

, (2.98f)

in order to ensure the impedances and admittances of the stubs to be positive; the
superscript “−” denotes the lowest permittivity or permeability along a certain
direction. A good choice for ∆t and Z0 would be to cancel one capacitive and one
inductive stubs, so that only four parameters of Eq. 2.97 would be nonzero. To do
so, we may proceed as follow:

1. The choice,
∆t = min(∆tC

x ,∆tC
y ,∆tC

z ) (2.99)

eliminates either Yx, Yy, or Yz, ensuring that one of the three capacitive stubs
is eliminated, while the others are positive.

2. Z0 is chosen such that either Zx, Zy, or Zz become zero. This choice en-
sures that one of the three inductive stubs is eliminated, while the others are
positive.

In a space involving free space, which is a likely situation, ε−x = ε−y = ε−z = µ−x =
µ−y = µ−z = 1. Moreover, if ∆x = ∆y = ∆z = ∆l, we get

Z0 = η0, (2.100a)

∆t =
1
2

ε0

Y0
∆l, (2.100b)

Note that the impedance Z0 is that of free space in this case.
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(a)

(b)

Figure 2.9: (a) Thevenin representation of the shunt Ex-sub-circuit depicted in
Fig. 2.8(a).(b) Thevenin representation of the series Hz-sub-circuit depicted in
Fig. 2.8(b). It should be noted that there is no incident tension for the lossy stubs,
i.e., lines 19 and 24

In order to express the electric and magnetic fields in terms of the incident
pulses, the Thevenin representation of the structures in Fig. 2.11 should be con-
sidered, as pointed out in section 2.3.1. Therefore, the expressions of Ex and Hz

are easily derived using the process explained in section 2.3.1; generalizing to the
other components of the electromagnetic field, we obtain:

Ex ≡
Vx

∆x
=

2(V i
1 +V i

2 +V i
9 +V i

12 +YxV i
13)

∆x(4+Yx +Gx)
, (2.101a)

Ey ≡
Vy

∆y
=

2(V i
3 +V i

4 +V i
8 +V i

11 +YyV i
14)

∆y(4+Yy +Gy)
, (2.101b)

Ez ≡
Vz

∆z
=

2(V i
5 +V i

6 +V i
7 +V i

10 +YzV i
15)

∆z(4+Yz +Gz)
, (2.101c)
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Hx ≡
Ix

∆x
=

2(−V i
4 +V i

5−V i
7 +V i

8 +V i
16)

Z0∆x(4+Zx +Rx)
, (2.101d)

Hy ≡
Iy

∆y
=

2(V i
2−V i

6−V i
9 +V i

10 +V i
17)

Z0∆y(4+Zy +Ry)
, (2.101e)

Hz ≡
Iz

∆z
=

2(−V i
1 +V i

3−V i
11 +V i

12 +V i
18)

Z0∆z(4+Zz +Rz)
, (2.101f)

Note that the individual components of the electromagnetic field can be deter-
mined without consideration of the Thevenin equivalents. Indeed, the total charge
that is injected to the node in Fig. 2.8(a) can be written as,

Qi = C1V i
1 +C2V i

2 +C9V i
9 +C12V i

12 +C13V i
13 +C19V i

19. (2.102)

According to Table 2.1 and since V i
19 = 0, we get

Qi =
Y0∆t

2
(V i

1 +V i
2 +V i

9 +V i
12 +V i

13). (2.103)

Conservation of current (or charge) means that the total charge leaving the ports
is also given by Eq. 2.103; therefore, the total charge that is located into the node
during the whole time step is

Q = 2Qi = Y0∆t(V i
1 +V i

2 +V i
9 +V i

12 +V i
13). (2.104)

On the other hand, the total capacitance modeled by the six constitutive transmis-
sion lines is

Cx =
Y0∆t

2
(4+Yx +Gx). (2.105)

Thus, the electric field is

Ex =
Q

∆xCx
=

2(V i
1 +V i

2 +V i
9 +V i

12 +YxV i
13)

∆x(4+Yx +Gx)
, (2.106)

which is the relation obtained in Eq. 2.101.
Similarly, considering Fig. 2.8(b), the incident magnetic flux that reaches the

plane z = cte is

Φi =−L1Ii
1 +L3Ii

3−L11Ii
11 +L12Ii

12 +L18Ii
18 +L24Ii

24. (2.107)
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Since Ii
i = V i

i /Zi and Ii
24 = 0, we get

Φi =
∆t
2

(−V i
1 +V i

3−V i
11 +V i

12 +V i
18). (2.108)

The magnetic flux must be conserved; thus, the total magnetic flux that is involved
during the whole time step is

Φ = ∆t(−V i
1 +V i

3−V i
11 +V i

12 +V i
18). (2.109)

On the other hand, the total inductance modeled by the six constitutive transmis-
sion lines is

Lz =
Z0∆t

2
(4+Zz +Rz). (2.110)

Hence, the magnetic field is

Hz =
Φ

∆zLz
=

2(−V i
1 +V i

3−V i
11 +V i

12 +V i
18)

Z0∆z(4+Zz +Rz)
. (2.111)

which is the relation obtained in Eq. 2.101.

With the technique employed in section 2.3.1, we can determine the set of
incident pulses to excite the desired separate field components of E and H:

V i
1 =

1
2
(∆xEx

4+Yx +Gx

4+Yx
−∆zZ0Hz

4+Zz +Rz

4+Zz
), (2.112a)

V i
2 =

1
2
(∆xEx

4+Yx +Gx

4+Yx
+∆yZ0Hy

4+Zy +Ry

4+Zy
), (2.112b)

V i
3 =

1
2
(∆yEy

4+Yy +Gy

4+Yy
+∆zZ0Hz

4+Zz +Rz

4+Zz
), (2.112c)

V i
4 =

1
2
(∆yEy

4+Yy +Gy

4+Yy
−∆xZ0Hx

4+Zx +Rx

4+Zx
), (2.112d)

V i
5 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
+∆xZ0Hx

4+Zx +Rx

4+Zx
), (2.112e)

V i
6 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
−∆yZ0Hy

4+Zy +Ry

4+Zy
), (2.112f)

V i
7 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
−∆xZ0Hx

4+Zx +Rx

4+Zx
), (2.112g)

V i
8 =

1
2
(∆yEy

4+Yy +Gy

4+Yy
+∆xZ0Hx

4+Zx +Rx

4+Zx
), (2.112h)
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V i
9 =

1
2
(∆xEx

4+Yx +Gx

4+Yx
−∆yZ0Hy

4+Zy +Ry

4+Zy
), (2.112i)

V i
10 =

1
2
(∆zEz

4+Yz +Gz

4+Yz
+∆yZ0Hy

4+Zy +Ry

4+Zy
), (2.112j)

V i
11 =

1
2
(∆yEy

4+Yy +Gy

4+Yy
−∆zZ0Hz

4+Zz +Rz

4+Zz
), (2.112k)

V i
12 =

1
2
(∆xEx

4+Yx +Gx

4+Yx
+∆zZ0Hz

4+Zz +Rz

4+Zz
), (2.112l)

V i
13 =

1
2

∆xEx
4+Yx +Gx

4+Yx
, (2.112m)

V i
14 =

1
2

∆yEy
4+Yy +Gy

4+Yy
, (2.112n)

V i
15 =

1
2

∆zEz
4+Yz +Gz

4+Yz
, (2.112o)

V i
16 =

1
2

ZxZ0∆xHx
4+Zx +Rx

4+Zx
, (2.112p)

V i
17 =

1
2

ZyZ0∆yHy
4+Zy +Ry

4+Zy
, (2.112q)

V i
18 =

1
2

ZzZ0∆zHz
4+Zz +Rz

4+Zz
. (2.112r)

Note that Eq. 2.112 is general and holds if the source is located in a lossy region
of the space. If the mesh is excited in a lossless region, G = R = 0, and Eq. 2.112
dramatically simplifies.

2.4 TLM curved nodes

The Cartesian TLM nodes presented in sections 2.3.1, 2.3.2, and 2.3.3 are
well-suited to model square or cubic shaped blocks of space. However, chapter
4 will be dedicated to the study of cylindrical and spherical cloaking structures.
Modeling curved geometries with Cartesian nodes can be accomplished by ap-
proximating the curved boundary by a staircase shaped boundary. Ensuring that
the size of the node is small compared to the wavelength should not alter the cor-
rectness of the obtained results. On the other hand, it is intuitively obvious that
curved TLM nodes can better match the current geometry. In this chapter, the
cylindrical nodes for TE and TM polarizations, as well as the spherical node, will
be presented. The resulting meshes, made up of a large number of such nodes,
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(a) (b)

Figure 2.10: (a) Mesh made up of cylindrical nodes. (b) Mesh made up of spheri-
cal nodes.

can be viewed in Fig. 2.10. This approach can be profitable in many aspects.
The step-wise approximation is eliminated and, furthermore, the number of nodes
that fills the mesh can be significantly reduced. However, we will show in this
section that the resulting curved mesh is variable, i.e., the TLM parameters, like
the impedance of the stubs, depend on the radial coordinates. As a result, this can
force the time-step to be very small because the impedance of the stubs must be
positive everywhere (except if metamaterial is under consideration), lengthening
thus the computational requirement. Moreover, the nodes become bigger towards
the outer boundary of the mesh, thus the condition in Eq. 2.11, λ ≥ 10∆l, de-
creases the maximum allowed frequency, fmax. To conclude, curved nodes should
not be systematically preferred in simulations involving cylindrical or spherical
symmetry. Therefore, there use should be carefully considered; nevertheless, if
all the necessary conditions are fulfilled, the benefit in employing curved nodes
to model curved shape can be very important. This will be illustrated in section
4.6.1.

2.4.1 Cylindrical nodes for transverse electric modes

In order to become cylindrical, the Cartesian nodes that involve the {x,y,z}
coordinates have to be transform into the {r,ϕ,z} coordinates. The following
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equivalence between both coordinate systems
x↔ r,
y↔ ϕ,

z↔ z,
⇒


∆x↔ ∆r,
∆y↔ r∆ϕ,

∆z↔ ∆z,
(2.113)

permits the transformation. Eq. 2.113 accounts for all the details of the new
geometry and formally constitutes the only modification to the Cartesian two-
dimensional nodes presented in sections 2.3.1 and 2.3.2. All the new quantities
of interest are simply obtained from those previously calculated in the former and
latter sections, but we have to take into account the substitution imposed by Eq.
2.113. The new expressions are given in the following paragraph.

Let us first consider the cylindrical node for TE modes. Eq. 2.12 becomes

Zr =
2µrµ0

Z0∆t
r∆ϕ∆z

∆r
−2, (2.114a)

Zϕ =
2µϕµ0

Z0∆t
∆r∆z
r∆ϕ

−2, (2.114b)

Yz =
2εzε0

Y0∆t
r∆ϕ∆r

∆z
−4, (2.114c)

while Eqs. 2.76a, 2.76b, and 2.73c become

Rr =
σm

r
Z0

r∆ϕ∆z
∆r

, (2.115a)

Rϕ =
σm

ϕ

Z0

∆r∆z
r∆ϕ

, (2.115b)

Gz =
σe

z

Y0

r∆ϕ∆r
∆z

, (2.115c)

respectively.
It is plain from Eqs. 2.114 and 2.115 that these parameters are variable, the

values of the stubs directly depend on the position, r, of the nodes. It is worth
emphasizing this property of the cylindrical nodes; indeed, the Cartesian nodes
did not behave that way, the possible non-homogeneity of the simulated medium
resulted in the values of the stubs to be variable within the mesh, but for a certain
homogeneous medium the values of the stubs were constant. This statement is no
longer valid for cylindrical nodes, and each node is expected to be unique along
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the radial direction. This is of direct consequence on the time-step, ∆t, given that
Eq. 2.13 becomes

∆t ≤ ∆tr =
µ−r µ0

Z0

r∆ϕ∆z
∆r

, (2.116a)

∆t ≤ ∆tϕ =
µ−ϕ µ0

Z0

∆r∆z
r∆ϕ

, (2.116b)

∆t ≤ ∆tz =
ε−z ε0

2Y0

r∆ϕ∆r
∆z

. (2.116c)

Accordingly, ∆t can be forced to be very small because of the r-dependence of
these formulas.

The scattering matrix that was given by Eq. 6.5 becomes

S =



ar c br c g −ir 0
c aϕ c bϕ g 0 iϕ
br c ar c g ir 0
c bϕ c aϕ g 0 −iϕ
c c c c f 0 0
−er 0 er 0 0 hr 0

0 eϕ 0 −eϕ 0 0 hϕ


. (2.117)

The expression of the matrix elements is almost unchanged compared to Eq.
6.6. We can write

ak = 2
4+Yz+Gz

− 2
2+Zk+Rk

, f = Yz−Gz−4
Yz+Gz+4 ,

bk = 2
4+Yz+Gz

− Zk+Rk
2+Zk+Rk

, g = 2Yz
4+Yz+Gz

,

c = 2
4+Yz+Gz

, hk = 2−Zk+Rk
2+Zk+Rk

,

ek = 2Zk
2+Zk+Rk

, ik = 2
2+Zk+Rk

,

(2.118)

with k = {r,ϕ}; the only modification being the value of k.

The expression of the electromagnetic field in terms of the incident pulses
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becomes

Hr =
2(V i

1−V i
3 +V i

6)
∆rZ0(2+Zr +Rr)

, (2.119a)

Hϕ =
2(−V i

2 +V i
4 +V i

7)
r∆ϕZ0(2+Zϕ +Rϕ)

, (2.119b)

Ez =
2(V i

1 +V i
2 +V i

3 +V i
4 +YzV i

5)
∆z(4+Yz +Gz)

. (2.119c)

Furthermore, if the source is located in a lossless medium, the set

V i
1 =

1
2
(∆zEz +Z0∆rHr), (2.120a)

V i
2 =

1
2
(∆zEz−Z0r∆ϕHϕ), (2.120b)

V i
3 =

1
2
(∆zEz−Z0∆rHr), (2.120c)

V i
4 =

1
2
(∆zEz +Z0r∆ϕHϕ), (2.120d)

V i
5 =

1
2

∆zEz, (2.120e)

V i
6 =

1
2

ZrZ0∆rHr, (2.120f)

V i
7 =

1
2

ZϕZ0r∆ϕHϕ. (2.120g)

should substitute Eq. 2.56.

2.4.2 Cylindrical nodes for transverse magnetic modes

The cylindrical node for TM modes directly derives from the Cartesian TM
node, presented in section 2.4.2, by using the transformation given by Eq. 2.113.

Eq. 2.57 becomes

Yr =
2εrε0

Y0∆t
r∆ϕ∆z

∆r
−2, (2.121a)

Yϕ =
2εϕε0

Y0∆t
∆r∆z
r∆ϕ

−2, (2.121b)
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Zz =
2µzµ0

Z0∆t
r∆ϕ∆r

∆z
−4, (2.121c)

while Eqs. 2.73a, 2.73b, and 2.76c become

Gr =
σe

r
Y0

r∆ϕ∆z
∆r

, (2.122a)

Gϕ =
σe

ϕ

Y0

∆r∆z
r∆ϕ

, (2.122b)

Rz =
σm

z

Z0

r∆ϕ∆r
∆z

, (2.122c)

respectively.
Again, note that Eqs. 2.121 and 2.122 are r-dependent, as well as the condition

on ∆t,

∆t ≤ ∆tr =
ε−r ε0

Y0

r∆ϕ∆z
∆r

, (2.123a)

∆t ≤ ∆tϕ =
ε−ϕ ε0

Y0

∆r∆z
r∆ϕ

, (2.123b)

∆t ≤ ∆tz =
µ−z µ0

2Z0

r∆ϕ∆r
∆z

. (2.123c)

The scattering matrix given by Eq. 2.63 thus becomes

S =



ar c br −c g ir 0
c aϕ −c bϕ −g 0 iϕ
br −c ar c −g ir 0
−c bϕ c aϕ g 0 iϕ
d −d −d d f 0 0
er 0 er 0 0 hr 0
0 eϕ 0 eϕ 0 0 hϕ


, (2.124)
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where
ak = 2

2+Yk+Gk
− 2

4+Rz+Zz
, f = 4+Rz−Zz

4+Rz+Zz
,

bk =− Yk+Gk
2+Yk+Gk

+ 2
4+Rz+Zz

, g = 2
4+Zz+Rz

,

c = 2
4+Zz+Rz

, hk = Yk−2−Gk
Yk+2+Gk

,

d = 2Zz
4+Zz+Rz

, ik = 2Yk
Yk+2+Gk

,

ek = 2
2+Yk+Gk

,

(2.125)

with k = {r,ϕ}.

The expressions of the electromagnetic field’s component in terms of the inci-
dent pulses can be written as

Er =
2(V i

1 +V i
3 +YrV i

6)
∆r(2+Yr +Gr)

, (2.126a)

Eϕ =
2(V i

2 +V i
4 +YyV i

7)
r∆ϕ(2+Yϕ +Gϕ)

, (2.126b)

Hz =
2(−V i

1 +V i
2 +V i

3−V i
4 +V i

5)
∆zZ0(4+Zz +Rz)

, (2.126c)

Furthermore, if the source is located in a lossless medium, the voltage compo-
nents

V i
1 =

1
2
(∆rEr−Z0∆zHz), (2.127a)

V i
2 =

1
2
(r∆yEϕ +Z0∆zHz), (2.127b)

V i
3 =

1
2
(∆rEr +Z0∆zHz), (2.127c)

V i
4 =

1
2
(r∆yEϕ−Z0∆zHz), (2.127d)

V i
5 =

1
2

ZzZ0∆zHz, (2.127e)

V i
6 =

1
2

∆rEr, (2.127f)
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(a) (b)

Figure 2.11: (a) The spherical coordinate system. rajouter r (b) Upper view of the
pole, θ = 0.

V i
7 =

1
2

r∆ϕEϕ, (2.127g)

should substitute Eq. 2.67.

2.4.3 The spherical node

First, the spherical coordinate system is shown in Fig. 2.11(a). To describe
spherical shapes, the symmetrical condensed node presented in section 2.3.3 has
to be transformed from the {x,y,z} Cartesian coordinates into the {r,θ,ϕ} spher-
ical coordinate system. The following equivalence between both coordinate sys-
tems 

x↔ ϕ,

y↔ r,
z↔ θ,

⇒


∆x↔ r sinθ∆ϕ,

∆y↔ ∆r,
∆z↔ r∆θ,

(2.128)

permits the transformation. As for the cylindrical nodes, all the new quantities of
interest for the spherical node are simply obtained from those previously calcu-
lated for Cartesian coordinates (section 2.3.3), but taking into account the substi-
tution imposed by Eq. 2.128. The obtained spherical node is represented in Fig.
2.12, and in the following, the expressions related to this new node are given and
discussed.
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Eq. 2.97 becomes

Yϕ =
2εϕε0

Y0∆t
∆r∆θ

sinθ∆ϕ
−4, (2.129a)

Yr =
2εrε0

Y0∆t
r2 sinθ∆ϕ∆θ

∆r
−4, (2.129b)

Yθ =
2εθε0

Y0∆t
sinθ∆ϕ∆r

∆θ
−4, (2.129c)

Zϕ =
2µϕµ0

Z0∆t
∆r∆θ

sinθ∆ϕ
−4, (2.129d)

Zr =
2µyµr

Z0∆t
r2 sinθ∆ϕ∆θ

∆r
−4, (2.129e)

Zθ =
2µθµ0

Z0∆t
sinθ∆ϕ∆r

∆θ
−4, (2.129f)

while Eqs. 2.73 and 2.76 should be changed into

Gϕ =
σe

ϕ

Y0

∆r∆θ

sinθ∆ϕ
, (2.130a)

Gr =
σe

r
Y0

r2 sinθ∆ϕ∆θ

∆r
, (2.130b)

Gθ =
σe

θ

Y0

sinθ∆ϕ∆r
∆θ

, (2.130c)

Rϕ =
σm

ϕ

Z0

∆r∆θ

sinθ∆ϕ
, (2.130d)

Rr =
σm

r
Z0

r2 sinθ∆ϕ∆θ

∆r
, (2.130e)

Rθ =
σm

θ

Z0

sinθ∆ϕ∆r
∆θ

. (2.130f)

The form of Eqs. 2.129 and 2.130 is even more singular than that relative to the
cylindrical nodes. Indeed, the values of the stubs depend on the radial coordinates,
r, as well as on the zenithal one, θ, even for a homogeneous medium. This prop-
erty of the spherical node is of direct consequence on the time-step, ∆t; indeed,
Eq. 2.98 becomes

∆t ≤
ε−ϕ ε0

2Y0

∆r∆θ

sinθ∆ϕ
, (2.131a)
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Figure 2.12: The TLM spherical symmetrical condensed node.

∆t ≤ ε−r ε0

2Y0

r2 sinθ∆ϕ∆θ

∆r
, (2.131b)

∆t ≤
ε
−
θ

ε0

2Y0

sinθ∆ϕ∆r
∆θ

, (2.131c)

∆t ≤
µ−ϕ µ0

2Z0

∆r∆θ

sinθ∆ϕ
, (2.131d)

∆t ≤ µ−r µ0

2Z0

r2 sinθ∆ϕ∆θ

∆r
, (2.131e)

∆t ≤
µ−

θ
µ0

2Z0

sinθ∆ϕ∆r
∆θ

. (2.131f)

Accordingly, ∆t can be forced to be very small because of the r- and sinθ-dependence
of these formulas.

Beyond this difficulty in selecting the optimum ∆t, it is worth emphasizing
the singularity of the spherical mesh at θ = 0, i.e., at its poles. It is plain from
Fig. 2.10(b) that there is convergence of nodes at the poles. The configuration
at this point is displayed in Fig. 2.11(b) for 12 nodes along the azimuth, ϕ. The
connection, along the centripetal radial direction, between the transmission lines
that point toward the pole (line 1 and 5 for the transformation of Eq. 2.128) is
conflictive given that the concept of adjacent nodes is meaningless at this partic-
ular point. This raises the following questions. How should we connect these
transmission lines between each other? What is the termination of the ports of
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the nodes that point towards the pole? The easiest solution would be to connect
the lines that face each other. This option is only an approximation since nothing
ensures that the pulses incoming from a certain line will be transmitted into the
opposite one. A second solution would be to define a transfer matrix at the pole
that would be capable of correctly distributing the energy. Finally, a third solution
would be to locate a special TLM node whose center exactly coincides with the
pole; the derivation of the scattering matrix associated to this node constituting
the difficulty of this option. In any case, more analysis is required to rigorously
figure out how to make the connection at the pole. In this dissertation, we will use
the first and simplest option.

The scattering matrix of the spherical node is easily derived from Eq. 2.94 by
substituting the subscripts according to Eq. 2.128.

The expression of the electromagnetic field in terms of the incident voltage
pulses becomes

Eϕ ≡
Vϕ

r sinθ∆ϕ
=

2(V i
1 +V i

2 +V i
9 +V i

12 +YϕV i
13)

r sinθ∆ϕ(4+Yϕ +Gϕ)
, (2.132a)

Er ≡
Vr

∆r
=

2(V i
3 +V i

4 +V i
8 +V i

11 +YrV i
14)

∆r(4+Yr +Gr)
, (2.132b)

Eθ ≡
Vr∆θ

∆z
=

2(V i
5 +V i

6 +V i
7 +V i

10 +YθV i
15)

r∆θ(4+Yz +Gz)
, (2.132c)

Hϕ ≡
Iϕ

r sinθ∆ϕ
=

2(−V i
4 +V i

5−V i
7 +V i

8 +V i
16)

Z0r sinθ∆ϕ(4+Zϕ +Rϕ)
, (2.132d)

Hr ≡
Ir

∆r
=

2(V i
2−V i

6−V i
9 +V i

10 +V i
17)

Z0∆r(4+Zr +Rr)
, (2.132e)

Hθ ≡
Iθ

r∆θ
=

2(−V i
1 +V i

3−V i
11 +V i

12 +V i
18)

Z0r∆θ(4+Zθ +Rθ)
, (2.132f)

Finally, the voltage set

V i
1 =

1
2
(r sinθ∆ϕEϕ

4+Yϕ +Gϕ

4+Yϕ

− r∆θZ0Hθ

4+Zθ +Rθ

4+Zθ

), (2.133a)

V i
2 =

1
2
(r sinθ∆ϕEϕ

4+Yϕ +Gϕ

4+Yϕ

+∆rZ0Hr
4+Zr +Rr

4+Zr
), (2.133b)
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V i
3 =

1
2
(∆rEr

4+Yr +Gr

4+Yr
+ r∆θZ0Hθ

4+Zθ +Rθ

4+Zθ

), (2.133c)

V i
4 =

1
2
(∆rEr

4+Yr +Gr

4+Yr
− r sinθ∆ϕZ0Hϕ

4+Zϕ +Rϕ

4+Zϕ

), (2.133d)

V i
5 =

1
2
(r∆θEθ

4+Yθ +Gθ

4+Yθ

+ r sinθ∆ϕZ0Hϕ

4+Zϕ +Rϕ

4+Zϕ

), (2.133e)

V i
6 =

1
2
(r∆θEθ

4+Yθ +Gθ

4+Yθ

−∆rZ0Hr
4+Zr +Rr

4+Zr
), (2.133f)

V i
7 =

1
2
(r∆θEθ

4+Yθ +Gθ

4+Yθ

− r sinθ∆ϕZ0Hϕ

4+Zϕ +Rϕ

4+Zϕ

), (2.133g)

V i
8 =

1
2
(∆rEr

4+Yr +Gr

4+Yr
+ r sinθ∆ϕZ0Hϕ

4+Zϕ +Rϕ

4+Zϕ

), (2.133h)

V i
9 =

1
2
(r sinθ∆ϕEϕ

4+Yϕ +Gϕ

4+Yϕ

−∆rZ0Hr
4+Zr +Rr

4+Zr
), (2.133i)

V i
10 =

1
2
(r∆θEθ

4+Yθ +Gθ

4+Yθ

+∆rZ0Hr
4+Zr +Rr

4+Zr
), (2.133j)

V i
11 =

1
2
(∆rEr

4+Yr +Gr

4+Yr
− r∆θZ0Hθ

4+Zθ +Rθ

4+Zθ

), (2.133k)

V i
12 =

1
2
(r sinθ∆ϕEϕ

4+Yϕ +Gϕ

4+Yϕ

+ r∆θZ0Hθ

4+Zθ +Rθ

4+Zθ

), (2.133l)

V i
13 =

1
2

r sinθ∆ϕEϕ

4+Yϕ +Gϕ

4+Yϕ

, (2.133m)

V i
14 =

1
2

∆rEr
4+Yr +Gr

4+Yr
, (2.133n)

V i
15 =

1
2

r∆θEθ

4+Yθ +Gθ

4+Yθ

, (2.133o)

V i
16 =

1
2

ZϕZ0r sinθ∆ϕHϕ

4+Zϕ +Rϕ

4+Zϕ

, (2.133p)

V i
17 =

1
2

ZrZ0∆rHr
4+Zr +Rr

4+Zr
, (2.133q)

V i
18 =

1
2

ZzZ0r∆θHθ

4+Zθ +Rθ

4+Zθ

. (2.133r)

should substitute Eq. 2.112. if the source is located in a lossless medium, G =
R = 0, and Eq. 2.133 significantly simplifies.
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2.5 Modeling of metamaterials with TLM

An electromagnetic metamaterial can be defined as an artificial homogeneous
electromagnetic structure whose properties are not available in nature. The his-
tory of metamaterials started with the pioneering work proposed by V. G. Veselago
who theoretically investigated plane wave propagation in a material that exhibits
negative values for both the permittivity and permeability. He proved that the
Poynting vector of a monochromatic plane wave propagating in such a media is
antiparallel with respect of the direction of its phase velocity. This unusual behav-
ior inspired him to call them left-handed (LH) materials. It should be understood
that LH materials belong to a certain class of metamaterials, and are sometimes
called negative refractive index media, backward-wave media, or double negative
media to name, few terminologies. In this thesis we refer to any exotic electro-
magnetic materials as metamaterials. For more than 30 years after Veselago’s
work, metamaterials received very little attention, until D. R. Smith et al. re-
alized composite media. These were based on a periodic array of interspaced
conducting nonmagnetic split ring resonators [36] and continuous wires [37], that
exhibits a frequency region in the microwave regime with simultaneously negative
values of effective permeability and permittivity [38]. Since then, contributions
on this topic have been plentiful, prompted by a variety of promising optical and
microwave applications. Another approach that exploits an L−C distributed net-
work was proposed by Eleftheriades et al. [39], as an alternate perspective to the
split ring resonators and continuous wires approach previously mentioned. Given
that a TLM node can be represented by lumped inductors and capacitors [1], the
transmission line approach is naturally of great interest.

As early as 1944, G. Kron [27] stressed the ability of distributed L−C circuit
networks for representing natural media by means of the direct analogy between
circuit equations and Maxwell’s equations. A unit cell of such a network is de-
picted in Fig. 2.13(a).

The possibility of backward electromagnetic waves in an L−C network is
briefly described in S. Ramo’s book for instance [40]. The equivalent circuit, rep-
resented in Fig. 2.13(b), that supports such backward waves can be referred to
as a dual L−C network given that it differs from the original one in the posi-
tion of L and C, which are simply interchanged. The analogy between the con-
ventional backward wave phenomenon and the propagation of electromagnetic
waves in metamaterials, naturally leads to the transmission line approach of neg-
ative refractive index media. More information about this analogy can be found
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(a) (b)

Figure 2.13: (a) Unit cell of an L−C network describing usual media. (b) Unit
cell of a dual L−C network describing exotic media.

in [41, 42].
Recognizing that TLM is nothing more than the numerical incarnation of an

L−C network, So et al. presented a technique that allows the modeling of meta-
materials based on the transmission line approach [43]. However, their new nodes
requires a significant modification of the impulse scattering process when com-
pared to the classical version, as they, themselves, pointed out in their innovative
contribution. Considering that metamaterials are on the cutting-edge of current
research, it is of great interest to render more comfortable the TLM modeling
involving left-handed media. We have shown in two articles that such a drastic
modification is actually not necessary [15, 16].

The positive quantities C and L, which represent an equivalent to the permit-
tivity and permeability, respectively, should be made negative to account for the
left-handedness. Referring to Fig. 2.5, the series inductor thus becomes a se-
ries capacitor, while the shunt capacitor becomes a shunt inductor. Let us now
consider a capacitor with capacity C and an inductor with inductance L, the as-
sociated impedances being ZC = 1

jωC and ZL = jωL, respectively. Let us assume

that L = − 1
ω2C . In this manner, ZL = jωL = − jω

ω2C = 1
jωC which is precisely ZC.

We can intuitively conclude that a capacitor is equivalent to a negative inductor
whose inductance is

Leq =− 1
ω2C

. (2.134)

However, the inductance is no longer constant, instead it is an explicit function
of frequency. For the purpose of illustration, consider the series sub-circuit of
SCN depicted in Fig. 2.8(b) that describes the z-component of the magnetic field.
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In its original form, it is equipped with a positive inductive stub, line 18, whose
inductance is L = ZzZ0

∆t
2 according to Table 2.1; Zz being the impedance of the

stub. Imagine that the positive inductive stub is substituted by a negative one; as
mentioned before, the new stub adds a capacitance C to the node and, moreover,
C = YzY0

∆t
2 , as usual. According to Eq. 2.134,

Leq =− 1
ω2YzY0

∆t
2

=−ZzZ0
2

∆tω2 .

(2.135)

Furthermore, Eq. 2.96b becomes

4Z0
∆t
2

+Leq = µzµ0
∆x∆y

∆z
(2.136)

with Leq given by Eq. 2.135; we finally calculate the new expression of the stub’s
impedance:

Zz(ω) =−1
4

∆t2
ω

2[
2µzµ0

Z0∆t
∆x∆y

∆z
−4]. (2.137)

We remind that the usual value for Zz is given by Eq. 2.97f:

Zz =
2µzµ0

Z0∆t
∆x∆y

∆z
−4. (2.138)

Note that Eq. 2.137 does not differ much from Eq. 2.138, nonetheless the differ-
ence is fundamental:

• Zz is now a function of the frequency ω,

• A factor −1
4∆t2ω2 appears.

In practice, the TLM procedure will be as follows: the impedance of the inductive
stub, Zz, is given by Eq. 2.138, except if a negative value is obtained. In this case
Eq. 2.138 must be substituted by Eq. 2.137, and the stub is no longer inductive
but capacitive.

The procedure is exactly the same for the other components of SCN, and more
generally for the other TLM nodes evoked in this dissertation (2D Cartesian nodes,
cylindrical node, spherical node).

63



2.6 Dispersion inherent to the TLM mesh in the mod-
eling of metamaterials

It was shown in section 2.5 that reversing the positions of the capacitive and
inductive stubs in the TLM node is equivalent to making the optical constant neg-
ative. The basic TLM procedure is not affected by this modification, except for
the values of the stubs that must be multiplied by −1

4∆t2ω2. Admittances and
impedances are no longer constant, they are explicit functions of frequency via
the quantity ω; this is in agreement with the dispersive nature of metamaterials.
The aim of this section is to examine what kind of dispersion the TLM mesh ex-
hibits.

First, consider SCN presented in section 2.3.3. Furthermore, for the sake of
simplicity, let the node be a cube, i.e., ∆x = ∆y = ∆z = ∆l. Finally, consider, for
instance, the z-component of the capacitive stub that is given by Eq. 2.137. It
becomes:

Zz(ω) =−1
4

∆t2
ω

2[
2µzµ0∆l

Z0∆t
−4]. (2.139)

The numerical procedure consists of defining a working frequency, ω0, for which
the permeability is the required one, µz = µz(ω0). The choice of these two values
fixes the impedance of the capacitive stub, Zz(ω0).

On the other hand, Eq. 2.139 yields

µz =
2[∆t2ω2−Zz(ω)]Z0

∆l∆tµ0ω2 . (2.140)

This means that µz is indirectly a function of the frequency. But beyond that,
Eq. 2.140 depicts the fact that if we want the permeability to be the same as
before (µz(ω0)) but at a frequency different from ω0, the stub’s impedance can no
longer be Zz(ω0). This is in contradiction with the statement that definitely fixes
Zz(ω) to be Zz(ω0). In this way, we understand that if we excite the mesh with a
frequency that differs from ω0 the mesh will not present the permeability µz(ω0).
The frequency dependence is emphasized by adding a tild to the expression of the
permeability given by Eq. 2.140. Substituting Zz(ω) in Eq. 2.140 by its value
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given by Eq. 2.139 at ω = ω0 yields

µ̃z(ω) =
2[∆t2ω2−Zz(ω0)]Z0

∆l∆tµ0ω2

=
∆lµz(ω0)µ0ω2

0 +2∆t(ω2−ω2
0)Z0

∆lµ0ω2

=
2∆tZ0

∆lµ0
−

ω2
0

ω2 [
2∆tZ0

∆lµ0
−µz(ω0)]

(2.141)

As it has been mentioned in section 2.3.3, the impedance of the connecting lines,
Z0, and the time-step, ∆t, for SCN are very often chosen to be given by Eq. 2.100a
and Eq. 2.100b, respectively. In this case, such values yield 2∆tZ0

∆lµ0
= 1. Finally,

µ̃z(ω) = 1−
ω2

0
ω2 [1−µz(ω0)]. (2.142)

The relation of dispersion given by Eq. 2.142 is obviously reminiscent of the
Drude’s model, which is very often used when metamaterials are involved. In
[44] for instance, FDTD simulations of electromagnetic plane wave in a Drude’s
model LH material was provided. Nevertheless, such FDTD simulations differ
from TLM simulations in one important respect: with TLM, it is the mesh that
is dispersive according to Drude’s model; while with FDTD, dispersion has to be
incorporated into the algorithm. The proof has been carried out for µz, but the
same results are obtained for the other five components, however 2∆tZ0

∆lµ0
= 1 has to

be substituted by 2∆tY0
∆lε0

= 1 when we are dealing with permittivity. Thus for SCN,
we can write that

χ̃i(ω) = 1−
ω2

0
ω2 [1−χi(ω0)]. (2.143)

where χ represents either ε or µ, and where the subscript i is either x, y, or z.

Let us now derive the dispersion relation in the 2D nodes. For instance, we
are going to consider the TM-node and assume that ∆x = ∆y = ∆z = ∆l. Thus, Eq.
2.57 becomes

Yx(ω) =−1
4

∆t2
ω

2[
2εxε0∆l

Y0∆t
−2], (2.144a)

Yy(ω) =−1
4

∆t2
ω

2[
2εyε0∆l

Y0∆t
−2], (2.144b)
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Zz(ω) =−1
4

∆t2
ω

2[
2µzµ0∆l

Z0∆t
−4]. (2.144c)

Similarly to what has been done before, we derive ε̃x(ω), ε̃y(ω), and µ̃z(ω). We
get:

ε̃x(ω) =
∆tY0

∆lε0
−

ω2
0

ω2 [
∆tY0

∆lε0
− εx(ω0)], (2.145a)

ε̃y(ω) =
∆tY0

∆lε0
−

ω2
0

ω2 [
∆tY0

∆lε0
− εy(ω0)], (2.145b)

µ̃z(ω) =
2∆tZ0

∆lµ0
−

ω2
0

ω2 [
2∆tZ0

∆lµ0
−µz(ω0)]. (2.145c)

The usual values of Z0 and ∆t are given by Eqs. 2.62a and 2.62b, which, together
with Eq. 2.145 provide the final expression:

ε̃x(ω) = 1−
ω2

0
ω2 [1− εx(ω0)], (2.146a)

ε̃y(ω) = 1−
ω2

0
ω2 [1− εy(ω0)], (2.146b)

µ̃z(ω) = 2{1−
ω2

0
ω2 [1−µz(ω0)]}. (2.146c)

Note the factor 2 for the expression of µ̃z, which is not present for ε̃x and ε̃y. The
dispersion is once again of Drude’s model kind in each case. The results would
be similar if the TE-node of section 2.3.1 were considered.

After having consider the natural dispersion of Cartesian meshes when meta-
materials are involved, we are now concerned with curved meshes, in which we
can distinguish the 2D cylindrical (section 2.4.1 and 2.4.2) and the 3D spherical
nodes (section 2.4.3).

For the purposes of illustration, we focus first on the cylindrical TM-node
presented in section 2.4.2. For metamaterials, Eq. 2.121 becomes

Yr(ω) =−1
4

∆t2
ω

2[
2εrε0

Y0∆t
r∆ϕ∆z

∆r
−2], (2.147a)

Yϕ(ω) =−1
4

∆t2
ω

2[
2εϕε0

Y0∆t
∆r∆z
r∆ϕ

−2], (2.147b)

Zz(ω) =−1
4

∆t2
ω

2[
2µzµ0

Z0∆t
r∆ϕ∆r

∆z
−4]. (2.147c)
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Note that we cannot chose the size of the node to be the same in the three direc-
tions given that the node is naturally bigger near the outer boundary of the mesh.
It is important to note that Eq. 2.147 differs from Eq. 2.144 in one important
respect: the presence of a spatial coordinate, r, in the expression, which means
that these parameters cannot be constant even if the material under consideration
is homogeneous. Carrying out the same derivation as before yields

ε̃r(ω) =
∆t∆rY0

r∆ϕ∆zε0
−

ω2
0

ω2 [
∆t∆rY0

r∆ϕ∆zε0
− εr(ω0)], (2.148a)

ε̃ϕ(ω) =
∆t r∆ϕY0

∆r∆zε0
−

ω2
0

ω2 [
∆tr∆ϕY0

∆r∆zε0
− εr(ω0)], (2.148b)

µ̃z(ω) =
2∆t∆zZ0

r∆r∆ϕµ0
−

ω2
0

ω2 [
2∆t∆zZ0

r∆r∆ϕµ0
−µz(ω0)]. (2.148c)

Defining

Ar =
∆t∆rY0

r∆ϕ∆zε0
, (2.149a)

Aϕ =
∆t r∆ϕY0

∆r∆zε0
, (2.149b)

Az =
2∆t∆zZ0

r∆r∆ϕµ0
, (2.149c)

we get

ε̃r(ω) = Ar−
ω2

0
ω2 [Ar− εr(ω0)], (2.150a)

ε̃ϕ(ω) = Aϕ−
ω2

0
ω2 [Aϕ− εϕ(ω0)], (2.150b)

µ̃z(ω) = Az−
ω2

0
ω2 [Az−µz(ω0)]. (2.150c)

Here we wish to comment an important point. The TLM timestep, ∆t, must be
chosen so that no admittances or impedances of the stubs can be negative, it is
a requirement that fixes an upper limit on ∆t. Once ∆t has correctly been fixed,
only permittivity or permeability less than unity would be able to make them neg-
ative. Thus, if metamaterials are considered, all the impedances or admittances
less than unity should be multiplied by −1

4∆t2ω2, which has the benefit to make
them greater than unity anew. When Cartesian nodes are employed, this procedure
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is in agreement with the dispersive nature of metamaterials: any optic constant
less than unity is associated with an impedance/admittance less than unity, which
result in the mesh to be dispersive. However, when cylindrical nodes are used,
the situation is more complicated because of the presence of r in the expressions
of the impedances/admittances. The sign of an optic constant and its associated
impedance/admittance may not coincide, which is not consistent with the fact that
metamaterials must disperse. Obviously, this would be of no consequence at the
working frequency, ω0, but may detrimentally alter the validity of any result at
other frequency. Consequently, the election of ∆t depends on the case under con-
sideration, so are Ar, Aϕ, and Az. There is only one remaining caveat concerning
whether Eq. 2.150 is causal or not. In section 4.7.1, a wide discussion about the
choice of ∆t and causality will be provided, in the particular case of the modeling
of invisibility cloaking structures with cylindrical TLM nodes.

The procedure to obtain the dispersion of the cylindrical TE-node is rigorously
the same. We start from the expression of the admittance and the impedances,

Zr(ω) =−1
4

∆t2
ω

2[
2µr

Br
−2] (2.151a)

Zϕ(ω) =−1
4

∆t2
ω

2[
2µϕ

Bϕ

−2] (2.151b)

Yz(ω) =−1
4

∆t2
ω

2[
4εz

Bz
−2], (2.151c)

with

Br =
∆t∆rZ0

r∆ϕ∆zµ0
, (2.152a)

Bϕ =
∆t r∆ϕZ0

∆r∆zµ0
, (2.152b)

Bz =
2∆t∆zY0

r∆r∆ϕε0
, (2.152c)

which leads to

µ̃r(ω) = Br−
ω2

0
ω2 [Br−µr(ω0)], (2.153a)

µ̃ϕ(ω) = Bϕ−
ω2

0
ω2 [Bϕ−µϕ(ω0)], (2.153b)
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ε̃z(ω) = Bz−
ω2

0
ω2 [Bz− εz(ω0)]. (2.153c)

Finally, the spherical node is considered. From

Yj =−1
4

∆t2
ω

2[
4ε j

C j
−4], (2.154a)

Z j =−1
4

∆t2
ω

2[
4µ j

D j
−4], (2.154b)

j = {r,θ,ϕ}, (2.154c)

with

Cr =
2∆t∆rY0

r2 sinθ∆θ∆ϕε0
, (2.155a)

Cθ =
2∆t∆θY0

sinθ∆r∆ϕε0
, (2.155b)

Cϕ =
2∆t sinθ∆ϕY0

∆r∆θε0
, (2.155c)

Dr =
2∆t∆rZ0

r2 sinθ∆θ∆ϕµ0
, (2.155d)

Dθ =
2∆t∆θZ0

sinθ∆r∆ϕµ0
, (2.155e)

Dϕ =
2∆t sinθ∆ϕZ0

∆r∆θµ0
, (2.155f)

we get

ε̃ j(ω) = C j−
ω2

0
ω2 [C j− ε j(ω0)], (2.156a)

µ̃ j(ω) = D j−
ω2

0
ω2 [D j−µ j(ω0)], (2.156b)

j = {r,θ,ϕ}. (2.156c)
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2.7 Summary

TLM is a time domain numerical method that has been efficiently employed
since its introduction in problems involving wave propagation. TLM is based on
the analogy between Maxwell’s equations and the equations related to the trans-
mission line theory. The mesh is made up of a large number of unitary structures,
we refer to as nodes, that are form by intersecting transmission lines. Conse-
quently, the problem of calculating electromagnetic fields propagating in space
is substituted by that of calculating voltage and intensity pulses propagating in
a transmission line network. The information relative to Maxwell’s equations is
contained in the scattering matrix that describes how the pulses are scattered at
the center of the node.

In this chapter, we put emphasis on several points:

1. A remarkable property of TLM is that it is not only a pure numerical method
to solve the field equations, but also the numerical equivalent of a real phys-
ical L−C network. Furthermore, TLM is a low-frequency method since the
maximum allowed frequency is reduced by the coarseness of the mesh. The
spatial discretization length is usually chosen to be smaller than one-tenth
of the wavelength.

2. The works following Johns’ pioneering paper considered 2D nodes: the
parallel node allowed the modeling of a wave that propagates with TE po-
larization in a medium where only ε and σe can vary; while the series node
allowed the modeling of a wave that propagates with TM polarization in a
medium where only µ and σm can vary.

3. SCN was an important contribution to solve 3D problems since it elimi-
nates the disadvantages of other 3D nodes. SCN cannot be described by a
unique circuit, but by six coupled shunt and series circuits, as suggested by
Maxwell’s equations, which are coupled equations.

4. Describing a node by coupling circuits has long been limited to SCN. How-
ever, we have shown in this dissertation that the parallel and series nodes
should actually be described by coupled circuits too. We introduced the
TE- and TM- nodes that are more versatile, both can deal with totally inho-
mogeneous media including electric and magnetic losses.
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5. For the modeling of structures with cylindrical symmetry, one may prefer
employing cylindrical nodes that directly assume the shape of the medium’s
geometry. This kind of nodes are easily obtained from the TE- and TM-
nodes by a simple coordinate transformation.

6. In the same manner, the use of spherical nodes, obtained from SCN, may
be preferred to solve problems with spherical symmetry.

7. The simulation of metamaterials, i.e., media with ε≤ 1 and µ≤ 1, requires
a slight modification of the usual TLM procedure. By simply switching the
capacitive and inductive nature of the stubs, metamaterials can be modeled.
It is worth noting that this numerical approach is based on the practical
technique that consists in obtaining a dual L−C network, which assumes
backward wave propagation, from an usual L−C network by interchanging
the positions of its capacitors and inductors.

8. Real dual L−C networks behave as a metamaterial that have the particular-
ity to disperse with frequency. Therefore, the TLM mesh for metamaterials,
that is, nothing more than the numerical equivalent of the dual L−C net-
work, is dispersive too. We have shown that the distribution of both ε(ω)
and µ(ω) in the TLM mesh strictly follows a Drude-like model for the Carte-
sian nodes, and a modify Drude-like model for the curved nodes .
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Chapter 3

Composite materials

3.1 Introduction

The study of composite materials began more than 150 years ago. Actually,
the first traces date from 1837 when Faraday proposed a model of a dielectric
which consisted of a series of metallic globules separated from each other by in-
sulating material. Since then, the interest keeps on increasing. Various famous
physicians, like Mossotti, Clausius, or Maxwell, have turned their attention to this
theoretical problem [45]. Nowadays, the problem is not only of a fundamental
order, indeed composite materials are used massively in industry. Their success
comes from the possibility to obtain many different properties in function of the
different phases constituting the mixture. For reasons of mathematical analogy, all
we can say about mixtures hold indifferently for the dielectric constant, magnetic
permeability, electric conductivity, heat conductivity, and diffusivity [46]. How-
ever, in this study, we will be interested only in the permittivity, disregarding the
other constants.

The concept of effective permittivity is practically indispensable in the study
of composite materials at low frequency. It permits to describe a medium as ho-
mogeneous when a wave gets into its structure. It is worth noting that the size of
the inhomogeneities has to be much smaller than the spatial variation of the elec-
tric field, i.e., its wavelength, in order to avoid dispersion effects. The effective
permittivity depends on many parameters like the individual dielectric constants
of the different phases, the volume fraction, the shape of the inclusions, the ori-
entation of the inclusions with respect to the electric field, the localization of the
inclusion, etc. Several analytical formulas exist whose ambitions are to derive
the effective permittivity of a mixture in terms of the dielectric constant and the

72



volume fractions of the pure phases [47]. These expressions belong to the mixing
rule family and provide a solution more or less exact depending on the individual
case.

The complexity of the problem, especially for random mixtures, has caused
that only in recent years, when powerful computers at reasonable cost are avail-
able, numerical techniques have been applied to this problem. In this chapter,
TLM will be used for the modeling of composite mixtures.

• In section 3.2, the most employed theoretical models will be presented. We
can distinguish between two kinds of approaches. Predictive formulas, as
Maxwell-Garnett or Bruggeman, aim to determine the effective permittivity
of a composite material in terms of the available constants of the problem,
usually the permittivity and the volume fraction of the individual constitu-
tive phases. Nevertheless, more information are very often required, and
it can be more reasonable binding the solution using Wiener and Hashin-
Shtrikman’s bounds, for example.

• Section 3.3 will be the concern of determining the effective permittivity of
composites made up of particles randomly embedded in a dielectric matrix.
TLM will be employed and the results will be systematically compared to
the models described in section 3.2.

• Section 3.4 will be devoted to the simulation of mixtures with periodic in-
clusions.

3.2 Theory

3.2.1 Maxwell-Garnett and Bruggeman’s model

The study of the electromagnetic behavior and characterization of dielectric
mixtures is a classical problem which has already been addressed by Maxwell
himself more than a century ago. In 1904, J. C. Maxwell-Garnett (MG) improved
Maxwell’s work and obtained what we now refer to as MG’s relation [48]. The
paper due to this scientist deals with glasses containing small metal spheres. He
considered the problem of finding the effective permittivity, εe f f , of a medium
formed with spheres, of permittivity ε1, embedded in a host medium of permittiv-
ity ε2. He drastically approximated that the inclusions as a whole are equivalent to
a unique dipole that is isolated in the dielectric matrix, as depicted in Figs. 3.1(a)
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(a) (b)

(c) (d)

Figure 3.1: (a,b) Illustration of MG’s model. (c,d) Illustration of Bruggeman’s
model.

and 3.1(b). This theory yields the following expression for εe f f in terms of the
dielectric constants ε1, ε2 and the volume fractions p1, p2 of the pure phases:

εe f f − ε2

εe f f +(d−1)ε2
= p1

ε1− ε2

ε1 +(d−1)ε2
. (3.1)

The dimensionality d equals 2 if the problem is 2D or equals 3 in the case of
considering a 3D media. MG’s formula provides satisfactory permittivity values
for low concentration of insertions. In particular, it is exact in the limit of very
small p1 but worsens when this concentration increases. Another stumbling block
lies in the fact that a nontrivial percolation threshold is not predicted by this model.
This means that for all values of p1 except 0 and 1, εe f f 6= 0 even when ε1 = 0 or
ε2 = 0.

During the three decades following MG’s paper, a lot of contributions were
published. Nevertheless they did not bring a significant advance. In 1935, D. A.
G. Bruggeman, a Dutch physicist, proposed a new approach [49]. He supposed
that every components of the material is immersed in a medium whose permit-
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Figure 3.2: Two geometries for which εe f f may be exactly determined.

tivity is equal to that of the mixture, as depicted in Figs. 3.1(c) and 3.1(d). This
vision of the problem leads to a model that does take into account the interaction
between each component. Moreover, it has the advantage of exhibiting a non triv-
ial percolation threshold and also of being symmetric. By imposing that the field
inside a single grain equals the field far from it, we have,

p1
ε1− εe f f

ε1 +(d−1)εe f f
= p2

ε2− εe f f

ε2 +(d−1)εe f f
. (3.2)

Bruggeman’s theory is usually considered as a better approximation than MG, par-
ticularly for cases where neither p1 nor p2 is small. Nevertheless, this affirmation
requires qualification since there are situations for which MG is more suitable.

3.2.2 Wiener’s bounds

Besides the two simple approximations described in section 3.2.1, many other
mixing models exist and can be found in the literature [45]. Furthermore, it is
possible to calculate the effective permittivity exactly for composites with very
simple internal geometries. That is the case when the composite is made of a
series of k parallel slabs of different pure materials. Fig.3.2 shows two of such
multiple layer composites:

(a) Plane parallel layers parallel to the electric field.
(b) Plane parallel layers perpendicular to the electric field.

In these two cases a simple calculation provides

εe f f =
k

∑
i=1

piεi, (3.3a)
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1
εe f f

=
k

∑
i=1

pi

εi
(3.3b)

in the case (a) and (b), respectively. It is worth noting that case (a) actually cor-
responds to a set of capacitors connected in parallel, while case (b) corresponds
to a set of capacitors connected in series. In particular, if we are dealing with a
two-component composite material, Eqs. 3.3a and 3.3b becomes

εe f f = p1ε1 + p2ε2, (3.4a)

εe f f = (
p1

ε1
+

p2

ε2
)−1, (3.4b)

respectively. Eqs. 3.4a and 3.4b are important values and are known as upper
and lower Wiener’s bound [50], respectively. Indeed, admitting the difficulty, or
even the impossibility, in predicting exact values of effective permittivity, mainly
due to the lack of information regarding the actual geometry for a given volume
occupation, other studies are devoted to the derivation of theoretical bounds which
limit the range of possible values. Wiener’s bounds belong to this category.

3.2.3 Hashin-Shtrikman’s bounds

As it has been shown in section 3.2.2, the case in which the mixture consists
of striations parallel or perpendicular to the current flow leads to Wiener’s bounds,
Eqs. 3.4a and 3.4b. Thus, considering a pair of two-phase materials in which the
two constituents are present in the same proportion but in which the disposition
is equivalent to a set of capacitors connected in parallel in one case and a set of
capacitors connected in series in the other case, makes a big difference on the
effective permittivities. This result brings to the fore that without some detailed
geometrical information about the distribution of the two phases, an exact predic-
tion of the effective permittivity is impossible [51]. In this sense, G. P. DeLoor
was led to the same conclusion after an extensive experimental study within the
framework of his thesis [52]. Therefore, if one wants the effective permittivity
to be only defined in terms of the permittivities and the volume fractions of the
pure constituents, the better result he can expect will be upper and lower bounds.
Wiener’s bounds were the first derived and constitute the less restrictive ones.

In 1962, Hashin and Shtrikman (HS) used a variational technique to obtain
maximal and minimal bounds for a macroscopically homogeneous and isotropic
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Figure 3.3: Hashin-Shtrikman’s coated sphere.

medium [53]. They furthermore showed in the same paper that, in the case of
a two-phase material, these bounds are the most restrictive ones that can be ob-
tained in terms of phase volume fractions and permittivities. To improve the HS’s
bounds, additional information in the statistics of the spatial distribution of the
phases is needed. These bounds can be attained by a special microscopic geom-
etry. This occurs when the material is a composite consisting of two concentric
spheres, as shown in Fig. 3.3. We assume phase 1 as coating and phase 2 as core.
The concentric shell presents a radius a1, a permittivity ε1 and occupies a volume
fraction p1. The inner part presents a radius a2, a permittivity ε2 and occupies a
volume fraction p2. The volume ratio between the two phases is chosen equal to
the volume ratio between the two components of the composite materials.

To prove this result, consider a homogeneous electric field E0 applied far from
the composite sphere. We want to determine the potential V in each one of the
three regions. To do so, the Laplace’s equation, ∆V = 0, has to be solved. In
Fig. 3.3, we can see a 2D representation of the problem. In a spherical coordinate
system (r,θ,ϕ), we know that a general solution for the Laplace equation can be
expressed in terms of Legendre’s Polynomials, Pn(cosθ). Furthermore, for axial
symmetric reasons, the solution is not ϕ-dependent. Thus, the general formula for
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the potential is:

V (r,θ) =
∞

∑
n=0

(αnr−(n+1) +βnrn)Pn(cosθ). (3.5)

However, Eq. 3.5 has to be adapted to each region and then it has to be modified
in accordance with the regions to be described:

1. In region 1, forming the concentric shell of the composite sphere, both terms
have to be taken into account,

V1(r,θ) =
∞

∑
n=0

(Anr−(n+1) +Bnrn)Pn(cosθ). (3.6)

2. In region 2, forming the inner part of the composite sphere, the terms with
inverse power of r cannot exist since they produce an infinite potential at
the center. Therefore,

V2(r,θ) =
∞

∑
n=0

CnrnPn(cosθ). (3.7)

3. In region 3, i.e., outside the composite sphere, the term−E0r cosθ =−E0rP1(cosθ)
has to be added in order to satisfy the condition at r→ ∞. Moreover, only
the terms with inverse power of r have to be taken into account to avoid
divergence at r→ ∞,

V3(r,θ) =−E0rP1(cosθ)+
∞

∑
n=0

Dnr−(n+1)Pn(cosθ). (3.8)

On the one hand, the potential conservation condition at the interfaces is used,
i.e., V1 = V2 at r = r2 and V3 = V1 at r = r1. Furthermore, both sides of the equa-
tions are multiplied by the polynomial Pm(cosθ) and integrated with respect to the
variable cosθ, this process aiming to take advantage of the orthogonal properties
of Legendre’s polynomials:

Lnm =
∫ +1

−1
Pn(cosθ)Pm(cosθ)d cosθ =

{
0 if m 6= n,

2
2m+1 if m = n.

(3.9)
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Thus from the above mentioned potential conservation, we obtain

Amr−(m+1)
2 +Bmrm

2 = Cmrm
2 , (3.10a)

Amr−(m+1)
1 +Bmrm

1 = Dmr−(m+1)
1 −E0r1

2m+1
2

L1m. (3.10b)

On the other hand, the normal conservation of the electric induction condition
can be used, together with the orthogonal properties of Legendre’s polynomial.
Concretely, −ε1

∂V1
∂r = −ε2

∂V2
∂r at r = r2 and −ε1

∂V1
∂r = −ε3

∂V3
∂r at r = r1, which

yields

ε1[(m+1)Amr−(m+2)
2 −mBmrm−1

2 ] =−ε2mCmrm−1
2 , (3.11a)

ε1[(m+1)Amr−(m+2)
1 −mBmrm−1

1 ] = ε3[(m+1)Dmr−(m+2)
1 +E0

2m+1
2

L1m,

(3.11b)

respectively.
Eqs. 3.10a, 3.10b, 3.11a, and 3.11b form a set of four equations with four

unknowns Am, Bm, Cm, Dm. The resolution of this system proves that the four
constants equal invariably 0 if m 6= 1. The only nontrivial solution occurs when
m = 1, which yields

A1 =−
3E0(ε1− ε2)ε3r3

1r3
2

(2ε1 + ε2)(ε1 +2ε3)r3
1−2(ε1− ε2)(ε1− ε3)r3

2
, (3.12a)

B1 =−
3E0(2ε1 + ε2)ε3r3

1

(2ε1 + ε2)(ε1 +2ε3)r3
1−2(ε1− ε2)(ε1− ε3)r3

2
, (3.12b)

C1 =−
9E0ε1ε3r3

1

(2ε1 + ε2)(ε1 +2ε3)r3
1−2(ε1− ε2)(ε1− ε3)r3

2
, (3.12c)

D1 =
E0(2ε1 + ε2)(ε1− ε3)r6

1−E0(ε1− ε2)(2ε1 + ε3)r3
1r3

2

(2ε1 + ε2)(ε1 +2ε3)r3
1−2(ε1− ε2)(ε1− ε3)r3

2
. (3.12d)

The composite sphere, in which one part has a permittivity ε1 whilst the other part
has a permittivity ε2, can be viewed as a uniform sphere with permittivity εe f f . So
the question is: what is the value ε3 for which the composite sphere completely
merges with the external material? In other words, what is the value ε3 for which
the presence of the composite sphere cannot be detected? In this situation, it is
clear that the electric field outside the composite sphere would not be perturbed
by its presence. This means that D1 = 0 which, after some calculus, is proven to
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(a) (b)

(c)

Figure 3.4: Equipotential surfaces and electric induction lines (everywhere per-
pendicular between them) of a coated sphere located in a uniform electric field.
ε1 = 18, ε2 = 2, p1 = 0.704, p2 = 0.296. Phase 3 permittivity is: ε3 = 1, ε3 = 50,
and ε3 = εe f f , respectively.

be equivalent to

εe f f = ε1 +
( r2

r1
)3

1
ε2−ε1

+
1−( r2

r1
)3

3ε1

. (3.13)

Moreover, we have p2 = (r2/r1)3 and p1 = 1− p2 which provides the Hashin-
Shtrikman’s formula

εe f f = ε1 +
p2

1
ε2−ε1

+ p1
3ε1

. (3.14)

As an illustration, Fig. 3.4 is the electric induction lines and the equipotentials
for a coated sphere in which ε1 = 18, ε2 = 2, and p2 = 0.296. In Fig. 3.4(a),
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the permittivity of the host medium is free space, εe f f = 1; while εe f f = 50 in
Fig. 3.4(b). Obviously, the presence of the composite sphere perturbs the external
field in both case. According to Eq. 3.14, the effective permittivity of the sphere
is given by εe f f = 12.01. If the permittivity of the host medium is chosen to be
ε3 = εe f f , it is plain from Fig. 3.4(c) that the electric induction lines are no longer
perturbed by the presence of the composite sphere.

The maximal and minimal bounds are obtained from Eq. 3.14. The composite
material is composed of two phases of permittivity ε1 and ε2, let ε+ and ε− be
the greatest and smallest one, respectively. The values p+ and p− represent the
volume fraction of the medium whose permittivity is ε+ and ε−, respectively.
Thus, the upper and lower bounds are given by

εe f f ,max = ε+ +
p−

1
ε−−ε+

+ p+
3ε+

, (3.15a)

εe f f ,min = ε−+
p+

1
ε+−ε−

+ p−
3ε−

, (3.15b)

respectively. To obtain Eq. 3.15b, we have considered the complementary mixture
which can be obtained by substituting ε+ by ε− and p+ by p−. Furthermore, note
that the factor 3 appearing in Eqs. 3.15a and 3.15b must be replaced by d when
the dimensionality is d.

It is worth noting that the lower limit coincides exactly with the MG’s mixing
rule, while the upper limit is the dual of MG. By dual, we mean that the inversion
in terms of permittivity and concentration must be done by substituting the vari-
ables of one phase by the same variable of the other phase as we did to obtain Eq.
3.15b.

3.3 Effective dielectric constant of two-dimensional
random composite materials

3.3.1 Pure TLM vs hybrid TLM approach

The effective permittivity of different two-phase dielectric mixtures that con-
sist of different shape insertions with permittivity ε1 embedded in a host medium
of permittivity ε2 [13] is numerically obtained in the current and the two following
sections. A dielectric slab, with its own internal geometry composition, is perpen-
dicularly illuminated by an electromagnetic plane wave and the reflected signal is
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Figure 3.5: Geometry of the problem. In this example, the composite material is
made of circular inclusions.

numerically calculated by using the TLM method. Fig. 3.5 illustrates the process.
With TLM, a time-domain result is obtained. By using a Fourier transform, we
can translate it to the frequency domain which allows to determine the reflection
and transmission coefficients for each frequency steps ∆ f = fmax/Nsample. The
reflection and transmission coefficients are a list of complex numbers correspond-
ing to the frequencies f = n∆ f , with n = 0,1,2, . . . ,Nsamples− 1. Although the
TLM results are valid for wavelengths below the dispersion limit, ∆l < 0.1λmin,
most of the results presented in this work are concerned with the first frequency
point, corresponding to a quasi-static solution. Thus, the numerical reflection (or
equivalently transmission) coefficient is compared to the theoretical reflection co-
efficient of a planar dielectric slab of permittivity εe f f , thus the effective value is
easily obtained. For the sake of completion, we give here the reflection, R, and
transmission, T , coefficients for a slab–with permittivity ε, permeability µ, electric
conductivity σ, and thickness e–that is embedded in free space and illuminated by
a wave whose angular frequency is ω:

R(ε,µ,σ,e,ω) =
j tanke(η2−η2

0)
−2ηη0 + j tanke(η2 +η2

0)
, (3.16a)

T (ε,µ,σ,e,ω) =
2

2coske− j( η

η0
+ η0

η
)sinke

, (3.16b)
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Figure 3.6: Cartesian nodes used to approximate a curved geometry.

where η0 and η are the impedances of free space and the slab, respectively, while
k is the wavenumber.

The insertions considered afterwards are circles, squares, and ellipses (with
different eccentricities). In this chapter, the Cartesian nodes presented in chapter
2.3 will be employed. To describe the circular shapes, the mesh has therefore to be
thin enough, which means that ∆l has to be much smaller than the typical size of
the insertions. Indeed, the greater the number of nodes composing the insertion,
the greater the precision with which the shape can be described, as it is shown
in Fig. 3.6. However, increasing the numbers of nodes produces high memory
requirements and also a reduction in the maximum allowable time step. These
memory and time computing limitations prevent from modeling the insertions
with all the precision we would like.

Karkkainen et al., in a bunch of three papers [54–56], proposed a way to par-
tially avoid this problem of memory and time limitation. In these works, ∆l does
not have to be that small. The geometry details are taken into account by subdi-
viding the main node into N parts along each direction, thus generating secondary
cells of side ∆l/N. This subdivision allows defining two dual circuits of series
connected capacitors or parallel connected capacitors, which provide lower and
upper bounds for the εe f f of the nodes. The situation is depicted in Fig. 3.7 for
N = 2. Finally, the effective permittivity of this main node is supposed to be the
average of these bounds. Of course, this approximation gets better as N increases.
The idea is combining the advantages of using large values of ∆l for the main
node, i.e., less memory and time computing requirements, but simultaneously de-
scribing the geometry with a finer detail. For this reason, we refer to this technique
as hybrid TLM method even though the original work was initially implemented
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Figure 3.7: Subgriding approach used to determine εe f f .

with the FDTD method. As already noted by Karkkainen, the approach is ex-
pected to behave properly when interfaces between different materials are vertical
or horizontal. However, arbitrary oriented surfaces, such as those presented by
spheres, are only approximately described. For this reason, the treatment consist-
ing in directly model the inclusions without approximation (pure TLM method)
will not be abandoned and systematically compared with the hybrid method.

3.3.2 Random circular inclusions

In this section, 2D circular insertions are randomly inserted in a host medium.
We have used the technique of Minimal Standard Generator to obtain random
numbers, these numbers being then used as the coordinates of the inclusion cen-
ters. This technique, proposed by Park and Miller [57], has the advantage of being
suitably tested and easy to implement. Overlapping between insertions is allowed,
which complicates even more the initial spherical geometry with possible clusters.
The slab width, in the x-direction, is 20 mm and is periodic along the y-direction.
Two regions, made of vacuum and whose width is 20 mm, surround the slab on
each side. Absorbing boundary conditions at both limits of the x-axis are im-
posed, by connecting the transmission lines reaching these limits to a lumped load
with the vacuum impedance. This impedance matching condition is a remarkably
simple boundary condition in the TLM method and provides accurate results for
normally incident waves. The inclusions in the slab cause inhomogeneities and
thus avoid this normal incidence to be met at points near this material. However,
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Figure 3.8: 100 circular inclusions randomly distributed.

boundaries along the x-direction are chosen far enough so that it is reasonable to
consider that the nonphysical reflections are absorbed.

The first modeled material corresponds to 100 circular inclusions having a
higher permittivity than that of the environment region. The radius of the circu-
lar inclusions is 1 mm and ∆l = 0.1 mm. We choose ε1 = 18 and ε2 = 2 for the
subsequent applications. Fig. 3.8 is an illustration of the typical geometry for
which εe f f has to be determined. Intuitively, a modification in the location of
the inclusions will have repercussions on εe f f . To underline this, we fix the vol-
ume fraction of the inclusions to p1 = 0.5, we generate different geometries and,
for each one, we determine the corresponding εe f f . In practice, this is done by
changing the seed of the random numbers generator so that a unique seed value
describes entirely a given mixture configuration. A total of 1000 random dis-
tributions is modeled and the results are given in the histogram form showed in
Fig. 3.9(a). Obviously, the shape of the distribution is reminiscent of a Gaussian
distribution with a mean value of 5.438 and a standard deviation of 0.219.

Fig. 3.9(b) depicts the result if hybrid TLM nodes are employed. The obtained
Gaussian distribution has identical standard deviation, but the mean value is 5.715.
It is interesting to notice that the hybrid method gives an account of the different
configurations of the composite in the same proportion as for the pure method
even if a gap, of the order of 5% in this case, between the two values exists.

One can wonder what happens if the radius of the inclusions is increased. To
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(a)

(b)

Figure 3.9: Histogram of the effective permittivity of circular inclusions ran-
domly distributed derived with (a) the pure TLM method and (b) the hybrid TLM
method. The radius of the inclusions is 1 mm. Range limits of εe f f correspond to
HS’s bounds.
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Figure 3.10: Histogram of the effective permittivity of circular inclusions ran-
domly distributed derived with the pure TLM method. The radius of the inclusions
is 2 mm. HS’s bounds are represented with dashed lines.

answer this question, the preceding study (with 775 samples) is repeated using a
radius of 2 mm instead of 1 mm and maintaining p1 = 0.5 with 24 circular in-
clusions. The result is shown in Fig. 3.10. The Gaussian distribution is again
observed, the mean value is 5.321, while the standard deviation is 0.402. The
Gaussian shape is slightly distorted, but the most remarkable fact is that the dis-
tribution is wider. HS’s bounds have even been surpassed in a non-negligible
number of geometries, which constitutes a serious limitation to the validity of
HS’s bounds. We explain this result by the possibility for the inclusions to over-
lap between one another. Bigger inclusions yield therefore less predictive results.
For small inclusions, a higher number of insertions is required to reach a certain
concentration. Therefore, if the position of a given particle is randomly modified,
the fact that there is still a high number of small insertions to be located means
that it is relatively likely that another particle occupies the available area. Smaller
insertions cause the different geometries to be more similar and, thus, the effec-
tive permittivity of the mixture is more concentrated around its mean value. It is
worth noting that this effect of concentration is of high interest in the design and
practical manufacturing of composite dielectrics, since the natural uncertainty due
to differences in the internal structure is minimized.

Furthermore, it is interesting to visualize which kind of changes in the internal
geometry makes such a big difference in εe f f . In Fig. 3.11, the mixture samples
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Figure 3.11: Composites that offered: (a) minimum εe f f , (b) average εe f f , (c)
maximum εe f f , respectively. White and black colors correspond to ε1 = 18 and
ε2 = 2, respectively. The radius of the inclusions is 2 mm.

that offered the minimum, the mean value, and the maximum effective permittiv-
ity are shown. It underlines that (a) is reminiscent of parallel plates perpendicular
to the electric field, while (c) is reminiscent of parallel plates parallel to the elec-
tric field; both tend therefore to the Wiener’s geometries in Fig. 3.2.

In the preceding examples, we have arbitrarily chosen ∆l = 0.1 mm, assuming
that 100 nodes would be sufficient to properly model a unitary inclusion. To de-
terminate the accuracy of this choice, a convergence test is now performed. In the
case in which the radius of the sphere is 1 mm, we pick three particular geome-
tries that provide εe f f close to the mean (seed=35783), maximum (seed=35831),
and minimum (seed=32998) values for this concentration. The test begins with a
reference size of ∆lre f = 1mm. A finer detail is achieved in the pure TLM solution
by considering smaller main nodes of length ∆l = ∆lre f /N. By increasing the sub-
division parameter, N, we improve the precision, and thus the accuracy of the εe f f

value, at the expense of higher memory requirements in the numerical modeling
of the propagation of the signal in the TLM mesh. Regarding the hybrid TLM
method, the parameter N is only an auxiliary subdivision parameter that splits
∆lre f into N parts along each direction. This leads to a set of two dual circuits
like those presented in Fig. 3.7, corresponding to the upper and lower bounds for
the permittivity of the node. Nevertheless, it is worth noting that, for any value
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Table 3.1: Convergence

Pure TLM method (∆l = 1/N mm)

N = 10 N = 20 N = 40 N = 80

Low εe f f distribution 4.915 4.881 4.865 4.860

Medium εe f f distribution 5.289 5.257 5.247 5.243

High εe f f distribution 6.220 6.152 6.143 6.138

Hybrid TLM method (∆l = 1 mm)

Low εe f f distribution 5.134 5.133 5.145 5.147

Medium εe f f distribution 5.524 5.509 5.506 5.504

High εe f f distribution 6.416 6.425 6.428 6.429

of N, the mesh size and the time step are conserved, ∆l = ∆lre f and ∆t = ∆lre f
2c ,

respectively. So, by increasing N, the only generated requirement concerns the
construction of the internal geometry within the planar sheet, i.e., the determina-
tion of the permittivity of a given TLM node, but leaves the TLM requirements
unaltered. The table shows the effective permittivity obtained for different val-
ues of N in both cases. It can be seen that the results obtained with the hybrid
technique and the pure TLM technique have the same behavior as regards the
convergence process. Both require the same value of N, around 40 or 80, to reach
an acceptable result. For the hybrid method, the numerical requirement is not sig-
nificantly increased because the mesh size is always maintained to 1 mm, while
higher values of N for the pure TLM method produce a considerable increase in
memory storage and time computing requirements.
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We consider again the problem consisting in modeling a mixture composed
of circular inclusions having a higher permittivity than that of the environment.
The difference is that εe f f is obtained in the whole range of p1 with ε1 = 18 and
ε2 = 2. Both pure and hybrid methods are used and the radius of the inclusions is
still 1 mm. We realize different values of p1 by locating more or less particles in
the slab. In order to avoid obtaining a geometry that is nothing more than the mere
carbon-copy of the previous one, but with a sphere added or taken away, a different
seed value is attributed to each configuration. Results for the pure TLM method
using N = 20 and the hybrid method with N = 80 are shown in Figs. 3.12(a)
3.12(b), respectively. Results are qualitatively similar, they are located within the
Wiener and HS’s bounds, but a sensible difference is observed between the pure
and the hybrid TLM results. Concerning the predictive formulas, Bruggeman’s
approach is more accurate than MG (equivalent to the lower HS’s bound) model;
in any case, predictions become poorer as the volume fraction increases, the most
affected model being MG as expected. The mixing approach presented in [58]
collects dielectric mixing rules into one family according to

εe f f − ε2

εe f f + ε2 +ν(εe f f − ε2)
= p1

ε1− ε2

ε1 + ε2 +ν(εe f f − ε2)
(3.17)

where ν is a dimensionless parameter. The value ν = 0 gives the MG’s rules,
whilst ν = 1 gives the Bruggeman’s approach, note that some other values of ν

give other known prediction formulas not mentioned in this work. It is of interest
to determine which value of ν fits the obtained distribution. For the pure method,
ν = 0.51 turns out to be the most suitable value, while ν = 0.63 is found for the
hybrid method. In Figs. 3.12(a) and 3.12(b), the corresponding curves are plotted.

Let us now consider the inverted mixture, i.e. with ε1 = 2 and ε2 = 18, made of
circular inclusions having a lower permittivity than that of the environment. The
result is depicted in Figs. 3.13(a) and 3.13(b). It turns out that ν = 0.86 is the most
suitable value for the modeling carried out with the pure method, while ν = 0.91 is
found for the hybrid method. It is interesting to note that in this case the difference
between the pure and hybrid methods is less significant. Furthermore, the inverted
mixture seems to present an effective permittivity, in terms of the volume fraction,
close to the Bruggeman’s distribution.
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(a)

(b)

Figure 3.12: Results for ε1 = 18 and ε2 = 2. Simulation is carried out with the (a)
pure and (b) hybrid TLM method.
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(a)

(b)

Figure 3.13: Results for ε1 = 2 and ε2 = 18. Simulation is carried out with the (a)
pure and (b) hybrid TLM method.
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Figure 3.14: Periodic structure with effective permittivity equal to HS’s bound.

3.3.3 About the Hashin-Shtrikman’s bounds

Differences between numerical pure and hybrid TLM results are not due to
a problem of convergence. Therefore a remaining worry is to determine which
of these numerical results is most accurate. The pure solution should intuitively
provide the best results since details are considered directly, without averaging
approaches. However, an appropriate numerical test is required to validate this
intuition. We have previously verified that the effective permittivity of mixtures
always falls in the range predicted by the Wiener’s bounds. Even if HS’s bounds
have been shown to fail in some situations, see Fig. 3.10, they considerably
improved Wiener’s bounds. They have been claimed to be the most restrictive
ones if only the host and insertion permittivities, as well as the concentration are
known [53]; in other words, most restrictive bounds would require additional in-
formation, such as the size and the specific spatial distribution of the insertions. In
section 3.2.3, it has been shown that HS’s bounds can actually be attained by a spe-
cific geometry: a material in which spheres of one phase are coated by a spherical
shell of the other phase. In practice, once the coated spheres have been arranged
in such a way that they occupy a maximum of the available volume, identical but
smaller structures must be located in the remaining free space. This periodic as-
semblage is infinitely repeated with many coated spheres until the whole space is
filled. This process is actually impossible since we cannot fill the entire slab with
circles. However, we can approach the ideal configuration, as suggested in Fig.
3.14, with three levels of insertions. Let us assume phase 1 as core and phase 2
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Figure 3.15: Distributions providing HS’s bounds for pure TLM and hybrid TLM
solution. The lower branches model ε1 = 18 and ε2 = 2, while upper branches
correspond to the dual mixture.

as coating. The effective permittivity is a function of the volume fraction p+ of
the phase presenting the highest permittivity. It is then worth noting that the case
ε1 > ε2 represents the lower HS’s bound, while the dual case, ε2 > ε1, yields the
upper HS’s bounds.

Our test will consist in simulating the geometry of Fig. 3.14 with both TLM
approaches and represent the effective permittivity in terms of p+. Pure and hy-
brid TLM results for ε1 > ε2 and ε2 > ε1 are shown in Fig. 3.15 with solid and
hollow circles, respectively. The lower branch in each TLM model corresponds
to ε1 = 18 and ε2 = 2, while the upper one corresponds to a dual situation with
inverted permittivities. As expected, pure TLM results are in close agreement
with the theoretical HS’s bounds, while the hybrid TLM approach is unable to ac-
curately reproduce the behavior of this challenging geometry. As a consequence
of this result, the following mixtures will only be modeled with the pure TLM
method in the next section.
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Figure 3.16: Effective permittivity versus concentration for an homogeneous dis-
tribution of 2D inclusions of different shape.

3.4 Effect of the shape of the inclusions on the effec-
tive dielectric constant of periodic composites

In this section, we consider several types of inclusions with different shapes.
The geometries of the studied inclusions are: circles, squares, and ellipses with
different eccentricities. For the sake of simplicity, the inclusions, whose relative
permittivity is again ε1 = 18, are now periodically placed in a host medium whose
permittivity is ε2 = 2. The section of the inclusions is variable which permits the
study of εe f f in terms of the volume fraction. The results are depicted in Fig. 3.16.
Wiener and HS’s bounds are also included. Let us also remember that the lower
HS’s bound corresponds to MG’s prediction formula. As we could expect, for
low concentrations and irrespective of the type of inclusions, results are in good
agreement with MG, i.e., the lower HS’s bound, while a deviation is observed as
the concentration increases due to interaction between neighbor insertions. This
deviation depends on the shape of the inclusions. The ellipses with high eccentric-
ity, e = 0.77, overlap between each other from the concentration p1 = 0.504. As
a result, the configuration tends to be similar to the vertical or horizontal planar
capacitor of Fig. 3.2. This explains the sudden variation of εe f f in this case for
both orientations. For instance, εe f f significantly increases for vertical ellipses
around p1 = 0.5. This abrupt variation on εe f f is in agreement with the over-
lapping value, p1 = 0.504. From this limit, the dielectric mixture looks like the
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vertical distribution corresponding to the upper Wiener’s limit. The same kind of
comment can be made for the horizontal ellipses, substituting the upper Wiener’s
bound by the lower one. This variation in the overlapping region is also observed
for horizontal ellipses with a small eccentricity of 0.22. Furthermore, it is inter-
esting to notice that this low eccentricity permits all the same to dissociate the
corresponding effective permittivity from the perfect circle one, this dissociation
being clearer as the concentration increases. Of course it is anyway possible to
explain the divergence between a sphere and an ellipse (even for low eccentricity)
towards high or low εe f f , underlining that the configuration begins to converge
towards the Wiener’s bounds.

The distribution of εe f f in terms of the concentration for the square inclusions
is striking. It follows the lower HS’s bounds, i.e., the MG’s distribution for the
all range. This observation has already been mentioned in other works, and since
MG is supposed to be accurate only for low concentration, it has been qualified
of surprising [59, 60]. In fact, one might claim that this result is not that surpris-
ing if such a distribution is related to the HS’s bounds. As mentioned in section
3.3.3, Fig. 3.14 represents a geometry that is capable of providing the lower or
upper HS’s bounds, depending on the composition of the concentric circles. If
the permittivity of the core is greater than that of the coating, εe f f corresponds to
the lower HS’s bound and vice-versa. This is rigourously true only in the case of
an infinite number of composite circles capable of totally filling the whole space,
rendering the realization of such a geometry unpracticable. On the other hand,
square inclusions periodically embedded in a dielectric medium may be viewed
as coated squares put next to one another, which is a geometry reminiscent of Fig.
3.14, provided that the circular inclusions are substituted by square inclusions.
Moreover, the latter inclusions can fill the whole space with no need of adding
new levels of smaller squares. Therefore, it appears natural that periodic square
particles be described by one of the HS’s bound, and thus by MG’s formula, ir-
respective of the volume fraction. For the sake of completion, εe f f for the dual
mixture, in which square insertions with ε1 = 2 are homogeneously distributed
in a host medium whose permittivity is ε2 = 18, is also plotted in Fig. 3.16. As
expected, it follows the upper HS’s bound.

Results for 3D mixtures are shown in Fig. 3.17. The node size is ∆l = 0.1
mm and the inclusions are: sphere, cube, and ellipsoid. For the ellipsoids, the
semi-axis along the y- and z-directions have the same length. Every insertions
are uniformly distributed, so symmetry conditions are imposed to model only one
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Figure 3.17: Effective permittivity obtained with the pure TLM model versus
concentration for an homogeneous distribution of 3D inclusions with different
shape.

fourth of each insertion and thus reducing memory and time calculation require-
ments. Results are qualitatively similar to those presented in 2D situations, but
now overlapping happens at lower concentration values and deviations from the
HS’s limits are observed earlier.

3.5 Summary

In this chapter, we have been concerned with the numerical calculation of the
quasi-static permittivity of 2-phase composite materials that exhibit various types
of internal microgeometries.

1. Two TLM numerical approaches have been considered. First, a hybrid TLM
technique which, by means of an auxiliary subgriding technique leading to
a pair of dual capacitor circuits, allows the use of a mesh size comparable
to the inclusion dimensions. Second, a pure TLM approach has also been
considered in which a finer detail is achieved by using a mesh size smaller
than the typical dimension of the insertions. We have shown that the hy-
brid method, even if it allows to save computational requirements, cannot
provide accurate results for some geometries.
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2. Circular dielectric inclusions randomly embedded in a homogeneous medium
were considered. Hundreds of TLM simulations were carried out in order
to get a statistical behavior of such mixtures.

• This treatment has pointed out that no prediction theory is able to offer
a specific value of effective permittivity for random media. Indeed, all
values belonging to the range defined by Wiener’s bounds are possible,
but the task consisting in finding what is the exact value is inaccessible
with analytical methods. Therefore, numerical methods must be used
if an exact value is required.

• If the concentration is constant, the possible effective permittivities
obtained for different internal distribution of insertions follows a dis-
tribution of Gaussian nature with a mean value and a standard devia-
tion.

• HS’s bounds were claimed to be the most restrictive bounds that it is
possible to obtain in terms of the permittivities and volume fraction
of the pure phases. Nevertheless, this has to be put in doubt given
that HS’s bounds have been surpassed in a non-negligible number of
geometries because of the overlapping between the insertions.

• It seems that the smaller the size of the inclusions the smaller the stan-
dard deviation of the distribution. In other words, the effective per-
mittivity of a composite material made of small randomly distributed
insertions, is close to the mean value. Thus, if one knows the vol-
ume fraction of small inclusions, he will be able to predict with good
precision the effective permittivity of the mixture, whatever the ar-
rangement of the inclusions. This conclusion is of high interest in the
design and practical manufacturing of composite dielectrics.

• If the full range of volume fraction is considered, we have observed
that the prediction theories are well suited for low concentrations, but
neither Bruggeman nor MG are able to describe with precision the
behavior when the concentration increases. However, Bruggeman ap-
pears to be closer to the numerical results, above all in the case of
inclusions with permittivity smaller than that of the host medium.

3. Secondly, the effect of the shape of the inclusions on εe f f was studied.
Therefore, composites containing different types of periodical inclusions
have been investigated.

98



• As long as the concentration is not too elevated, the mixtures are de-
scribed with good accuracy by MG’s formula, irrespective of the kind
of inclusions under consideration.

• When the concentration increases, εe f f tends to diverge from MG’s
formula, the degree of divergence depends on the shape of the inclu-
sions.

• Once the overlapping limit is exceeded, εe f f exhibits a drastic change
and tends towards the Wiener’s bounds. This can been explained by
the similarity between parallel plate distributions and overlapped ge-
ometries.

• The square inclusions can be clearly distinguished from the other shapes
since they present the particularity to match MG’s formula regardless
of the volume fraction.
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Chapter 4

Cloaking structures

4.1 Introduction

The invisibility cloak has been proposed by Pendry et al. [61]. Basically, the
idea is to create a hole in which any electromagnetic radiation is excluded. For
this purpose, the electromagnetic radiation must be steered around the cloaked re-
gion, which seems to face Fermat’s principle stipulating that any electromagnetic
wave starting out traveling along a certain direction is constrained to stay on that
line. Nonetheless, we might imagine another space related to the starting space
by a mathematical transformation. Let us consider a warped lattice that creates
a concealment volume, as depicted in Fig. 4.1. As a result, any electromagnetic
wave propagating in this distorted lattice is naturally swept around the void re-
gion. The point is to determine what happens to Maxwell’s equations when the
coordinate transformation is done. It turns out that the equations have exactly
the same form [62], but the dielectric and the magnetic constants are scaled by

Figure 4.1: From the original space to the distorted space.
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a certain factor. Therefore, transforming the material properties is equivalent to
distorting the original space. This means that the space outside the concealment
volume might be replaced by a new material: the cloak. It is worth noting that the
obtained cloaking parameters, irrespectively of their complicatedness, are fully
consistent with the physics laws.

• Section 4.2 will be concerned with the coordinate transformations that lead
to the constitutive parameters of the cloak.

• Section 4.3 will be dedicated to a short review of the research done in the
framework of the cloaking topic.

• In section 4.4, we will focus on the importance of numerical simulations to
study cloaking structures.

• In section 4.5, the first modeling of a cloak with TLM will be presented. It
will be shown in particular that approximating the material constituting the
cloak by an effective medium allows removing the anisotropic nature of the
invisible shell.

• Section 4.6 will illustrate that using the curved TLM nodes presented in
section 2.4 yields very accurate results. Furthermore, it will be proven that
TLM allows assuming strictly infinite values for the permittivity and per-
meability. This capability of TLM is of importance because the accuracy
of the modeling is enhanced and opens the way to the study of challenging
problems.

• In section 4.7, the dispersiveness of a 2D cloak will be emphasized and
taken into account to study the frequency shift and the time delay that affect
an electromagnetic plane wave propagating through a cloaking shell. Fur-
thermore, we will demonstrate in section 4.7.1 that the fact that the cloak is
a metamaterial fixes some of the TLM parameters if cylindrical nodes are
employed.

• Section 4.8 will be related to the anticloak concept. The anticloak is a ma-
terial that has been recently shown capable of defeating the cloaking effect.
However, we numerically show that the presence of a layer with extreme
constitutive parameters actually renders the anticloak unable to produce its
effect. Moreover, we will propose a simple theoretical model that leads to
the same conclusion if the cloak is slightly dissipative.
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4.2 Coordinate transformations

At this point, the difficulty is to obtain the needed permittivity and permeabil-
ity to make a cloak. We choose the hidden object to be a sphere of radius R1 and
the cloaking region to be contained within the annulus R1 < r < R2. Therefore,
we have to choose a simple transformation that can compress all fields contained
in region 0≤ r ≤ R2 into the region R1 ≤ r ≤ R2. Let r′ and r be the radial coor-
dinates in the original space and the new space, respectively; and let the function
f be the so-called coordinate transformation so that:

r′ = f (r). (4.1)

Obviously, r′ and r can be connected according to the following expression:

r = R1 + r′
R2−R1

R2
. (4.2)

In this manner, r′ = 0⇒ r = R1 and r′ = R2 ⇒ r = R2, in accordance with the
space compression we want to carry out. Finally, Eqs. 4.1 and 4.2 lead to

f (r) =
r−R1

R2−R1
R2, (4.3)

which is the transformation used in [61] (the prime symbol convention is differ-
ent). But from a general point of view, it should be noted that any continuous
function f is suitable as long as f (R1) = 0 and f (R2) = R2 [63], as it is the case
for Eq. 4.3. In particular, a non-linear function such as

f (r) = (
r−R1

R2−R1
)1/αR2 (4.4)

can be used [64, 65]. If α = 1, Eq. 4.4 gives again 4.3.
One remaining worry: What is the expression of the new permittivity and per-

meability? A transformation approach provides them in terms of f ; deep details
of the procedure can be found in [66].

• 2D cloak The constitutive parameters of a cylindrical cloak turn out to be
given by

εr = µr =
1
f ′

f
r
, (4.5a)
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(a) (b)

Figure 4.2: Plot of the constitutive parameters for (a) a cylindrical cloak, and (b) a
spherical cloak. In this example, the inner and outer boundaries of the cloak have
been chosen to be R1 = 0.1 and R2 = 0.2, respectively.

εϕ = µϕ = f ′
r
f
, (4.5b)

εz = µz = f ′
f
r
, (4.5c)

f ′ being the derivative of the function f . This leads, using the expression
of f given by Eq. 4.3, to

εr = µr =
r−R1

r
, (4.6a)

εϕ = µϕ =
r

r−R1
, (4.6b)

εz = µz =
(

R2

R2−R1

)2 r−R1

r
. (4.6c)

Each one of these optic constants is plotted in Fig. 4.2(a).

• 3D cloak For a spherical cloak, we get

εr = µr =
f 2

r2 f ′
, (4.7a)

εϕ = µϕ = f ′, (4.7b)

εθ = µθ = f ′, (4.7c)
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which, using the expression of f given by Eq. 4.3, leads to

εr = µr =
R2

R2−R1

(
r−R1

r

)2

, (4.8a)

εθ = µθ =
R2

R2−R1
, (4.8b)

εϕ = µϕ =
R2

R2−R1
. (4.8c)

These constitutive parameters are plotted in Fig. 4.2(b).

This means that the process consists in surrounding the object we want to make in-
visible by an anisotropic material whose permittivity and permeability are tensors
given by:

ε =εr(r)r̂r̂ + εϕ(r)ϕ̂ϕ̂+ εz(r)ẑẑ,

µ =µr(r)r̂r̂ +µϕ(r)ϕ̂ϕ̂+µz(r)ẑẑ,
(4.9)

for the 2D case, and given by:

ε =εr(r)r̂r̂ + εθ(r)θ̂θ̂+ εϕ(r)ϕ̂ϕ̂,

µ =µr(r)r̂r̂ +µθ(r)θ̂θ̂+µϕ(r)ϕ̂ϕ̂,
(4.10)

for the 3D case. This prescription will exclude all fields from the central region,
while no field can escape from this region.

Note in passing that the cloaking material constants given by Eqs. 4.6 and 4.8
can take values less than unity. Concretely, for the 2D cloak, the radial compo-
nents are less than unity and the azimuthal ones are greater than unity for all
r such that R1 < r < R2; while the vertical components are less than one for

R1 < r <
R2

2
2R2−R1

and greater than one for R2
2

2R2−R1
< r < R2. For the 3D cloak, only

the radial components can be unusual: they are less than unity for all r. Hence,
the cloaking structure is obviously a metamaterial and its modeling requires the
use of special nodes such as those presented in section 2.5.

Furthermore, it is worth emphasizing that the ϕ-components, Eq. 4.6b, tend
to infinity at the cloak’s inner boundary, i.e., r = R1; while the r-components in
Eqs. 4.6a and 4.8a, as well as the z-components in Eq. 4.6c are zero. These exotic
values will give rise to discussion in the next sections.
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4.3 Review on cloaking

Since the publication of the precursor article [61], the cloaking topic has re-
ceived much attention. We propose hereinafter a review on the recent progress.

The work proposed by Pendry et al. was mainly devoted to the presentation
of the cloaking concept obtained by coordinate transformations. Beyond that,
the authors discussed whether the cloaking effect is broadband or specific to a
single frequency. In this sense, they pointed out that the phase velocity within the
cloaking shell must be greater than the velocity of light in vacuum, which violates
no physical law. However, the group velocity can never exceed it. Therefore,
presence of dispersion is required so that the phase and group velocity will be
different. Consequently, the cloaking parameters must disperse with frequency,
leading to the conclusion that the cloak is only efficient at a single frequency,
except if the constitutive parameters are tunable. In this sense, let us mention the
work proposed by D. Wang et al. in which a cloak based on active metamaterials is
presented [67], the working frequency having the ability of being reconfigurable.

After having proven that a cloak of invisibility is theoretically possible, at
least over a narrow frequency band, Schurig et al. proposed the first practical
realization of a 2D cloak [68]. The cloak was constructed by using structured
metamaterials made up of split ring resonators, which are known to exhibit strange
magnetic properties if they are activated by a magnetic field normal to the plane
of the rings [69]. The design of the cloak is shown in Fig. 4.3. The incident
electromagnetic wave was TE (electric field along the axial z-direction), which
means that only µr, µϕ, and εz are relevant in Eq. 4.6. Moreover, they simplified
the realization by reducing the parameters given by Eq. 4.6 [64, 70]. Instead they
assume that µϕ = 1, which leads to another set of equations:

µr =
(

r−R1

r

)2

, (4.11a)

µϕ = 1, (4.11b)

εz =
(

R2

R2−R1

)2

. (4.11c)

Using Eq. 4.11 has the benefit of making only one component spatially inhomo-
geneous and also eliminates any infinite values, which are difficult to experimen-
tally implement. Of course the efficiency of the cloak is expected to be affected
by such a prescription. In section 4.5, we will come back on the reduced pa-
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Figure 4.3: Schurig et al.’s experimental cloak made up of split ring resonators
[68].

rameters. Finally, the experimental results show good agreement with numerical
simulations, the experimental cloak being able to significantly decrease scattering
from the hidden object.

More insight into the physics behind the cloaking has been obtained from an-
alytical scattering model. In this sense, Chen et al. analytically established the
interactions between electromagnetic waves and spherical cloaks by using a full
wave Mie scattering model [71]. Thanks to this description, they could confirm
that the total scattering cross section of an ideal cloak, i.e., rigorously described
by Eq. 4.8, is absolutely zero. Another interesting conclusions they drew are
in regard to the nonideal cloak. They made the device imperfect by introducing
losses to the material, and observed that the scattered power increases as the loss
increases, except in the backward direction for which the scattering remains zero,
irrespectively of the value of the loss. Furthermore, as long as the ratio between
the radial and angular component of the permittivity/permeability in Eq. 4.8 has
the same value, that is (r−R1)2/r2, the field cannot penetrate the concealed re-
gion, even if the material is lossy. This means that the scattered power is wholly
induced by the cloak itself.

All these original properties are peculiar to the spherical cloak and does not
hold for its 2D equivalent, the cylindrical cloak. First, Ruan et al. demonstrated
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that the ideal 2D cloak is perfect [72]. The study of a nonideal cloak is also im-
portant given that experimental realizations have to adopt some approximations as
we have mentioned before; in particular, the infinite value of εϕ and µϕ at r = R1

makes the inner boundary of the cloak arduous to describe. Hence, figuring out
how sensitive the device is to finite perturbations is widely significant. In the same
paper, Ruan et al. thus introduced a small deviation into the ideal cloak, and in-
stead of strictly calculate the value of the electromagnetic constants at the inner
boundary, they calculate them at a very small distance, δ, from it. In this manner,
the effect of δ on the performance of the cloak can be observed; by gradually de-
creasing the δ value, they showed that the convergence toward the no-scattering
situation is a very slow process: as long as δ is not strictly zero, the incoming
wave can penetrate the hidden region and can be scattered. This means that the
cylindrical cloak is highly sensitive to slight perturbations. Zhang et al. gave a
physical explanation to this phenomenon [73]: in the ideal case, a surface current
that shields the concealed region appears at the inner boundary of the cloak. This
surface current is a consequence of the infinite value of εϕ and µϕ. So, the non-
ideal case differs in one important respect: the lack of surface current at r = R1

that permits the field to enter the hidden region. Furthermore, it is also proven
in the same paper, that for a cylindrical cloak made up of a lossy material, the
scattering occurs along all the directions, particularly in the backward one, unlike
the spherical case.

Still concerning theoretical contributions, Chen et al. obtained the energy
transport velocity distribution for a 3D ideal cloak [74]. They showed that the
transport velocity near the inner boundary tends to zero, resulting in long time-
delays for beams to cross the cloak. Let us also mention a work proposed by the
same authors dealing with the curious concept of anticloak [75]. By anticloak,
they mean a kind of materials obtained by coordinate transformations that have
the capability of defeating the cloaking effect of an invisible cloak. The last two
issues will be discussed, completed, and improved in sections 4.7.3 and 4.8.

4.4 Numerical simulations of cloaks

As we have discussed in section 4.3, invisible cloaking has been the matter of
many studies spanning different approaches since Pendry’s original paper. By ana-
lytically solving Maxwell’s equations, it has been possible to theoretically analyze
the cloaking phenomenon and interpret the underlying physics. Furthermore, the
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first practical realization of a cloak has confirmed the model to be experimentally
feasible.

Naturally, numerical simulations have an important role to play here through
the useful information they are able to provide. In this sense, the first modeling of
a cloaking structure was reported by Cummers et al., who proposed a full-wave
finite-element simulation to confirm the effectiveness of the transformation [70].
In addition, they used in the related paper simplified permittivities and permeabili-
ties to show that the arising reduced cloaking materials exhibit good performance.
Nevertheless, these calculations are performed with a commercial software, Com-
sol Multiphysics, which does not allow the versatility needed in some situations.
Afterward, most of the contributions about invisibility involved numerical simu-
lations based on Comsol. The aim of the following sections is to propose a cloak
modeling based on our own TLM code for more flexibility. Moreover, employ-
ing a time domain method as TLM presents several assets. The most obvious are
that the process dynamics of the cloaking phenomenon can be studied and that a
simple Fourier Transform can provide its complete frequency behavior.

4.5 Cloaks made up of alternating isotropic layers

Before we rush to carry out our first modeling of a cloaking structure, we must
pause to consider some important issues. Indeed, the simulation of an invisible
cloaking with TLM is not straightforward. In the first paper we published [16],
we faced two main difficulties that we had to fix:

1. The first one lies in the fact that the cloak requires the use of metamate-
rials, i.e., materials with relative constitutive parameters below unity and,
in particular regions, values very close to zero. In their original forms, the
classical TLM nodes are unable to model such media without some modifi-
cations. As it has been mentioned in section 2.5, So et al. have proposed a
TLM node for modeling metamaterials [43]. But as they pointed out, their
approach required significant modifications to the original TLM procedure,
making the use of the related method difficult to implement. Fortunately,
we have shown in section 2.5 that such a drastic modification is actually not
necessary [15, 16].

2. The second difficulty comes from the anisotropic nature of the coating ma-
terial. In its original form, TLM works with Cartesian nodes leading to
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permittivity and permeability tensors that exhibit off-diagonal elements in
Cartesian coordinates. The modeling of anisotropic materials in TLM was
presented in [76, 77], however the proposed implementation in both cases
is very complicated, and, anyway would not permit the simulation of meta-
materials easily. On the other hand, Huang et al. have proposed an ap-
proach that allows substituting the anisotropic medium by a concentric lay-
ered structure of alternating homogeneous isotropic materials [78]. The
angular (εϕ,µϕ) and radial (εr,µr) components of the electromagnetic (EM)
parameters can indeed be considered as the effective permittivity or perme-
ability of a composite made of a series of parallel layers whenever the layers
are thin enough compared with the wavelength. This statement is based on
the effective medium theory and permits to match the angular components
with the upper Wiener’s bound, while the radial components correspond to
the lower Wiener’s bound [50]. We will choose this technique to carry out
our first cloaking simulation.

We can now tackle the modeling. Let us consider a plane wave incident upon
an infinite Perfect Electric Conductor (PEC) cylinder of radius R1. The incident
wave is a 2 GHz TE polarized plane wave with electric field parallel to the axis z
of the cylinder. The incident wave vector, k, is x-oriented while the magnetic field
is y-oriented. The PEC cylinder is surrounded by a cloaking material with outer
radius R2. According to the coordinate transformation, the anisotropic relative
permittivity and permeability of the cloaking material in cylindrical coordinates
follow the radius dependence formulas given by Eq. 4.6. Moreover, since the
polarization is TE, the only constitutive parameters of interest are εz, µr, and µϕ.
As mentioned above, it has been shown that the anisotropic cloaking shell can be
mimicked by concentric alternating layers made up of two homogeneous isotropic
sub-layers A and B [78], chosen in this study to have the same thickness. The
permittivity, εz, of each one is thus given by Eq. 4.6c, while the permeabilities µA

and µB can be obtained from the Wiener’s formula. In this manner, Eqs. 3.4a and
3.4b leads to

µϕ =
µA +µB

2
, (4.12a)

1
µr

=
1

2µA
+

1
2µB

, (4.12b)
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respectively. From this set of equations, µA and µB take the values

µA = µϕ +
√

µϕ(µϕ−µr), (4.13a)

µB = µϕ−
√

µϕ(µϕ−µr), (4.13b)

where µr and µϕ are given by Eqs. 4.6a and 4.6b, respectively.
The TE-node presented in section 2.3.1 is employed to model this problem and

obtain the electric field distribution. A TLM mesh formed with 2800 nodes along
the x- and y-directions is used for the modeling. The node size is ∆x = ∆y = 5.10−4

m and the maximum allowable time step for these lengths, t = 1.1785 ps, is used.
Typically, the boundary conditions used in cloaking studies are chosen to be ab-
sorbent along the direction of propagation and Perfectly Magnetic Conducting
(PMC) for vertical directions [70], i.e., along the y-direction in this work, which
is equivalent to artificially simulate a periodic structure of cylinders along the y-
direction. However, the cloaking we are numerically considering is not ideal, and
so a certain scattering is expected at each cylinder. In this manner, if we want to
characterize the cloaking performance of the coating for a given cylinder, the ex-
istence of neighbor cylinders in the periodic structure would artificially magnify
the non-ideality of the results. In other words, we are interested in the study of
the capability of a single coating structure to make a certain region invisible, and
deviations of this ideal goal are better identified if only one coating element are
considered. In this sense, the PMC boundaries are not a satisfactory choice but,
on the other hand, they cannot be directly substituted by absorbent boundaries be-
cause the plane wave condition corresponding to excitation would be broken. The
problem is worked out by employing the Huygens surface technique which con-
sists of dividing the mesh into an inner total field (incident and scattered) region
and an outer scattered field region, as depicted in Fig. 4.4. The source conditions
for the plane wave excitation are then enforced on the interface separating these
regions, which presents two benefits: first, absorbing boundary conditions can
be directly applied to the limits of the mesh, since excitation has been removed
at these points; and second, an illustrative map of the scattered field is directly
obtained at the outer region. Finally, the far field will be obtained in all cases
using the transformation proposed in [79]. The technique considers the tangential
EM fields on an imaginary surface surrounding the cylinder in the scattered field
region as equivalent electric and magnetic sources. A numerical integration, to-
gether with a frequency-dependent amplitude transformation which allows using
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Figure 4.4: Computational domain using Huygens surface technique.

a 3D scheme on a 2D problem, provides the far field response. For the numerical
simulation, the cloaking shell is made up of 10 pairs of layers A-B (in total, 20
sub-layers) and R1 = 0.1 m while R2 = 0.2 m. This means that the thickness of
a single layer is 1 cm, while the wavelength of the incident wave is 15 cm: the
thin layer condition is thus satisfied [78]. First, εz, µr, and µϕ are calculated at the
center of the isotropic layers (i.e., at the interface separating layer A and layer B),
the corresponding far field pattern is depicted in Fig. 4.5 (red color). For com-
parison, this field has been normalized by the maximum value of the field when
no cloaking structure is present. This reference far field pattern, which is checked
to perfectly coincide with the theoretical one [80], can be observed in the same
figure. A significant reduction of the scattering is noticed in almost all directions
at the notable exception of the forward scattering. By judiciously adjusting the
simulation parameters, we will show below that this scattering reduction can be
enhanced.

Instead of calculating the parameters εz, µr, and µϕ at the center of the isotropic
layers, we now calculate them at the boundary between each layer. However, this
process gives an infinite value of µϕ for the first layer (at r = R1) and, therefore,
the electromagnetic parameters will not be calculated exactly at the inner bound-
ary of the layers but at a distance 10−4δ of the later, where δ is the thickness of
one layer. The far field pattern is displayed in Fig. 4.5 (blue color) and, compared
to the previous case, shows an even stronger scattering reduction. This reduction
now occurs for all the direction and the forward scattering has been in particular
reduced by 4.3 dB, while the backward scattering has been reduced by 15.1 dB.
This confirms that the cloaking performance is highly sensitive to the value of the
parameters of the inner layer since it is the most affected layer by this change.
Furthermore, the simulated electric field in the last case is plotted in Fig. 4.6. It is
straightaway clear that, once in the cloaking shell, the wave front is deviated and
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Figure 4.5: Far field pattern for an uncloaked cylinder and for two different cloak-
ing made up of alternating layers. The incident plane wave is TE.

Figure 4.6: Total and scattered amplitude field plot at the vicinity of the coated
cylinder for ε and µ sampled at the inner boundary of each layer.
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conducted around the cloaked cylinder, while outside the object under consider-
ation, it emerges almost unperturbed. Moreover, the Huygens technique allows
visualizing in the same picture the scattered field at the outer almost green square
region, with the incident field directly filtered out, that ostensibly takes the form
of concentric waves. To give more insight into the physics behind, let us men-
tion that the presence of the concentric scattering is mainly due to the absence
of the magnetic surface current on the inner boundary of the cloak [73] we have
mentioned in section 4.3. Indeed, for an ideal cloaking, the permittivity and per-
meability for r = R1 is enforced by Eq. 4.6 to be εz → 0, µr → 0, and µϕ → ∞.
These extreme values induce a magnetic surface current exactly located at the in-
ner boundary of the cloak once illuminated by the incident wave. Such a current
shields the cloaked region and then avoids the field to enter this area. On the other
hand, µϕ(R1) is not infinite in our simulation, so this surface current does not exist
here and, then, scattering occurs on the interface of the PEC cylinder, making the
cloaking structure of Fig. 4.6 imperfect.

In order to facilitate experimental realization (see section 4.3) or in order to
avoid infinite values for the electromagnetic constants, reduced material param-
eters are often used for the cloaking shell. These reduced parameters usually
consist of choosing one of the constants to be unity, the penalty being only the
loss of the reflectionless property, because of the mismatch of the impedance con-
ditions, as claimed in some papers [68, 70]. Nevertheless, Yan et al. have showed
that using reduced parameters experiments more scattering than intended and is
more than just nonzero reflectance [81]. To verify this statement for the proposed
layered cloaking structure, the far field calculation is calculated for two types of
reduced parameters and displayed in Fig. 4.7(a). One corresponds to µϕ = 1,
while the other one to εz = 1 (the choice µr = 1 is not allowed since the corre-
sponding εz would not be spatially uniform), both with parameters calculated at
the center of the layers. As expected, the performance of the cloaking is dete-
riorated; however, it is worth noting that in both cases the forward scattering is
now reduced especially for the choice εz = 1 (by 7dB). Finally, it is worth noting
from Fig. 4.7(a) that the greater the reduction in the forward direction, the lesser
the reduction in the backward direction, which seems to be associated to energy
conservation.

Similarly, it is of interest to study the effect of a nonlinear transformation on
the effectiveness of the proposed layered cloaking structure [63, 65]. A nonlinear
transformation can be characterized by the coordinate transformation of Eq. 4.4.
Consequently, the electromagnetic parameters of Eqs. 4.6 turn out to be changed
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(a) (b)

Figure 4.7: (a) Far field pattern for reduced parameters. (b) Far field pattern for
non-linear transformations.

into:

εr = µr = α
r−R1

r
, (4.14a)

εϕ = µϕ =
r

α(r−R1)
, (4.14b)

εz = µz =
R2

2

(R2−R1)2/α

(r−R1)2/α−1

αr
, (4.14c)

where α ∈]0,1]. Note that the value α = 1 corresponds to the linear transforma-
tion. The far field pattern, for α = 1, α = 0.8, and α = 0.5, is depicted in Fig.
4.7(b) for the full parameters of Eq. 4.6 calculated at the center of the layers. It
can be observed that the choice α = 0.8 globally improves the cloaking perfor-
mance, particularly for angle contained between 90o and 270o in the backward
direction. Concerning the α = 0.5 transformation, it appears that the result is not
convincing although it offers some improvement for some directions.

As mentioned in section 2.5, modeling electromagnetic fields by means of
transmission line networks is a well-known technique harking back to the works
proposed by Whinnery et al. in the 1940s [28]. Furthermore, the fact that these
networks support backward-waves has sometimes been mentioned, notably by the
same authors in a textbook [40], but without any practical applications. How-
ever the impressive progress in the design of metamaterials pushed Eleftheri-
ades et al. to proposed an alternate perspective to the usually employed discrete
periodic scatters: they designed metamaterials that exploit the L-C distributed
network [39]. By simply interchanging the position of L and C, they obtained
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Figure 4.8: 2D scattering width, σ2D/λ, versus frequency of a conducting cylinder
and cloaked cylinder whose working frequency is 2 GHZ.

an equivalent dispersive material that assumes negative values for both ε and µ.
Therefore, a cloaking structure could also be built with such a network. Given
that TLM is nothing more than the numerical incarnation of a L-C network, the
results obtained with TLM are expected to exactly follow the behavior of the real
structure. This means that the TLM solution is expected to reproduce the behav-
ior of the cloaking material not only at the design frequency of 2 GHz, but also
for a wide-band of frequencies by using a simple Fourier Transform. We have
shown in section 2.6 that the TE-node we are employing here behaves according
to the Drude model, which makes the modeling realistic. Let us consider, the
most efficient cloaking, depicted in Fig. 4.6, that was obtained with the electro-
magnetic parameters calculated at the inner boundary of each layers. By doing a
Fourier transform of the response to a Gaussian-shaped incident field, information
at other frequencies can be directly obtained from a time domain simulation. Fig.
4.8 shows the 2D backscattering width normalized to λ, σ2D/λ, for the cloaking
device compared to that of the simple conducting cylinder. As expected, 2 GHz
is the frequency for which the effectiveness of the cloaking material is optimum.
However, the resonant nature of dual L-C networks causes that regions of reduced
and magnified radiation alternate on both sides of the 2 GHz design frequency.

115



Figure 4.9: Far field pattern of a cloaking structure at 2 GHz, and its scattering
width versus frequency for 0o, 45o, 90o, 135o, 180o.

Having the far backward scattering of the cloak on hand, we can compute it
in other directions. In order to validate the TM-node (section 2.3.2) as a suitable
node for the modeling of cloaking structures, we now consider a TM plane wave
(magnetic field parallel to the axis of the cylinder). The geometry of the object is
precisely the same, i.e., it is made up of 10 pairs of layers A-B. Moreover 2 GHz
is still chosen to be the working frequency, the far field pattern at this frequency
is depicted in Fig. 4.9. By using a simple Fourier Transform, the far field in
terms of the frequency for five different angles (from 0o to 180o using 45o steps)
is obtained and shown in the same Fig. 4.9, around the polar plot. As expected,
the cloaking shell is manifestly efficient for the 2 GHz functional frequency, but
it is worth noting that a frequency band appears around this frequency for all
directions at the noticeable exception of 0o. This last direction is characterized by
a very narrow low radiation region, which remarks that it is the most conflictive
direction.

For completion sake, the scattering from 0o to 135o is also computed for the
TE mode; it turns out that the results for this polarization are exactly the same as
for the TM mode. This means that, although the cloaking is not perfect, the PEC
cylinder is well concealed by the cloaking shell. Indeed, it is well known, and
moreover verified by our TLM simulations, that the scattering width of a simple
circular conducting cylinder depends strongly on the polarization. In order to get
a decisive confirmation of this observation, the PEC cylinder is substituted by
free space, and once again, the same results are obtained. This means that the
scattering we are observing is in fact only due to the cloaking shell, irrespectively
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of the object located in the concealed region. To explain this, let us note that
the first layer of the cloaking shell in our simulation has a relative permittivity
ε = 2.105, and relative permeability µ = 4.10−5. It is reasonable to think that
these extreme values shield the central region. Nevertheless, the other layers are
not perfectly able to steer the radiation around themselves due to the numerical
discretization and to the approximation consisting on substituting the theoretical
anisotropic material by isotropic layers, which produces the observable forward
scattering.

4.6 Modeling of cloaks with curved TLM nodes

4.6.1 Cylindrical cloaks

We have shown in the previous sections that to be effective, the dielectric and
magnetic constants of the anisotropic cloaking shell must take the specific values
given in Eq. 4.6. The permittivity and the permeability are both expressed in cylin-
drical coordinates. However, Cartesian coordinates are usually employed in the
papers dealing with numerical simulation of cloaking structures [15,16,70,82,83].
In our case, using Cartesian coordinates has required substituting the anisotropic
material by a concentric layered structure of alternating homogeneous isotropic
material since TLM cannot easily process tensors with off-diagonal elements.
This has been the matter of section 4.5. But, beyond that, Cartesian coordinates
lead to staircase approximations when one wants to model the curved geometry,
as mentioned in [82].

In order to reduce these numerical errors, we propose in this section to carry
out the study with the TLM cylindrical nodes presented in sections 2.4.1 and 2.4.2.
The shape of these special nodes assumes the geometry of the cloaking shell.
Therefore, with such nodes, it is not necessary to approximate the curved geom-
etry with many Cartesian cells anymore, the number of nodes filling the mesh
is then highly reduced without losing details in the central area. Moreover, the
cylindrical node directly simulates permittivity and permeability with cylindrical
components, so that the A-B layers technique does not have to be employed.

We have mentioned in section 4.1 that εϕ and µϕ tend to infinity at the inner
boundary of the cloak. In order to push further the accuracy of the modeling, it
would be convenient to be able to model infinite values for ε and µ, which would
avoid approximations arising from the truncation of the inner layer. We are going
to show that, with TLM, such extreme values do not have any detrimental conse-
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quence, since the limits of the TLM scattering matrix elements still remain finite
in this case. Let us consider the TM-node (components of the electromagnetic
field: Ex,Ey,Hz) presented in section 2.3.2, and let us consider the elements of the
scattering matrix in Eq. 2.63. As in section 2.3.2, let k represents coordinate x or
y.

1. εk→ ∞.
In this case, the admittance Yk of the capacitive stub tends to infinity. Eq.
2.64 becomes:

ak =− 2
4+Zz

f = 4−Zz
4+Zz

bk =−1+ 2
4+Zz

g = 2
4+Zz

c = 2
4+Zz

hk = 1

d = 2Zz
4+Zz

ik = 2

ek = 0

(4.15)

2. µz→ ∞.
In this case, the impedance Zz of the inductive stub tends to infinity. Eq.
2.64 becomes:

ak = 2
2+Yk

f =−1

bk =− Yk
2+Yk

g = 0

c = 0 hk = Yk−2
Yk+2

d = 2 ik = 2Yk
Yk+2

ek = 2
2+Yk

(4.16)

3. εk→ ∞ and µz→ ∞.

118



In this case, both Zz and Yk tend to infinity. Eq. 2.64 become:

ak = 0 f =−1

bk =−1 g = 0

c = 0 hk = 1

d = 2 ik = 2

ek = 0

(4.17)

Therefore, the elements of the matrix effectively remain finite in all case: infi-
nite ε and µ can be used in the modeling, contributing to the improvement of the
accuracy of the numerical simulation.

As it has been done in the previous section, a cloaked infinite PEC cylinder
surrounded by free space is modeled. The cloaking shell, with R1 = 0.1 m and
R2 = 0.2 m, is made up of 200 layers, which means that there are 200 TLM nodes
in the radial direction, r, inside the shell. Note that the cylindrical cloak presents
an obvious symmetry. The electromagnetic field is therefore supposed to be the
same on both sides of the symmetrical axis; this means that the mesh to be mod-
eled can be divided by two. The whole mesh is finally constituted by 1000 nodes
along r, and 180 nodes rectifier along the azimuth ϕ (one per degree). The total
number in the mesh is 180000, which is more than 40 times less than the mesh
used in section 4.5. To be exact, the mesh in section 4.5 was not reduced by two
when the symmetry allowed it. But even like that, the number of nodes involved
in the current modeling would have been 20 times less. That is why we are able
to model a cloak with a significant number of layers. Again, the Huygens surface
technique is used in order to be able to employ absorbing boundary conditions at
the outer boundaries of the mesh. The frequency of the TM incident plane wave
(modeled by a sinusoidal signal in the numerical simulation) is 2 GHz. The mag-
netic field plot for the uncloaked cylinder is depicted in Fig. 4.10(a), while that
for the cloaked cylinder is plotted in Fig. 4.10(b). The difference in terms of scat-
tering between the two last figures is very substantial. It is plain from Fig. 4.10(b)
that the cloaking effect can be achieved with high precision by using the TLM
modeling proposed here; this is particularly evident in region 4, where the scatter-
ing is almost zero in all the directions. Region 2 clearly illustrates how energy is
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(a)

(b)

Figure 4.10: (a) Magnetic field (×10−3) mapping in the vicinity of a PEC cylinder
at 2 GHZ. (b) Magnetic field (×10−3) mapping in the vicinity of a cloaked PEC
cylinder at 2 GHZ once stability has been reached. Four regions are apparent: (1)
Cylinder, (2) Cloaking shell, (3) Free space, (4) Scattering region.
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Figure 4.11: Far-field pattern comparison between cloaked cylinder and single
cylinder.

smoothly bent around the cylinder, while region 3 seems to be unperturbed by the
presence of the object.

Quantitatively, we have numerically calculated the far field; it is plotted in Fig.
4.11 and it turns out that the scattering in the far zone for the cloaked cylinder has
been reduced by about 37 dB in the forward direction and backward directions,
and even by more along other directions, compared to the simple cylinder scatter-
ing. This significant reduction attests that the cylindrical node is well suited for
the modeling of cylindrical cloaking.

4.6.2 Spherical cloaks

In Pendry’s precursor work [61], the analysis was focused on the description
of a 3D spherical cloak. But since then and for the sake of simplicity, most of
the attention has been given to the 2D cylindrical cloak. For instance, in order to
avoid the difficulties inherent to the construction of a real 3D structure, the first
experimental realization consisted of a cloaked copper cylinder [68]. Concerning
the numerical simulations, the difficulty of 3D modeling lies in the high computa-
tional requirements; therefore, the works dealing with numerical simulations use
to involve cylindrical cloaking [70]. Therefore, providing such a modeling is es-
pecially challenging. However, we have shown in section 4.6.1 that the number of
required nodes to the modeling of a cylindrical cloak can be significantly reduced
by using cylindrical nodes, the adverse effect being a diminution of the frequency
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Figure 4.12: Magnetic field (×10−3) mapping (in the plan corresponding to θ =
π/2) in the vicinity of the cloaked (with 40 layers) PEC sphere once stability has
been reached.

range validity. In the same way, we now model a 3D cloak by employing the
spherical node presented in section 2.4.3. The employed coordinate system is
displayed in Fig. 2.11(a).

A plane wave with frequency 2 GHz is incident, along the x-direction, upon
a PEC sphere cloaked by a shell made up of 40 layers. The magnetic field is z-
oriented, while the electric field is y-oriented. The spherical structure presents a
clear symmetry in the y- and z-directions, so that the whole mesh can be reduced
to the quarter part. The spherical TLM node allows accurate modeling of the ob-
ject shape with relatively few nodes. Indeed, the mesh is made up of 200 nodes in
the r-direction, 90 nodes in the zenithal θ-direction (one by degree), and 180 in the
azimuthal ϕ-direction (one by degree). The magnetic field plot, once the stability
is reached, is depicted in Fig. 4.12. In order to ensure a consistent comparison
with the cylindrical cloak, the plane perpendicular to the magnetic field is consid-
ered, i.e., θ = π/2 in spherical coordinates. As expected, the wave front is well
conducted around the PEC sphere in the shell, and emerges unperturbed in the free
space surrounding the cloak. The magnetic field in the scattered region is clearly
very weak. Nonetheless, it seems to be slightly more intense than it was for the
cylindrical cloak; we believe this is due to low numerical errors arising from the
poles of the sphere. Indeed, the poles have been shown to constitute conflictive
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regions in section 2.4.3 given that the 180 TLM nodes along the ϕ-direction are
adjacent at this precise point.

4.7 Two-dimensional dispersive cloaks

4.7.1 Dispersive constitutive parameters

To be ideal, a 2D cloak has to be:

• lossless,

• non-dispersive with frequency,

• anisotropic,

• made of spatially inhomogeneous metamaterial,

• made of material whose permittivity and permeability span the entire range
from zero to infinity.

Otherwise, if one of this condition is not satisfied, the cloaking effect is imperfect.
Actually, each one of this condition is difficult or even impossible to rigourously
fulfill in practice. What is more, the non-dispersiveness violates the physical law
of causality.

For instance, let us consider the lossless condition. The cloak is made up,
at least partially, of metamaterial; given that such materials are not available in
nature, the experimental fabrication proposed by Schurig et al. [68] required the
use of a lattice of metallic split ring resonators [37], as shown in Fig. 4.3, that
may exhibit, in a resonance frequency region, negative effective permeability; as
well as periodic lattice of thin metallic wires that behaves as a medium with neg-
ative effective permittivity [36]. It is also worth mentioning here the design of
an optical cloak, having a non-magnetic nature and working under TM illumina-
tion, proposed by Cai and his coworkers [84]. Using reduced parameters, µz = 1,
εϕ = ( R2

R2−R1
)2, and εr = ( R2

R2−R1
)2( r−R1

r )2, which prevent the material to be mag-
netic whereas εϕ remains finite, Cai realized the required distribution of εr by
using metal wires of subwavelength size in the radial direction that are embedded
in a dielectric material. The cloaking shell can thus be assimilated to a composite
material consisting in Cai’s paper of silver nanowires embedded in a silica tube.
A full-wave finite-element numerical analysis showed that the imaginary part of
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εr is about 0.1, which is likely to weaken the cloaking effect. However, 0.1 be-
ing a small value, they showed that the cloaking effect can be decently achieved
in these conditions. Finally, in both Schurig and Cai’s cases, the introduction
of metals into the structure creates unavoidable losses, which makes the lossless
condition unlikely.

Furthermore, the non-dispersive condition is also affected by the presence of
resonant structures. But in this case, there are deeper reasons that avoid a purely
non-dispersive cloak. It has been pointed out by Pendry [61] that the cloak must
disperse with frequency for the sake of causality. Imagine rays incoming on the
cloak; once in the cloaking shell, each of the rays is required to follow a curved,
and therefore longer, trajectory than it would have done in free space. Since the
rays have to emerge from the cloaking shell with the same phase, the phase veloc-
ity must be greater than that of light in free space, which is pretty common and
does not violate any physical law. However, in the absence of dispersion, the phase
velocity is equal to the group velocity. Given that the group velocity cannot exceed
that of light, the cloaking parameters of Eq. 4.6 must disperse. As a consequence,
the cloak is efficient at a single working frequency we will refer to as ω0 (actu-
ally, ω0 is the angular frequency). For this reason, most of the works dealing with
cloaking have long been focused on monochromatic waves [64, 71–73, 81, 85],
which eludes the dispersion effect. In the same manner, the first works dealing
with or proposing modeling of invisibility were carried out by using the com-
mercial software package Comsol [70, 86] which is based on the finite-element
method. Comsol is frequency domain technique that cannot take into account the
effect of the dispersion. However, authors have also looked into more physical
dispersive cloaks by employing time-domain methods, such as FDTD, which can
better reflect the real physics process of cloaking [83, 87].

The same kind of comments holds for the other conditions. Nonetheless, the
degree of invisibility depends on the degree of sensitivity of the detector (anten-
nas, or eyes quite simply). So, one can imagine a nonideal cloak that is however
undetectable if the ideal condition are almost reached. That is why it is interesting
to move away from the ideal cloak and consider more physical situation.

As a time-domain method, TLM is well-suited to the study of dispersive
cloaks. In sections 4.7.2 and 4.7.3, we wish to focus on two problems that involve
the dispersive nature of the cloak: the frequency-shift [88] and time-delay [74]
phenomenons.
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Previously, an important issue is in regard to the dispersion of the cloaking
material in the numerical modeling. Let us consider the linear coordinate trans-
formation of Eq. 4.3 that leads to Eq. 4.6. Accordingly, the cylindrical cloaking
shell is made up of an anisotropic material that involves different categories of EM
constants: the azimuth component is always greater than one, the radial compo-
nent is always less than one, while the axial component is either greater than one

or less than one on both sides of the limit value r = Rl = R2
2

2R2−R1
. We have show in

sections 2.5 that the TLM mesh for the modeling of metamaterials is dispersive.
We have calculated in section 2.6 that the dispersion generated by the TLM mesh
is given by Eq. 2.150 if the polarization is TM or by Eq. 2.153 if the polarization
is TE, relations that are reminiscent of a Drude’s model for both the permittivity
and permeability. To explain the similarity with Drude’s model, let us consider
a dispersive medium whose permittivity and permeability, represented by χ(ω),
follow the Drude’s model [36, 89]

χ(ω) = 1−
ω2

p

ω2 , (4.18)

where ωp is the plasma frequency and where the absorption is neglected (the usual
damping term is equal to zero). From Eq. 4.18, we find that

ω
2
p = ω

2
0[1−χ(ω0)] ⇒ χ(ω) = 1−

ω2
0

ω2 [1−χ(ω0)], (4.19)

Note that if the dispersive medium under consideration is a cylindrical cloak,
χ(ω0) is given by Eq. 4.6. We conclude that µ̃z and ε̃r in Eq. 2.150, or ε̃z and
µ̃r in Eq. 2.153 are reminiscent of a Drude’s model, the factor 1 being substituted
by the function Az and Ar, or Bz and Br. It is worth remarking that the dispersion
obtained in a Cartesian mesh, given by Eqs. 2.145 or 2.143 for the TM-node or
SCN, respectively, is really identical to that got in Eq. 4.19.

Although in some studies the Lorentz model [37] has been employed for the
permeability, other contributions dealing with left handed metamaterials [44] or
cloaking [82], do use the Drude’s model. It is worth emphasizing that the Drude’s
model employed here does not alter any conclusions we will obtain from the nu-
merical simulation.

Let us suppose that the plane wave has a TM polarization. The optic con-
stants of interest in Eq. 4.6 are µz, εr, and εϕ, which are related to the admit-
tances/impedances of the stubs Zz, Yr, and Yϕ; respectively. These last values are
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given by Eq. 2.121, and have to be multiplied by the factor −1
4∆t2ω2 if they are

less than one, as pointed out in section 2.5. On the one hand, Zz, Yr, and Yϕ are
ω-dependent only if they were previously less than unity. On the other hand and
even if only free space is rigourously non-dispersive, the dispersion for an usual
material can be neglected in a certain bandwidth. This approximation is partic-
ularly justifiable when compared to metamaterials which are highly dispersive
media. Accordingly, in the TLM procedure, a metamaterial should be character-
ized by a negative Zz, Yr, or Yϕ if µz, εr, or εϕ, respectively, is less than one. Since
an example is worth a thousand words, let us focus on µz. If µz is less than one,
the associated Zz has to be negative, and has then to be multiplied by the factor
−1

4∆t2ω2. Otherwise, if a positive Zz were associated with µz less than one, the
simulated material would not be dispersive. On the contrary, if µz is greater than
one, the associated Zz has to be positive. Otherwise, its relation of dispersion
would follow a Drude’s model which is unlikely for a usual material.

Since the constitutive parameters of the cloak can be usual in a certain region
while being of exotic nature in another one, the greatest heed has to be given to
the previous paragraph. In the following, we wish to examine the consequence of
such requirements.

1. Consequence of the distribution of µz(r).
Together, Eqs. 4.6c and 2.121c lead to

Zz =
2µ0

Z0∆t
∆r∆ϕ

∆z
(

R2

R2−R1
)2(r−R1)−4. (4.20)

Thus, Zz is a straight line whose slope is strictly positive. Moreover,

µz(r) = 1⇒ r =
R2

2
2R2−R1

(4.21)

indicating that if r ≥ R2
2

2R2−R1
⇒ µz(r)≥ 1, then Zz must be positive,

if r ≤ R2
2

2R2−R1
⇒ µz(r)≤ 1, then Zz must be negative.

(4.22)

Given that Zz is a monotonic continuous function of r,

r =
R2

2
2R2−R1

⇒ Zz = 0, (4.23)
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which implies

∆t =
µ0R2

2∆r∆ϕ

2Z0(2R2−R1)∆z
. (4.24)

To summarize, Eq. 4.22 imposes a condition on the TLM time-step that is
thus given by Eq. 4.24.

2. Consequence of the distribution of εϕ(r).
The ϕ-component of the permittivity of the cloak given in Eq. 4.6b is a
monotonically decreasing function that is always greater than one. Conse-
quently Yϕ must be positive for all r into the cloak, and we must prevent
Yϕ to become negative. Usually, the cloak will be immerse in vacuum. In
this case, the ϕ-component of the permittivity of the cloak is greater than
that of the host media for all r. According to Eq. 2.121b, this means that
Yϕ reaches its smallest value, i.e., the least favorable situation, at the outer
boundary, r = R3, of the TLM mesh where the permittivity is equal to one.
Accordingly, the condition becomes

2ε0

Y0∆t
∆r∆z
R3∆ϕ

−2≥ 0, (4.25)

which implies

∆t ≤ ε0∆r∆z
Y0R3∆ϕ

= ∆t2. (4.26)

3. Consequence of the distribution of εr(r).
Yr is given by Eq. 2.121a. Furthermore, Eq. 4.6a indicates that the r-
component of the permittivity of the cloak is a monotonically increasing
function that is always less than unity. Thus, Yr has to be such that Yr ≤ 0
inside the cloak, i.e., if r ≤ R2. In this case,

Yr =
2ε0

Y0∆t
∆ϕ∆z

∆r
(r−R1)−2. (4.27)

Hence,

r ≤ R2⇒ ∆t ≥ ε0(r−R1)∆ϕ∆z
Y0∆r

, (4.28)

from which it is plain that the greatest value of ∆t is reached at r = R2,
which fix the condition:

∆t ≥ ε0(R2−R1)∆ϕ∆z
Y0∆r

= ∆t3. (4.29)
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In the same manner, assuming that the host medium is vacuum, we have to
ensure that Yr ≥ 0 outside the cloak, i.e., if r ≥ R2. In this case we have

Yr =
2ε0

Y0∆t
r∆ϕ∆z

∆r
−2, (4.30)

and hence,

r ≥ R2⇒ ∆t ≤ ε0r∆ϕ∆z
Y0∆r

. (4.31)

The least favorable case occurring at r = R2, we get

∆t ≤ ε0R2∆ϕ∆z
Y0∆r

= ∆t4. (4.32)

Eqs. 4.24, 4.26, 4.29, and 4.32 form a set of four conditions on ∆t that involves
four quantities we have referred to as ∆t, ∆t2, ∆t3, and ∆t4. These quantities de-
pend on the parameters of the TLM node (∆r, ∆ϕ, ∆z, and Z0 = 1/Y0), the physical
system we are modeling (R1 and R2), the size of the mesh (R3), the permittivity
and permeability of free space (ε0 and µ0). These quantities are enforced by Eqs.
4.24, 4.26, 4.29, and 4.32; but the fact that they are all interlinked in the set of
equations makes difficult the task of drawing a general rule for the values that are
allowed. However a discussion is proposed in the following.

• The value of ∆t must be chosen accordingly to Eq. 4.24.

• It is plain from Eqs. 4.26 and 4.29 that ∆t2 must be greater than ∆t3. This
provides the requisite:

R3 ≤ (
∆r
∆ϕ

)2 1
R2−R1

, (4.33)

which is a necessary but not sufficient condition. Even if Eq. 4.33 is ful-
filled, the completion of Eqs. 4.26 and 4.29 should be verified.

• Another conclusion to be drawn is in regard to the authorized values for
∆z. We are dealing with a 2D case, therefore ∆z is apparently a degree of
freedom as long as the TLM fundamental condition ∆z≤ λ

10 is met,λ being
the wavelength. However, Eqs. 4.26, 4.29, and 4.32 have to be fulfilled,
which is of significant consequence on ∆z. ∆t being fixed by Eq. 4.24, Eq.
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4.26 can be written as

∆z≥ η0√
2Z0

∆ϕR2
√

R3√
2R2−R1

, (4.34)

Eq. 4.29 provides

∆z≤ η0√
2Z0

∆rR2√
2R2−R1

√
R2−R1

, (4.35)

while Eq. 4.32 leads to

∆z≥ η0√
2Z0

∆r
√

R2√
2R2−R1

. (4.36)

As shown in section 2.6, the dispersion generated by the TLM mesh is given
here by Eqs. 3.12a and 2.150. If we take into account Eq. 4.24, the former
equation becomes

Az =
R2

2
2R2−R1

1
r

=
Rl

r
, (4.37a)

Ar =
η2

0

2Z2
0
(
∆r
∆z

)2 R2
2

2R2−R1

1
r
. (4.37b)

Note that Aϕ is not involved given that εϕ can be considered as non-dispersive.
Since Az and Ar depend on parameters of the numerical simulation, we will have
to ensure that µ̃z(ω) and ε̃r(ω) be in agreement with the causality condition

∂(ωχ̃(ω))/∂ω≥ 1, (4.38)

where χ̃ represents either µ̃z(ω) or ε̃r(ω). This condition can be derived from the
Kramers-Kronig relations, which are a direct consequence of the causality princi-
ple [90]. Note that Yaghjian showed that considerations involving electromagnetic
energy conservation are capable of providing the same inequality, but he moreover
proved that the relation

∂(ωχ̃(ω))/∂ω≥ χ̃(ω)2 (4.39)

should be employed for diamagnetic metamaterials [91]. Metamaterials con-
sisting of open or closed split-ring resonators exhibit a strong diamagnetic re-
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sponse [92]. So the causality conditions used here are:

∂ωµ̃z(ω)
∂ω

− µ̃z(ω)2 ≥ 0, (4.40a)

∂ωε̃r(ω)
∂ω

−1≥ 0. (4.40b)

First, let us consider the condition on µ̃z(ω). Using Eqs. 4.6 and 4.37, Eq.
2.150 becomes

µ̃z(ω) =
Rl

r
−

ω2
0

ω2 [
Rl

r
− (

R2

R2−R1
)2 r−R1

r
]. (4.41)

Detailed calculations provide that the related causality condition, expressed in
Eq. 4.40a, is completed when r ≤ Rl . Since µz has to be dispersive only for
r ≤ Rl (beyond Rl the permeability is greater than one), the causality condition is
perfectly fulfilled. It is worth noting that the Eq. 4.38 condition, which will be
applied to the permittivity, turns out to give exactly the same result.

Second, let us consider the condition on ε̃r(ω). Focusing on Eq. 4.37, let γ be

the quantity η2
0

2Z2
0
(∆r

∆z)
2 R2

2
2R2−R1

so that Ar = γ

r . We get

ε̃r(ω) =
γ

r
−

ω2
0

ω2 [
γ

r
− r−R1

r
]. (4.42)

The causality condition expressed in Eq. 4.40b turns out to yield

r ≤ γ+
R1

( ω

ω0
)2 +1

,

⇔ γ≥ r− R1

( ω

ω0
)2 +1

,

⇒ γ≥ R2−
R1

( ω

ω0
)2 +1

.

(4.43)

If ( ω

ω0
)2� 1, this condition becomes γ ≥ (R2−R1), while it becomes γ ≥ R2 if

( ω

ω0
)2� 1. The most restrictive condition should be conserved; therefore, we can

conclude that the causality condition imposes γ ≥ R2, which is equivalent to the
expression

∆z≤ η0√
2Z0

∆r
√

R2√
2R2−R1

. (4.44)
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This causality condition must be coherent with Eq. 4.36. As a result, ∆z is fixed
by the causality condition and must be equal to

∆z =
η0√
2Z0

∆r

√
R2

2R2−R1
, (4.45)

or, equivalently,
γ = R2. (4.46)

From Eq. 4.42, we get the final form for the dispersive permittivity originated by
the TLM mesh:

ε̃r(ω) =
R2

r
−

ω2
0

ω2 [
R2

r
− r−R1

r
]. (4.47)

As well, the causality condition has to be coherent with Eq. 4.34. That leads to

R3 ≤ (
∆r
∆ϕ

)2 1
R2

, (4.48)

which is a more restrictive condition than the condition expressed by Eq. 4.33.
In section 4.6.1, R1 = 0.1 m and R2 = 0.2 m, while the dimensions of the node
were ∆r = (R2− R1)/200 = 0.5 mm and ∆ϕ = 2π/2520 ' 2.5 mm. As a re-
sult, Eq. 4.48 becomes R3 . R2 which is impossible since R3 represents the outer
boundary of the mesh: the cloak proposed in section 4.6.1 was not causal, which
was of no consequence in the corresponding results given that the plane wave was
monochromatic. If the plane is non-monochromatic, ∆r has to be increased (giv-
ing rise to less precision) or ∆ϕ has to be decreased (giving rise to more precision)
in order to enhance the allowed maximum value for R3.

For the purpsose of illustration, we plot µ̃z(ω/2π) (given in Eq. 4.41) and
ε̃r(ω/2π) (given in Eq. 4.47) for r = R1 and Rl in Fig. 4.13.

4.7.2 Frequency-shift phenomenon

It has been theoretically shown that the frequency center of a quasimonochro-
matic wave is blueshifted in the forward direction after passing through a spheri-
cal cloak [88]. We propose in this section to study what happens for a cylindrical
cloak illuminated by a quasimonochromatic plane wave. By quasimonochromatic,
we mean that the wave is no longer monochromatic but the frequency bandwidth
has to be however small enough to prevent the cloaking effect, which is strictly
achievable only at the single working frequency, to totally disappear.
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Figure 4.13: Cloak’s constitutive parameters, µz and εr, in terms of the frequency,
for r = R1 and r = Rl . R1 = 0.1 m, R2 = 0.2 m, and the working angular frequency
is ω0 = 2π.2 GHz.
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Figure 4.14: Scattering width of a PEC cylinder with/without the cloaking shell
around along the forward direction. The scattering is reduced in a narrow-band
around the 2 GHz working frequency.

Let us consider a PEC cylinder surrounded by a dispersive cloaking shell
whose functional frequency is f0 = 2 GHz. The parameters of the modeling are in
agreement with section 4.7.1; accordingly, the constitutive parameters of the cloak
are ω-dependent and follow Eqs. 4.41 and 4.47. The structure is illuminated by
a TM wave. In order to exactly see how the cloaking effectiveness is affected by
a deviation on the frequency, we first compute the scattering width of the cloaked
PEC cylinder in terms of the frequency. Numerically, the process consists of us-
ing a Gaussian pulse, then calculating the radiated far-field, and finally operating
a Fourier Transform to get the frequency domain representation. The result in
the forward direction is depicted in Fig. 4.14 and compared with the scattering
width of a simple PEC cylinder. As expected, the cloak is effective only for f0,
the working frequency. However, the scattering width is obviously very low in
a certain bandwidth centered on f0 and for which the object is still undetectable.
The size of such a bandwidth depends on the sensitivity of the detector located
outside the structure.

For a time domain method as TLM, a quasimonochromatic electromagnetic
wave can be modeled by using a modulated sinusoid in terms of time, t, such that
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(a) (b)

Figure 4.15: (a) Frequency domain representation of the incoming wave for ω =
2π.2 GHz and g = 5.107s−1. So highly does Hz(t) oscillate that the distribution of
points totally obscure the area within the envelop, but it should be kept in mind that
Hz(t) is a sinusoid signal. (b) Frequency domain representation of the incoming
wave.

the incoming magnetic field Hz is given by:

Hz(t) =
sin(ωt)exp[−g2(t− tm)2]

η0
(4.49)

where g and tm are two real numbers that define the bandwidth of the signal.
Hz(t) is plotted in Fig. 4.15(a). In the frequency domain, such an incoming wave
behaves as a quasimonochromatic wave, as shown in Fig. 4.15(b) in which the
Fourier Transform of Hz(t) is depicted. Indeed, the frequency domain represen-
tation of the original function is a Gaussian pulse centered on ω. The quasi-
monochromatic nature of the wave is controlled by the parameter g: the smaller
the g constant, the narrower the pulse in the frequency domain. Therefore, if g
is chosen to be small enough, any scattering due to the dispersion inherent to the
cloak is minimized around the cloaking frequency; and the frequency domain rep-
resentation of the wave that passes through the cloak, i.e., the transmitted wave,
should be a Gaussian too. In this example, the bandwidth of the signal has been
selected to be g = 5.107s−1, and it turns out that the whole frequency domain plot
of Fig. 4.15(b) may be considered as contained in the domain of undetectabil-
ity of the cloak. This affirmation can be staten referring to Fig. 4.14 in which
it is observed that the radiation of the bare cylinder was significantly reduced in
the range from 1.96 to 2.04 GHz. Consequently, the quasimonochromatic plane
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Figure 4.16: The black dotted line is the Fourier Transform of the incident wave,
which is the curve already plotted in Fig. 4.15(a). The blue solid line is the
frequency domain representation of the transmitted wave in the forward direction.
The frequency center of the latter signal is blueshifted compared to the former
signal.

wave displayed in Fig. 4.15 will be used in the numerical determination of the
frequency-shift that follows.

While a strictly monochromatic wave would pass the cloak strictly unaltered,
the situation might slightly change for a quasimonochromatic wave even if the
bandwidth is narrow as it is the case here. First, let us examine what is happen-
ing in the forward direction. The H-field is computed at a distance λ0 (incoming
radiation wavelength) from the outer boundary of the cloak. The corresponding
frequency domain representation, obtained by Fourier Transform, is displayed in
Fig. 4.16 (blue solid line). The frequency center of the new pulse is shifted to-
wards a higher frequency, which corresponds to a blueshift of the wavelength.
Concretely, it turns out that the frequency center of the pulse has been shifted by
0.6 MHz. We now numerically calculate the frequency shift along other direc-
tions; the result is depicted in Fig. 4.17. The shift continuously spans a large
spectrum, going from negative values to positive values. The corresponding red-
shift occurs around 40◦. Note that such a redshift was expected since the energy
has to be conserved. In conclusion, an observer looking at an object through a
cloak will see the object with a frequency-shift; moreover, the amplitude of the
frequency-shift depends on the position from where the object is observed.
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Figure 4.17: Distribution of the shifted frequency center in terms of the observa-
tion angle for a quasimonochromatic EM wave traveling from left to right.

4.7.3 Time-delay phenomenon

Because the EM constants of the cloak are r-dependent, the wave velocity is
expected to follow a certain distribution: Chen has shown that velocity decreases
when getting closer to the inner boundary of the invisible shell for a spherical
cloak [74]. What about the cylindrical cloak?

Let us consider a TM wave incident upon a dispersive cylindrical cloak, the
incoming magnetic and electric field can be expressed as:

H inc
z (r) = H0 exp[ j

ω

c
r cosϕ], (4.50a)

E inc
r (r) = E0 exp[ j

ω

c
r cosϕ]sinϕ, (4.50b)

E inc
ϕ (r) = E0 exp[ j

ω

c
r cosϕ]cosϕ, (4.50c)

from which we can derive the electromagnetic field in the cloak using the equa-
tions [91],

Hz = H inc
z [ f (r)], (4.51a)

Er = f ′(r)E inc
r [ f (r)], (4.51b)
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Eϕ =
f (r)

r
E inc

ϕ [ f (r)], (4.51c)

where f (r) is the transformation function in Eq. 4.3. Calculations give:

Hz = H0 exp[i
ω

c
R2

R2−R1
(r−R1)cosϕ], (4.52a)

Er = E0
R2

R2−R1
exp[i

ω

c
R2

R2−R1
(r−R1)cosϕ]sinϕ, (4.52b)

Eϕ = E0
R2

R2−R1

r−R1

r
exp[i

ω

c
R2

R2−R1
(r−R1)cosϕ]cosϕ. (4.52c)

The total electromagnetic energy density can be written as [90]:

W =
1
4
[ε0

∂(ωε)
∂ω

EE∗+µ0
∂(ωµ)

∂ω
HH∗]. (4.53)

For an anisotropic medium, this equation becomes

W =
1
4
[ε0

∂(ωεik)
∂ω

EiE∗k +µ0
∂(ωµik)

∂ω
HiH∗k ]

=
1
4
[ε0

∂(ωεr)
∂ω

ErE∗r + ε0
∂(ωεϕ)

∂ω
EϕE∗ϕ +µ0

∂(ωµz)
∂ω

HzH∗z ].
(4.54)

From Eq. 4.52, we get

W =
1
4
[ε0

∂(ωεr)
∂ω

E2
0 R2

2
(R2−R1)2 sin2

ϕ

+ε0
∂(ωεϕ)

∂ω

E2
0 R2

2
(R2−R1)2 (

r−R1

r2 )2 cos2
ϕ

+µ0H2
0

∂(ωµz)
∂ω

].

(4.55)

Tthe time-average Poynting vector over one period, see [80] (pages 28-29), is
equal to

S =
1
2

ℜ[E×H∗], (4.56)

which leads to

|S|= 1
2

E0H0R2

R2−R1
[sin2

ϕ+(
r−R1

r2 )2 cos2
ϕ]1/2. (4.57)
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From Eqs. 4.55 and 4.57, we can get the velocity using the formula [90]

u =
|S|
W

; (4.58)

the calculation gives:

u = c
2R2

√
( r−R1

r )2 cos2 ϕ+ sin2
ϕ

(R2−R1)[(
R2 sinϕ

R2−R1
)2 ∂(ωεr)

∂ω
+( r−R1

r
R2 cosϕ

R2−R1
)2 ∂(ωεϕ)

∂ω
+ ∂(ωmuz)

∂ω
]
, (4.59)

where c is the speed of light in free-space.
In agreement with Eqs. 4.41 and 4.47,

µz(ω) =

{
Rl
r −

ω2
0

ω2 [
Rl
r − ( R2

R2−R1
)2 r−R1

r ]
( R2

R2−R1
)2 r−R1

r

if r ≤ Rl

if r > Rl,

εr(ω) = R2
r −

ω2
0

ω2 [
R2
r −

r−R1
r ] ∀r,

εϕ(ω) = r
r−R1

∀r.

(4.60)

For the purpose of illustration, the distribution of the permeability µz is shown
in Fig. 4.18 for ω = ω0 and ω = 1.2ω0. The velocity distribution, given in Eq.
4.59, in a dispersive cloak whose constitutive parameters follow Eq. 4.60 can be
plotted. The result is shown in Fig. 4.19(a). Furthermore, the velocity in terms
of the radius of the cloak is plotted for ϕ = 0o and 90o in Fig. 4.19(b). It is
plain from Fig. 4.19(b) that the velocity is smaller near the inner boundary of
the cloak. Thus, once the EM wave has passed through the cloak, the process of
reaching different points located on a plane normal to the direction of propagation
should be completed with a time delay. This phenomenon can be illustrated using
a ray-tracing simulation, but this treatment is unable to take into account material
effects that might affect the solution. Moreover, on-axis ray problems make the
obtained results incomplete. On the contrary, a full wave time-domain simulation
constitutes a deeper evidence of the time-delay effect.

Such a time-delay cannot be computed if the incoming wave is monochro-
matic, i.e., modeled by a simple sinusoid: the incident and the transmitted signal
would overlap (the cloaking effect is perfect at the corresponding frequency) mak-
ing impossible the distinction between each other. Instead using a quasimonochro-
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Figure 4.18: Distribution of the permeability µz(r) for ω = ω0 and ω = 1.2ω0.
Since µz(r) is dispersive from R1 to Rl , the curves diverge in this range before
converging at r = Rl .

matic incoming wave, modeled using the modulated sinusoid of Eq. 4.49, makes
possible the distinction thanks to the envelop of the signal. It is worth noting that
the frequency representation of the quasimonochromatic wave has to be narrow
enough in order to avoid distortion due to the dispersion. In other word, using
a purely gaussian excitation would be of no interest, it would give rise to a wild
bandwidth that would destroy the cloaking effect.

Let the cloaking frequency be f0 = 6 GHz. The H-field is calculated in the for-
ward direction at the distance x0 = λ0 from the cloak outer boundary. In Fig. 4.20,
we compare the H-field in the absence and in the presence of the whole structure
in terms of time, normalized by the period of the incident wave, T0 = 1/ f0. Obvi-
ously, if the envelope of the signal is considered, the presence of the cloak results
in the EM wave to reach x0 with a time delay. Since the wave frequency is high,
oscillations resulting from the sine in Eq. 4.49 cannot be observed; that is why we
have enlarged a certain portion of Fig. 4.20, where it can be seen that the trans-
mitted wave propagates with the same phase as the incident one. This result was
expected since the wave is required to arrive on the far side of the cloak with the
same phase in order to have the cloaking effect achieved. Moreover, it confirms
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(a)

(b)

Figure 4.19: (a) Velocity distribution within the cloaking shell. The velocity tends
to decrease when getting closer to the inner boundary of the cloak. There are two
regions in which the velocity is particularly low: in the vicinity of r = R1 for 0o

and 180o. (b) The velocity distribution is plotted along the backward direction
(0o) and along the 90o-direction. The low value of the velocity, noticed in (a), is
particularly apparent.
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Figure 4.20: H-field plot in terms of the normalized time. The envelope of the
signal does not reach x0 at the same time depending on whether the cloaking
structure is present or not. On the other hand, the phase is unchanged in agreement
with the cloaking effect requirement.

the correctness and accurateness of our numerical simulation.
As previously mentioned, the time delay is a consequence of the dependence

in terms of r of the cloak’s parameters. Therefore, it is interesting to study the
response of cloaking devices based on non-linear coordinate transformations, i.e.,
with values of α not equal to unity in Eq. 4.4. In this case, the permittivity and
permeability of the cloak is given by Eq. 4.14. Because of the modification of the
constitutive parameters of the cloak, the analysis carried out in section 4.7.1 must
be accordingly modified if α 6= 1. With this new definition:

• εr is still an increasing function. It is less than unity if we ensure that α ≤
R2

R2−R1
, which is a fulfilled condition given that α ∈]0,1].

• εϕ is still a decreasing function. It is greater than unity since α≤ R2
R2−R1

.

• µz is a continuous function with positive slope. On the one hand µz(R1) = 0,
on the other hand µz(R2) > 1; according to the intermediate value theorem,
there is a real number Rn such that µz(Rn) = 1. If α = 1, Rn is what we
referred to as Rl in section 4.7.1.
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Obviously, Eqs. 4.32 and 4.26 are unchanged. On the other hand, Eq. 4.29 must
be modified, the new condition is:

∆t ≥ αε0(R2−R1)∆ϕ∆z
Y0∆r

. (4.61)

Finally, the expression of ∆t (given by Eq. 4.24 in section 4.7.1) is derived from
the equality Zz(Rn) = 0, which implies

∆t =
µ0R2

2∆r∆ϕ(R2−R1)−
2
α (Rn−R1)

2
α
−1

2αZ0∆z
. (4.62)

The causality condition that was given in Eq. 4.40 must be taken into account.
Furthermore, let γz be the quantity such that γz = 2∆t∆zZ0

∆r∆ϕµ0
, and let γr be the quantity

such that γr = ∆t∆rY0
∆ϕ∆zε0

. Accordingly,

µ̃r(ω) =
γz

r
−

ω2
0

ω2 [
γz

r
−µz(ω0)], (4.63a)

ε̃r(ω) =
γr

r
−

ω2
0

ω2 [
γr

r
− εr(ω0)], (4.63b)

where µz(ω0) and εr(ω0) are given by Eq. 4.14. Calculations give that the causal-
ity condition on ε̃r is fulfilled if

γr ≥
r(ω2 +αω2

0)
ω2 +ω2

0
−

R1αω2
0

ω2 +ω2
0
. (4.64)

Consequently, as it was the case in section 4.7.1, the choice γr≥R2 should be done
given that it ensures that the cloak is causal in a large frequency band. However,
Eq. 4.32 can be written as γr ≤ R2. Therefore γr must be such that

γr = R2. (4.65)

Let Π2 be the plane normal to the x-axis at point x0. Let ttd be the deviation
between the required time for the EM wave to reach Π2 with and without the pres-
ence of the whole structure. Let us consider the line, contained in Π2, that points
along the y-direction. Depending on the position of the point under consideration,
ttd is expected to take different values. In the following, we propose to compute
ttd (normalized by T0) in terms of the distance y from the x-axis. In order to calcu-
late ttd , we look at the EM power associated with the signal. We first calculate the
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Figure 4.21: (Color online) Time-delay (normalized by T0) in terms of the distance
y form the x-axis for non-linear coordinate transformations

total power, P0, of the incident wave. Then, we admit that the required time for the
transmitted wave to reach Π2 is attained when the power P0/2 has flowed through
Π2. The result is depicted in Fig. 4.21 for α = 1, 0.75, and 0.5. As expected, ttd
decreases when deviating from the x-axis. Furthermore, the time delay is plainly
sensitive to the type of transformation, the linear one rendering the delay smaller.

For completion’s sake, we have tried other frequencies for the incoming wave.
The obtained curves turn out to be different from the ones presented in Fig. 4.21.
The reason is that the phenomenon mainly comes from diffraction, thus the time
delay depends on the size of the cloak or, equivalently, on the frequency of the
incident wave.

4.8 Anticloak

An issue of great concern to physicists is whether the cloaking effect can be
achieved under any condition. In this sense, it has been shown that the ideal 2D
cloak is very sensitive to the slightest perturbation [72]. Still for the cylindri-
cal case, it has been established that extending the inner boundary of the cloak-
ing shell toward the concealed region appears to allow further penetration of the
field [73]. Nonetheless, since the power cannot go into the cloak, the effectiveness
of the cloaking was not questioned in [73]. It should be emphasized that [72, 73]
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clearly stressed the fundamental role of the extreme inner layer, for which the
azimuth permittivity or permeability (depending on the electromagnetic polariza-
tion under consideration) are infinite while the other electromagnetic parameters
are zero. Furthermore, it has been more recently proven that a certain kind of
anisotropic material located beyond the inner boundary of the cloak can cancel
out the cloaking effect [75, 93]. The permittivity, ε, and permeability, µ, of such
an anticloak are derived using a coordinate transformation whose slope is nega-
tive compared to the original one; the electromagnetic space associated with the
cloak is then reconstructed by the anticloak, rendering visible the object inside
the anticloak [75]. It is interesting to note that there are two sets of solutions to
Maxwell’s equations in this case. One dictates that the field cannot penetrate into
the cloak irrespective of what is inside [72,73], while the other shows that the field
can penetrate into the cloaked region by virtue of the anticloak [75]. However, it
is arduous to verify this extreme case for which both the cloak and anticloak exist
and interact with each other. The analytic calculations in [72, 73] did not con-
sider the possibility of including such an anisotropic anticloak, while [75] used a
nonzero perturbation parameter that approaches the ideal case without rigorously
reaching it. Therefore, the ideal situation requires further analysis, as mentioned
in [75], but dealing with extreme parameters is challenging from both the ana-
lytical and computational point of view. Mathematically, when the perturbation
parameter goes to zero, the transformation becomes a singular mapping and the
Jacobian matrix does not exist at the interface between the cloak and the anticloak.
For this reason, cloaking modeling usually assume upper and lower limits of the
constitutive parameters while the required, ε or µ span the entire range from zero
to infinity.

In the present section, the singular behavior of the anticloak is studied using
TLM. We will show that when the perturbation parameter is nonzero, the anticloak
can cancel the cloaking effect outside. However, when it is zero, the presence of
an extreme layer between the cloak and anticloak ensures that the cloaking effect
is still achieved, irrespective of the core composition. Third, an analytical model
is developed to explain this behavior.

We have shown in section 4.2 that, to be effective, the dielectric and magnetic
constants of the anisotropic cloak must take the specific values given in Eq. 4.6.
In this section, we will extend the development given in this section to make Eq.
4.6 more general. Let the inner and outer radius be represented by R1 and R2,
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respectively. The simple following transformation,

r = (r′−R2)
R2−R1

R2− c
+R2, ϕ = ϕ

′, z = z′, (4.66)

that can compress the space from 0 < r′ < R2 to the annular region a < r < R2,
yields

εr = µr =
r−a

r
, (4.67a)

εϕ = µϕ =
r

r−a
, (4.67b)

εz = µz = (
R2− c

R2−R1
)2 r−a

r
, (4.67c)

where c is the perturbation parameter, and a = R2(R1− c)/(R2− c). The param-
eter c marks the degree of imperfection of the cloak. In this manner, a zero value
of c would make ε or µ ideal, i.e., Eq. 4.67 becomes Eq. 4.6.

Let R0 be a third boundary inside the cloak in such a way that 0 < R0 < R1. In
agreement with [75], the transformation,

r = (r′−d)
R0−R1

d− c
+R0, ϕ = ϕ

′, z = z′, (4.68)

leads to the anticloak parameters:

εr = µr =
r−b

r
, (4.69a)

εϕ = µϕ =
r

r−b
, (4.69b)

εz = µz = (
d− c

R0−R1
)2 r−b

r
, (4.69c)

where d is a constant, and b = (R1d−R0c)/(d−c). Chen et al. have claimed that
the parameters of Eq. 4.69 are capable of destroying the effect of an invisibility
cloak when c is nonzero [75], but as it has been pointed out above, the achievement
of ideal cloaking actually requires infinite values of µϕ at r = R1. The difficulty
in assuming such an infinite value is often eluded by truncating the inner layer,
which leads to large but finite values of µϕ. Often, substituting the actual infinite
values by approximate finite ones is done without significant consequences. For
instance, very accurate modeling of the cloaking effect can be reached if µϕ is cho-
sen to be high enough [70,72]. However, certain studies may require this quantity
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to be actually infinite. It is the case of the anticloaking phenomenon for which
no complete study can be carried out without being able to exactly consider an
infinite µϕ. In this sense, TLM is well-suited for the anticloak modeling given that
infinite values of µϕ are of no consequence to the convergence of the method, as it
has been shown in section 4.6.1. Thus, compared to Chen et al’s paper, our work
differs from theirs in one important respect: we will consider the case in which c
is strictly equal to zero, i.e., (εϕ,µϕ) = +∞ in the cloak and (εϕ,µϕ) =−∞ in the
anticloak, at r = R1.

Let us consider a cylindrical cloaking structure surrounded by free space and
illuminated by a monochromatic TE electromagnetic plane wave whose frequency
is 2 GHz. The cloaking shell has an inner radius R1 = 0.1 m, while the outer radius
is R2 = 0.2 m. From 0 to R0 = 0.05 m, the space is occupied by a PEC cylinder.
Then, from R0 to R2, different cases are envisaged and the results are depicted in
Fig. 4.22.

• (a) From R0 to R1, there is free space, and from R1 to R2 we use the cloaking
parameters of Eq. 4.67 with c = 0.001 m, and d = 0.02 m. The computed
electric field mapping is presented in Fig. 4.22(a). Although we are in a
nonideal situation, mainly due to the lack of extreme values at r = R1, the
cloaking effect can be achieved.

• (b) From R0 to R1, the anticloak parameters of Eq. 4.69 are used, while
Eq. 4.67 is used for the cloaking shell from R1 to R2. In both case, c and
d are still equal to 0.001 and 0.02, respectively. The result, shown in Fig.
4.22(b), shows that the anticloak destroys the cloaking effect observed in
Fig. 4.22(a).

• (c) The modeling differs from the previous one in one fundamental point:
c = 0, i.e., the parameters of Eqs. 4.67 and 4.69 take now extreme values at
r = R1. The electric field is depicted in Fig. 4.22(c). The main conclusion
is that the cloaking effect is no longer perturbed by the presence of the an-
ticloak inside. Furthermore, since losses in metamaterials are unavoidable,
we have incorporated a low level of electric losses to the cloak in order to
make the modeling more physically realistic. It turns out that no signifi-
cant deviation in the result is observed: the anticloak is still concealed by
the cloak. Consequently, the lossless media that was first considered can be
treated as the limit of the lossy case as the dissipation approaches zero. This
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Figure 4.22: Color online. Electric field mapping for four configurations. (a)
non-ideal (c = 0.001) cloaking structure with free space in the extended layer;
(b) non-ideal (c = 0.001) cloaking structure with anticloak in the extended layer;
(c) ideal (c = 0) cloaking structure with anticloak in the extended layer; (d) PEC
cylinder with radius d. Five regions are apparent: (1) PEC cylinder; (2) Extended
layer; (3) Cloaking shell; (4) Free space; (5) Scattered field region.
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Figure 4.23: Simple model illustrating why a normally incident wave cannot pen-
etrate a slightly dispersive ideal cloak/anticloak double layered slab.

indicates that the uniqueness theorem [80], stating that a field in a lossy re-
gion is unique, can be extended to the lossless media for which the theorem
breaks down in general.

• (d) For completion sake, a simple PEC cylinder, with radius equal to d
is modeled. The corresponding electric field mapping is shown in Fig.
4.22(d). As it has been pointed out in [75], the scattering is qualitatively
similar to case (b).

One important difference between time domain and frequency domain meth-
ods is that a time domain method always gives a unique solution, while a fre-
quency domain method may have multiple solutions for a lossless case given that
the uniqueness theorem does not hold in general for a purely lossless case [80].
In order to justify uniqueness in a non-dissipative media, infinitesimal losses are
traditionally assumed. This treatment is realistic because losses are always un-
avoidable. In order to explain the physics behind the non-penetration of electro-
magnetic waves through the interface between an ideal cloak and an ideal anti-
cloak, we adopt a model similar to that of [73]. As depicted in Fig. 4.23, a plane
wave is normally incident onto a double-layer medium composed of two regions:
region 1 and region 2. The permittivity of the material in region 1 is ε1, while
its permeability is µ1 . The material in region 2, of permittivity ε2 and perme-
ability µ2, is obtained by the coordinate transformation x = −x′, which leads to
ε2 =−ε1 and µ2 =−µ1. From the transformation-theory point of view, region 2 is
able to perfectly reconstruct the electromagnetic space in region 1, so that region
1 is canceled by region 2, as if nothing were there. This property can be verified
by straightforward calculations [75]. However, the materials at both sides of the
cloak/anticloak interface have extreme values that may alter the effect of the can-
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celation. In agreement with the value of permittivity and permeability at the inner
boundary of the cloak, we let ε1→+0 and µ1→+∞ while their product remains
constant, such that ε1µ1 = ε0µ0. Consequently, ε2 → −0 and µ2 → −∞ while
ε2µ2 = ε0µ0. In order to represent the losses, a constant imaginary part is incor-
porated to the constitutive parameters: the permittivity and permeability in region
1 are now ε1 + iδ and µ1 + iδ, respectively; those in Region 2 are −ε1 + iδ and
−µ1 + iδ, respectively. Assuming that ε1→ +0 and µ1→ +∞, the transmission
coefficient is calculated behind the double-layer slab in Fig. 4.23. It is found that
the transmission coefficient in this case is zero, indicating that the typical losses
which are intrinsic to any material ensure that the electromagnetic wave cannot
penetrate through the cloak/anticloak interface.

If the cloak is non-dissipative and if c = 0, the analysis presented in [72, 75]
cannot be carried out due to the singularity of the Hankel function at this point.
Accordingly, the condition of conservation of the E-field and H-field’s tangential
components at r = R1 is degenerated, which leads to the conclusion that more
than one solution is analytically possible. However, the lossless medium can be
consider as the limit of the lossy medium as δ→ 0. This statement is strength-
ened by the numerical results obtained above showing that a slight dissipation in
the cloak material is of no consequence to the E-field mapping depicted in Fig.
4.22(c). Thus, the uniqueness theorem holds and ensures that only one analytical
solution is compatible with the physical limitation of loss. Though mathemati-
cally possible, the other ones do not represent the physical solution. In this sense,
our numerical simulations clearly indicate that no field can penetrate the lossless
cloak/anticloak boundary if µϕ is infinite.

4.9 Summary

1. The advent of metamaterials has offered a new degree of freedom in the
design of challenging devices. In this sense, a cloak is a metamaterial that
has the capability of excluding the electromagnetic radiation from a certain
volume of space. A coordinate transformation yields the value of the consti-
tutive parameters of the cloak, which turns out to be an anisotropic medium
having the ability to distort and steer the field around the concealed object.

2. Numerical simulations have an important role to play through their ability
to predict and confirm phenomena. TLM cannot easily model media whose
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ε and µ are tensors with off-diagonal elements, which is the case in Carte-
sian coordinates. Therefore, an approximation based on substituting the
anisotropic cloaking shell by a medium made up of alternating multilayered
isotropic medium must be employed in Cartesian coordinates.

3. A more accurate approach consist of using curved nodes that assume the
shape of the cloak and that allow ε and µ to be diagonal tensors.

4. In the modeling of metamaterials, it was shown in section 2.6 that the TLM
mesh is Drude-dispersive and that no artificial dispersion has to be added.
This is in agreement with the nature of TLM that should be regarded as
a modeling procedure rather than a direct numerical solution of the field
equations. But it was also shown in the same section that the Drude-like be-
havior of a cylindrical mesh must be nuanced because of the r-dependance
of coefficients that appear in the expression of ε̃(ω) and µ̃(ω). Thus, enforc-
ing the cylindrical TLM mesh to fulfill the causality condition turns out to
generate a set of restrictions for the TLM parameters, which is detrimental
to the versatility of the modeling. This slightly limit the advantages of using
cylindrical nodes.

5. It is pertinent to take into account the dispersiveness of a cloak only if the
incoming plane wave is non-monochromatic. It has been shown that the fre-
quency center of a quasimonochromatic wave is blueshifted in the forward
direction after passing through a dispersive cloaking structure. Furthermore,
it has been proven that the frequency shift distribution depends on the ob-
servation angle.

6. Because of the radial dependence of the constitutive parameters of the cloak,
the velocity of the electromagnetic wave inside the device is smaller at the
vicinity of its inner boundary. Consequently, while the phase of the elec-
tromagnetic signal is conserved, its envelope exhibits a time delay in the
process of reaching a plane located at a constant distance from the struc-
ture. Furthermore, it has been shown that the time delay depends on the
coordinate transformation that has been used to get ε and µ of the cloak.

7. We have verified that an anticloak is effective for an almost perfect cloak.
However, we have proven that TLM can efficiently model dielectric or mag-
netic constants tending to infinity, which allows the simulation of the ideal
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situation. The numerical results clearly show that the anticloak cannot de-
feat the cloaking phenomenon in the presence of an extreme layer, even if
slightly electric losses are incorporated into the material. With a simple an-
alytical model, we have mathematically demonstrated the result for a lossy
medium; the lossless case following from the uniqueness theorem.
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Chapter 5

General conclusions

The TLM numerical simulations undertaken in the frame of this dissertation
has allowed to enlighten several problems involving the interaction between elec-
tromagnetic plane waves and complex media. The various developments pre-
sented in this work may be separated into two main categories: contributions to
TLM and application to physical systems.

• In chapter 2, TLM is not only presented with abundant details, several de-
velopments and improvements to the method are also reported in order to
make possible the study of challenging media that the original procedure
would not allow.

• In chapters 3 and 4, the numerical tools that we have developed are em-
ployed to the determination of the effective dielectric constant of composite
materials and to the study of cloaking structures, respectively.

A new vision of the usual 2D TLM nodes is first proposed. According to it,
they are no longer represented by a single circuit; as a replacement, coupling cir-
cuits are used, each one describing a particular component of the electromagnetic
field. So far, this statement was established only for the Symmetrical Condensed
Node (SCN), i.e., the 3D counterpart. Such a treatment provides great versatility
to the node such as the possibility to account for electric and magnetic losses, for
instance. The new node, as well as SCN, are extended to model metamaterials,
the required modifications not representing an added complexity to the method.
The inherent dispersion thus introduced in the TLM mesh is derived.

TLM is used to determine the effective permittivity of composite materials.
Several conclusions are drawn, the most significant ones are: i) no prediction
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theory is able to offer a specific value of effective permittivity, ii) small inclu-
sions embedded in a composite matrix offer a greatest predicability than bigger
inclusions and iii) periodic square inclusions are described by Maxwell-Garnett’s
theory regardless of the volume fraction.

TLM has been shown capable of providing highly accurate modeling of cloak-
ing structures. Seizing this powerful tool, phenomena such as frequency-shift or
time-delays are investigated. Furthermore, we have demonstrated that TLM can
be used for the modeling of exotic materials that exhibit infinite value of permit-
tivity/permeability. The angular component of the constitutive parameters of an
ideal cylindrical cloak must be infinite at the inner boundary of the shell, thus
TLM has been employed to demonstrate that no anticloak can stray an ideal cloak
from its faculty to make an object invisible.
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Chapter 6

Resumen de la tesis

6.1 Introducción y esquema

Desde el trabajo de James Clerk Maxwell in 1873, la teorı́a de ondas electro-
magnéticas ha permitido importantes avances cientı́ficos. Sin embargo, la exis-
tencia geometrı́as internas o condiciones de contorno complejos puede convertir
la resolución de un problema electromagnético en una tarea difı́cil, si no imposi-
ble. Esta dificultad puede superarse mediante el uso de métodos numéricos. El
hilo conductor de esta tesis es la simulación de medios complejos con el método
Transmisión Line Modeling (TLM) [1].

La mayor parte de los métodos numéricos parten de la derivación de una
ecuación integral. Esta ecuación se resuelve numéricamente usando diferentes
métodos, tal como el Finite Element Method [2] o el Method of Moments [3]. De
alguna manera, estos últimos enfoques se pueden considerar semi-analı́ticos. De
hecho, una parte importante de estas técnicas es la obtención de una ecuación
analı́tica previa a la resolución numérica en sı́ misma. Estos métodos numéricos
proporcionan buenos resultados, aunque tienen la desventaja de que cualquier
cambio en el problema inicial exige la reformulación de la parte teórica. Por
ejemplo, las ecuaciones integrales que describen un problema a bajas o a altas
frecuencias no son las mismas.

Las técnicas numéricas basadas en la resolución de ecuaciones diferenciales
que trabajan en el dominio del tiempo, tal como el método Finite Differences in
the Time Domain (FDTD) [4, 5] or TLM, representan un enfoque altenativo. En
su version básica, estas técnicas consideran simultáneamente las ecuaciones de
Maxwell y las condiciones de contorno para simular un fenómeno dado. Resolver
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el problema de esta forma puede parecer de algún modo poco elegante puesto que
el problema es enteramente resuelto por el ordenador, siendo mı́nimo el esfuerzo
teórico por parte del cientı́fico. La principal desventaja de los métodos diferen-
ciales es que la carga computacional suele ser bastante alta comparada con los
métodos semi-analı́ticos. Sin embargo, las ventajas de los métodos que trabajan
en el dominio temporal son múltiples:

• Son fácilmente adaptables a nuevas situaciones, siendo mı́nimas las modi-
ficaciones en el código fuente.

• Con una única simulación se puede cubrir un gran intervalo de frecuencias
a través de una simple transformada de Fourier.

• Dado que el campo electromagnético se calcula en toda la malla, es posi-
ble visualizar el proceso dinámico del fenómeno. Dicho proceso dinámico
puede ser útil para entender el fenómeno, o simplemente para ayudar a con-
firmar que la simulación funciona correctamente.

Estas caracterı́sticas hacen que estos métodos constituyan una herramienta atrac-
tiva para la simulación de problemas variados.

En esta tesis doctoral se discute el método TLM. Aportaremos varios desar-
rollos al método que permitan tratar problemas que involucren medios complejos.
TLM es, al igual que FDTD, un método de bajas frecuencias para la simulación
de la propagación de ondas. Aunque se suele utilizar para problemas de elec-
tromagnetismo, también ha sido empleado en el campo de la acústica [6], de la
difusión de partı́culas [7], o de la propagación de ondas electromagnéticas en la
atmósfera de cuerpos celestes [8]. Debido a la clara similitud entre TLM y FDTD,
ambos métodos han sido frecuentemente comparados [9–12]; estos análisis com-
parativos han demostrado que sus prestaciones son en realidad totalmente compa-
rables. Sin embargo, existen algunas ventajas de TLM con respecto a FDTD que
cabe destacar:

• TLM define todas las componentes del campo en el mismo punto, en con-
creto en el centro de las células elementales (los nudos), formadas por lı́neas
de transmisión cruzadas, y en el mismo instante. FDTD no puede contar con
tal versatilidad ya que las componentes se calculan en puntos separados.
Además, los campos eléctricos y magnéticos no se calculan en el mismo
instante; por lo tanto el proceso FDTD se efectúa en dos pasos.
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• Lo que realmente diferencia a los dos métodos es el enfoque radicalmente
distinto que hacen del sistema fı́sico a simular. Mientras que FDTD es una
forma aproximada de resolver ecuaciones en derivadas parciales, TLM es
una simulación del propio sistema a través lı́neas de transmisión. De esta
manera, la aproximación se encuentra en el modelado y no en su solución.

La principal desventaja de TLM es que no es un método tan popular como FDTD.
Por lo tanto, no hay muchos desarrollos previos disponibles para ayudar a un fı́sico
que quisiera realizar simulaciones numéricas con dicho método. Por tanto, em-
plear TLM necesita un alto entendimiento del método ya que dicho fı́sico tendrá
seguramente que desarrollar sus propias herramientas.

Los resultados que se presentan en esta tesis están basados en artı́culos pub-
licados por el autor y sus colaboradores en revistas y conferencias cientı́ficas
[13–26]. Los primeros medios que simulamos son medios compuestos, siendo
nuestro objetivo la determinación de la permitividad efectiva de una mezcla de
dieléctricos. En segundo lugar, investigamos la interacción entre dispositivos de
invisibilidad (cloaks) y ondas electromagnéticas en el capitulo 4. Previamente,
el capitulo 2 se dedica a la presentación detallada del método TLM. Además, se
presenta un estudio sobre la manera de modelar metamateriales con TLM.

6.2 El método TLM

Usando redes eléctricas para resolver problemas que involucran la propagación
de campos electromagnéticos es una técnica muy establecida desde los años 40
cuando Kron [27] y Whinnery [28] presentaron sus trabajos precursores. Inspira-
dos por estas contribuciones, Johns y Beurle crearon TLM en 1971 [1]. TLM es
un método numérico que trabaja en el dominio del tiempo y que se puede consid-
erar como el equivalente eléctrico del principio de Huygens para la propagación
de la luz. Este principio afirma que cada punto en una frente de onda primaria se
puede considerar como una nueva fuente de una onda esférica segundaria y que
una frente de onda segundaria se puede construir como el envuelto de estas frentes
de onda segundarias. De la misma manera, la discretización del espacio conduce a
la malla TLM en la cual cada pulso de tensión que se propaga es una nueva fuente
de radiación. El centro de los nudos esta formado por el cruce de varias lı́neas
de transmisión – con impedancia caracterı́stica Z0 o, equivalentemente, con admi-
tancia Y0 = 1/Z0 – y la malla esta hecha con una gran cantidad de nudos. Por lo
tanto, la malla constituye una red de lı́neas de transmisión en la cual los pulsos se
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(a) (b)

Figure 6.1: Nudo paralelo bidimensional: (a) sin stub, (b) con stub.

propagan según la teorı́a de estas lı́neas. Por la analogı́a existente entre esta teorı́a
y las ecuaciones de Maxwell, los pulsos que se esparcen en la red representan una
onda electromagnética propagándose en un cierto medio.

El nudo Cartesiano que presentaron Johns y Beurle en su papel original esta
representado en Fig. 6.1(a). Se trata de un circuito paralelo, es por ello que
este nudo esta conocido como nudo paralelo. A bajas frecuencias, Johns mostró
que este nudo se puede representar por una red de bobinas, con inductancia L,
y de condensadores, con capacidad C. Resulta que las ecuaciones describiendo
esta red son análogas a las de Maxwell para una onda electromagnética que se
propaga con el campo eléctrico normal al plano de propagación (modo TE). Los
pulsos incidentes penetran dentro del nudo de Fig. 6.1(a) desde las cuatro puertas;
la información esta contenida en el vector de voltaje,

V i =


V1

V2

V3

V4


i

.

(6.1)

Cuando alcanzan el centro de los nudos, los pulsos incidentes están dispersados en

157



las cuatro direcciones posibles, lo que da lugar a un conjunto de pulsos reflejados:

V r =


V1

V2

V3

V4


r

.

(6.2)

La redistribución de los pulsos incidentes se hace vı́a una matriz de dispersión, S,
de tal modo que,

V r = SV i
. (6.3)

La determinación de S es un paso importante del método, y dado la simple topologı́a
del nudo paralelo, la obtención de S es directa en este caso. Cálculos triviales con-
ducen a

S =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (6.4)

No obstante, obtener la matriz de dispersión para un nudo más complicado puede
ser muy difı́cil; afortunadamente, existe una técnica que simplifica de manera
considerable la tarea.

Los parámetros (L y C) pueden ajustarse para controlar el valor local de la
permitividad y permeabilidad. Pero de esta manera, el nudo de Fig. 2.1(a) es
solo capaz de similar medios homogéneos ya que la capacidad y inductancia de
las lı́neas de transmisión se quedan constantes a través toda la malla. Sin em-
bargo, extra capacidad se puede añadir al nudo equipando el nudo con una lı́neas
de transmisión, llamado un stub en el método TLM, de tal manera que la per-
mitividad sea variable. Es importante notar que el stub esta conectado al centro
del nudo y no a otras lı́neas de los nudos adyacentes ya que los stubs controlan
la velocidad de la propagación y en ningún caso la propagación en si mismo. El
nudo paralelo con stub esta representado en Fig. 6.1(b), donde se puede observar
que una quinta lı́nea ha sido añadido. Sin embargo, este procedimiento no per-
mite variación de la permeabilidad lo que constituye una seria limitación. Otro
punto fundamental es que este nudo se suele representar por un circuito eléctrico
único con el fin de calcular el campo electromagnético en función de los pulsos
de tensión [31]. Todo lo que acabamos de decir se podrı́a adaptar a la descripción
de ondas electromagnéticas propagándose con el campo magnético perpendicular
al plano de propagación (TM mode). En este caso referimos al nudo serie que es
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Figure 6.2: El Nudo Simétrico Condensado sin stub.

equivalente a un circuito eléctrico serie.
Una contribución importante por TLM fue el desarrollo del Nudo Simétrico

Condensado (SCN), igualmente propuesto por Johns [29], para resolver proble-
mas tridimensionales (3D). Hasta la aparición del SCN, nudos pocos elegantes,
con topologı́a compleja, solı́an ser empleado para problemas 3D. Puesto que SCN
elimina las desventajas de los otros nudos, estos últimos son totalmente obsole-
tos e ya no usados. El SCN sin stubs, como aparece en el artı́culo de Johns, se
puede ver en Fig. 6.2. Johns afirmó que el SCN no se puede representar por un
solo circuito eléctrico, como era el caso para el nudo 2D pero al precio de que
solo una componente de las constantes ópticas puede variar. Efectivamente, las
lı́neas de transmisión deben acoplarse entre ellas, en acuerdo con el hecho de que
las componentes del campo electromagnético se acoplan entre ellas en las ecua-
ciones de Maxwell. La afirmación de Johns era por supuesto verdadera: no existe
un circuito único que puede representar el SCN. Sin embargo, Taylor y sus co-
laboradores [30, 32] mostró que el SCN se puede representar por un conjunto de
circuitos paralelos y de circuitos series, cada lı́nea de transmisión del nudo aparece
en un circuito paralelo y un circuito serie. Esta descripción fue reservada al SCN
durante mucho tiempo.

Sin embargo, hemos mostrado [14] que incluso los nudos 2D deben ser rep-
resentados por un conjunto de circuitos paralelos/series. En realidad, la repre-
sentación del nudo paralelo por un único circuito limita su validez a medios por
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(a) Sub-circuito paralelo para la
componente z de la ley de Ampère
que define Ez.

(b) Sub-circuito serie para la com-
ponente x de la ley de Faraday que
define Hx.

(c) Sub-circuito serie para la com-
ponente y de la ley de Faraday que
define Hy.

Figure 6.3: Subdivisión del nudo global para modos TE en tres sub-circuitos.

los cuales solo términos capacitivos, como la permitividad por ejemplo, son vari-
ables. Por lo contrario, describir el nudo paralelo como un conjunto de circuitos
le da más versatilidad al nudo; permite en particular la simulación de magni-
tud inductiva, como la permeabilidad. Además, perdidas eléctricas y magnéticas
pueden considerarse. In Fig. 6.3, el nudo global para modos TE esta representado.
Puesto la complejidad de tal nudo, la expresión de la matriz de dispersión no es
tan sencilla como en Eq. 6.4. Cálculos extensivos (véase sección 2.3.1) conducen
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a

S =



ax c bx c g −ix 0
c ay c by g 0 iy
bx c ax c g ix 0
c by c ay g 0 −iy
c c c c f 0 0
−ex 0 ex 0 0 hx 0

0 ey 0 −ey 0 0 hy


. (6.5)

Los elementos de la matriz están dados en la expresión siguiente:

ak = 2
4+Yz+Gz

− 2
2+Zk+Rk

, f = Yz−Gz−4
Yz+Gz+4 ,

bk = 2
4+Yz+Gz

− Zk+Rk
2+Zk+Rk

, g = 2Yz
4+Yz+Gz

,

c = 2
4+Yz+Gz

, hk = 2−Zk+Rk
2+Zk+Rk

,

ek = 2Zk
2+Zk+Rk

, ik = 2
2+Zk+Rk

,

(6.6)

con k = {x,y}, y donde Y , Z, G, and R representan respectivamente la admitancia
de los stubs para la permtividad, la impedancia de los stubs para la permeabilidad,
la admitancia de los stubs para la conductividad eléctrica, y la impedancia de
los stubs para la conductividad magnética. Concretamente, esos parámetros se
expresan como:

Zx =
2µxµ0

Z0∆t
∆y∆z
∆x
−2, (6.7a)

Zy =
2µyµ0

Z0∆t
∆x∆z

∆y
−2, (6.7b)

Yz =
2εzε0

Y0∆t
∆x∆y

∆z
−4. (6.7c)

donde ∆t es el paso temporal del método, mientras que ∆x, ∆y, y ∆z representan
las dimensiones del nudo en todas las direcciones.

So y sus compañeros mostraron que invertir la naturaleza capacitiva y induc-
tiva de los stubs permite la simulación de metamaterial, es decir medios con ε≤ 1
and µ ≤ 1, a través de modificaciones importantes de la versión usual [43]. Sin
embargo, demostramos que modificaciones tan drásticas no son necesarias en re-
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alidad [15, 16], invertir las bobinas y los condensadores afecta solamente a Eqs.
6.7 que hay que multiplicar por el factor −1

4∆t2ω2 (ω siendo la frecuencia angu-
lar) y que se convierten entonces en:

Zx =−1
4

∆t2
ω

2
[

2µxµ0

Z0∆t
∆y∆z
∆x
−2
]
, (6.8a)

Zy =−1
4

∆t2
ω

2
[

2µyµ0

Z0∆t
∆x∆z

∆y
−2
]
, (6.8b)

Yz =−1
4

∆t2
ω

2
[

2εzε0

Y0∆t
∆x∆y

∆z
−4
]
. (6.8c)

Un análisis profundo de este procedimiento muestra que la dispersión introducida
en la malla con este tratamiento sigue un modelo de tipo Drude (véase sección
2.6).

6.3 Materiales compuestos

Los materiales compuestos comenzaron a estudiarse por primera vez hace mas
de 150 años. En concreto, las primeras trazas datan de 1837, cuando Faraday pro-
puso un modelo de dieléctrico que consistı́a en una serie de glóbulos metálicos
separados por un material aislante. Desde entonces, el interés en estos materiales
ha ido creciendo. Fı́sicos conocidos como Mossotti, Clausius, o Maxwell, abor-
daron el problema a nivel teórico [45]. Hoy en dı́a, el problema no es solo de
interés fundamental sino también práctico, dado que los materiales compuestos
se emplean de manera masiva en la industria. El éxito de los materiales com-
puestos radica en la posibilidad que éstos ofrecen para obtener propiedades difer-
entes en función de las distintas fases que constituyen la mezcla. Dadas las ana-
logı́as matemáticas, todo lo que se puede concluir para una mezcla es válido
tanto para la constante dieléctrica, como para la permeabilidad magnética, con-
ductividad eléctrica, conductividad calorı́fica y difusión [46]. En este estudio,
sin embargo, estamos interesados únicamente en la constante dieléctrica o per-
mitividad de medio. Debido a la complejidad del problema, especialmente en
mezclas aleatorias, los materiales compuestos no han podido ser estudiados me-
diante métodos numéricos hasta recientemente, cuando ordenadores de alto poder
computacional han estado al alcance de la mano. En este capı́tulo, TLM se utiliza
para el modelado materiales compuestos.
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Las teorı́as de Maxwell-Garnett (MG) [48] y Bruggeman [49] son, sin duda,
los dos modelos más conocidos para la predicción de la permitividad efectiva
en términos de la permitividad εi, y fracción de volumen, pi, de cada fase de la
mezcla. Según MG, la permitividad efectiva de una mezcla compuesta por dos
fases viene dada por

εe f f − ε2

εe f f +(d−1)ε2
= p1

ε1− ε2

ε1 +(d−1)ε2
, (6.9)

mientras que Bruggeman establece que

p1
ε1− εe f f

ε1 +(d−1)εe f f
= p2

ε2− εe f f

ε2 +(d−1)εe f f
(6.10)

se cumple para la misma mezcla, siendo d la dimensionalidad del problema.
Otro tipo de enfoque consiste en determinar el rango de valores posibles para

la permitividad efectiva, en lugar de intentar obtener un valor preciso. Por ejem-
plo, los lı́mites de Wiener vienen dados por [50]:

εe f f ,max = p1ε1 + p2ε2, (6.11a)

εe f f ,min = (
p1

ε1
+

p2

ε2
)−1. (6.11b)

y los de Hashin-Shtrikman (HS) por [53]:

εe f f ,max = ε+ +
p−

1
ε−−ε+

+ p+
dε+

, (6.12a)

εe f f ,min = ε−+
p+

1
ε+−ε−

+ p−
dε−

, (6.12b)

donde ε+ y ε− son los valores máximo y mı́nimo de la permitividad para las fases
individuales, respectivamente; mientras que los valores de p+ y p− representan
la fracción de volumen del medio cuya permitividad está dado por ε+ and ε−, re-
spectivamente.

En primer lugar, se consideron inclusiones circulares de dilectrico insertadas
en un medio homogéneo. Se realizaron cientos de simulaciones con TLM para
obtener el comportamiento estadı́stico de las muestras. Este estudio nos permitió
demostrar que no existe teorı́a capaz de predecir el valor especı́fico de la permitivi-
dad efectiva en un medio aleatorio. Todos los valores pertenecientes al intervalo
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definido por los lı́mites de Wiener son posibles, sin embargo, el valor exacto re-
sulta inaccesible con métodos analı́ticos. Por tanto, es necesario utilizar métodos
numéricos para obtener dicho valor exacto.

Si la concentración de inclusiones es constante, las permitividades efectivas
obtenidas para las distintas configuraciones internas siguen una distribución gaus-
siana con un valor medio y una desviación standard. Los lı́mites HS han sido
considerados los más restrictivos que pueden obtenerse a partir de las permitivi-
dades y fracción de volumen de las fases puras. Sin embargo, nuestros resultados
han puesto esto en duda, puesto que observamos un número no despreciable de
geometrı́as en las cuales se sobrepasan dichos lı́mites debido al solapamiento entre
las inclusiones. Además, parece que mientras más pequeñas son las inclusiones,
menor es la desviación standard de la distribución. En otras palabras, la permi-
tividad efectiva de un material compuesto por pequeñas inclusiones distribuidas
de manera aleatoria está más cerca del valor medio caracterı́stico. Por tanto, si
uno conoce la fracción de volumen de estas inclusiones pequeñas, será capaz de
predecir con bastante precisión la permitividad efectiva de la mezcla, independi-
entemente como se organicen inclusiones. Esta conclusión tiene un gran interés
en el diseño y manufacturación de dieléctricos compuestos. Si se considera todo
el intervalo de fracciones de volumen, observamos que las predicciones teóricas
funcionan bien para bajas concentraciones, pero ni Bruggeman ni MG son capaces
de describir con precisión el comportamiento del sistema a altas concentraciones.
Sin embargo, Bruggeman parece acercarse más a los resultados numéricos, espe-
cialmente en el caso de inclusiones con permitividad menor que la del medio que
las contiene.

En segundo lugar, se estudió el efecto del tamaño de las inclusiones εe f f . Para
ello, se consideraron materiales con distintos tipos de inclusiones periódicas. Ob-
servamos que, si la concentración de inclusiones no es demasiado alta, las mezclas
pueden describirse de manera bastante precisa con la fórmula de MG, independi-
entemente de la forma de las inclusiones. Cuando la concetración de inclusiones
aumenta, εe f f diverge del comportamiento MG, además, el grado de divergencia
depende de la geometrı́a de las inclusiones. Una vez que se excede el lı́mite de
solapamiento, εe f f muestra un cambio drástico hacia los lı́mites de Wiener. Esto
puede explicarse mediante la similitud existente entre distribuciones plano par-
alelas y las geometrias con solapamiento. A diferencia de las otras geometrı́as,
las inclusiones cuadradas tienen la peculiaridad de que siguen la fórmula de MG
independientemente de la fracción de volumen.
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Figure 6.4: Desde el espacio original hasta el espacio distorsionado.

6.4 Cloaks: dispositivos de invisibilidad

El cloak de invisibilidad fue propuesto por Pendry y sus colaboradores [61].
Fundamentalmente, la idea es crear un agujero en cual toda radiación electro-
magnética esta excluida. Con este fin, la radiación electromagnética ha de estar
conducida alrededor de la región que hay que hacer invisible, lo que parece ser en
contradicción con el principio de Fermat estipulando que cualquier onda electro-
magnética que empieza a propagarse en una cierta dirección debe seguir esta lı́nea.
Sin embargo, se puede imaginar otro espacio relacionado con el original por una
transformación matemática. Consideramos un entramado que define un volumen
oculto, como se representa en Fig.6.4. En consecuencia, toda onda propagándose
en este entramado distorsionado contorna el espacio vacı́o. Lo importante es de-
terminar lo que ocurre a las ecuaciones de Maxwell en tal transformación. Resulta
que las ecuaciones tienen exactamente la misma forma [62], pero las constantes
dieléctricas y magnéticas son multiplicadas por un factor dado. Por lo tanto, trans-
formar las propiedades del material es equivalente a distorsionar el espacio origi-
nal. Esto significa que el espacio fuera del volumen disimulado se puede substituir
por un material nuevo: el cloak. Merece la pena subrayar que los parámetros con-
stitutivos del cloak, sean lo que sean sus complejidad, son consistentes con las
leyes fı́sicas. Usando una transformación lineal, estos parámetros constitutivos de
un cloak 2D vienen dados por:

εr = µr =
r−R1

r
, (6.13a)

εϕ = µϕ =
r

r−R1
, (6.13b)

εz = µz = [
R2

R2−R1
]2

r−R1

r
. (6.13c)
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Figure 6.5: Amplitud total (parte interior del cuadro) y dispersadas (parte exterior
del cuadrado) del campo eléctrico por un cilindro conductor perfecto rodeado de
un cloak.

Para el cloak 3D, las formulas

εr = µr =
R2

R2−R1
(
r−R1

r
)2, (6.14a)

εθ = µθ =
R2

R2−R1
, (6.14b)

εϕ = µϕ =
R2

R2−R1
, (6.14c)

se obtienen. En esta formulas, R1 y R2 son respectivamente las interfaces interna
y externa del cloak. Para el cloak 2D, podemos ver que εϕ y µϕ tienden a infinito.

Simulaciones numéricas tienen un papel importante puesto sus capacidades
para predecir y confirmar fenómenos. Emplear los nudos TLM cartesianos es
problemático porque los tensores de permitividad y permeabilidad (Eqs. 6.13 y
6.14), que son diagonal en coordenadas cilindricas o esfericas, se vuelven no di-
agonal en coordenadas cartesianas. TLM no puede procesar tensores no diagonal
de manera trivial, y tuvimos que usar una técnica, propuesta por Huang [78], que
consiste en substituir el medio anisótropo por una estructura alternante de ca-
pas concéntricas de materiales isótropos y homogéneo. Con esta aproximación, el
mapa de intensidad del campo eléctrico por un cloak 2D se puede observar en Fig.
6.5. Claramente, se logra el efecto cloaking aunque se puede notar un dispersión
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Figure 6.6: Mapa del campo magnético (×10−3). Cuatro regiones se observan:
(1) Cilindro conductor, (2) Cloak, (3) Vacı́o, (4) Región de campo dispersado.

no nula hacia adelante.
Si nudos directamente cilı́ndricos se emplean en lugar de los habituales nudos

cartesianos, el resultado mejora mucho, como se puede observar en Fig. 6.6, en la
cual se puede ver que la dispersión es casi nula en todas las direcciones. En este
ultimo ejemplo, la polarización de la onda incidente era TM.

En lo que concierne las propiedades de la estructura de cloaking, los resultados
que hemos encontrado son:

1. La frecuencia de una onda casi-monocromática sufre un desplazamiento
hacia el azul en la dirección hacia adelante después de haber cruzado un
cloak dispersivo 2D. Además el desplazamiento de frecuencia depende del
ángulo de observación.

2. Puesta la dependencia de los parámetros constitutivos del cloak, la veloci-
dad de la onda dentro del dispositivo es menor cerca de su interfaz interna.
Por lo tanto, mientras que la fase de la señal se conserva, su envolvente
muestra un retardo temporal al alcanzar un plano ubicado a una distancia
constante de la estructura.

3. Hemos verificado que un material, un anti-cloak, puede destruir el efecto
de un cloak casi perfecto. Por otra parte, con TLM, se puede asumir per-
mitivad y permeabilidad que tienden a infinito, lo que nos permite sim-
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ular la situación ideal. Los resultados numéricos muestran que el anti-
cloak ya no es efectivo en presencia de una capa con εϕ,µϕ→ ∞, incluso
si leves perdidas estan incorporado al material. Dicho resultado se ha de-
mostrado matemáticamente para un medio con perdidas utilizando un mod-
elo analı́tico simple. Sin embargo, el teorema de unicidad [80] ha permitido
generalizar este descubrimiento al caso de un medio no conductor.

6.5 Conclusiones generales

Las simulaciones numéricas realizadas en el marco de esta Tesis Doctoral han
permitido entender diversos problemas relacionados con la interacción entre on-
das electromagneticas planas y medios complejos. El trabajo presentado en este
manuscrito se divide en dos categorı́as: contribuciones al método numérico TLM
en sı́ mismo y aplicaciones de dicho método a sistemas fı́sicos.

• En el capı́tulo 2, no solo se presenta el método numérico TLM en detalle,
también se muestran las mejoras que se han hecho en el método para adap-
tarlo a las caracterı́sticas de ciertos medios complejos, que no podı́an ser
estudiados con el método original.

• En los capı́tulos 3 y 4, se emplean estas nuevas herramientas numéricas
para determinar la constante dielectrica efectiva de materiales compuestos
y estudiar estructuras de cloaking respectivamente.

En primer lugar, se propone una nueva visión de los nudos TLM bidimen-
sionales. En este nuevo enfoque, los nudos no se representan por un circuito
simple, sino por un sistema de circuitos acoplados, cada uno de los cuales de-
scribe una componente particular del campo electromagnetico. Hasta ahora, este
concepto habı́a sido aplicado solo al caso tridimensional, es decir, al Symmetrical
Condensed Node (SCN). Este tratamiento confiere gran versatilidad al nudo, por
ejemplo, la posibilidad de tener en cuenta las perdidas eléctricas o magnéticas.
El nuevo nudo bidimensional, junto con el nodo SCN, han sido desarrollados
para permitir el modelado de metamateriales. Las modificaciones necesarias, sin
embargo, no añaden ninguna complejidad extra al método. Además de este desar-
rollo, hemos calculado la expresión de la dispersión inherente a la malla.

El método TLM se empleó para determinar la constante dieléctrica de mate-
riales compuestos. De las las distintas conclusiones extraı́das de este estudio, la
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más significativas son: i) no existe ninguna teorı́a capaz de predecir el valor es-
pecı́fico de la permitividad efectiva, ii) es más fácil predecir dicho valor en gotas
pequenas que en gotas grandes y iii) la teorı́a de Maxwell-Garnett permite de-
scribir distribuciones periódicas de inclusiones cuadradas para cualquier fracción
de volumen.

Se ha demostrado que el TLM es capaz de modelar de manera precisa las
estructuras de cloaking. Aprovechando esta potente herramienta, hemos sido ca-
paces de investigar fenómenos tales como desplazamientos en frecuencia o re-
tardos temporales de la onda incidente al atravesar el cloaking. Además, hemos
demostrado que el TLM puede utilizarse para modelar materiales exóticos con
valores infinitos de permitividad/permeabilidad. La componente angular de los
parámetros constitutivos de un cloak ideal cilı́ndrico tienen que ser infinitos en la
superficie interna de la corteza que constituye el cloak. Según esto, hemos de-
mostrado que no existe un anticloak capaz hacer que un cloak perfecto pierda su
propiedad de hacer invisble a un objeto.
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