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que me ha permitido realizar el gran esfuerzo y dedicación que un doctorado

requiere. Quiero destacar a mi hermano Antonio, mis hermanas Luisa y Loly y,

muy especialmente, a mis padres. Una vida no es suficiente para agradecerles

todo lo que me han dado. Y quiero acabar agradeciendo, de una manera también

muy especial, a mi novia, Antonia, todo el cariño y el apoyo incondicional que

me ha brindado cada d́ıa durante todo este tiempo.



Acknowledgements

I would like to take the opportunity to acknowledge the support and dedication

to all those people who, in one way or another, helped me during my thesis.

Although, over the last five years, too, I have often had reasons to be truly

grateful to them.

Of course, I should begin by thanking my tutors Andrés Cano and Seraf́ın

Moral for their work and for constantly transferring to me the necessary teachings,

knowledge and passion to finish this wonderful adventure which has culminated

in my doctoral thesis. I am grateful for their patience, effort and hard work. All

this time, I have felt fortunate to have worked with people of their professional

and personal caliber.

I would also like to sincerely thank the people belonging to the research group

“Uncertainty Treatment in Artificial Intelligence” and the projects “Elvira”, “Al-

gra” and “Programo”, for the support and example they transmitted to me in

many different ways and, especially, for making me feel like another member of

the group from the very start. I am especially indebted to Manuel Gómez and to
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to thank Joaqúın Abellán for his teaching during our numerous collaborations.

It has all been of inestimable help.

Thanks should also be given to doctors Joemon Jose and Hideo Joho of Glas-

gow University, who treated me so well throughout my research stay at this

university. In spite of being there for just a few months, it was one of the best

experiences of my doctorate. I wish to thank them sincerely for their dedication

and attention and for all their valuable teachings. A very important part of this

thesis is the result of the different work I did with them.

From a personal point of view, I have received emotional support from many

people, friends, colleagues from the department and family members. With them

I shared moments of doubt and dejection, as well as much joy and good company,

which is really what gave me the strength required to write a doctoral thesis. Spe-

cial thanks to my brother Antonio, my sisters Luisa and Loly and, in particular,



to my parents. A lifetime is insufficient to thank them for all they have given me.

I would like to finish by giving my heartfelt thanks to my girlfriend, Antonia, for

all the care and unconditional support she gave me every single day.



Contents

I Introduction 1

1 Introduction 2

1.1 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . 4

1.1.1 Methodological Advances in Supervised Classification . . . 4

1.1.2 Applications to Genomics and Information Retrieval . . . 5

1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . 5

2 Supervised Probabilistic Classification 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Semi-Naive Bayes Classifiers . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Selective Naive Bayes . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Pazzani’s semi-Naive Bayes . . . . . . . . . . . . . . . . . 12

2.2.4 Tree Augmented Naive Bayes (TAN) . . . . . . . . . . . . 15

2.2.5 K-Dependence Bayesian Classifier . . . . . . . . . . . . . . 16

2.2.6 Average over One-Dependence Estimators (AODE) . . . . 18

2.3 Decision Trees and Ensembles . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Ensembles of Decision Trees . . . . . . . . . . . . . . . . . 22

2.4 Feature Selection in Supervised Classification . . . . . . . . . . . 27

2.4.1 Filter Methods . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Wrapper Methods . . . . . . . . . . . . . . . . . . . . . . . 29

viii



CONTENTS

II Methodological Advances 31

3 A Memory Efficient Semi-Naive Bayes Classifier with Grouping

of Cases 32

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 A Semi-Naive Bayes Classifier with Grouping of Cases . . . . . . 35

3.2.1 An initial overview to the approach . . . . . . . . . . . . . 35

3.2.2 Joining criteria . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Grouping process . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . 46

3.3 Memory Space Analysis of Classification Models . . . . . . . . . . 55

3.3.1 Data independent memory space classifiers . . . . . . . . . 55

3.3.2 Data dependent memory space classifiers . . . . . . . . . . 57

3.4 Algorithm Comparisons . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Memory space comparison . . . . . . . . . . . . . . . . . . 61

3.4.3 Classification performance comparison . . . . . . . . . . . 63

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 65

4 A Bayesian account of classification trees 67

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Bayesian Inference of Classification Trees . . . . . . . . . . . . . . 68

4.2.1 Basic Framework . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Single Classification Trees . . . . . . . . . . . . . . . . . . 70

4.2.3 Multiple Classification Trees . . . . . . . . . . . . . . . . . 71

4.3 A Bayesian approach to estimate probabilities in classification trees 72

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Bayesian Smoothing approach to estimate class probabilities 73

4.3.3 A Heuristic to define non-Uniform Dirichlet Priors . . . . . 76

4.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 77

4.4 A Bayesian random split for building ensembles of classification trees 82

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Comparison with the random forest model . . . . . . . . . 84

4.4.3 A Bayesian Random Split . . . . . . . . . . . . . . . . . . 85

ix



CONTENTS

4.4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 87

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 95

III Applications to Genomics 97

5 Introduction to Supervised Classification of Gene Expression

Data 98

5.1 An Overview of Gene Expression Data . . . . . . . . . . . . . . . 98

5.2 An Introduction to Supervised Classification of Gene Expression

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 An Overview of Diffuse Large-B-Cell Lymphoma . . . . . . . . . . 108

6 Selective Gaussian Naive Bayes Models for DLBCL Classifica-

tion 112

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 The Selective Gaussian Naive-Bayes Model . . . . . . . . . . . . . 114

6.3 A Filter-Wrapper Approach with an Abduction Phase . . . . . . . 115

6.3.1 Filter Anova phase . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 A wrapper method with an abduction phase . . . . . . . . 118

6.3.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . 120

6.4 Some Improvements in Preprocessing and Variable Elimination . . 124

6.4.1 Gene ranking in wrapper search . . . . . . . . . . . . . . . 124

6.4.2 Elimination of irrelevant genes . . . . . . . . . . . . . . . . 127

6.4.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . 129

6.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 134

IV Applications to Information Retrieval 136

7 Information Retrieval in Context 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 The Notion of Context . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Context in Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Interactive Information Retrieval . . . . . . . . . . . . . . . . . . 142

x



CONTENTS

8 Investigating the impact and dependency of contextual factors

in relevance modelling 144

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Measuring the Impact of Context . . . . . . . . . . . . . . . . . . 146

8.3 The Methodology: Divide and Conquer . . . . . . . . . . . . . . . 148

8.3.1 Representing context using aggregated relevance judgements 148

8.3.2 Conceptual categories of object features . . . . . . . . . . 150

8.3.3 Modelling contextual document relevancy . . . . . . . . . . 151

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.4.1 Overview of original studies . . . . . . . . . . . . . . . . . 163

8.4.2 Contexts and sub-groups . . . . . . . . . . . . . . . . . . . 164

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.5.1 Impact of context . . . . . . . . . . . . . . . . . . . . . . . 167

8.5.2 Context and feature categories . . . . . . . . . . . . . . . . 170

8.5.3 Effectiveness of document features . . . . . . . . . . . . . . 174

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.6.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . 179

V Conclusions 181

9 Conclusions and Future Works 182

9.1 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendixes 188

References 202

xi



List of Figures

2.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Density Functions of Normal Distribution . . . . . . . . . . . . . 10

2.3 Selective Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Pazzani’s semi-Naive Bayes . . . . . . . . . . . . . . . . . . . . . 13

2.5 Tree Augmented Naive Bayes . . . . . . . . . . . . . . . . . . . . 16

2.6 K-Dependence Bayesian Classifier . . . . . . . . . . . . . . . . . . 17

2.7 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Science and Nature Front Pages . . . . . . . . . . . . . . . . . . . 99

5.2 The Post Genomic Age . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Biochips Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Single Nucleotide Polymorphism . . . . . . . . . . . . . . . . . . . 105

5.5 Gene Regulatory Networks or Genetic Networks . . . . . . . . . . 107

5.6 Mechanisms of B-cell lymphoma pathogenesis [115]. . . . . . . . . 109

5.7 Image of microarray results obtained by Alizadeh et al. [5]. . . . . 111

7.1 Nested model of context stratification for IR [92]. . . . . . . . . . 140

8.1 Proposed approach to measure the impact of context (e.g., search

experience). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 The updating of a knowledge state through the selection of, and

subsequent exposure to, information. [31]. . . . . . . . . . . . . . 157

xii



List of Tables

3.1 Data Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Joining Criteria Evaluation . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Grouping Criteria Evaluation. . . . . . . . . . . . . . . . . . . . . 50

3.4 Performance Improvement by Grouping Introduction . . . . . . . 51

3.5 Time Reduction by Grouping Introduction . . . . . . . . . . . . . 52

3.6 Pazzani’s Semi-NB, SNB-G and NB Comparison . . . . . . . . . 52

3.7 Semi-Naive Bayes Comparison - Model Training Time (seconds) . . . 53

3.8 Data Bases Description . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Number of Kilobytes of memory needed to define the classification

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Memory space ratio respect to SNB-G . . . . . . . . . . . . . . . 63

3.11 Accuracy and log-likelihood performance . . . . . . . . . . . . . . 64

3.12 Performance comparison with low memory efficient classifiers. . . 64

3.13 Performance comparison with high memory efficient classifiers. . . 65

4.1 Data Bases Description . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Bayesian metric as Splitting Criteria . . . . . . . . . . . . . . . . 80

4.3 Bayesian Smooth Approach . . . . . . . . . . . . . . . . . . . . . 80

4.4 Non-Uniform Priors Definition . . . . . . . . . . . . . . . . . . . . 81

4.5 Data Bases Description . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Evaluating BRS ensembles with 10 Trees - Average Error . . . . . 90

4.7 Evaluating BRS ensembles with 10 Trees - Ranking Scores . . . . 90

4.8 Evaluating Random Forests with 10 Trees - Average Error . . . . 91

4.9 Evaluating Random Forests with 10 Trees - Ranking Scores . . . . 91

xiii



LIST OF TABLES

4.10 Error, Bias and Variance averaged values for ensembles with 200

trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.11 Error - Ranking Scores . . . . . . . . . . . . . . . . . . . . . . . . 93

4.12 Bias - Ranking Scores . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.13 Variance - Ranking Scores . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Mean number of cases classified in each group, using only the

Anova phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Mean number of cases classified in each group, using the two phases.122

6.3 Number of cases classified in each group with Wright’s classifier [189]123

6.4 Baseline Results using the whole set of genes. . . . . . . . . . . . 130

6.5 Evaluation of Algorithm LFSS with three different gene rankings.131

6.6 Evaluation of Algorithm LFSS and Algorithm LFSS-VE . . 131

6.7 Evaluation of Algorithm LFSS-VE with Anova and Accuracy Rank-

ings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 (a) Classifier of [189] (b) Approach of Section 6.3 . . . . . . . . . 133

6.9 Classifier of Algorithm LFSS-VE with Accuracy Rankingwith cut-

off for unclassified equal to 0.9 . . . . . . . . . . . . . . . . . . . . 133

8.1 Categories of query-independent document features. . . . . . . . . 150

8.2 Members of document features. . . . . . . . . . . . . . . . . . . . 152

8.3 Contexts and sub-groups. . . . . . . . . . . . . . . . . . . . . . . 165

8.4 Number of relevance judgements and documents. . . . . . . . . . 166

8.5 Overall effect of context. . . . . . . . . . . . . . . . . . . . . . . . 168

8.6 Performance of feature categories. . . . . . . . . . . . . . . . . . . 171

8.7 Effective variables based on all context groups. . . . . . . . . . . . 174

1 Number of Kilobytes of memory needed to define the classification

models (Full expanded Table 3.9 of Chapter 3) . . . . . . . . . . . . . . . . 189

2 Memory space ratio respect to SNB-G (Full expanded Table 3.10 of Chapter 3)190

3 Accuracy Performance (Full expanded Table 3.11 of Chapter 3) . . . . . . . 191

4 Log-likelihood Performance (Full expanded Table 3.11 of Chapter 3) . . . . . 192

5 Detailed Accuracy Rate (Full expanded Table 4.2, 4.3 and 4.4 of Chapter 4) . . 193

6 Detailed Log-likelihood (Full expanded Table 4.2, 4.3 and 4.4 of Chapter 4) . . 194

xiv



LIST OF TABLES

7 Detailed Error for BRS ensembles M=1, 3; and Trees=10, 50, 100,

200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . . 195

8 Detailed for Error BRS ensembles M=5, Log N; and Trees=10, 50,

100, 200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . 196

9 Detailed Bias for BRS ensembles with M=1, 3; and Trees=10, 50,

100, 200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . 196

10 Detailed Bias for BRS ensembles M=5, Log N; and Trees=10, 50,

100, 200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . 197

11 Detailed Variance for BRS ensembles with M=1, 3; and Trees=10,

50, 100, 200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . 197

12 Detailed Variance for BRS ensembles M=5, Log N; and Trees=10,

50, 100, 200; (BRSM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . 198

13 Detailed Error for RF ensembles M=1, 3; and Trees=10, 50, 100,

200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . . . 198

14 Detailed Error for RF ensembles M=5, Log N; and Trees=10, 50,

100, 200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . 199

15 Detailed Bias for RF ensembles M=1, 3; and Trees=10, 50, 100,

200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . . . 199

16 Detailed Bias for RF ensembles M=5, Log N; and Trees=10, 50,

100, 200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . 200

17 Detailed Variance for RF ensembles M=1, 3; and Trees=10, 50,

100, 200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . . . 200

18 Detailed Variance for RF ensembles M=5, Log N; and Trees=10,

50, 100, 200; (RFM
Trees) - Section 4.4.4 . . . . . . . . . . . . . . . . 201

xv



Part I

Introduction

1



Chapter 1

Introduction

Supervised classification is an important field of data mining and machine learning

research. It offers a wide range of different approaches to the problem of predicting

the class of an object based on some indirect description of this object (i.e.,

automatically deciding whether an email is spam or not, by analyzing the words

it contains).

Like many the developments in machine learning and data mining, Advances

in supervised classification have made the leap from scientific papers in journals

to real world applications of information processing and analysis. Nowadays,

the spectrum of applications in which supervised classification models play a

fundamental role is highly significant and includes very different areas such as

spam email detection or analysis of gene expression data.

The range of available supervised classification models is actually huge. Each

one has its strong and weak points depending on the characteristics demanded

from them. Classification performance is one the most required characteristics

along with good computational efficiency. In this respect, the naive Bayes classi-

fier [54] and decision trees [27; 148] are very well known for their good trade-off

between classification performance and time and memory efficiency. To the con-

trary, ensembles of models such as AdaBoost [64], Bagging [23] or AODE [176]

stand out for their high performance but, in general, they involve higher compu-

tational resources.

Another relevant point is their interpretability or the information they pro-

vide on the intrinsic characteristics of the classification problem. This is a key

2



characteristic, because in many applications the most important objective in-

volves extracting relevant knowledge from the classification problem (i.e. which

genes are correlated with the survival rate of a cancer treatment). For example,

those that perform a feature selection could provide information regarding which

object’s attributes are the most useful in the prediction task. Likewise, those

based on Bayesian network models such as the Tree Augmented Network [68] or

Sahami’s K-Dependence classifier [155] offer very useful information on interde-

pendence relationships among predictive attributes. One of the main reasons for

the good reputation of decision trees is that they can be interpreted easily and

naturally. To the contrary, those based on ensembles of models hardly provide

any interpretable information, as they mainly act as a black-box.

Looking at the specific characteristics of the classification problem, we can

also find many different situations in which the performance of classifiers can

be affected. For example, Genomic problems usually involve a high number of

predictive attributes or genes, along with a low number of samples from which the

model must be inferred. Text classification problems also involve a high number

of predictive features (i.e. words) but, in this case, the number of samples can be

extremely high if we are dealing with data collections from the World Wide Web.

This is what No Free Lunch Theorem [186] means: no classification model can

claim to be the best one for all possible classification problems. Thus, when a new

classification problem is faced, it is necessary in many cases to make some specific

modification to the basic scheme in order to adapt the model to the particularities

of the problem and to achieve a good classification performance.

The contributions of this thesis are based upon the above mentioned fact, i.e.,

that there is room to propose new classification models or to improve or adapt

previously established ones on observing the particularities of specific supervised

classification issues. This thesis proposes a set of new supervised classification

models that attempt to behave optimally under the particular conditions in which

they are applied.
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1.1 Contributions of the Dissertation

1.1 Contributions of the Dissertation

1.1.1 Methodological Advances in Supervised Classifica-

tion

Two contributions are presented in this part of the dissertation: a semi-Naive

Bayes classifier that attempts to present high memory efficiency in the codification

of the conditional probability distribution; and, secondly, we expose a Bayesian

account of the problem of inferring classification trees.

Semi-Naive Bayes classifiers represent a wide and well studied family of prob-

abilistic approaches to this problem. Research in this area has focused on im-

proving the classification accuracy of these models. However, when some of these

models are intended to be integrated in real software systems, other aspects aside

from their classification performance should be considered. In Chapter 3, a new

semi-Naive Bayes classifier is proposed whose main aim is to maintain a com-

petitive classification performance while demanding few memory resources. We

claim that this model is particularly suited for integration into the software of

memory-limited devices.

Single classification trees and ensembles of classification trees represent an-

other important family of models of supervised classification. In Chapter 4, we

provide a Bayesian account of the problem of inferring this kind of models from

a given dataset and address two particular issues related with these. Concretely,

the problem of achieving well calibrated probability estimates of the class distri-

bution in single classification trees is dealt with in Section 4.3. In an attempt to

solve this problem, we employ a Bayesian approach that weights different rules

of the induced tree in order to simulate a post-pruning process. Section 4.4 is

devoted to ensembles of classification trees. In particular, we evaluated a random

Bayesian split operator to build ensemble of trees. This method is inspired by

one of the state-of-the-art tree ensemble models, Random Forest [26]. The aim of

this new approach is to overcome the dependency of the random forest classifier

on a particular parameter.

4



1.2 Overview of the Dissertation

1.1.2 Applications to Genomics and Information Retrieval

This part of the dissertation starts with the application of supervised classification

techniques to Genomics. Concretely, the problem faced here is the classification

of gene expression data extracted from tumoral tissues affected by diffuse large

B-Cell lymphoma. The particularities of this problem arise from the high number

of predictive variables or genes involved, around eight thousand, along with the

low number of samples, around two hundred. The problem consists of making

accurate predictions and of showing which genes are more relevant for this task

and can contain some biological information, and this must be achieved despite

the high dimensionality and the low number of samples of this kind of data. Two

supervised classification models especially designed for these issues are presented

and evaluated.

The second application is related to the information retrieval field. Most ap-

plications of supervised classification techniques in this field involve document

text classification problems and, recently, document ranking problems. However,

this application focuses on a different area of information retrieval: the so-called

information retrieval in context. More concretely, this part of the dissertation

studies the role played by the so-called contexts in information retrieval tasks.

Supervised classification models are employed in the core of a proposed method-

ology to measure the effect and dependency of contextual factors in contextual

relevance modelling. Once again, the particularities of these data sets obliged us

to adapt and design specific approaches for addressing this classification problem.

1.2 Overview of the Dissertation

The dissertation is arranged into five parts. The first, Part I, is an introduction

containing two chapters. The first chapter, Chapter 1, provides an introduction

to the dissertation detailing its main contributions. The second chapter, Chapter

2, is fully devoted to the definition and a bibliographical revision of supervised

classification models. The basic notation used throughout the dissertation is also

detailed here.
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The second part, Part II, presents the two methodological contributions of

this thesis. The memory efficient semi-Naive Bayes is presented in Chapter 3

while the Bayesian account of classification trees is depicted in Chapter 4.

The third part, Part III, contains the two chapters dedicated to the applica-

tions of classifiers to Genomics problems. The first chapter, Chapter 5, gives an

introduction to gene expression data and the second one, Chapter 6, details the

proposed approaches for the diffuse large B-Cell lymphoma classification problem.

Part IV focuses on information retrieval applications. Once again, two chap-

ters are included in this part. One of these, Chapter 7, provides an introduction

to information retrieval in context and Chapter 8 presents the methodology pro-

posed for measuring the effect and dependency of contextual factors in relevance

modelling.

Finally, Part V contains the last chapter, in which the main conclusions of the

dissertation are discussed, as well as future research and publications supporting

the contributions of this thesis.
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Chapter 2

Supervised Probabilistic

Classification

2.1 Introduction

The supervised classification problem can roughly be expressed as the prediction

of a target feature of an object, given another set of features of the same object.

In the probabilistic approach, all features are considered as random variables and

their probability distribution must be inferred from a limited sample, the training

set, and then the goodness of this estimate tested in a different sample set, the

test set.

A random variable is a function that associates a numerical value with ev-

ery outcome of a random experiment. Let C denote the random variable to be

classified or to be predicted with kc mutually exclusive and exhaustive classes

{c1, ..., ck}; this variable will also be known as the class. Let X = (X1, ..., Xn)

represent an n-dimensional random variable in which each Xi with i = 1, ..., n

is an unidimensional random variable. X corresponds to the set of features of

the classification problem. Each feature is associated with one variable. An un-

labeled instance of X is represented by x = (x1, ..., xn) and (c,x) represents a

labelled instance, that is to say, it is an assignation of X and the associated class

of which has been established. In general, we use upper-case letters to denote

random variables, lower-case letters to denote the values of the random variables

and boldface letters to represent a vector of random variables or instances.
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2.2 Semi-Naive Bayes Classifiers

Finally, let D = {~c, ~x} denote a dataset with T labelled instances (cj,xj) with

j = 1, ..., T . D will be the dataset from where the classification model will be

inferred and evaluated. We also denote the mean number of values per attribute

in X as υ.

2.2 Semi-Naive Bayes Classifiers

Bayesian classifiers [54] are well known and studied probabilistic classification

methods. They predict the class label for an unlabelled instance x = (x1, ..., xn)

using the probability of the variable C conditioned to the feature vector X. This

probability is estimated by applying Bayes’s Theorem as follows:

P (C|X1, ..., Xn) =
P (C)P (X1, ..., Xn|C)∑

Y P (Y|C)P (C)
∝ P (C)P (X1, ..., Xn|C) (2.1)

The class label with the maximum a posteriori probability is considered as

the predicted class: argmaxci
P (x1, ..., xn|ci)P (ci). However, an accurate estima-

tion of P (X1, ..., Xn|C) is by no means an easy task. This distribution has an

exponential number of parameters in the number of variables and the number of

samples T is usually much lower. In order to deal with this problem, assump-

tions regarding independencies among the variables Xi have to be made. Naive

Bayes [54] is a simple approach assuming conditional independence among vari-

ables given the class C. Often, this assumption is unrealistic and violated by

the classification features. In an attempt to relax this assumption and to tackle

the problem of estimating the large conditional probability distribution, a new

family of models known as semi-Naive Bayesian classifiers has arisen, each one

presenting strong and weak points. Throughout the next section, the best known

models of this wide family are presented. But first, by way of an introduction,

the classic Naive Bayes classifier is detailed.
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2.2 Semi-Naive Bayes Classifiers

2.2.1 Naive Bayes

Naive Bayes (NB) [54; 118] is the simplest and best known approach. It assumes

that all variables are conditionally independent from the class variable C. Hence,

NB estimates the probability as follows:

P (C|X1, ..., Xn) ∝ P (C)
n∏

i=1

P (Xi|C)

In spite of this strict and unrealistic assumption, it usually exhibits very com-

petitive performance. Some attempts have been made to explain this. Domingos

[50] found some optimality conditions for the NB. The bias-variance decomposi-

tion of the error [187] also throws more light on the subject, claiming that the

competitive error of NB is mainly due to their low variance component [195].

C

X 1 X 2 X n. . . . . . . . . .

Figure 2.1: Naive Bayes

The following are the basic complexity measures:

• Training Time Complexity: O(nT ) (as the time needed to build the model).

• Classification Time Complexity: O(nkc) (as the time needed to classify a

unlabelled instance).

• Training Space Complexity: O(nυkc) (as the memory space required to

build the model).

• Model Space Complexity: O(nυkc) (as the memory space required to store

the trained model).
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Gaussian Naive Bayes

When the domain of the data we work with is continuous and we do not want to

lose information through discretization preprocessing, the variables involved must

be considered as continuous random variables. In the Bayesian Networks field,

this problem is tackled with the use of Gaussian Networks [160; 182]. In this kind

of probabilistic graphical model, the joint density distribution of the continuous

variables, given the discrete ones, is modelled as a multivariate Gaussian density.

For the Naive Bayes model, this is seen in the assumption that the variables are

normally distributed given the class variable. That is to say, the a posteriori

probability of the class is evaluated with the following equation:

P (C = cj|x) ∝ p(cj) ·
n∏

i=1

f(xi|C = cj) ∝ p(cj) ·
n∏

i=1

1√
2πσi

cj

· exp(−(xi − µi
cj

)2

2σi
cj

)

where µi
cj

and σi
cj

are the mean and the deviation values, respectively, of Xi when

C = cj.

Figure 2.2: Density Functions of Normal Distribution

This model has been broadly analyzed and applied; see the following references

for a complete review: [42; 51; 99; 130].
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2.2.2 Selective Naive Bayes

NB uses the whole set of attributes to make predictions. But when two attributes

are strongly correlated, NB overweights their particular predictions and, at the

same time, reduces the influence of the other ones, which can cause bias in pre-

dictions. Removing the correlated and irrelevant attributes may improve the

performance of the NB model.

Langley et al. [119] proposed two heuristic search methods for selecting an

optimal subset of attributes where the goodness of that subset was evaluated with

the leave-one-out cross validation error of the NB with these attributes:

Forward Sequential Selection (FSS): It starts with an empty set of attributes,

and so the Bayesian classifier without attributes simply classifies all sam-

ples into the most frequent class in the data. Subsequently, each attribute

not used in the current classifier is evaluated as a new attribute with a

leaving-one-out cross validation. The best one, in terms of classification

accuracy, is selected and the process is iteratively repeated until no im-

provement remained in the error with the inclusion of any of the available

attributes.

Backward Sequential Elimination (BSE): This approach starts with a Bayesian

classifier with all attributes. Each attribute used is then evaluated and the

one with the best performance is removed. Once again, the process is itera-

tively repeated until there is no improvement in the error with the removal

of any of the attributes.

Denoting Xs = {Xs1 , ..., Xsp} to the final subset of selected features, the

prediction is made assuming conditional independence among these attributes

given the class variable:

P (C|X1, ..., Xn) ∝ P (C)

p∏
i=1

P (Xsi
|C)

The space and time complexity measures are the following [195]:

• Training Time Complexity: O(n2Tkc)
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C

 X 1 X 3 X 4

C

 X 1 X 2 X 3 X 4

Figure 2.3: Selective Naive Bayes

• Classification Time Complexity: O(nkc)

• Training Space Complexity: O(nT + nυkc)

• Model Space Complexity: O(nυkc)

2.2.3 Pazzani’s semi-Naive Bayes

One way to deal with two dependent attributes is to remove one of them as in

the previous model. Another approach would be to create compound attributes.

Pazzani’s semi-Naive Bayes [137] is based on a joining operation applied to at-

tributes that attempts to relax the naive Bayes independence assumption creating

new compound variables as a Cartesian product of two attributes. Assuming we

have a classification problem where X = {X1, X2, X3} and the class variable is

C. If the independence assumption given the class is not maintained for X1 and

X3, a better approximation for the Equation 2.1 shall be:

P (C = c|X1 = x1, X2 = x2, X3 = x3) ∝

∝ P (C = c)P (X2 = x2|C = c)P (X1 = x1, X3 = x3|C = c)

where (X1 × X3) could be considered as a single variable that maintains the

assumption of independence in relation to X2 given C. That is to say, this
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2.2 Semi-Naive Bayes Classifiers

approximation can be seen as a naive Bayes approach where some attributes are

built as Cartesian products of those variables that are dependent given the class.

Graphically, it can be seen that in Figure 2.4.

C

 X1 X3 X4

C

 X1 X2 X3 X4

C

 X1 X3
X4

&

Figure 2.4: Pazzani’s semi-Naive Bayes

Formally, if the resulting Cartesian product attribute set is denoted as {Joinedg1 ,

..., Joinedgh
}, while the rest of original attributes that have been neither deleted

nor joined are denoted as {Xs1 , ..., Xsp}, the probability distribution is estimated

as follows:

P (C|X1, ..., Xn) ∝ P (C)

gh∏
i=1

P (Joinedgi
|C)

sp∏
j=1

P (Xsj
|C)

The key point in this approach involves deciding which attributes should be

joined, because a joining operation causes an increment in the number of param-

eters of the model and, in consequence, deterioration in the estimates of these

parameters, along with greater risk of over-fitting. Pazzani [137] solves this prob-

lem by estimating the accuracy improvement caused by a joining operation. A

joining operation is worthwhile when there is an estimated accuracy improve-

ment for the Bayesian classifier with this new compound variable. The main

disadvantage of Pazzani’s approach is that the accuracy estimate is carried out

using a leave-one-out cross validation on the training data, which implies a high

computational cost.

Two search algorithms for model selection are evaluated by Pazzani:

Forward Sequential Selection and Joining (FSSJ): This starts with an empty

set of attributes, and so the Bayesian classifier without attributes simply
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classifies all samples to the most frequent class in the data. Subsequently,

two operations are evaluated to obtain a new classifier:

Independent Adding: An attribute not used in the current classifier is

evaluated as a new attribute conditionally independent of all other

attributes used in the classifier.

Forward Joining: An attribute not used in the current classifier is eval-

uated to be joined with each attribute currently used in the classifier.

Backward Sequential Elimination and Joining (BSEJ): This approach starts

with a Bayesian classifier with all attributes considered as conditionally in-

dependent. Two operations are then used to produce the next classifier:

Deleting: One attribute used in the current classifier is evaluated for re-

moving.

Backward Joining: A pair of attributes used in the current classifier is

replaced by a new compound attribute as joining of this pair.

In both cases, at each step, every possible operation is evaluated using a leave-

one-out estimation on the training data set. If no change makes an improvement

in the estimated accuracy, the current classifier is returned; otherwise, the most

promising change is retained and the whole process is repeated.

The experimental study of [137] shows a slight improvement in the BSEJ

scheme in relation to the FSSJ scheme, but with a huge computation cost which

prohibits the latter methodology in many classification problems. The FSSJ

scheme shows the best trade-off in terms of accuracy and efficiency.

In a subsequent study, Domingos et al. [50] attempted to show that an

entropy-based metric for measuring the degree of dependence of the attributes is

not a good criterion for joining variables. The measure used was the one consid-

ered by [112]:

D(Xi, Xj|C) = H(Xi|C) + H(Xj|C)−H(Xi, Xj|C)

14



2.2 Semi-Naive Bayes Classifiers

where H stands for the entropy with probabilities estimated from the relative

frequencies in the learning sample D.

H(Xj|C) =
∑

c

P (C = c)
∑
xj

−P (Xj = xj|C = c) · ln P (Xj = xj|C = c)

and analogously for the entropies H(Xi|C) and H((Xi, Xj)|C).

D(Xi, Xj|C) measure is zero when Xi and Xj are completely independent

given C and increases with their degree of dependence.

In an empirical study, they show that the semi-Naive Bayes method of [50]

using this entropy-based measure for the joining criterion, rather than the esti-

mated accuracy, does not significantly outperform the naive Bayes classifier in

any of eleven UCI datasets. They finally suggest that accuracy-based metrics

are better scores for joining variables than metrics that measure the degree of

dependence between attributes.

Nonetheless, the main problem of Pazzani’s approach [137] is the high-cost

associated with accuracy-based metrics, as a cross validation process is performed

at each step.

The basis complexity measures of FSSJ are the following [195]:

• Training Time Complexity: O(Tn3kc)

• Classification Time Complexity: O(nkc)

• Training Space Complexity: O(Tn + υnkc)

• Model Space Complexity: O(υnkc)

2.2.4 Tree Augmented Naive Bayes (TAN)

Friedman et al. [68] attempted to build unrestricted Bayesian Networks as clas-

sification models. But when they compared them with NB they did not find

any improvement in accuracy, and occasionally observed a deterioration. They

argued that the huge space of models in which the classifier was sought may have

been responsible for these poor results. They therefore opted for an intermediate

15



2.2 Semi-Naive Bayes Classifiers

solution restricting the space model, by considering that each attribute could only

depend, at most, upon one non-class attribute leading to a tree-like network or,

as they called it, Tree Augmented Naive Bayes. They used conditional mutual

information to find a maximum spanning tree [37] constituting the structure of

the classifier.

If the parent of each attribute Xi is indicated as π(Xi), the probability dis-

tribution is estimated as:

P (C|X1, ..., Xn) ∝ P (C)
n∏

i=1

P (Xi|π(Xi), C)

C

X1 X2 X3 X4

Figure 2.5: Tree Augmented Naive Bayes

Their basis complexity measures are the following ones [195]:

• Training Time Complexity: O(n2T + n2υ2kc + n2logn)

• Classification Time Complexity: O(nkc)

• Training Space Complexity: O(n2υ2kc)

• Model Space Complexity: O(nυ2kc)

2.2.5 K-Dependence Bayesian Classifier

Sahami [155] introduced a new kind of Bayesian classifier that attempts to gen-

eralize TAN, but not as generally as unrestricted Bayesian networks. Thus, he
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introduces the concept of k-dependent classifiers as Bayesian networks-based clas-

sifiers where each attribute depends upon the class variable and, at most, on k

attribute variables. Therefore, NB can be considered as a 0-dependent classifier,

while TAN would be a 1-dependent classifier. Thus, varying k, we can move from

simpler to more complex classifiers. Sahami [155] also provided an algorithm to

infer such models.

C

 X1 X2 X3 Xn.....

Figure 2.6: K-Dependence Bayesian Classifier

If the set of parents of each attribute Xi is indicated as πk(Xi), the probability

distribution is estimated as follows:

P (C|X1, ..., Xn) ∝ P (C)
n∏

i=1

P (Xi|πk(Xi), C)

Their basis complexity measures are the following ([195]):

• Training Time Complexity: O(n2Tkcυ
2 + n(T + υk))

• Classification Time Complexity: O(nkc)

• Training Space Complexity: O((nυ)k+1kc)

• Model Space Complexity: O(nυk+1kc)
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2.2.6 Average over One-Dependence Estimators (AODE)

AODE [176] appeared as a new approach intended to avoid problems associated

with the selection of a specific model, as had occurred with previous approaches,

while retaining the efficiency of one-dependence classifiers such as TAN. This

classifier averages the predictions of all one-dependence classifiers that can be

built with the attribute variables. At each one-dependence classifier, all attributes

depend on the class and a single fixed attribute. Thus, by changing the fixed

attribute that acts as parent of the remaining attributes, we obtain the complete

set of one-dependence models. The estimated probability is performed as follows:

P (C|X1, ..., Xn) ∝
n∑

j=1

P (C)P (Xj|C)
n∏

i=1

P (Xi|Xj, C)

It is considered as one of the state-of-the-art semi-Naive Bayes Classifiers, and

outperforms most of the models presented in this section [195].

Their basis complexity measures are listed below:

• Training Time Complexity: O(Tn2)

• Classification Time Complexity: O(n2kc)

• Training Space Complexity: O(n2υ2kc)

• Model Space Complexity: O(n2kc)
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2.3 Decision Trees and Ensembles

2.3.1 Decision Trees

Decision Trees (also known as Classification Trees or hierarchical classifiers) have

their origin in the work of [85], although it was after the publication of Quin-

lan’s ID3 in 1979 [147] when they started to play an important role in machine

learning. Subsequently, Quinlan also presented the algorithm C4.5 [148], which

is an advanced version of ID3. Since then, C4.5 has been considered as a stan-

dard model in supervised classification. They have also been widely applied as a

data analysis tool to very different fields, such as astronomy [156], biology [163],

medicine [57; 60; 103; 111; 113; 128; 183; 188], physics [22], etc.

Decision trees are models based on a recursive partition method, the aim of

which is to divide the data set using a single variable at each level. This variable

is selected with a given criterion. They ideally come to define set of cases in

which all the cases belong to the same class.

Their knowledge representation has a simple tree structure. It can be inter-

preted as a compact rule set in which each node of the tree is labelled with an

attribute variable that produces a ramification for each one of its values. The

leaf nodes are labelled with a class label, as can be seen in Figure 5.7.

X

x1
x2

x3
x4

C1 Y C2 C1

y1 y2

C2 C1

Figure 2.7: Decision Tree
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The process for inferring a decision tree is mainly determined by the followings

points:

• The criteria used for selecting the attribute to be placed in a node and

ramified.

• The criteria for stopping the ramification of the tree.

• The method for assigning a class label or a probability distribution at the

leaf nodes.

• The post-pruning process used to simplify the tree structure.

Many different approaches for inferring decision trees, which depend upon

the aforementioned factors, have been published. Quinlan’s ID3 ([150]) and C4.5

([149]), along with the CART approach of [27], stand out among all of these.

One of the most important factors for the successful construction of a decision

tree is the criterion used to select the split attribute at each node of the tree.

Herein, we described the three best known and most used ones:

Info Gain

This metric was introduced by Quinlan as the basis for his ID3 model [150] and is

based on Shannon’s entropy ([162]). This split criterion can therefore be defined

for a variable X given the class variable C in the following way:

IG(X, C) = H(C)−H(C|X)

where H(C) is the entropy of C: H(C) = −∑
j P (C = cj) log P (C = cj), with

P (C = cj) being the probability of each value of the class variable estimated in

the training dataset restricted to the cases compatible with the path from the

root to the actual node. In the same way, H(C|X) = −∑
x P (X = x)

∑
j P (C =

cj|x) log P (C = cj|x). Finally, we can obtain the following reduced expression for

the Info-Gain criterion:

IG(X, C) =
∑

x

∑
j

P (C = cj, x) log
P (cj, x)

P (cj)P (x)
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This criterion is also known as the Mutual Information Criterion and is widely

used for measuring the dependence degree between an attribute variable and the

class variable. Its weak point is that tends to select attribute variables with many

states and consequently results in excessive ramification.

Info Gain Ratio

In order to improve the ID3 model, Quinlan introduces the C4.5 model, in which

the Info Gain split criterion is replaced by an Info Gain Ratio criterion which

penalizes variables with many states. A procedure is also defined for working with

continuous variables; it is possible to work with missing data, and a subsequent

pruning process is introduced.

The Info-Gain Ratio of an attribute variable Xi for a class variable C can be

expressed as:

IGR(Xi, C) =
IG(Xi, C)

H(Xi)
.

Gini Index

This criterion is widely used in statistics for measuring the impurity degree of a

partition of a dataset in relation to a given class variable (a partition can be said

to be pure when it has only one single associated value of the class variable). The

work of Breiman et al. [27] can be mentioned as a reference for the use of the

Gini Index in decision trees.

In a given database, the Gini Index of a variable X can be defined as:

gini(X) =
∑

x

(1− P (X = x)2).

Thus, the split criterion based on the Gini Index is defined as follows:

GIx(X, C) = gini(C)− gini(C|X),

where

gini(C|X) =
∑

x

P (X = x)gini(C|x)
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2.3.2 Ensembles of Decision Trees

In many areas of science, such as Medicine or Finances, a second opinion, some-

times even more, is often sought before a decision is taken. Thus, we finally

weight the individual opinions and combine them to take a final decision that

should initially be more robust and trusted. This process of consulting ”several

experts” before making a decision has been also employed by the computational

intelligence community. This approach is known by different names such as mul-

tiple classifier systems, committee of classifiers, mixture of experts or ensemble of

classifiers, and has shown to produce much better results in comparison to single

classifiers.

In this field, ensembles of decision trees appear to present the best trade-off

among performance, simplicity and theoretic bases. The basic idea consists of

generating a set of different decision trees and combining them with a majority

vote criteria. That is to say, when an unlabelled unclassified instance arises, each

single decision tree makes a prediction and the instance is assigned to the class

value with the highest number of votes. In this way, a diversity issue appears as

a critical point when an ensemble is built [24; 25]. If all decision trees are quite

similar, the ensemble performance will not be much better than a single decision

tree. However, if the ensemble is made up of a broad set of different decisions

and exhibits good individual performance, the ensemble will become more robust,

with a better prediction capacity [72].

There are many different approaches to this problem but Bagging [23], Ran-

dom Forests [26] and AdaBoost [64] stand out as the best known and most com-

petitive.

Bagging

Breiman’s Bagging (bootstrap aggregating) [23] is one of the first cases of an

ensemble of decision trees. It is also the most intuitive and simple and performs

very well. Diversity in Bagging is obtained by using bootstrapped replicas of

the original training set: different training datasets are randomly drawn with

replacement. And, subsequently, a single decision tree is built with each training

data replica with the use of the standard approach [27]. Thus, each tree can be
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defined by a different set of variables, nodes and leaves. Finally, their predictions

are combined by a majority vote. In Algorithm 1 a pseudocode description of

this method is depicted.

Algorithm 1 Bagging Algorithm

Input:

• Training data D with correct labels c1, ..., ck representing the kc classes.

• A Decision Tree learning algorithm LearnDecisionTree,

• Integer M specifying number of iterations.

Do m =1, ... ,M

1. Take a bootstrapped replica Dm by randomly drawing from D.

2. Call LearnDecisionTree with Dm and receive a single decision tree DTm.

3. Add DTm to the ensemble, E.

End

Test: Simple Majority Voting Given an unlabeled instance x

1. Evaluate the ensemble E = DT1, ..., DTM on x.

2. Let vm,i = 1 if DTm predicts class ci, vm,i = 0 otherwise (vm,i be the vote
given to class ci by classifier DTm).

3. Obtain total vote received by each class

Vi =
M∑

m=1

vm,i, i = 1, ..., kc

4. Choose the class that receives the highest total vote as the final classification.

Random Forests

The idea of randomized decision trees was first proposed two decades ago by

Mingers [129], but it was since the introduction of the ensemble of classifiers that

the combination of randomized decision trees arose as a very powerful approach

to supervised classification models [23; 26; 48]. A clear example of randomized
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decision trees is the use of random split node selection. For example, Diettrich

et al. [48] built ensemble of trees in which at each node the split was randomly

selected from among the K best splits attributes.

Random Forests [26] is a combination of the bagging approach with a ran-

dom split node selection. In this method, each decision tree was again built over

a bootstrapped replicate of the former training set. But, as opposed to Diettrich

et al.’s approach [48], K nodes were first randomly preselected and the best one

was finally selected.

Thus, the Random Forests algorithm is similar to Bagging ’s (Algorithm

1), changing the LearnDecisionTree algorithm for one that employs random

split node selection. Algorithm 2 shows the pseudocode of this K-Random split

method.

Algorithm 2 K-Random Split Node Selection

Input

• The available attribute variables ~X = {X1, ..., Xp}
• The method to compute the quality of a split attribute, ComputeSplitScores

(usually Info Gain score or Gini Index).

end = false;

while (not end)

{S1, ..., SK} = Random Selection( ~X);

S∗ = argmaxiComputeSplitScore(Si);

~X = ~X \ {S1, ..., SK};
if ComputeSplitScore(S∗) ≥ 0 then

end=true;

else if ~X = ∅
S∗=null; //Stop branching.

end=true;
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return S∗;

Random Forests outperformed Bagging and Diettrich approaches [26]. An

issue of Bayesian Forests is their sensitivity to the selection of the K value [26; 72],

although Breiman suggested a K value close to the logarithm of the number of

variables as a default choice.

AdaBoost

In 1990, Schapire demonstrated that a weak learner, an algorithm that generates

classifiers that merely perform better than random guessing, can be transformed

into a strong learner that can correctly classify all but an arbitrarily small fraction

of the instances [158].

Similar to bagging, boosting also creates an ensemble of classifiers by resam-

pling the data, which are then combined by majority voting. However, in boost-

ing, resampling is strategically focused to provide the most informative training

data for each consecutive classifier.

In 1997, Freund and Schapire introduced AdaBoost [64], a more general ver-

sion of the original boosting algorithm. Among its many variations, AdaBoost.M1

is more commonly used to handle multiclass problems.

Roughly speaking, AdaBoost generates a set of single classifiers and combines

them using a weighted majority voting of the predictions made by each individ-

ual classifier. The classifiers are learnt using instances drawn from an iteratively

updated distribution of the training data. This distribution update forces in-

stances misclassified by the previous classifier to be more likely to be included in

the training data of the next classifier. Hence, the generated training data are

focused towards those instances that are difficult to classify.

Algorithm 3 is a pseudocode description of this algorithm. As can be seen,

the algorithm maintains a weighted distribution Dk for the training instances.

The training data subsets St are drawn using this distribution and employed

as training datasets to generate classifier Λk. At the start, the distribution is

initialized to be uniform. Training error εk of Λk is the sum of the distribution

weights of the samples missclassified by Λk. This error must be less than 1/2 in

order to guarantee convergence.
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Distribution Dk is updated following the updated distribution rule depicted in

Algorithm 3, which reduces the weight of well-classified instances and maintains

the weights of the missclassified ones. This allows the classification efforts to

be biased towards the instances that are difficult to classify. Finally, a majority

voting is used to make the class prediction. The prediction of each classifier Λk

is a weight that depends upon its associated error rate, εk.

Algorithm 3 Algorithm AdaBoost.M1

Input:

• Sequence of T examples D = {(xi, ci)}, i = 1, . . . , T with labels ci ∈ C;

• Weak learning algorithm WeakLearn;

• Integer K specifying number of iterations.

Initialize D1(i) = 1
T , i = 1, . . . , T

Do for k = 1, 2, . . . , K:

• Select a training data subset Sk, drawn from the distribution Dk.

• Train WeakLearn with Sk , receive classifier Λk.

• Calculate the error of Λk:

εk =
∑

i:Λk(xi)6=ci
Dk(i).

• If εk > 1/2, abort.

• Set βk = εk/(1− εk).

• Update distribution Dk:

– Dk+1(i) = Dk(i)
Zk

βk if Λk(xi) = ci.

– Dk+1(i) = Dk(i)
Zk

, otherwise.

where Zk =
∑

i Dk(i) is a normalization constant chosen so that Dk+1

becomes a proper distribution function.

Test – Weighted Majority Voting: Given an unlabeled instance x,

• Obtain total vote received by each class:

Vj =
∑

k:Λk(x)=cj

1
βt

, j = 1, . . . , kc.

• Choose the class that receives the highest total vote Vj as the final classifi-
cation.

26



2.4 Feature Selection in Supervised Classification

2.4 Feature Selection in Supervised Classifica-

tion

The classic induction methods of Bayesian classifiers use the whole set of at-

tributes for the prediction tasks. But it is well known that the inclusion of

redundant and irrelevant variables usually deteriorates the performance of the

classifiers. This problem is particularly significant when in the domain problem

there are a great number of variables, most of which are noisy or irrelevant. This

occurs, for example, in gene expression data problems, where thousands of genes

are analyzed but only a few are relevant.

Furthermore, feature selection approaches are also intended to extract the

relevant features for a classification problem. In domain problems in which the

number of variables is very high, as in the case of gene expression data, it is im-

portant to reach a high classification percentage, and to indicate which variables

are relevant for the classification task.

Thus, in this section we provide a brief introduction to the main methods

used for feature selection: filter and wrapper methods.

2.4.1 Filter Methods

The Filter approximation establishes an indirect goodness measure for the vari-

ables. Usually its output consists of a ranking among the predictive variables

using this goodness measure, which scores the prediction capacity of the vari-

ables. Once the ranking is known, the K most important variables are used by

the classifier. What is important is that the goodness measure is indirect, that

is to say, it does not have any relation with the concrete classification model in

which it will be incorporated.

Usually, these filter methods are employed as a preprocessing step in domains

in which there are a high number of variables, most of these being irrelevant.

Document text classification problems are a good example of this phenomenon,

most of the words have no relationship with the categories in which documents

are intended to be classified, and their presence can introduce much noise into

the classifier. Moreover, the huge number of variables, very often around tens
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of thousands words, does not allow the use of more complex or computationally

expensive methods for word selection. Therefore, filter methods that are usually

light are a very suitable option with regard to reducing this high number of

irrelevant words.

There are many indirect goodness measures for the filter methods, a few of

which are depicted here:

Info Gain This criterion is also known as the Mutual Information Criterion and

is widely used for measuring the dependence degree between an attribute

variable and the class variable and was already introduced as a criterion for

selecting a variable in a node of a classification tree.

IG(X,C) = −
∑

x

∑
j

P (C = cj, x) log
P (cj, x)

P (cj)P (x)

Info-Gain Ratio In order to improve the Info-Gain split criterion, the Info-

Gain Ratio criterion attempts to penalize variables with many states and

was also introduced for classification trees:

IGR(Xi, C) =
IG(X, C)

H(X)
.

Correlation-based Feature Selection (CFS) This score [77] attempts to re-

move irrelevant Attributes, as well as redundant ones, selecting a subset

of attributes that individually correlate well with the class C but present

little intercorrelation. The correlation between two categorical attributes

Xi and Xj is measured using the symmetric uncertainty which is estimated

as follows:

SU(Xi, Xj) = 2
H(Xi) + H(Xj)−H(Xi, Xj)

H(Xi) + H(Xj)

where H is the previously defined entropy function and SU(Xi, Xj) ∈ [0, 1].

So, CFS estimates the goodness of a set of attributes (X1, ..., Xp) as follows:
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CFS(X1, ..., Xp) =

∑p
i=1 SU(Xi, C)√∑p

i=1

∑p
j=1 SU(Xi, Xj)

This score is usually employed with a greedy search because, as opposed to

the previous ones, it is capable of evaluating a set of attributes as opposed

to just one single one.

2.4.2 Wrapper Methods

Wrapper methods were developed in order to use the classifiers own classification

accuracy as a direct measure, which would lead a search process across the space

of all possible feature subsets.

Kohavi et al. [109] state that, as the aim of feature selection methods is to

maximize the classification accuracy, features must be selected considering the

classification model that will use them to make predictions. Furthermore, a set

of attributes should receive a global score rather than giving an individual score

to each one of them (the goodness of an attribute depends on the other selected

variables).

One of the first approaches to Wrapper selection methods was made by [137]

developing the so-called selective Naive Bayes (previously presented in Section

2.2.2 as another semi-Naive Bayes approximation). In this approach, a greedy

search process was employed. It begins with an empty set of variables, and

successively adds the variable that maximizes the accuracy of the classification,

considering the candidate variable with the already selected ones. This value

is obtained by the application of a Naive Bayes classifier using a leave-one-out

cross-validation (LOO) scheme [168]. In this validation method, the classifier is

iteratively trained and tested with different training and data sets. In each iter-

ation, one single instance is removed from the data set. The remaining dataset

will be employed to train the classifier and this classifier is then tested with the

extracted single instance. This process is repeated and one different instance in

each iteration is removed: as many times as there are different instances in the
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whole dataset. Finally, the average value is reported as the estimated classifi-

cation accuracy. The search process stops when the addition of more variables

does not suppose an increment in the classification accuracy. Thus, the variables

selected in the iterated process are the most relevant variables selected by this

approach.

Other authors employ similar techniques [109; 190], showing the great clas-

sification potential of these methods. But the main disadvantage of wrapper

methods is their high computational cost, mainly due to the fact that the classi-

fication accuracy has to be estimated with a k-fold-cross validation method or, as

in Pazzani [137], with an even more expensive leave-one out procedure. Wrapper

methods therefore have to build and to evaluate a classifier model many times

over, which results in a very costly approach.

Many attempts have been made to reduce the computational cost of these

wrapper approaches [108; 132]. One of the most effective methods involved the

application of a filter approach aimed at selecting a reduced feature set as a

starting point for a wrapper approach.
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Chapter 3

A Memory Efficient Semi-Naive

Bayes Classifier with Grouping of

Cases

In this chapter, we present a semi-Naive Bayes classifier that searches for depen-

dent attributes using different filter approaches. In order to prevent the number

of cases of the compound attributes from being excessively high, a grouping pro-

cedure is always applied after the merging of two variables. This method attempts

to group two or more cases of the new variable into a single one, in order to re-

duce the cardinality of the compound variables. As a result, the presented model

is a competitive classifier, particularly in terms of quality of class probability

estimates, with very low memory requirements. Thus, we believe it would be

an interesting candidate model for supervised classification systems integrated in

limited-memory devices such as mobile phones.

3.1 Motivation

In recent times, a new trend in applications of supervised classification systems

has been emerging in the field of mobile computing. The use of smart-phones,

car boarded computers, portable computers, etc. is becoming more commonplace

and, consequently, better and more sophisticated functionalities are demanded by

users. Many of these new functionalities will be based on the data managed by
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these devices. It is therefore easy to see how data mining techniques and, espe-

cially, supervised classification systems will be integrated into the core of their

loaded software. Research in this field has discovered advanced functionalities

such as speaker classification [59], multi-modal interaction [121], activity detec-

tion with a tri-axial accelerator [36], ubiquitous healthcare [127], etc., applications

in which supervised classification techniques were applied to successfully achieve

them.

For this new kind of applications, the computational resources demanded by

classification systems are critical due to the fact that the computational and

memory capacities of these devices are much less powerful than classical PC’s.

The restrictions in power consumption are also very important, and applications

that demand intensive CPU utilization will therefore have to be discarded.

In the probabilistic approach to supervised classification, all predictive fea-

tures are considered as random variables in the training process and the clas-

sification is made by the modelling of the probability distribution of the class

variable conditioned to these predictive features (see Section 2.2 for details). In

order for the estimation of this probability distribution to be feasible, several hy-

pothesis must be assumed, and several approaches have been proposed to achieve

a better approximation of the probability distribution. Hence, many different

classification systems have been proposed in the literature (Section 2.2 gives an

overview of some of these classifiers). The success or failure of each approach

depends on the specific features of each classification problem (No Free Lunch

Theorem [186]). However, some of these approaches stand out as very competitive

classifiers in a wide range of classification problems.

Furthermore, maximization of the classifiers performance has constituted the

main aim in this area of research, and many of the proposed approaches are asso-

ciated with significant increments in computing and memory resources. Classifier

ensembles are a clear example of performance maximization with higher compu-

tational costs (for details see Section 2.3.2).

In this sense, many studies involving performance evaluation, comparison,

analysis, etc. of probabilistic classifiers have been published [33; 34; 195]. Naive

Bayes stands out as a competitive classifier presenting high computational effi-

ciency and, as has previously been stated, to the contrary, ensemble classifiers
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appear to exhibit the highest success classification rates, but present an overload

of computational resources [23; 64]. As an intermediate point, the large fam-

ily of the so-called semi-Naive Bayes classifiers shows the best trade-off between

computational efficiency and competitive performance. In particular, those based

upon a mixture of models such as AODE [176], WOADE [97], HNB [193], LBR

[196], etc. (for an extensive comparative study see [195]) or upon uncertainty

measures founded on imprecise probabilities, such as maximum entropy [2].

But most of these studies do not focus on, or have not considered, the possibil-

ity of these classifiers being embedded in a mobile computer with strict memory-

limited capacities. Moreover, although space complexity analysis under big O

notation has been derived for many different predictors, to our knowledge no

studies compare the number of parameters needed for each classifier in a wide

range of classification problems. Big O notation gives information in the upper

limit and this limit is sometimes far from the expected one. Decision trees are a

clear example of this situation; their space complexity is O(t), t being the number

of training examples (one leaf of the tree per sample in the worst case), while most

of the times the post-pruning process dramatically reduces this number [149].

For applications running on memory-limited devices, there is therefore a need

to review the criteria for establishing the most suitable approaches for classifica-

tion systems.

The aim of this chapter is two-fold. Firstly, to evaluate the specific mem-

ory requirements of a representative range of probabilistic classifiers in order to

provide insights with regard to their trade-off between performance and mem-

ory requirements. And, secondly, to introduce a new semi-Naive Bayes approach

that exploits the grouping of the cases of the new compound variables in order

to achieve highly competitive performance with a very low memory load. With

the support of an intensive experimental evaluation, we claim that this approach

represents an excellent model to be used in classification applications running on

memory-limited devices.

The rest of the chapter is organized as follows. In Section 3.2 we introduce the

proposed semi-Naive Bayes with grouping of cases, detailing the different metrics

evaluated. Subsequently, in Section 3.3, we perform a memory space analysis of

different classification models. These classifiers are then empirically compared
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with our proposal in Section 3.4. We conclude by giving the main conclusions of

this study and future research in Section 3.5.

3.2 A Semi-Naive Bayes Classifier with Group-

ing of Cases

3.2.1 An initial overview to the approach

Our approach is inspired by the ideas of Pazzani’s semi-Naive Bayes (see Section

2.2.3 for details). Roughly speaking, Pazzani’s approach joined variables with a

Cartesian product when they were dependent and removed those that were not

informative to the class variable.

One the main problems associated with the process of joining variables is

that the number of possible cases increases exponentially with the number of

merged variables. Another of the problems specifically associated with Pazzani’s

approach was the employment of accuracy-based measures to decide which vari-

ables should be joined, with the use of cross validation methods for computing

these scores. Hence, although it constitutes a powerful classification approach,

it becomes computationally prohibited for classification problems with a high

number of variables.

Aiming to address these issues, we first employ efficient filter measures to

decide the joining of two variables, along with a complementary grouping process

to reduce the number of cases of these new compound variables. One of the main

effects of this grouping of cases will be a significant reduction in the number

of parameters that this classification model employs to encode the probability

distribution. Let us examine a simple example of this idea.

Example 1 Let us suppose than random variables X and Y have two cases

{x0, x1} and {y0, y1}, respectively. If X and Y are not statistically independent,

given the class variable C (the independence assumption of Naive Bayes), this ap-

proach will join them in a new compound variable X×Y with the following cases

{(x0, y0), (x0, y1), (x1, y0), (x1, y1)}. The grouping process will attempt to group

those cases that present similar information. For example, Grouping(X × Y )
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could be a simpler variable with the following three cases {{(x0, y0) + (x1, y0)},
(x0, y1), (x1, y1)} if (x0, y0) and (x1, y0) provided the same information on the class

C.

Three different filter measures (see Section 2.4.1 for an introduction to filter

measures) were empirically evaluated to decide the joining of two variables or the

groping of two cases. The aim was to select an optimal configuration of filter

measures for the joining and the grouping processes.

The rest of the sections are organized as follows: Section 3.2.2 describes the

joining process and Section 3.2.3 the grouping method. Finally, In Section 3.2.4

the experimental results are shown.

3.2.2 Joining criteria

Along the lines of Pazzani’s or Kononenko’s approaches [112; 137], all possible

pairs of variables are considered at each step with a given metric. The metrics we

propose evaluate the convenience of joining two variables with respect to keeping

them separated. Thus, the most suitable ones are merged by creating a new

compound variable with the Cartesian product of the value sets of the original

ones. This procedure is used in an iterative fashion: the old joined variables are

removed and the new one is included as a candidate to be joined once again with

another variable. The process continues until there are no more variable pairs to

verify the fixed joining criterion.

In this study, we propose three filter metrics as a joining criterion. Each

one has a joining condition (JC(Xi, Xj)) that tests whether the variables Xi

and Xj can be joined, along with a joining metric (JM) that selects the most

suitable pair to be joined.

Bayesian Dirichlet equivalent Metric (BDe)

Bayesian scoring criteria have been widely used to choose from several alterna-

tive models [80], because of the inherent penalty that they impose on the more

complex models in order to prevent against over-fitting.
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Bayesian scores measure the quality of a model, M , as the posterior probability

of the model providing the learning data D. The logarithm of this quantity is

ususally considered for computational reasons, giving rise to:

Score(M : D) = ln P (M |D) = ln P (D|M) + ln P (M)− ln P (D)

This value can be computed under a suitable hypothesis. The BDe (Bayesian

Dirichlet equivalent) [80] assumes a uniform prior probability over the possible

models and a prior Dirichlet distribution over the parameters with independence

for the parameters of different conditional distributions. A global sample size, S,

is usually considered and we then assume that for each variable Z, the a priori

probability of the vector (P (z))z is Dirichlet with the same parameters S/kZ for

all values P (z), where kZ is the number of possible values of Z.

The metric for joining attributes Xi and Xj is computed as the difference:

Score(M1 : D)− Score(M2 : D), where M1 is a Naive Bayes model in which Xi

and Xj are joined and M2 a model in which they are considered conditionally

independent given the class. Under global sample size S, this difference can be

computed as:

JMBDe(Xi, Xj) =
∑

c

ln

(
Γ(S/kC)

Γ(S/kC + Nc)

) (
TC,Xi,Xj

− TC,Xi
− TC,Xj

)

where

TC,Xi,Xj
=

∑
xi,xj

ln
Γ(S/(kCkXi

kXj
) + Ncxixj

)

Γ(S/(kCkXi
kXj

))

TC,Xk
=

∑
xk

ln
Γ(S/(kCkXk

) + Ncxk
)

Γ(S/(kCkXk
))

Γ(.) is the gamma function (Γ(α + 1) = α.Γ(α)), Ncxixj
is the number of

occurrences of (C = c,Xi = xi, Xj = xj) in the learning sample D (analogously

for Nc and Ncxk
).
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The pair Xi, Xj with greatest metric is selected and the attributes are merged

if the joining condition is verified i.e.

JCBDe = [JMBDe > 0]

The Expected Log-likelihood under Leaving-one-out (L10)

The score of a model Mi for a dataset D is obtained by adding for each vector

of cases (x, c) ∈ D, the logarithm of P (c|x), where the probability P is obtained

by estimating the parameters of Mi with D − {(x, c)}. That is, an estimation of

the log-likelihood of the class [136] is carried out with a wrapper leaving-one-out

procedure.

The metric for joining attributes Xi and Xj should be computed as the differ-

ence of scores between the model in which Xi and Xj are joined and the model

in which they are considered conditionally independent given the class. How-

ever, this value can depend on the remaining attributes and can be difficult to

compute in a closed form. For this reason, we compute it considering that only

variables Xi and Xj and C are included in the model. This can be considered as

an approximation which allows rapid computation. This metric is computed as:

JML1O(Xi, Xj) =
∑

c,xi,xj

Ncxixj

[
ln

(
P ∗(xi, xj|c)P ∗(c)∑
c′ P

∗(xi, xj|c′)P ∗(c′)

)]
−

− Ncxixj

[
ln

(
P ∗(xi|c)P ∗(xj|c)P ∗(c)∑
c′ P

∗(xi|c′)P ∗(xj|c′)P ∗(c′)

)]

where the probabilities P ∗ are estimated from the sample using the Laplace cor-

rection and discounting 1 in the absolute frequencies of values (c, xi, xj) in the

sample:

P ∗(xi, xj|c) =
Nxixjc

Nc + kXi
kXj

− 1
, P ∗(c) =

Nc

N + kC − 1
, P ∗(xk|c) =

Nxk

Nc + kXk
− 1

and for c′ 6= c:
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P ∗(xi, xj|c′) =
Nxixjc′ + 1

Nc′ + kXi
kXj

, P ∗(c′) =
Nc′ + 1

N + kC

, P ∗(xk|c′) =
Nxk

+ 1

Nc′ + kXk

In this way, we assume that attributes Xi and Xj are suitable for joining if

the following condition is met:

JCL1O(Xi, Xj) = [JML1O(Xi, Xj) > 0]

Log-likelihood Ratio Test (LRT)

The last approach for deciding when to join two variables is based on a log-

likelihood ratio test [184]. The log-likelihood ratio test (LRT) has been used to

compare two nested models, M1 and M2 (in this case M1 is the model with merged

variables and M2 the simpler model with conditionally independent variables).

The log-likelihood ratio criterion is expressed by:

LRT = −2 ln

(
supθ PM2(D|θ)
supθ PM1(D|θ)

)
= −2

∑
c,xi,xj

Ncxixj
ln

(
Ncxi

Ncxj

NcNcxixj

)

where PMi
(D|θ) is the likelihood of the data under the model Mi and the pa-

rameter θ. The supθ PMi
(D|θ) is obtained by computing the likelihood of the

data when parameters are estimated with maximum likelihood (in this case, the

parameters are equal to the relative frequencies in the sample). The third part

of the equality shows the closed form for computing LRT .

LRT is asymptotically distributed as a Chi-square random variable with a

number of degrees of freedom equal to the difference in the number of parameters

between the two models.

In this case, LRT follows a chi-square distribution with (kXi
− 1)(kXj

− 1)kC

degrees of freedom [184], where kXi
is the number of cases of Xi. The null

hypothesis (H0) of the test is that Xi and Xj are independent given the class. A

significance level α is considered and this LRT metric is computed as the p-value

of the following test:
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JMLRT (Xi, Xj) = χ2
(kXi

−1)(kXj
−1)kC

(LRT )

The associated criterion is that the null hypothesis is rejected. But the ques-

tion is whether this test is valid for the comparison of two models, while in this

algorithm it is applied many times to the n(n−1)
2

possible variable pairs (n is the

actual number of active variables), increasing the possibilities of an error of the

LRT. In order to avoid this effect, the α level is divided by a corrector factor

ρ =
∑

t=1..R
1
t

that hinders the rejection of null hypothesis [175].

Thus, the joining criterion condition is expressed by:

JCLRT (Xi, Xj) = [JMLRT (Xi, Xj) > (1− α

ρ
)]

where R = n(n−1)
2

is the number of tests, JMLRT is the joining criterion metric

and JCLRT is the joining criterion condition.

The Joining Algorithm (JA)

This algorithm corresponds to the process for joining dependent variables in a

recursive form. It considers the three different joining criteria (i.e. BDe, L10,

LRT). The process is quite simple: it joins the variables with the highest score

when the joining condition is verified.

Algorithm 4 Joining Algorithm (JA)

Z = {X1, ..., Xn};

end = false;

while (|Z| ≥ 2 ∧ ¬end)

{Xi, Xj} = arg max{Xr,Xs}{JM(Xr, Xs) : Xr, Xs ∈ Z};
if JC(Xi, Xj) then

T = Xi ×Xj;

Z = Z \ {Xi, Xj};
Z = Z ∪ {T};
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

else

end=true;

return Z;

3.2.3 Grouping process

As has already been stated, an important problem with regard to joining two at-

tributes is that the number of necessary parameters is much greater, for example,

if Xi and Xj are considered independent given C, (kXi
+ kXj

− 2)kC parameters

have to be estimated, while if Xi and Xj are joined (kXi
kXj

− 1)kC parameters

should be estimated. For example, if we join two variables with 7 possible val-

ues and two classes, the resulting combined variable will need 96 values. If for

some of these combinations there are very few samples in the learning data, the

estimations of these parameters will not be very reliable.

To solve this problem, we propose a mechanism for grouping similar cases

of an attribute. We apply it to each variable resulting from a joining operation

and before any other joining of variables is considered. Thus, we attempt to

reduce the number of cases before computing the Cartesian product with another

variable, in order to avoid a combinatorial explosion in the number of cases and

increasing the possibility of further combinations of this variable.

The process consists of evaluating each pair of cases using a given criterion

(based on the same principles used in the joining process), and when the presence

of two cases does not suppose a significant benefit with respect to considering

them as a unique case, they will be grouped in a single case. The aim of this

approach is obviously to reduce the complexity introduced into the model with

the joining of the variables.

Grouping criteria

The same principles that we used in the joining process are valid with regard to

defining new criteria for this purpose.

To fix the notation, let X be the considered variable. We assume that xi and

xj are two possible cases of this variable. X(i,j) will be the variable in which cases
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

xi and xj have been grouped into a single case. We only consider the subsample

DX(i,j) given by samples of the original dataset D in which it is verified that

X = xi or X = xj. In order to make the criterion independent from the other

possible cases of variable X and their frequencies, we suppose that xi and xj are

the only possible values of variable X. In this situation, the grouping of xi and

xj implies the definition of a new attribute with a single case. A variable with

only one case is useless. Therefore, the grouping criteria will check whether X

(with two possible values xi, xj) is relevant to C under sample DX(i,j). M1 will be

the more complex model with X relevant to C and M2 will represent the simpler

model in which X is irrelevant to C (xi and xj have been grouped).

The metric for grouping xi and xj into a single case is denoted by GM(xi, xj)

and the condition by GC(xi, xj). Thus, the three grouping criteria we propose

are:

BDe score (BDe) The difference between the BDe scores of making X depen-

dent or independent of C produces:

GMBDe(xi, xj) = TxiC + TxjC − TC

where

TxkC = ln

(
Γ(S

2
)

Γ(S
2

+ Nxk
)

)
+

∑
c

ln

(
Γ( S

2kC
+ Ncxk

)

Γ( S
2kC

)

)

TC = ln

(
Γ(S)

Γ(S + Nxi
+ Nxj

)

)
+

∑
c

ln

(
Γ( S

kC
+ Nc)

Γ( S
kC

)

)

In these expressions S is a parameter (global sample size) and the frequen-

cies are measured in subsample DX(i,j).

Thus, we assume that the xi and xj are suitable for grouping (grouping

condition) when:

GCBDe(xi, xj) = [GMBDe(xi, xj) ≤ 0]
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

Leave one-out score (L10) As before, we compute the logarithm of the likeli-

hood of the learning sample DX(i,j) under the two models M1 and M2, but

for each estimation of the likelihood of a case, we remove this case from

the sample where the estimations of the rest of the parameters are carried

out (this can be done by decreasing the associated frequencies by 1). We

employ the Laplace correction to estimate these probabilities. Hence, the

resulting formula is expressed by:

GML10(xi, xj) =
∑

c

Ncxi

(
ln

Ncxi

Nxi
+ kC − 1

)
+

∑
c

Ncxj
ln

(
Ncxj

Nxj
+ kC − 1

)

−
∑

c

Nc ln

(
Nc

Nxi
+ Nxj

+ (kC − 1)− 1

)

And the grouping condition is expressed as in the BDe metric:

GCL10(xi, xj) = [GML10(xi, xj) ≤ 0]

Log-Likelihood Ratio Test (LRT) As in Section 3.2.2, we apply the log-likelihood

ratio test to compare models M1 and M2. The statistic is:

LRT = −2
∑

c

Ncxi
ln

(
Ncxi

(Nxi
+ Nxj

)

NcNxi

)

−2
∑

c

Ncxj
ln

(
Ncxj

(Nxi
+ Nxj

)

NcNxj

)

The null hypothesis (H0) is the simpler model M2 (the model where cases

xi and xj are grouped). In this case LRT follows a chi-square distribution

with (kC−1) degrees of freedom. The grouping metric is the p-value of this

test:
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

GMLRT (xi, xj) = χ2
kC−1(LRT )

The associated criterion is that the null hypothesis is rejected. Such as

the equivalent joining criterion, the α level is divided by a corrector factor

ρ =
∑

t=1...R
1
t

where R = k(k−1)
2

is the number of tests and k is the

number of active cases in the variable X [175].

GCLRT (xi, xj) = [GMLRT (xi, xj) > (1− α

ρ
)]

The grouping algorithm (GA)

This algorithm is the process for grouping the irrelevant cases of a variable in

a recursive form. The only variation is the grouping criterion considered. The

similarity to Algorithm 4 should be noted. In both cases, a model selection and

a model transformation are carried out.

Algorithm 5 Grouping Algorithm (GA)

SX = {x1, ..., xn};

end = false;

while(|SX| ≥ 2 ∧ ¬end)

{xi, xj} = arg max{xr,xs}{GM(xr, xs) : {xr, xs} ∈ SX};
if GC(xi, xj) then

t = {xi ∪ xj};
SX = SX \ {xi, xj};
SX = SX ∪ {t};

else

end=true;

return SX ;
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In the experimental results, presented in Table 3.3 of Section 3.2.4, we will

see that there are significant differences between the three proposed criteria. But

the main advantage of the introduction of this grouping process is the reduced

complexity of the final model as well as the time needed to build the classifier.

The experimental results show a reduction of 50% in time.

The classifier

Once we have described the joining and grouping processes, we depict how to

compose these two processes:

Algorithm 6 Semi-Naive Bayes with Grouping of Cases (Semi-NB-G)

Z = {X1, ..., Xn};

end = false;

while (|Z| ≥ 2 ∧ ¬end)

{Xi, Xj} = arg max{Xr,Xs}{JM(Xr, Xs) : {Xr, Xs} ∈ Z};
if JC(Xi, Xj) then

T = Grouping(Xi ×Xj);

Z = Z \ {Xi, Xj};
Z = Z ∪ {T};

else

end=true;

return Grouping(Z);

As can be seen, the grouping process is applied each time that two attributes

to be joined are selected. At the end, we apply the grouping method again to all

attributes with the aim of processing the attributes that have not been selected

for joining.

As three distinct metrics can be used in the joining and grouping process,

there are nine possible schemes to define the classifier. In the next section, the

experimental evaluation will show how the LRT criterion in the joining process

and the L1O in the grouping process provide the best results.
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As a final analysis, we will show that the combination of the joining and group-

ing procedures presents an important potential. It can perform some additional

preprocessing tasks as side effects, as is shown in the following example.

Example 2 We performed the following experiment in Elvira environment [39].

We considered three binary variables, C, X, Y , where C is the class variable and

X and Y the classifying attributes. Let us assume that the possible cases of C are

{c0, c1}, the possible cases of X are {x0, x1}, and the possible cases of Y : {y0, y1}.
We built a Bayesian network in which C and Y are conditionally independent

given X, more specifically, we considered the following graph structure: C −→
X −→ Y . The probability tables are given in such a way that there is a high

degree of dependence between C and X and X and Y . For example, assuming

that P (xi|ci) = 0.8, i = 0, 1, P (yi|xi) = 0.85, i = 0, 1. Then, we obtained a

random sample of size 1000 from the joint probability distribution by simulation,

using logic sampling [82].

We subsequently applied the proposed combined joining-grouping procedure

(any metric will work in this situation) to the random sample. The result is

that first, X and Y are joined in only one variable, as they are not condi-

tionally independent given the class. The new variable will take values in set

{(x0, y0), (x0, y1), (x1, y0), (x1, y1)}. Then grouping is applied. The fact that C

and Y are conditionally independent given X, means that (x0, y0), (x0, y1) are

grouped into one single value and (x1, y0), (x1, y1) grouped into another value.

The first is equivalent to X = x0 and the second equivalent to X = x1.

The final effect of the two steps is that, in order to build a Naive Bayes,

variable Y is discarded, and only X is kept. That is, this approach is capable

of removing irrelevant variable Y (given X). Therefore, as can be seen in this

example, an implicit procedure exists for eliminating variables in this approach.

3.2.4 Experimental evaluation

In this section, we make an initial empirical evaluation to establish which joining

and grouping metrics of the ones proposed here achieve the best trade-off between

classification accuracy and quality of probabilities estimates. The reduction in

the memory requirements proposed in the introduction of this chapter will be

subsequently evaluated in Section 3.4.
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

Table 3.1: Data Bases

Name Cases Attributes Classes
anneal 898 39 5
balance-scale 625 5 3
german-credit 1000 21 2
diabetes 768 9 2
glass 214 10 6
heart-statlog 270 14 2
ionosphere 351 35 2
iris 150 5 3
lymphography 148 19 4
sonar 208 61 2
vehicle 846 19 4
vowel 990 12 11
zoo 101 17 7

Accordingly, we used a reduced set of 13 UCI datasets detailed in Table 3.1.

We did not take datasets with missing values because they were not considered in

the development of the proposed metrics (more exactly, only missing values that

were randomly distributed could be considered) and we attempted to prevent this

problem from disturbing the conclusions. Furthermore, as we will see throughout

this section, the small differences among many of the metrics led us to choose an

evaluation methodology that allows close inspection, at a dataset level, of these

differences.

For the experiments, we used Elvira environment [39] and Weka platform

[185]. The continuous values were discretized by the Fayyad & Irani method

[58] using Weka filters themselves. We employed two evaluations or performance

measures in this experimental evaluation: the classical prediction accuracy (noted

as %); and, to evaluate the precision of probability class estimates, we computed

the logarithm of the likelihood of the true class as: Log-Likelihood= ln(P (ĉi|x))

(noted as LL).

The evaluation of the classifiers was achieved with a 10-fold-cross validation

repeated 10 times scheme for each database. Thus, 100 train and test evaluations

were obtained. With these estimates, we carried out the comparison among

classifiers in each dataset using a corrected paired t-test [134] implemented in
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Weka with a 5% statistically significant level. In this way, we fixed a classifier

as a reference (marked with ?) and then each proposed classifier was compared

against it. The result of the corrected paired t-test can show a statistically

significant improvement or Win (denoted as Wins (W) or by the symbol ◦), a not

statistically significant difference or Tie (denoted as Ties (T)) and a statistically

significant deterioration (denoted as Defeats (D) or by the symbol •) in the

evaluation measures for each dataset.

A summary of the comparison was made by adding the times that the proposed

classifier obtains a statistically significant difference with respect to the reference

classifier in accordance with the corrected paired t-test for each dataset. These

results are shown in the rows starting with W/T/D. (E.g., in Table 3.2 (a), JABDe

obtains a statistically significant improvement or win in the accuracy with respect

to NB in 2 databases (anneal and vehicle, noted as ◦). While JAL10 obtains a

statistically significant deterioration in the Log-Likelihood with respect to NB

in 4 databases (german-credit, lymphography, vowel and zoo, noted as •)).

Evaluating joining criteria

To this end, we compared the results provided by the Joining Algorithm (JA)

using the three proposed criteria (without grouping) in respect to the performance

of the Naive Bayes classifier, Table 3.2(a), and in respect to Pazzani’s semi-Naive

Bayes classifier, Table 3.2(b).

As is shown in Table 3.2(a), the BDe and LRT criteria outperform the Naive

Bayes classifier in terms of accuracy in two datasets, whereas the LRT loses in the

balance-scale dataset. Observing log-likelihood in the same table, BDE and LRT

appear to perform better. Indeed, the joining process is designed to minimize

the log-likelihood metric and achieves this reduction in a robust manner, and no

significant deterioration is observed in any of the datasets for the two metrics.

To the contrary, when we compare with Pazzani’s semi-Naive Bayes, Table

3.2(b), these two metrics only lose in terms of accuracy and log-likelihood in one

dataset, whereas they beat this semi-Naive Bayes in terms of log-likelihood in

four datasets. The LRT criterion appears to be slightly better than BDe in terms

of log-likelihood although we do not find any sound reason to prefer any of them.
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Table 3.2: Joining Criteria Evaluation

Dataset ? NB JBDe JL1O JLRT

anneal 95.95 97.82◦ 96.09 97.29
balance-scale 71.56 71.48 69.40• 69.40•
german-credit 75.04 74.54 70.23• 73.99
pima-diabetes 75.26 75.27 73.31 75.18
Glass 71.94 70.32 67.35 71.50
heart-statlog 82.56 81.81 75.11• 82.89
ionosphere 89.40 89.86 65.78• 90.09
iris 93.33 93.20 91.33 93.33
lymphography 85.10 85.75 59.00• 86.17
sonar 76.71 75.46 55.82• 74.98
vehicle 61.06 68.63◦ 43.31• 68.88◦
vowel 61.99 63.22 62.36 66.57◦
zoo 93.98 92.29 91.39 93.88
Average 79.53 79.97 70.81 80.32
W/T/D 2/11/0 0/6/7 2/10/1
(%)Percent of cases corrected classified

? NB JBDe JL1O JLRT

-0.13 -0.10 -0.14 -0.09◦
-0.60 -0.60 -0.54◦ -0.54◦
-0.53 -0.53 -0.61• -0.54
-0.54 -0.52◦ -0.53 -0.51
-0.91 -0.90 -1.03 -0.88
-0.47 -0.44◦ -0.49 -0.40◦
-1.62 -1.04◦ -0.50◦ -0.81◦
-0.22 -0.21 -0.29 -0.22
-0.43 -0.40 -0.82• -0.38
-0.84 -0.60◦ -0.67 -0.56◦
-2.00 -0.68◦ -1.21◦ -0.68◦
-1.01 -0.99 -1.83• -0.93◦
-0.12 -0.16 -0.39• -0.12
-0.73 -0.55 -0.70 -0.51

5/8/0 3/6/4 7/6/0
(LL) Mean Log-Likelihood

◦, • statistically significant improvement or degradation

(a) Naive Bayes comparison respect to Joining Algorithm (J)
with the tree proposed joining criteria: BDe, L10 and LRT

Dataset ? SemiNB JBDe JL1O JLRT

anneal 97.41 97.82 96.09 97.29
balance-scale 72.33 71.48 69.40• 69.40•
german-credit 72.99 74.54 70.23• 73.99
pima-diabetes 74.45 75.27 73.31 75.18
Glass 70.15 70.32 67.35 71.50
heart-statlog 79.63 81.81 75.11 82.89
ionosphere 90.15 89.86 65.78• 90.09
iris 93.40 93.20 91.33 93.33
lymphography 79.69 85.75 59.00• 86.17
sonar 71.39 75.46 55.82• 74.98
vehicle 67.36 68.63 43.31• 68.88
vowel 67.51 63.22• 62.36• 66.57
zoo 88.38 92.29 91.39 93.88
Average 78.83 79.97 70.81 80.32
W/T/D 0/12/1 0/6/7 0/12/1
(%)Percent of cases corrected classified

? SemiNB JBDe JL1O JLRT

-0.13 -0.10 -0.14 -0.09
-0.69 -0.60◦ -0.54◦ -0.54◦
-0.54 -0.53 -0.61• -0.54
-0.52 -0.52 -0.53 -0.51
-0.86 -0.90 -1.03• -0.88
-0.47 -0.44 -0.49 -0.40
-0.33 -1.04• -0.50• -0.81•
-0.24 -0.21 -0.29 -0.22
-0.58 -0.40◦ -0.82• -0.38◦
-0.56 -0.60 -0.67 -0.56
-0.74 -0.68 -1.21• -0.68
-1.40 -0.99◦ -1.83• -0.93◦
-0.52 -0.16◦ -0.39 -0.12◦
-0.58 -0.55 -0.70 -0.51

4/8/1 1/6/6 4/8/1
(LL) Mean Log-Likelihood

(b) Semi-NB comparison respect to Joining Algorithm (J)
with the tree proposed joining criteria: BDe, L10 and LRT
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However, as this analysis shows, the L10 performance is clearly a bad one. We

have found no sound reason for this. A possible one might be that L10 criterion

tests the joining of two variables without considering the remaining ones. The

experiments are performed with the full set of attributes and the final behaviour

can therefore differ from what was initially expected.

Evaluating grouping criteria

With the analysis of the previous subsection, we selected the LRT criterion as

the most suitable one for joining variables. We therefore fixed it and performed

the same process in order to evaluate which criterion was the most suitable for

grouping cases using the semi-Naive Bayes with Grouping of Cases (SNB-G). In

Table 3.3, we show the results with the three possible grouping criteria. It can

be seen that there is almost no difference among them either. Perhaps the L1O

criterion stands out a little more. Curiously, this metric did not present the same

problem when it was applied to joining variables. Perhaps this is due to the fact

that grouping is a simpler operation than joining.

Table 3.3: Grouping Criteria Evaluation.

Dataset ? NB GBDe GL1O GLRT

anneal 95.95 98.36◦ 98.13◦ 98.01◦
balance-scale 71.56 73.13 73.08 73.13
german-credit 75.04 74.29 74.58 75.09
pima-diabetes 75.26 73.71 74.61 74.06
Glass 71.94 70.98 72.01 70.38
heart-statlog 82.56 83.56 83.26 83.11
ionosphere 89.40 88.83 88.92 89.58
iris 93.33 93.33 93.33 93.40
lymphography 85.10 84.34 85.58 81.04
sonar 76.71 75.69 75.45 75.64
vehicle 61.06 68.15◦ 69.19◦ 66.86◦
vowel 61.99 63.37 67.07◦ 61.39
zoo 93.98 95.65 92.71 95.07
Average 79.53 80.26 80.61 79.75
W/T/D 2/11/0 3/9/0 2/11/0
(%)Percent of cases corrected classified

? NB GBDe GL1O GLRT

-0.13 -0.06◦ -0.07◦ -0.08◦
-0.60 -0.52◦ -0.52◦ -0.52◦
-0.53 -0.54 -0.54 -0.53
-0.54 -0.52 -0.51 -0.51
-0.91 -0.93 -0.89 -0.93
-0.47 -0.40◦ -0.40◦ -0.41
-1.62 -0.44◦ -0.49◦ -0.38◦
-0.22 -0.22 -0.22 -0.21
-0.43 -0.41 -0.41 -0.48
-0.84 -0.56◦ -0.55◦ -0.54◦
2.00 -0.71◦ -0.70◦ -0.76◦
-1.01 -0.98 -0.90◦ -1.02
-0.12 -0.11 -0.13 -0.12
-0.73 -0.49 -0.49 -0.50

6/7/0 7/6/0 5/8/0
(LL) Mean Log-Likelihood

Description: NB comparison respect to SNB-G with the JLRT joining
criterion and the three proposed Grouping Criteria: BDe, L10 and LRT.

Thus, we fixed the metric LRT as the joining metric and the metric L10 for

the grouping process. Once again, we wish to point out that the small differences
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among the metrics (except for the case of L10 in the joining method) indicates

that other combinations might also be valid. We did not evaluate them in order

not to introduce more complexity into this section.

Effects of the grouping process

In this subsection we attempt to provide some results showing the effects of the

introduction of the grouping process. Thus, we compare the approach with joining

and grouping against the approach with only the joining of variables.

Table 3.4 shows the comparison in terms of classification accuracy and log-

likelihood while Table 3.5 shows the effect of grouping in terms of model training

and testing time required by both classifiers.

In this first analysis, introduction of the grouping process does not have any

clear effect in terms of accuracy and log-likelihood. Although, in both cases,

some improvement is noted. It is in relation to training time where we can see

the best effect of the grouping process. The time needed to train a model is

reduced on average by half, while for some datasets, this reduction is greater and

a deterioration is never observed.

Table 3.4: Performance Improvement by Grouping Introduction

Dataset ? Join. Alg. SNB-G
anneal 97.29 98.13
balance-scale 69.40 73.08 ◦
german-credit 73.99 74.58
pima-diabetes 75.18 74.61
Glass 71.50 72.01
heart-statlog 82.89 83.26
ionosphere 90.09 88.92
iris 93.33 93.33
lymphography 86.17 85.58
sonar 74.98 75.45
vehicle 68.88 69.19
vowel 66.57 67.07
zoo 93.88 92.71
Average 80.32 80.61
(%) Percentage of cases corrected classified

? Join. Alg. SNB-G
-0.09 -0.07
-0.54 -0.52 ◦
-0.54 -0.54
-0.51 -0.51
-0.88 -0.89
-0.40 -0.40
-0.81 -0.49 ◦
-0.22 -0.22
-0.38 -0.41
-0.56 -0.55
-0.68 -0.70
-0.93 -0.90
-0.12 -0.13
-0.51 -0.49

(LL) Mean Log-likel.
◦, • statistically significant improvement or degradation
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Table 3.5: Time Reduction by Grouping Introduction

Dataset Join. Alg. SNB-G
anneal 4.83 3.12
balance-scale 0.03 0.02
german-credit 1.00 0.58
pima-diabetes 0.11 0.07
Glass 0.06 0.04
heart-statlog 0.08 0.06
ionosphere 2.97 1.27
iris 0.01 0.01
lymphography 0.19 0.13
sonar 0.41 0.29
vehicle 4.06 0.92
vowel 0.78 0.49
zoo 0.08 0.06
Average 1.12 0.54
(T) Model Training (seconds)

Join. Alg. SNB-G
0.35 0.23
0.01 0.01
0.14 0.08
0.02 0.02
0.01 0.00
0.01 0.01
0.22 0.15
0.00 0.00
0.01 0.01
0.04 0.03
0.42 0.14
0.07 0.05
0.00 0.00
0.10 0.06

(T) Model Testing

Comparing with Pazzani semi-Naive Bayes

Finally, we compare our proposed semi-Naive Bayes with Pazzani’s approach. We

attempt to show that our approach is a competitive one, although it does not

use wrapper measures capable of measuring the global effect of the joining of two

variables.

The results in terms of accuracy and log-likelihood are shown in Table 3.6 and

the model training time is shown in Table 3.7.

Table 3.6: Pazzani’s Semi-NB, SNB-G and NB Comparison

Dataset ? Semi-NB SNB-G NB
anneal 97.41 98.13 95.95
balance-scale 72.33 73.08 71.56
german-credit 72.99 74.58 75.04
pima-diabetes 74.45 74.61 75.26
Glass 70.15 72.01 71.94
heart-statlog 79.63 83.26 82.56
ionosphere 90.15 88.92 89.40
iris 93.40 93.33 93.33
lymphography 79.69 85.58 ◦ 85.10 ◦
sonar 71.39 75.45 76.71
vehicle 67.36 69.19 61.06 •
vowel 67.51 67.07 61.99 •
zoo 88.38 92.71 93.98
Average 78.83 80.61 79.53
W/T/D 1/12/0 1/10/2
(%)Percent of cases corrected classified

? Semi-NB SNB-G NB
-0.13 -0.07 ◦ -0.13
-0.69 -0.52 ◦ -0.60 ◦
-0.54 -0.54 -0.53
-0.52 -0.51 -0.54
-0.86 -0.89 -0.91
-0.47 -0.40 -0.47
-0.33 -0.49 • -1.62 •
-0.24 -0.22 -0.22
-0.58 -0.41 ◦ -0.43 ◦
-0.56 -0.55 -0.84 •
-0.74 -0.70 2.00 •
-1.40 -0.90 ◦ -1.01 ◦
-0.52 -0.13 ◦ -0.12 ◦
-0.58 -0.49 -0.73

5/7/1 4/8/3
(LL) Mean Log-Likelihood

◦, • statistically significant improvement or degradation
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Table 3.7: Semi-Naive Bayes Comparison - Model Training Time (seconds)

Dataset Semi-NB SNB-G
anneal 370.07 s 3.12 s
balance-scale 0.31 s 0.02 s
german-credit 26.34 s 0.58 s
pima-diabetes 1.16 s 0.07 s
Glass 0.97 s 0.04 s
heart-statlog 0.85 s 0.06 s
ionosphere 32.34 s 1.27 s
iris 0.05 s 0.01 s
lymphography 5.15 s 0.13 s
sonar 8.73 s 0.29 s
vehicle 48.27 s 0.92 s
vowel 28.24 s 0.49 s
zoo 1.96 s 0.06 s
Average 40.34 s 0.54 s

In Table 3.6, we can see that our proposed semi-Naive Bayes performs in a

similar way to Panzzani’s semi-Naive Bayes in terms of percentage of correct clas-

sifications. Our approach performs better in terms of log-likelihood in 5 datasets

and only loses in one dataset. Furthermore, it can also be observed that our

algorithm is more robust than Pazzani’s classifier when compared to the Naive

Bayes classifier.

The other import aspect to be pointed out is the computational cost of these

two approaches. In Table 3.7 we show the training time of the two approaches in

each data set. As can be seen, there is a drastic time reduction in some databases

with a high number of attributes: anneal with a reduction of 99.2% of training

time, german-credit with a reduction of 97.8%, vehicle with a reduction of 98.1%,

etc. And the average model training time reduction in relation to Pazzani’s semi-

Naive Bayes is of 98.7%.

Conclusions of the experimental evaluation

In this section, we have presented a combination of two procedures as a prepro-

cessing step for a Naive Bayes classifier: a method for joining variables and a

method for grouping cases of the new compound variables.
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3.2 A Semi-Naive Bayes Classifier with Grouping of Cases

We have proposed and evaluated three different metrics as joining and group-

ing metrics. The first one was the very well known log-likelihood ratio test, where

a new corrector factor for its significant level was introduced. The second one

was the well-studied Bayesian Dirichlet equivalent metric. And, finally, we in-

troduced a new proposal, which has been called expected log-likelihood under

leaving-one-out (the estimation of the log-likelihood of the model was carried out

with a wrapper leaving-one-out procedure via a derived closed form). Under our

experimental analysis, the first one was the most suitable for joining variables

and the last one the most suitable for grouping cases.

We have also shown that the combined application of a joining and grouping

process obtains a similar performance to similar wrapper methods in terms of

accuracy and better in terms of log-likelihood. But the main advantage of this

model is the great model training time reduction, particularly in datasets with a

higher number of variables (see Table 3.1 and Table 3.7): we achieve an average

reduction of 98.7% of training time, keeping the simplicity of a semi-Naive Bayes

approach based on filter measures.

Throughout the following sections, we will show how, apart from its compet-

itive performance, this classification model is capable of encoding the underlying

class probability distributions using a very low number of parameters.
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3.3 Memory Space Analysis of Classification Models

3.3 Memory Space Analysis of Classification Mod-

els

In this section, we expound a memory space analysis focusing on the classification

stage. We derive a theoretical analysis based on the big O notation as well as the

exact number of parameters of the final learnt classifier when this computation is

feasible. We performed this analysis for the most known semi-Naive Bayes clas-

sifiers and decision tree based classifiers. The ensemble of classifiers is discarded

because these are based on building multiple models, which causes an excessive

overload in the demand for computational resources.

Thus, we divided the classifiers evaluated in this study into two classes. An

initial class in which the memory space can be computed a priori, that is to say,

when the number of parameters directly depends on the dimensionality of the

random variables and/or the size of the dataset. And a second class, in which the

number of parameters also depends on the particular joint probability distribution

of those variables (i.e. classifiers with a feature selection mechanism or decision

trees with a post-pruning process).

Let us introduce some previous notations: the number of classes to be pre-

dicted is denoted as k; the number of predictive attributes of the data set as n;

and the mean number of cases of these attributes as υ.

3.3.1 Data independent memory space classifiers

As was stated above, the memory space or memory complexity of these classifiers

can be estimated a priori, prior to the training stage, having established the

parameters k, n and υ. Given the data, this has the advantage of informing

about the memory requirements of this classifier.

Not all the classifiers whose memory complexity is independent from the data

are included here. We analyzed the best known ones, because of their simplicity

or their high performance. Lazy classifiers, such as LBR [196], are discarded

because they need to store the complete data set, and therefore they do not

perform any data compression at training time.
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Although we previously introduced most of these classifiers in Chapter 2, we

will enumerate them once again, because in this section we wish to provide an

overview that focuses more the memory space analysis of these models.

Naive Bayes (NB) [54]: This classifier dramatically reduces its space complex-

ity through the assumption of attribute independence given the class. NB

needs a one-dimensional array of class probability estimates and a two-

dimensional array of the conditional probabilities of each attribute given

each class.

• The classification space complexity is O(knυ)

• The classification time complexity is O(kn).

• The exact number of parameters is knv + k.

TAN [67]: This is in the family of one-dependence classifiers: each attribute

depends on the class and on another attribute. Once the classifier has been

learnt by the maximum spanning tree approach proposed by [67], TAN

needs to store the probability estimates of each attribute conditioned to

its attribute parent and the class, except for the root attribute of the tree,

which is only conditioned to the class.

• The classification space complexity is O(knυ2).

• The classification time complexity is O(kn).

• The exact number of parameters is knυ2 + kυ + k.

AODE [176]: This classifier is based on averaging one-dependence models and

has received much attention from the machine learning community. It builds

n different one-dependence models, where one attribute is the parent of

all the rest, each time placing a different parent attribute. Each model

consumes O(knυ2).

• The classification space complexity is O(kn2υ2).

• The classification time complexity is O(kn2).
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• The exact number of parameters is kn2υ2 + knυ + k.

WAODE [97]: An extension of AODE which makes a weighted average of the

n one-dependence models instead of the simple average of its predecessor.

A new weight must therefore be stored, which gives rise to:

• The classification space complexity is O(kn2υ2).

• The classification time complexity is O(kn2).

• The exact number of parameters is kn2υ2 + knυ + n + k.

HNB [193]: This classifier creates a hidden parent for each attribute, which

combines the influences from all other attributes. This is translated in terms

of space complexity to an estimation of the conditioned probability of an

attribute, given another attribute and the class variable for each attribute

pair, which involves kn2υ2 parameters, and a weight that measures the

normalized mutual information among both attributes, and which involves

other n2 parameters.

• The classification space complexity is O(kn2υ2).

• The classification time complexity is O(kn2).

• The exact number of parameters is kn2υ2 + n2 + k.

3.3.2 Data dependent memory space classifiers

In the previous class, the big O notation provides direct information on the mem-

ory space required by the classifiers. The worst case was close to the mean. But

in this class, this agreement does not occur. The worst case or the derived ap-

proximation of the big O notation is usually quite distant from the final memory

space required by the classifier. A clear example, as we pointed out before, is the

case of decision trees.

In this section, we disclose for each one of the examined classifiers its worst

and its best possible memory space requirements. The aim of this description it

to highlight the wide memory space range to which most of these classifiers are

fitted.

57



3.3 Memory Space Analysis of Classification Models

Selective Naive Bayes Classifiers: Inside this family, different approaches can

be found (Section 2.2.2). These are based on a score+search approach which

aims to reduce the feature space, removing irrelevant and redundant vari-

ables that deteriorate the performance of the Naive Bayes classifier. Their

space complexity is the same as NB, O(knυ), although the final number

of parameters clearly depends on the number of relevant attributes in the

database.

• Space Complexity: O(knυ)

• Minimum Bound: k, if no attribute is relevant for class prediction.

• The classification time complexity will depend on the final number of

selected variables and will be linear in relation to this number.

For this category the wrapper approach by Kohavi and John [109]is selected

(for details, see Section 2.2.2).

Selective and Joining Naive Bayes Classifiers: This family was introduced

by Kononenko [112] with little success, but later improved upon by Pazzani

[137] (see Section 2.2.3 for details). They enable Cartesian products of inter-

dependent Attributes to be created. Its space complexity is conditioned by

the size of the Cartesian products created in the learning process. In the

worst case all variables can be joined in only one group:

• Space Complexity: O(kυn)

• Minimum Bound: k, if no attribute is relevant for class prediction.

• The classification time complexity will be linear in the final number of

formed groups.

The forward sequential selection and joining version of Pazzani’s approach

[137] was selected for the evaluation (for details, see Section 2.2.3).

Decision Tree based Classifiers: Decision tree based classifiers (Section 2.3.1)

are one of the best known and most exploited classification models. Roughly

speaking, they are based on a recursive partition of the data space, and use
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a tree structure with attributes in its nodes. At each partition, a probabil-

ity distribution for the class is determined. Thus, the number of possible

leaves is O(t) (one leaf per sample) and, in each leaf, a conditional proba-

bility for the class is computed. The application of post-pruning techniques

can strongly reduce the number of leaves, and therefore the final number of

parameters also greatly depends on the data:

• Space Complexity: O(kt)

• Minimum Bound: k, if no attribute is relevant for class prediction.

• The classification time will be linear in the depth of the final tree after

the post-pruning process.

To evaluate this category, we will use the J48 approach, an advanced version

of the C4.5 approach by Quinlan [149].

3.4 Algorithm Comparisons

In the previous Section 3.2, we introduced a new semi-Naive Bayes proposal,

and a space complexity analysis of a wide range of classifiers was detailed in

Section 3.3. It can be seen that the group of data dependent memory space

classifiers presents a wide range to which their memory requirements are fitted.

Thus, this experimental section attempts to provide deeper insights about the

exact demanded number of parameters of these classifiers and, if where this is

not possible, establish a ranking with the most memory-expensive and the least

memory-expensive predictors.

Firstly, we establish the settings of the experimental configuration. Subse-

quently, we present the results of the memory space comparisons. We also include

another subsection to highlight the fact that a strong memory space reduction of

SNB-G does not presuppose significant losses in the classification performance.

3.4.1 Experimental setup

For these experiments we selected a wide range of the 33 different datasets taken

from the UCI repository. We believe they define a good set of benchmarks for the
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Table 3.8: Data Bases Description

Name t n k υ
anneal 898 39 6 3.4
audiology 226 70 24 2.5
autos 205 26 7 4.3
balance-scale 625 5 3 2.2
wisconsin-cancer 699 10 2 3.0
horse-colic 368 23 2 2.9
credit-rating 690 16 2 3.4
german-credit 1000 21 2 3.2
pima-diabetes 768 9 2 2.1
Glass 214 10 7 2.9
cleveland-diseas 303 14 2 2.2
hungarian-diseas 294 14 5 2.3
heart-statlog 270 14 2 1.7
hepatitis 155 20 2 1.9
hypothyroid 3772 30 4 2.4
ionosphere 351 35 2 3.9
iris 150 5 3 2.8

Name t n k υ
kr-vs-kp 3196 37 2 2.1
labor 57 17 2 2.1
lymphography 148 19 4 2.8
mushroom 8124 23 2 5.5
primary-tumor 339 18 22 3.3
segment 2310 20 7 8.8
sick 3772 30 2 2.1
sonar 208 61 2 1.4
soybean 683 36 19 3.3
splice 3190 61 3 4.8
car 1728 7 4 3.6
vehicle 846 19 4 3.9
vote 435 17 2 2.0
vowel 990 12 11 4.3
waveform 5000 41 3 3.1
zoo 101 18 7 7.8
Range 57-5k 5-70 2-24 1.4-8.8

objective of this study, as most were extracted from practical applications in very

different fields: credit rating, industrial applications, medical applications, etc.

Therefore, they will probably be similar to potential applications of supervised

classification systems for embedding in memory-limited devices.

In Table 3.8, the datasets with their basic features are listed. In the final row,

we display the range of each feature of the datasets with the aim of showing the

heterogeneity of this benchmark.

We implemented this approach, the semi-NB with grouping of cases and the

“forward sequential selection and joining” version of the semi-Naive Bayes ap-

proach by Pazzani [137] in Elvira environment [39]. The experiments, along with

the remaining evaluated classifiers, were performed in Weka platform [185].

The implementation of the classifiers Naive Bayes, AODE, TAN, HNB and

WAODE were the Weka ones with the default settings. For the decision-tree-

based classifiers, we used the implementation of Weka with default settings for

J48, an advanced version of Quinlan’s C4.5 [149]. For the wrapper selective naive

Bayes, we employed the implementation of Weka with a “Best First Search” and

default settings.

The data were preprocessed made with the Weka filters themselves, depending

on the requirements of each classifier. Basically, J48 did not require any prepro-

cessing and, for the remaining ones, the missing values were replaced (with the

60



3.4 Algorithm Comparisons

mean value for continuous attributes and with the mode for the discrete ones)

and discretized with the Fayyad and Irani method [58].

We used two performance measures to evaluate the performance of a classifier:

the classical prediction accuracy (noted as %); and the logarithm of the likelihood

of the true class: Log-Likelihood= ln(P (ĉi|x)), noted as LL. This is a more

general evaluation of the performance of a classifier, as any loss function will be

directly or indirectly based on the precision of these estimates.

The evaluation scheme of the classifiers was performed using a 10-fold-cross

validation repeated 10 times for each database. Thus, 100 train and test eval-

uations were extracted. For each one of these evaluations, we computed the

accuracy and the Log-likelihood measures, as well as the number of parameters

used by each classifier. In the tables we reported the mean value of these 100

evaluations.

Comparison of these performance measures was made following the method-

ology proposed by Demsar [47] for comparison of several classifiers over several

datasets. With this methodology, the non-parametric Friedman test was used to

evaluate the rejection of the hypothesis that all the classifiers perform equally

well for a given significance α level (5% in this case). When the Friedman test

detects significant differences, a post-hoc test is also used to assess particular dif-

ferences among these classifiers. The Bonferroni-Dum test [47] was employed with

a 5% of significance level fixing SNB-G as a reference model. This test assesses

significant improvements or degradations, measuring the differences between the

average rankings of the classifiers. A threshold is previously set and depends on

the number of classifiers being compared; if these differences are higher than this

threshold, there is a statistical improvement or degradation, depending on the

sign of the difference.

3.4.2 Memory space comparison

As in the present study we aimed to evaluate which classifier family is the most

suitable for integration into memory-limited devices, we first give a detailed view

of the memory requirements of the nine classifiers analyzed.
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Table 3.9: Number of Kilobytes of memory needed to define the classification
models

NB SNB-G WNB J48 WSNB TAN AODE HNB WAODE
Average 3.9 2.5 1.8 1.9 26.1 15.2 518.9 525.4 519.1
Desv 6.4 4.8 2.7 2.6 80.0 23.3 1108.3 1114.7 1108.4
Minimum 0.3 0.2 0.1 0.1 0.2 0.6 2.9 3.1 2.9
Maximum 33.4 21.8 10.8 9.1 463.8 84.7 5927.4 5965.7 5928.0

(The full expanded table can be found in Appendix: Table 1)

We employed the following procedure to compute the memory space of each

predictor: for the data independent group, we computed the memory space using

the derived formulas of Section 3.3; for the data dependent group we estimated

this space as the mean of the values computed in each training and test eval-

uation. Assuming that for each parameter we need a double precision number,

i.e., 8 bytes, Table 3.9 shows the statistics of the Kilobytes consumed by each

classification model. Mean number and deviation are provided, along with the

minimum and maximum number of Kilobytes required for some of the 33 datasets

evaluated.

Observing the different rows of this Table 3.9, we can extract several conclu-

sions. Excluding WSNB, data-dependent classifiers need less memory in mean

(a small number of Kilobytes) than data-independent ones (hundreds or tens of

Kilobytes). Furthermore, the deviation, the minimum and the maximum of the

ratios are strictly lower for data-independent classifiers. Special attention must

be paid to the fact that a simple classifier such as the Naive Bayes consumes

more memory resources than WNB, J48 and SNB-G, which attempt to model

dependencies among attributes.

Only TAN predictor presents a memory demand similar in scale to data-

dependent classifiers and Naive Bayes. The memory requirements of AODE,

HNB and WAODE stand out clearly, in some cases overcoming the Megabyte

threshold (for details see Table 1 in the Appendix).

The data in Table 3.10 were obtained by setting the SNB-G approach as

the reference predictor and measuring the memory complexity of the remaining

classifiers as their ratio between their respective memory loads in each dataset.

Readers should be aware that the mean of theses ratios is not the ratio of the
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Table 3.10: Memory space ratio respect to SNB-G
(The full expanded table can be found in Appendix: Table 2)

NB WNB J48 WSNB TAN AODE HNB WAODE
Mean 2.4 1.0 1.7 21.5 8.5 217.0 226.3 217.3
Deviation 1.8 0.6 2.9 69.1 9.6 265.2 271.5 265.4
Minimum 0.8 0.4 0.2 0.4 2.7 14.2 14.8 14.4
Maximum 9.5 3.4 14.7 399.1 52.4 1205.6 1225.4 1206.5

means of Table 3.9. Here, in Table 3.10, the average value across the 33 datasets

is given along with the deviation, the minimum and the maximum of the ratios in

any of these databases (the fullly expanded table can be found in the Appendix,

Table 2).

In Table 3.10, the “Average” row shows that the SNB-G is on average less

memory-demanding than the remaining approaches, due to the fact that their

averages are greater than the unit. Only Wrapper Naive Bayes exhibits a similar

value. Observing the ‘Minimum” and “Maximum” rows, we can see than the

range of the ratios is much more balanced in favour of the SNB-G approach, as

the margins are higher when this predictor wins than when it loses (for a close

review look Table 2 in the Appendix).

In short, data-dependent classifiers are most effective with regard to com-

pressing the data distribution. Thus, they are more suitable for embedding in

memory-limited devices, although the NB and TAN approaches also appear to

be suitable for this purpose, because the range of their memory requirements is

also low.

3.4.3 Classification performance comparison

Once we have established the most effective classifiers under a memory load point

of view, in this subsection we will see whether this memory efficiency is associated

with a substantial deterioration of the classifier performance.

Table 3.11 summarizes the average performance of the nine classifiers. The

”B/L” rows provides the number of datasets in which each classifier presents a

higher (H) or lower (L) degree of accuracy or log-likelihood mean value in relation

to SNB-G. In general terms, there are no big differences in terms of accuracy. In

terms of log-likelihood of quality of estimates of class probability, there are higher
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differences in favour of SNB-G versus NB, WNB, J48 and WSNB, whereas AODE,

HNB and WAODE behave better.

Table 3.11: Accuracy and log-likelihood performance

Dataset SNB-G NB WNB J48 WSNB TAN AODE HNB WAODE
Accuracy 83.89 82.67 83.3 83.93 79.6 84.54 84.72 84.96 85.47
H/L 15/18 13/20 18/15 9/17 23/10 20/13 24/9 27/6
Log-like. -0.69 -0.99 -0.71 -0.79 -0.85 -0.74 -0.70 -0.69 -0.67
H/L 5/28 9/24 11/22 8/18 16/17 19/14 22/11 21/12

(The full expanded tables can be found in Appendix: Table 3 and Table 4)

Following the methodology described at the end of subsection 3.4.1, SNB-G is

compared with those semi-NB classifiers based on the mixture of models and with

a low memory efficiency: AODE, WAODE and HNB. The results of this test are

shown in Table 3.12 (the lower the ranking, the better the classifier performs).

The first conclusion from this table is that the SNB-G approach is just under

the performance of this advanced classifier in terms of accuracy. Only WAODE is

statistically better, the remaining ones being just over SNB-G, but not showing

a significant level. When the quality of the probability estimates, LL, is com-

pared, SNB-G is found to be more competitive and the Friedman Test shows no

differences among the performance of these classifiers.

Table 3.12: Performance comparison with low memory efficient classifiers.

Ranking SNB-G AODE HNB WAODE
Accuracy 3.1 2.6 2.6 1.7>

Log-like. 2.9 2.7 2.2 2.2
> statistically significant improvement respect to SNG-G.

In this second round, the SNB-G predictor was compared with classifiers pre-

senting a similar memory efficiency; NB, TAN, J48 and WNB (results in Table

3.13). Once again, the conclusions can be easily deduced: they all perform sim-

ilarly in terms of accuracy (only the TAN approach stands out a little, but not

significantly) and SNB-G has much better probability class estimates with sta-
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tistically significant differences with NB, WNB and J48, whereas no difference is

found with respect to the TAN predictor.

Table 3.13: Performance comparison with high memory efficient classifiers.

Ranking SNB-G NB WNB J48 TAN
Accuracy 3.1 3.1 3.5 3.0 2.3
Log-like. 2.3 3.9⊥ 3.4⊥ 3.4⊥ 2.2

⊥ statistically significant degradation respect to SNG-G.

3.5 Conclusions and Future Work

In this chapter, we present a new semi-Naive Bayes classifier with grouping of

cases which achieves a competitive level of performance, particularly in terms of

quality of class probability estimates, and with a high memory efficiency. The

memory space complexity of some of the best known state-of-the-art probabilistic

classifiers was also studied.

The focus of this analysis was two-fold:

• Firstly, to propose a new semi-Naive Bayes approach that exploits the

grouping of cases of new compound variables intended to boost the per-

formance classification and to reduce the complexity of the model to make

it more efficient with respect to time and memory requirements. To this

end, we proposed and evaluated three different joining and grouping criteria

(Section 3.2).

• Secondly, the another objective of this chapter was to determine which

classifiers exhibit the best trade-off in terms of performance and memory

efficiency. it can be seen that J48, TAN and SNB-G present an excellent

compromise between accuracy, log-likelihood and memory demand. Con-

cretely, SNB-G presents the best trade-off between memory efficiency and

quality of class probability estimates, together with a competitive level of

accuracy.

65



3.5 Conclusions and Future Work

Mainly, we have shown that use of a grouping of cases approach can maintain

the performance of a classifier while reducing the number of required parame-

ters. This technique could be further applied to some of the classifiers studied in

this dissertation, particularly those presenting very good performance, but with

high memory requirements, for example the AODE [176] classifier, which could

lead to a much more memory-efficient model with a highly competitive level of

performance.

66



Chapter 4

A Bayesian account of

classification trees

In this chapter, we present a Bayesian account of the problem of inferring clas-

sification trees. Concretely, in Section 4.3, we address the problem of estimating

class probabilities using a smoothing approach that attempts to simulate a post-

pruning process. In Section 4.4.3, we deal with the problem of constructing

several classification tree models, building an ensemble of trees. In both cases,

Bayesian inspired approaches are applied.

4.1 Motivation

Decision trees or classification trees (decision trees in which a probability of class

membership, rather than simply the class label, is predicted) are the predictive

models most commonly employed and studied (for details see Section 2.3).

Furthermore, the ensemble of decision trees (for details, see Section 2.3.2)

arose some years later, as an extension of decision tree models, in an attempt

to boost the performance of single classification trees, while maintaining some

of their main properties. The basic idea consists of generating a set of different

decision trees, combining them with a majority vote criteria. That is to say,

when an unlabeled unclassified instance arises, each single decision tree makes a

prediction and the instance is assigned to the class value with the highest number

of votes. Shapire’s Adaboost [64] and Breiman’s Random Forests [26] stand out
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as state-of-the-art classification models and both are based on the idea of decision

tree ensembles.

This chapter aims to tackle the problem of inferring single classification trees

and ensemble of classification trees using Bayesian inspired approaches but with-

out following a strictly full Bayesian approach. Bayesian model selection [174]

and Bayesian model averaging [83] are the basis of our approach.

4.2 Bayesian Inference of Classification Trees

4.2.1 Basic Framework

In order to introduce the basic framework for applying the Bayesian approach

for inferring classification trees, the notation used by Buntine [30] is followed.

Buntine was the first author to apply Bayesian techniques to this specific problem.

Classification trees partition the space of examples into disjoint subsets, each

one represented by a leaf in the tree, and associates a conditional probability

distribution for the class variable in relation to the configuration that defines the

partition assigned to that leaf.

It is assumed that there are K mutually exclusive and exhaustive classes,

c1, ..., cK . Assuming that example x falls to leaf l in the tree structure T , then

the tree gives a vector of class probabilities φk,l for k = 1, ..., K, which are the

probability of class ck at leaf l. Thus, a classification tree has a discrete component

determined by the structure of tree T and a continuous component that is given

by the class probabilities of all the leaves of the tree ΦT = {φk,l : k = 1, ..., K; l ∈
leaves(T )}. No more parameters are needed, as it is assumed that all variables

are multinomial, although continuous variables could be also managed, including

the cut-points in the branching nodes.

Thus, for the above mentioned example x falling into leaf l, its predicted

probability class value is described as P (C = ck|x, T, ΦT ) = φk,l. If a concrete

class had to be predicted, it would be the one with the highest probability.

Under the Bayesian approach, the quality of the models is evaluated as their

posterior probability, given the learning data. This learning data comprises a set
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of N i.i.d. samples, (c̄, x̄) = {(c1, x1), ..., (cN , xN)}. The probability of the model

can be computed using the Bayes’s theorem as:

P (T, ΦT |c̄, x̄) ∝ P (T, ΦT |x)
N∏

i=1

P (ci|xi, T, ΦT ) = P (T, ΦT |x)
∏

l∈leaves(T )

K∏

k=1

φ
nk,l

k,l (4.1)

where nk,l is the number of samples of class ck falling into leaf l. P (T, ΦT |x) can

be considered equal to P (T, ΦT ) as the prior over the models, as T and ΦT are

conditioned to unclassified samples.

The factor ΦT can be removed from Equation 4.1 if a prior over the set of

parameters is defined and integrated into them. This can be easily achieved if the

conjugate of this prior has the same functional form, as it is the case of Dirichlet

distributions.

Parameters Priors: It is assumed that the prior beliefs over parameter values

are given by a Dirichlet distribution. It is also assumed that these distributions

are independent from the parameters of the different leaves of the tree. That can

be formulated as follows:

P (ΦT |T ) =
∏

l∈leaves(T )

1

BK(α1, ..., αK)

K∏

k=1

φ
αk,l−1

k,l

where BK is the K-dimensional beta function and αi are the parameters of the

Dirichlet. BK is computed in terms of product of gamma functions Γ(x) (Γ(x +

1) = xΓ(x)) as follows:

BK(x1, ..., xK) =

∏K
i=1 Γ(xi)

Γ(
∑K

i=1 xi)

Posterior Tree Probability: Therefore, using these priors, the posterior prob-

ability of a tree, T , can be computed as follows:

P (T |x̄, c̄) ∝ P (c̄|x̄, T )P (x̄|T )P (T ) = P (x̄|T )P (T )
∫

ΦT

P (c̄|x̄, T, ΦT )P (ΦT |T )dΦT
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This integral can be computed using the above formulation. At the same time,

P (x|T ) is included in the proportional constant, as it is assumed to be the same

for all the tree structures.

P (T |x̄, c̄) ∝ P (T )
∏

l∈leaves(T )

BC(n1,l + α1, ..., nK,l + αK)

BC(α1, ..., αK)
(4.2)

Although Buntine tested several priors over the possible tree structures, P (T ), in

an attempt to favour simpler trees, there was no definitive recommendation [30].

A uninform prior over the possible tree structures will therefore be assumed.

Posterior Class Probability Estimates: Finally, the estimations of the prob-

abilities of the leaves of the tree T are also computed by averaging all possible

parameter configurations, by means of expectation:

P (C = ck|x, T, c̄, x̄) =

∫

ΦT

Φk,lP (ΦT |T, c̄, x̄)dΦT =
nk,l + αj

nk + α0

(4.3)

where l is the leaf in which x falls and nl =
∑K

k=1 nk,l and α0 =
∑K

k=1 αk.

4.2.2 Single Classification Trees

Single trees are built using the same recursive approach from the root node to the

leaves (for details, see Section 2.3.1). Thus, at any node of the tree, S0, there is a

vector of counts of the samples across the different classes VS0 = (n1, ..., nK) and a

set of possible split attributes (S1, ..., Sp). It remains to be decided whether vector

VS0 is split with some candidate attribute Si in order to make a better estimate

of the conditioned class probabilities. Thus, vector VS0 would be replaced by a

set of |Si| (cardinality of Si attribute) vectors generated by the new partitions

induced by the inclusion of Si. Let us denote as TS0 the former tree and TSi
the

new tree with the inclusion of the split attribute Si.

For each possible tree {TS1 , ..., TSp} a score is computed, Score(TSi
) =

logP (TSi
|~c, ~x), using Equation (4.2). If Score(TSi

) − Score(TS0) > 0 then Si

must be included in the tree. This difference can easily be computed because the
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probability of the tree is multiplicative across the leaves, and the local difference

of the scores of the leaves is therefore sufficient to evaluate the condition [30].

If none of the candidate split attributes shows a better score, the tree growing

must stop at S0, but if there are several Si with higher scores, which one should

be used to split?. When only one tree is sought, as in this case, a greedy approach

is usually employed [27; 30; 150], selecting at each step the split that produces

the highest score. That is to say, the split attribute S∗ is defined as follows:

S∗ = argmaxSi
{Score(Si)− Score(S0) ≥ 0}

When information-based scores are used to grow classification trees such as

Information Gain [150] or Gini Index [27], they always predict better partitions

whenever a new split node is added (differences are always greater or equal than

zero). Thus, stop criteria usually include conditions such as a minimum threshold

for the number of samples, or a pure partition of the data to prevent against

an excessive branching. However, this kind of corrections were insufficient, and

post-pruning techniques were therefore applied for further simplification of the

inferred tree structure [148]. With Bayesian metrics this problem is partially

solved because of the inherent penalty they provide to more complex models (i.e.

excessive branching): it is possible to have Score(Si)− Score(S0) < 0.

4.2.3 Multiple Classification Trees

In the full Bayesian approach, inference considers all possible models with the

corresponding posterior probability and not just the most probable one. In or-

der to handle several models, the final prediction is performed by adding each

particular prediction of each model weighted by its posterior probability:

P (C = dj|x, c̄, x̄) =
∑

T

∫

ΦT

P (C = dj|x, T, ΦT )P (T, ΦT |c̄, x̄)dΦT (4.4)

where the summation covers all possible tree structures.

In Bayesian Model Averaging, Equation (4.4) is approximated by using im-

portance sampling and Monte-Carlo estimation. Thus, tree structures will be
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generated in an approximate proportion to their posterior probabilities. But

applying Monte-Carlo methods in this huge model space would lead to a very

computationally expensive approach.

Buntine computed two approximations to this sum by reducing the set of

tree structures [30]. One approximation, known as Smoothing, restricted the

structures to the ones obtained by pruning a complete tree. It is a smoothing

because probabilities at final leaves are computed by averaging them with some

of the class probabilities from the interior nodes of the tree. The other approxi-

mation used by Buntine was called Option Trees [30]. This approximation was

based on searching and storing many dominant terms of the sum, i.e., trees with

high posterior probabilities. The multiple tree structures were compactly repre-

sented using AND-OR nodes. The final predictions were made by averaging the

predictions of the different models encoded in these option trees.

Other studies [49] have attempted to apply a Bayesian model averaging ap-

proach for weighting each single tree by approximation of their posterior prob-

abilities (they followed the scheme of Equation (4.4)). Therefore, rather than a

simple majority vote as the previous ensembles of trees approaches, they returned

a weighted averaged of the single predictions. But this approach did not provide

good results.

4.3 A Bayesian approach to estimate probabili-

ties in classification trees

In this section, we present a new Bayesian method for estimating the probability

of class membership. The procedure is based on a Bayesian approach that weights

different rules of the induced tree in an attempt to simulate a post-pruning pro-

cess. In an experimental evaluation, we demonstrate that this approach reaches

the performance of J48 (an advance version of Quinlan’s C4.5), one of the best

known decision tree inducers, in terms of predictive accuracy, and outperforms it

in terms of better probability class estimates.
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4.3.1 Introduction

One of the main problems of classification trees is the poor estimates of class

probabilities they usually provide [24; 138]. In many situations, a good estimate

of the probability class is an obvious requirement, particularly when we need a

ranking of the samples according to the class they belong to. (i.e., most of the web

search engines rank the web pages based on their probability of being relevant

for a given query following the Probability Ranking Principle [151]).

In [146] a survey study of different methods for better probability of class

estimates was performed and was based on C4.5. They compare three different

methods: Laplace estimate, C4.5 pruning [149] and, particularly, bagging [23].

They conclude with positive evidence in favour of Laplace and Bagging, but do

not reach a definitive conclusion with regard to pruning.

In this section, we present a Bayesian approach to inducing classification trees.

The aim is to maintain the predictive accuracy of one of the state-of-the-art

classification tree inducers J48 (an advanced version of Quinlan’s C4.5) and to

make significant improvements in the estimates of probability class beyond the

use of Laplace correction or a post-pruning process. In order to demonstrate

this, an experimental study with 27 UCI databases to evaluate this approach was

conducted.

The rest of the section is organized as follows. In Section 4.3.2 the proposed

smoothing method for the class probabilities of the tree leaves is introduced. Sub-

sequently, this smoothing is improved with the definition of non-uniform priors

over the parameters of the tree, Section 4.3.3. Finally, the experimental evalua-

tion and the results are shown in Section 4.3.4.

4.3.2 Bayesian Smoothing approach to estimate class prob-

abilities

This class probability smoothing approach can be seen as an intermediate ap-

proach between a single classification tree and a multiple classification tree model.

The smoothing approach presented in this section attempts to change the esti-

mation derived from Equation 4.3 in Section 4.2.1 with a weighted average that

73



4.3 A Bayesian approach to estimate probabilities in classification
trees

considers the partial estimations made by the internal nodes from the smoothed

leaf to the root node.

The criteria used to grow the classification tree (Section 4.2.2) attempt to

select the most probable model (under the considered assumptions) branching

when there is a positive difference between the scores of the models. Sometimes

the differences between these scores may be small (mainly when the branching is

in the final steps) and the tree resulting from the ramification can be as plausible

as the smaller tree without further ramifications. This leads us to a multiple

model problem as was described in Section 4.2.3. The post-pruning problem in

decision trees is a very similar issue, and attempts to simplify the tree without

further deterioration in its approximation capacity.

The approach described herein attempts to tackle this issue by averaging the

predictions of the internal nodes of the tree in the path from the root node to

the leaf that is being smoothed. This average is weighted. Let us denote as S0

the node that is evaluated, either as a leaf node or being further branched by

introducing a new split node Si. The difference between the scores of both nodes

(for details, see Section 4.2.1) will be used to weight the strength that is to be

associated to the partial prediction made by S0. If this difference is very high in

favour of Si, the weight associated with the prediction of S0 will be negligible.

To the contrary, if this difference is minute, this weight will be much higher.

Let us formally define how the probabilities at the leaf nodes are estimated

with this Bayesian smoothing approach. As is shown in Equation 4.3, the pos-

terior probability of class C, given an instance, x, a tree model T and learning

data (~c, ~x) is computed as follows:

P (C = ck|x, T, c̄, x̄) =
nk,l + αli,k

nl + αli

where l is the leaf in which x falls and nl =
∑K

k=1 nk,l and α0 =
∑K

k=1 αk.

The idea of considering several tree models, as depicted in Section 4.2.3, is

employed in this case. This class probability is therefore estimated as follows:

P (C = ck|x, T, c̄, x̄) ∝
∑

li∈Path(x,T )

nk,li + αk

nli + α0

W(li, T )
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where Path(x, T ) is the set of internal nodes (but which are supposed to act as

leaves) in the path of T from the leaf where x falls in T up to the root node.

W(li, T ) is the weight associated with the prediction in node li and is defined as

follows:

W (li, T ) =
∏

lj∈Path(li,T )

BC(α1,lj−1
, ..., αK,lj−1

)

BC(n1,lj−1
+ α1,lj−1

, ..., nK,lj−1
+ αK,lj−1

)
· (4.5)

·
∏

hi∈Children(lj−1)

BC(n1,hi
+ α1,hi

, ..., nK,hi
+ αK,hi

)

BC(α1,hi
, ..., αK,hi

)
(4.6)

(4.7)

where Path(li, T ) is the set of nodes in the path of T from the node li to the

root node; lj−i is considered the ancestor node of lj in the previous path; and

Children(lj−1) is the set of children of this ancestor lj−1. Finally, a normalization

is required.

As can be seen, this weight is computed as an accumulated product of the

product of the exponential differences between the scores of a node in relation to

its ancestor. The bigger the difference, the greater the weight and the greater the

impact of the internal estimation on the final class probabilities of the smoothed

leaf.

This approach also has the advantage that all these probabilities can be effi-

ciently computed as the tree is built, with only a linear increase in the complexity.

In order to clarify this approach, we show in Algorithm 7 a pseudo-code

description of the Bayesian smoothing approach of this section. The part related

to the selection of the split node is omitted in order to not introduce complexity

in this description. However, as was previously mentioned, this smoothing can

be performed as the tree is generated.

Algorithm 7 Bayesian Smoothing Algorithm

BayesianSmoothing( T , lj, C = {c1, ..., ck}, W)

{n1,lj , ..., nk,lj}=Samples(T , lj);

ck = ck +
n1,lj

+α1,lj

nlj
+αlj

·W for i = 1, . . . , K.

75



4.3 A Bayesian approach to estimate probabilities in classification
trees

if lj is a leaf

normalize(C);

setSmoothedClassProbabilities(lj,C);

else

total=0;

for each child hi of lj in T;

{n1,hi , ..., nk,hi}=Samples(T , hi);

total = total + log(
BC(n1,hi

+α1,hi
,...,nK,hi

+αK,hi
)

BC(α1,hi
,...,αK,hi

) );

end-for

total = total − log(
BC(n1,lj

+α1,lj
,...,nK,lj

+αK,lj
)

BC(α1,lj
,...,αK,lj

) );

W = W · etotal;

for each child hi of lj in T;

BayesianSmoothing( T , hi, C = {c1, ..., ck}, W );

end-for

end-if

return;

4.3.3 A Heuristic to define non-Uniform Dirichlet Priors

One of the key assumptions in the previous approach is that the prior distribu-

tion of the parameters of the tree model T follows a Dirichlet distribution with

parameters αk (k = 1, ..., K). Common implementations of this approach [80]

employ non-informative priors, usually a global sample size, S, is assumed and

Dirichlet parameters are defined as constants: αk = S/K (k = 1, ..., K).

This section attempts to present a heuristic to define non-uniform Dirichlet

priors which exploits the following concept: if at some node, Si, the frequency

nk is zero, then ∀j > i at lj descendant nodes, frequency nk,lj shall also be zero.

It therefore makes sense to assume that nk,lj will probably be zero or close to

zero for most future samples x. Thus, reducing the prior probability for ck at lj
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appears to be coherent. Thus, we propose the following heuristic to modify the

parameters of the Dirichlet priors distributions:

Let us denote as δli = |{nk,li = 0 : k = 1, . . . , K}| the number of classes with

null-frequency in the learning data D restricted to the configuration defined by

li. If δli > 1, the α
li+1

k values are defined as follows:

αk,li+1 =
S

(K − δli + 1)
if nk,li 6= 0

αk,li+1 =
S

(K − δli + 1)δli

if nk,li = 0

As can be seen, the cases with non-null frequency have the same prior probabil-

ity, 1
(K−δli

+1)
, while all cases with null-frequency share the same probability mass

of one non-null frequency case, i.e., 1
(K−δli

+1)δli
. It should be pointed out that,

with this heuristic, a uniform prior is obtained for a two-class problem. Thus,

this heuristic is only effective for multiclass classification problems, because in

those cases the null-frequency classes arise much more frequently.

4.3.4 Experimental Results

In this section, the experimental evaluation of this approach is presented. Firstly,

the evaluation methodology is described and the experimental results of the dif-

ferent approaches are then detailed.

Experimental and Evaluation Setup

For these experiments, we selected a set of 27 different datasets taken from the

UCI repository. In Table 4.1, the datasets with their basic features are listed. In

the last row, we show the range of each feature of the datasets in order to show

the heterogeneity of this benchmark.

The classification tree inducers were implemented in Elvira platform [39] and

evaluated in Weka [185]. The data were preprocessed and the missing values (with

the mode value for nominal attributes and with the mean value for continuous

attributes) replaced and discretized with an equal-frequency method with 5 bins

using Weka filters themselves.
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Table 4.1: Data Bases Description

Name t n k
anneal 898 39 6
audiology 226 70 24
autos 205 26 7
breast-cancer 286 10 2
horse-colic 368 23 2
german-credit 1000 21 2
pima-diabetes 768 9 2
glass2 163 10 2
hepatitis 155 20 2
hypothyroid 3772 30 4
ionosphere 351 35 2
kr-vs-kp 3196 37 2
labor 57 17 2
letter 20000 16 2

..........

Name t n k
..........

lymphography 148 19 4
mfeat-pixel 2000 240 10
mushrooms 8123 22 2
optdigits 5620 64 10
segment 2310 20 7
sick 3772 30 2
solar-flare 323 13 2
sonar 208 61 2
soybean 683 36 19
sponge 76 45 3
vote 435 17 2
vowel 990 12 11
zoo 101 17 7
Range 57-20k 9-240 2-24

Two evaluation or performance measures are employed in this experimental

evaluation: the classical prediction accuracy (noted as Accuracy); and the loga-

rithm of the likelihood of the true class, computed as: log-likelihood= ln(P̂ (ci|x)),

where ci is the true class value of the test example x. The latter score is introduced

in order to evaluate the precision of probability class estimates. The usefulness

of this score for this task is justified in many ways, as for example in [76; 153].

The evaluation of the classifiers was achieved by a 10-fold-cross validation

repeated 10 times for each database. Thus, 100 train and test evaluations are

performed.

The comparison of these performance measures was made by following the

methodology proposed by Demsar [47] for the comparison of several classifiers

over several datasets. With this methodology, the non-parametric Friedman test

is used to evaluate the rejection of the hypothesis that all the classifiers perform

equally well for a given significance α level (5% in this case). When the Friedman

test detects significant differences, a post-hoc test is also used to assess particular

differences among these classifiers. The Bonferroni-Dum test [47] was employed

with a 5% significance level, setting J48 as the reference model. This test assesses

significant improvements or degradations, measuring the differences between the

average rankings of the classifiers. A threshold is previously set which depends

on the number of classifiers being compared; if these differences are higher than
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this threshold, a statistical improvement or degradation occurs, depending of the

sign the difference.

It is a well-established fact that non-parametric tests impose a stricter con-

dition for rejecting hypotheses. Thus, in this evaluation we display the ranking

score that the Friedman test assigns to each classifier (ranking scores close to

1 indicate better a performance for these classifiers) with the idea of detecting

some trends, although they may not reach significance levels. These rankings are

shown with the label “Ranking”.

As previously indicated, the aim of this experimental evaluation is three-

fold: the tree induction with a Bayesian metric (BM), Section 4.2.2; a Bayesian

smoothing approach (BS) for estimating the probabilities class membership, Sec-

tion 4.3.2; and a non-uniform prior (NUP) definition approach, Section 4.3.3. In

all cases, the same prior Dirichlet distribution is used with the same global sam-

ple size, S. Three different global sample sizes were evaluated: S = 1, S = 2 and

S = K.

Let us define the three combinations evaluated: βS: classification trees in-

duced with a Bayesian metric (BM); β̂S: BM + BS; β̂θ
S: BM + BS + NUP.

As the aim of this section is to provide a classification tree inducer, based

on Bayesian ideas, which reaches the performance of J48 (an advance version

of Quinlan’s C4.5 implemented in Weka platform [185]) in terms of accuracy,

but outperforms in terms of better probability class estimates, the three above

mentioned approaches are tested by setting J48 as a classifier reference.

Bayesian Metric as splitting critera for inducing CT

We test the use of a Bayesian metric as a splitting criterion for inducing classifi-

cation trees (CT), previously described in Section 4.2.2.

The results of Table 4.2 show that the use of a Bayesian metric as a splitting

criterion is competitive in relation to J48. The Friedman test does not reject the

hypothesis that all classifiers perform equally well for accuracy and log-likelihood

estimates. As can be seen, the mean values are very close to each other.

Therefore, a simple classification tree inducer such as ID3, but with a Bayesian

Metric, performs similarly to the one obtained by J48, which is much more com-

plicated to implement.
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Table 4.2: Bayesian metric as Splitting Criteria
(The full expanded table can be found in Appendix: Table 5 and Table 6)

Average
Accuracy
Log-likel.

J48
85.50
-0.79

βS=1 βS=2 βS=K

85.30 85.56 84.03
-0.79 -0.78 -0.78

Ranking
Accuracy
Log-likel.

J48 βS=1 βS=2 βS=K

2.2 2.5 2.3 3.0
2.3 3.0 2.3 2.4

Friedman Test
Accept
Accept

Table 4.3: Bayesian Smooth Approach
(The full expanded table can be found in Appendix: Table 5 and Table 6)

Average
Accuracy
Log-likel.

J48
85.50
-0.79

β̂S=1 β̂S=2 β̂S=K

85.50 85.82 83.98
-0.63 -0.63 -0.77

Ranking
Accuracy
Log-likel.

J48 β̂S=1 β̂S=2 β̂S=K

2.1 2.7 2.2 2.9
2.8 2.5 2.0 2.7

Friedman Test
Accept
Accept

Bayesian Smooth Approach

Herein we evaluate the introduction of the Bayesian smoothing approach, β̂S.

Results are presented in Table 4.3.

As can be seen, the introduction of the Bayesian smoothing approach involves

a slight increment in average accuracy, but an important improvement in terms

of quality class probability estimates (log-likelihood). However, the improvement

in log-likelihood is not sufficient to cause the rejection of the null hypothesis by

the Friedman Test. Nonetheless, the ranking for β̂S=2 is now better than the

previous model, which excludes the smoothing method.

80



4.3 A Bayesian approach to estimate probabilities in classification
trees

Table 4.4: Non-Uniform Priors Definition
(The full expanded table can be found in Appendix: Table 5 and Table 6)

Average
Accuracy
Log-likel.

J48
85.50
-0.79

β̂θ
S=1 β̂θ

S=2 β̂θ
S=K

85.85 86.04 85.37
-0.61 -0.60 -0.69

Ranking
Accuracy
Log-likel.

J48 β̂θ
S=1 β̂θ

S=2 β̂θ
S=K

2.4 2.6 2.3 2.7
3.0 2.6 2.0> 2.4

Friedman Test
Accept
Reject

> indicates this classifier is statistically better than J48.

Non-Uniform Dirichlet Priors Definition

Finally, we test the introduction of non-uniform priors in the Bayesian metrics.

Results are shown in Table 4.4.

As can be seen, the introduction of non-uniform priors, as detailed in Sec-

tion 4.3.3, improves both accuracy and log-likelihood. In terms of accuracy, the

average is further improved, but it is in the evaluation of the quality of class prob-

ability estimates where the best improvements are achieved. Now, the Friedman

test rejects the idea that all classifiers perform equally well, and the Bonferroni-

Dum post-hoc test indicates that β̂θ
S=2 provides statistically significant better

class probability estimates than J48.

Experimental Conclusions

We have shown that a simple classifier inducer such as ID3, but with a Bayesian

split metric, can reach the performance of J48 with a post-pruning process in

terms of accuracy and class probability estimates.

Moreover, the inclusion of the Bayesian smoothing approach involved an im-

provement in the performance of the induced trees, but there was no statistically

significant difference when the Friedman test was employed. However, the fi-

nal inclusion of a heuristic to define non-uniform priors enabled this Bayesian

approach to obtain class probability estimates that were better than the ones

obtained by J48 and were statistically significant,
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4.4 A Bayesian random split for building en-

sembles of classification trees

Random forest models [26] consist of an ensemble of randomized decision trees.

It is one of the most outperforming classification models. With this idea in

mind, in this section we introduced a random split operator based on a Bayesian

approach for building a random forest. The convenience of this split method

for constructing ensembles of classification trees is justified with an error bias-

variance decomposition analysis. This new split operator does not clearly depend

on a parameter M as its random forest’s counterpart, and performs better with

a lower number of trees.

4.4.1 Introduction

The idea of randomized decision trees was first proposed two decades ago by

Minger [129], but it was since ensembles of classifiers were introduced that the

combination of randomized decision trees arose as a very powerful approach for

supervised classification models [23; 26; 48].

Bagging [23] was one of the first approaches that exploited this idea. A group

of decision trees was built over a bootstrapped replicate of the former training

dataset. Finally, the last prediction was made by a majority voting criterion over

the set of predictions of each single decision tree. As each decision tree was built

following the usual approach [27] from different bootstrapped training data, each

tree comprised a different set of split nodes. Thus, the randomization was caused

by the different random variations of the bootstrapped training sets.

Another trend appeared with the use of random split node selection. For

example, Dietrich et al. [48] built ensembles of trees in which at each node, the

split was randomly selected from among the M best splits attributes. Some years

later, Breiman proposed the random forest model [26] as a combination of the

bagging approach with a random split node selection. In this method, each deci-

sion tree was once again built over a bootstrapped replicate of the former training

set. But, as opposed to the Diettrich et al. approach [48], first M nodes were

randomly selected and the best one of these was chosen. The Random Forests
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outperformed the Bagging and Diettrich approaches [26]. One issue relating to

Random Forests is their sensitivity to the selection of the M value [26; 72], al-

though Breiman suggested a M value around the logarithm of the number of

variables as a default choice.

One the main questions relating to ensembles of trees was a theoretical justifi-

cation of their excellent performance. The notion of bias-variance decomposition

of the error [25; 110] appeared to provide some insights. Bias represents the sys-

tematic component of the error resulting from the incapacity of the predictor to

model the underlying distribution. However, variance represents the component

of the error that stems from the particularities of the training sample. As both

are added to the error, a bias-variance trade-off therefore takes place [110]. When

we attempt to reduce bias by creating more complex models that fit better the

underlying distribution of the data, we take the risk of increasing the variance

component due to overfitting of the learning data. As decision trees can easily

encode complex data distributions, their main disadvantage could lie in the high

variance they are associated with.

Post-pruning techniques [27; 149] have been discovered as successful tech-

niques for reducing the variance of the trees without further deterioration of

their bias component [73]. With the same idea in mind, it has been seen that

the success of combining multiple models relies on an underlying reduction of

bias and, particularly, on the variance error component [26; 72]. A special role is

played in this sense by the selection of the M value in Random Forests. Higher

M values seem to imply low bias but higher variance and, on the other hand,

lower M values appear to present poorer bias but better variance [72].

In this section, we propose a new random split method derived from a Bayesian

approach for building ensembles of trees. This random split is similar to the

random forests one, but does not pose the problem of choosing an optimal M

value and allows better performance to be obtained with a lower number of trees.

The rest of the section is divided as follows. First, Section 4.4.2 attempts

to justify the convenience of a random based split criterion when several classi-

fication tree models are combined in an ensemble. Section 4.4.3 introduces the

Bayesian random split approach. Finally, Section 4.4.4 shows the results of the

experimental evaluation.

83



4.4 A Bayesian random split for building ensembles of classification
trees

4.4.2 Comparison with the random forest model

The greedy approach to building decision trees was first exposed in Section 2.3.1

and its counterpart from a Bayesian point of view in Sections 4.2.1 and 4.2.2.

What we attempt to do here is to show that these greedy methods are unsuitable

when the classification problem is addressed with a multiple model framework,

as was described in Section 4.2.3.

As we pointed out in Section 4.2.2, at a given point of the growing process of a

classification tree in a node S0, there is a set of possible split attributes (S1, ..., Sp).

Let us denote as TS0 the tree without branching at S0 and TSi
the new tree with

the inclusion of the split attribute Si. For each possible tree {TS1 , ..., TSp} a score

is computed, Score(TSi
) = logP (TSi

|ĉ, x̂), using Equation (4.2).

In the deterministic greedy approach, the split node S∗ with the highest pos-

itive difference, Score(TSi
)− Score(TS0) > 0, is selected. Whereas if none of the

candidate split attributes shows a positive difference, the tree ceases to grow at

S0.

This search method appears to be highly suitable when only one classification

tree is inferred from the learning data, but if one seeks a broader set of trees

with high posterior probabilities so that they become selected in an approximate

proportion to this posterior, the greedy approach does not appear to be very

suitable.

The greedy approach is known to be very sensitive to the selection of the

root node of the tree [3]. Thus, if there is a very high informative node, greedy

approaches such as Bagging will probably start most of the trees of the ensembles

with the same root node. Therefore, greedy search schemes mostly seem to reveal

a narrow set of local maxima of the global posterior probability distribution over

the different decision trees.

With this in mind, we chose a random split criterion similar to the one used

in random forests. As the random selection of the split nodes at the beginning of

tree appears to be more suitable than a greedy scheme, the approach presented

differs from the random split of random forests in the introduction of a random

condition for stopping the branching.
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Information-based scores used to grow random ensembles [26] such as infor-

mation gain [150] or Gini index [27] predict better partitions whenever a new

split node is added. Therefore, stop criteria usually include conditions such as a

minimum threshold for the number of samples or a pure partition of the data.

Excessive branching implies a higher risk of over-fitting, and post-pruning tech-

niques were therefore applied as suitable stop criteria (they reduce the size of

three defining shorter rules and, in consequence, establish better stop levels).

The use of a Bayesian approach enables us to tackle the stop branching prob-

lem in an elegant manner, because of the inherent penalty they impose upon more

complex models. In the previous Section 4.3, the Bayesian smoothing approach

can also be seen as a Bayesian approach to tackling the stop branching problem,

this combining different classification rules. In this case significant performance

improvements were noted. For these reasons, possibly stopping the branching, as

an additional option to be considered, appear to be justified.

4.4.3 A Bayesian Random Split

In this section, we present the new approach for building an ensemble of classi-

fication trees. This approach is similar to Bayesian model averaging (Equation

(4.4)) which attempts to collect trees with high posterior probabilities. But the

predictions of these trees are not weighted. Rather, greater importance is given

to the most probable trees which appear more frequently in the ensemble of trees.

Thus, this approach should be viewed as a Monte-Carlo inspired one.

As in random forests [26] (for details, see Section 2.3.2), at any node S0 of

the tree, M split attributes (S1, ..., SM) are randomly selected from the set of all

possible split candidates. Therefore a score, Score(TSi
), is computed for each split

node Si. Simultaneously, we also compute the score of the model without further

splitting at this point, Score(TS0). Exponentiating and normalizing this vector

of scores, we obtain a distribution ΛM = (λ0, ..., λM) where each λi informs us

of the degree of probability of the tree model with the split node Si with respect

to the rest of split candidate nodes and the tree without further splits, TS0 . It

must be remembered that Λ is a proper probability distribution, because each
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Score(TSi
) comes from a probability itself. This would not be so evident if the

scores were based on information theoretic criteria.

As Score(TSi
) is computed with a logarithmic transformation in order to avoid

overflows, normalization has to be performed as follows:

λi =
ϕ(TSi

)∑M
j=0 ϕ(TSj

)
, i ∈ {0, ...,M}

where ϕ(TSi
) is scaled by the maximum score of the candidate models, Score(TSmax):

ϕ(TSi
) = e(Score(TSi

)−Score(TSmax)), i ∈ {0, ..., M}

Finally, our approach randomly samples the split node among the M candi-

dates according to ΛM distribution. If the TS0 tree is sampled (i.e., branching is

stopped at this leaf), the current M split attributes are discarded and other dif-

ferent M split attributes are randomly selected. The whole process of computing

the ΛM is conducted again. Thus, branching stops when TS0 is selected and there

are no more split attributes to repeat the whole process again. It is important to

remark that the discarded attributes in this process can be considered again in

the selection of another split node.

We now provide the pseudo-code of our Bayesian approach to a random split

criterion.

Algorithm 8 Bayesian Random Split

SelectSplit(S0, ~X = {X1, ..., Xn})
~Z = AvailableAttributes(S0, ~X);

end = false;

while (not end)

{S1, ..., SM} = Random Selection(~Z);

{S0, S1, ..., SM} = {S0} ∪ {S1, ..., SM};
ΛM = (λ0, ..., λM )=ComputeScores({S0, ..., SM});
S∗=Sampling(ΛM );
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~Z = ~Z \ {S1, ..., SM};
if S∗ 6= S0 OR ~Z 6= ∅

end=true;

else if S∗ = S0 AND ~Z 6= ∅
end=false;

return S∗;

The function AvailableAttributes(S0, ~X) returns the attributes not included

as split nodes in the path from S0 to the root node. That is, all possible attributes

available to be used as split nodes.

Random forests perform the same steps but use an information-based score

instead of a Bayesian one (for details, see Section 2.3.2); they select the split node

with the highest score among the M candidates rather than a random sampling

of the split node; and they stop branching when this reaches a pure partition or

there are few samples in the partition.

4.4.4 Experimental Evaluation

In this section, we present the experimental results of the comparison of the

Bayesian approach for random splits with the random forest one. In the first

subsection we will detail the experimental approach employed and the evaluation

methodology, and the second subsection presents results and conclusions. The

approach presented will be denoted as Bayesian random split (BRS) as opposed

to Random Forests (RF).

Experimental and Evaluation Setup

For these experiments we selected a set of 23 different datasets taken from the

UCI repository. In Table 4.5, the datasets with their basic features are listed.

In the last row, we present the range of each feature of the data sets in order to

show the heterogeneity of this benchmark.

The approach presented, an ensemble of classification trees induced with a

Bayesian random split, was implemented in Elvira environment [39], whereas
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Table 4.5: Data Bases Description

Name t n k
anneal 898 39 6
audiology 226 70 24
autos 205 26 7
breast-cancer 286 10 2
horse-colic 368 23 2
german-credit 1000 21 2
pima-diabetes 768 9 2
glass2 163 10 2
hepatitis 155 20 2
hypothyroid 3772 30 4
ionosphere 351 35 2
kr-vs-kp 3196 37 2

..........

Name t n k
..........

labor 57 17 2
lymphography 148 19 4
segment 2310 20 7
sick 3772 30 2
solar-flare 323 13 2
sonar 208 61 2
soybean 683 36 19
sponge 76 45 3
vote 435 17 2
vowel 990 12 11
zoo 101 17 7
Range 57-4k 9-70 2-24

the experiments, along with the rest of the classifiers evaluated, were carried

out in Weka platform [185]. We used non-informative Dirichlet priors over the

parameters, setting the αi parameters of this distribution at 1/K (for details see

Section 4.2.1).

The data were preprocessed with the Weka filters themselves: missing values

were replaced (with the mean value for continuous attributes and with the mode

for the discrete ones) and discretized with the Fayyad and Irani method [58].

We evaluated the performance of the classifiers with the error rate and with

a bias-variance decomposition of this error. For that purpose, we used the Weka

utility, following the bias-variance decomposition of the error proposed by Kohavi

and Wolpert [110] and using the experimental methodology proposed in [177].

Comparison of those performance measures followed the methodology pro-

posed by Demsar [47] for the comparison of several classifiers over several datasets.

In this methodology, the non-parametric Friedman test was used to evaluate the

rejection of the hypothesis that all the classifiers perform equally well for a given

significant α level (5% in this case). When the Friedman test detected signif-

icant differences, a post-hoc test was also used to assess particular differences

among these classifiers: the Bonferroni-Dum test [47] with a 5% significance level

establishing a given classifier (marked with ? in the tables) as the reference model.

As in the experimental evaluation of the previous section, the ranking scores

that the Friedman test assigned to each classifier (ranking scores close to 1 indi-

cate better performance for those classifiers) were also displayed.
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Both Bayesian random split and random forests were evaluated with different

M values and number of trees in the ensembles. Concretely, M was fixed to 1, 3, 5

and equal to the logarithm of the number of variables as Breiman recommended.

Four different numbers of trees were evaluated: 10, 50, 100 and 200.

In this section only a summary of the Results is presented in the tables.

Fully expanded tables with the error, bias and variance for the above evaluated

ensembles can be found in the Appendix: Tables 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17 and 18.

The Role of M and the number of trees in BRS

The aim of this initial analysis is to show that the Bayesian random split quickly

reaches a competitive performance level with a lower number of trees and that

this performance does not depend much on the M value as in the case of Random

Forests.

Firstly, the following comparison was made. An ensemble with the Bayesian

random split was built setting the number of trees at 10 and the M value at 1.

This ensemble was then compared with random forest ensembles with different

numbers of trees and different M values.

Table 4.6 contains the different average classification errors across the 23 dif-

ferent databases for the different ensembles of this initial analysis. At the same

time, in Table 4.7 we show the Friedman test results as applied to the differ-

ent number of trees: we display the ranking scores of each ensemble along with

the acceptation or rejection of the null hypothesis (all classifiers perform equally

well).

As can be seen in Table 4.7, a BRS ensemble with 10 trees and M = 1 proves

difficult to beat using Random Forest ensembles with a higher number of trees

and different M values, but what it is most important, there is no clear trend

and Random Forests appear to beat BRS, depending on the concrete M value

and with a concrete number of trees.

In a second step, we exchanged the roles and tested a Random Forest ensemble

with 10 trees and M = LogN (the recommended value by [26]) against different
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Table 4.6: Evaluating BRS ensembles with 10 Trees - Average Error

RF Trees
10
50
100
200

?BRS RF
M=1 M=1 M=3 M=5 M=Log N
0.147 0.169 0.161 0.159 0.159
0.147 0.146 0.142 0.144 0.143
0.147 0.143 0.139 0.141 0.140
0.147 0.141 0.138 0.140 0.139

Table 4.7: Evaluating BRS ensembles with 10 Trees - Ranking Scores

RF Trees
10
50
100
200

?BRS RF
M=1 M=1 M=3 M=5 M=Log N
2.0 3.9⊥ 3.1⊥ 2.9 3.1
3.4 3.5 2.6 2.9 2.7
3.7 3.2 2.3> 2.8 2.9
3.8 3.1 2.7 2.8 2.6

Friedman Test
Reject
Accept
Reject
Accept

>, ⊥ statistically significant improvement or degradation respect to BRS.
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Table 4.8: Evaluating Random Forests with 10 Trees - Average Error

BRS Trees
10
50
100
200

?RF BRS
M=Log N M=1 M=3 M=5 M=Log N

0.159 0.147 0.145 0.147 0.148
0.159 0.135 0.135 0.138 0.137
0.159 0.133 0.134 0.137 0.137
0.159 0.132 0.134 0.138 0.136

Table 4.9: Evaluating Random Forests with 10 Trees - Ranking Scores

BRS Trees
10
50
100
200

?RF BRS
M=Log N M=1 M=3 M=5 M=Log N

4.3 3.2 2.1> 2.6> 2.8>

4.9 2.7> 2.3> 2.5> 2.6>

5.0 2.3> 2.5> 2.7> 2.6>

5.0 2.4> 2.4> 2.7> 2.5>

Friedman Test
Reject
Reject
Reject
Reject

>, ⊥ statistically significant improvement or degradation respect to RF.

BRS ensembles with different tree sizes and M values. The analogous results are

presented for this new analysis in Table 4.8 and 4.9.

In this new analysis, the trend is much clearer than in the previous case.

As can be seen in Table 4.9, the BRS ensembles now robustly outperform the

Random Forest ensembles with different M values and different numbers of trees.

The first conclusion seems clear - Bayesian Forests reach a high performance

level with a low number of trees and this performance does not depend much

upon the concrete M value, as in the case of Random Forests. Throughout the

next subsection, we will show how this trend mainly results from a better trade-

off between the bias and the variance obtained with the Bayesian random split

operator.

91



4.4 A Bayesian random split for building ensembles of classification
trees

Table 4.10: Error, Bias and Variance averaged values for ensembles with 200
trees.

Error
Bias

Variance

BRS RF
M=1 M=1 M=3 M=5 M=Log N
0.1321 0.141 0.138 0.140 0.139
0.0881 0.097 0.093 0.093 0.092
0.0441 0.0441 0.045 0.048 0.047

1 indicates the best average error with the same number of trees.

Bias-Variance Analysis

Herein we conducted a bias-variance decomposition of the error for both the BRS

and RF models. With the aim of simplifying the result analysis, we evaluated the

BRS models with M = 1. Analyzing the results of the previous section devoted

to the role of M in BRS models, we did not find any good reason to prefer a

specific M value. The BRS with M = 1 appeared to stand out somewhat more

than the others.

In Table 4.10, we first give the averaged values for error, bias and variance for

ensembles with 200 trees. The super-index (1) indicates the best values across

the different ensembles with the same number of trees. As can be seen, the

BRS ensembles exhibit better averaged performance for error, bias and variance.

Although not many conclusions can be extracted from this comparison, it is

convenient to start by pointing out the best trade-off among bias-variance of the

Bayesian random split operator. Furthermore, as was previously stated in Section

4.4.1, in random forests, higher M values are associated with better a bias, but

which presents a higher variance.

A more profound analysis performed out using Demsar’s methodology [47].

Error (Table 4.11), Bias (Table 4.12) and Variance (Table 4.13) were compared

between the Bayesian random split operator and Random Forests. We provide the

ranking score of each approach and show whether the Friedman test accepted or

rejected the null-hypothesis (all classifier performs equally well). The tests were

performed independently for the different numbers of trees in the ensembles.
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Table 4.11: Error - Ranking Scores

Trees
10
50
100
200

?BRS RF
M=1 M=1 M=3 M=5 M=Log N
2.01 3.9⊥ 3.1 2.9 3.1
2.41 3.7 2.9 3.1 2.9
2.51 3.6 2.7 3.1 3.2
2.41 3.5 3.1 3.1 2.9

Friedman Test
Reject
Accept
Accept
Accept

⊥ indicates this classifier is statistically worst than the respective BRS model.

For the error, Table 4.11, only with 10 trees there are significant differences

among the classifiers. In that case, Bonferroni-Dum Test [47] says that the

Bayesian random split is significantly better than random forests with M = 1

(its ranking is marked with ⊥). For a higher number of trees, although no signifi-

cant differences were found, our approach always provided the best ranking. For

random forests, M = LogN is seen to be the best option.

Table 4.12, shows the bias evaluation results. As was mentioned in Section

4.4.1, the random forest model with M = 1 presents the worst bias, which can be

observed in this table. The Bonferroni-Dum test reveals significant differences of

RF M = 1 with respect to the BRS. There is no difference with respect to the

rest, but the Bayesian random split model clearly shows a better ranking across

the different numbers of trees. Although the BRS exhibits a M value fixed to 1, it

achieves the best bias. This is a good indication, as the randomness introduction

in the split criteria through a Bayesian approach indicates a promising method

for further improvements.

Lastly, we evaluate the variance component (Table 4.13). In this case, the

non-parametric test indicates non significant differences among the classifiers,

although RF (M = 1) appears to stand out somewhat, with 200 trees.

Experimental Conclusions

The value of M in Random Forests has been known to affect the performance

of the ensembles [26]. In a bias-variance analysis, it was shown [72] that lower

M values reduce variance, but increase bias and viceversa. M = LogN seems
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Table 4.12: Bias - Ranking Scores

Trees
10
50
100
200

?BRS RF
M=1 M=1 M=3 M=5 M=Log N
2.51 3.8 2.9 3.0 2.9
2.21 3.8⊥ 3.0 3.1 2.9
2.11 3.8⊥ 2.8 3.0 3.2
2.31 3.9⊥ 3.0 3.0 2.7

Friedman Test
Accept
Reject
Reject
Reject

⊥ indicates this classifier is statistically worst than the respective BRS model.

Table 4.13: Variance - Ranking Scores

Trees
10
50
100
200

?BRS RF
M=1 M=1 M=3 M=5 M=Log N
2.31 3.5 3.2 3.0 3.0
2.81 2.9 3.0 3.2 3.0
2.9 3.0 2.9 3.3 2.81

2.8 2.41 3.0 3.5 3.2

Friedman Test
Accept
Accept
Accept
Accept
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to present the best trade-off between bias and variance and, in consequence, the

best error rate. Our experiments confirm this trend.

This trend is broken with the introduction of more randomness in the split

criteria. In BRS ensembles with M = 1, the low variance is maintained, while the

bias shows a noteworthy decrease. Thus, we achieve the best trade-off between

bias and variance. Although we did not find any significant differences between

random forests with M = LogN , the good behaviour of our new random split

provides the possibility to develop new approaches with a stronger theoretical

basis.

4.5 Conclusions and Future Work

Throughout this Chapter 4 we introduced a Bayesian approach to the problem of

inferring classification trees. Concretely, in Section 4.3, we addressed the problem

of estimating class probabilities, using a smoothing approach that attempts to

simulate a post-pruning process, while in Section 4.4.3, we tackled the problem

of dealing with several classification tree models by building an ensemble of trees.

In both cases, the application of Bayesian-inspired approaches was encouragingly

positive.

In short, in Section 4.3 we present a method for inducing classification trees

with a Bayesian model selection approach as a split criterion and with a Bayesian

model-averaging inspired approach aimed at estimating the probability of class

values. We also introduced a new approach to define non-uniform priors over

the parameters of the models. In order to show the good performance of this

approach, we made an experimental evaluation using 27 different UCI datasets,

comparing it with one of the state-of-the-art tree inducers, J48.

Moreover, in Section 4.4.3 we presented a new random split operator for build-

ing ensembles of classification trees based on Bayesian ideas. We also depicted the

method for constructing ensembles of classification trees using this random split

through a Bayesian approach. In an experimental study, we showed that this new

split operator does not clearly depend upon the M parameter, like its counterpart

of the random forests models, and performs better with a lower number of trees.

These advantages were justified with the use of a bias-variance decomposition of
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the error. In random forests, M = LogN attempts to find a balance between bias

and variance. With the Bayesian random split with M = 1 presented, the low

variance is maintained while the bias is clearly improved.

From our point of view, both studies provide some insights into how to ad-

dress the building of single classification trees and ensembles thereof through a

Bayesian approach, and propose new methods for dealing with these complex

problems. There is a need for further experiments and, particularly, for theoreti-

cal developments.
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Applications to Genomics
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Chapter 5

Introduction to Supervised

Classification of Gene Expression

Data

5.1 An Overview of Gene Expression Data

In this section we provide a general introduction to gene expression data along

with a general description of the methodology employed to obtain these data.

Finally, we show possible applications and an introduction to the use of automatic

classification procedures.

Structural Genomics

Throughout the last decade, the progressive development of automatic methods

for extracting DNA samples, as well as their sequencing and subsequent reading,

has enabled several high-scale DNA sequencing projects. In 1997 the genome of

the first organism, Saccharomyces cerevisiae, was described. Two years later it

was the earthworm, Caenorhabditis elegans. Half way through the year 2000, it

became possible to describe the genome of the fruit fly, Drosophila melanogaster,

and at the end of that year it was published the genome of one plant, Arabidopsis

arrives.
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The international consortium, comprising 20 different groups of different coun-

tries, along with the private company Celera Genomics made public, on Febru-

ary 12th 2001, the provisional map of the human genome (HG), which provided

extraordinary information on the human genetics bases. The group of this inter-

national consortium, led by Eric Land, from Sanger Center (Cambridge, UK),

published the complete sequence in the journal Nature, while the American com-

pany Celera Genomics, led by Craig Venter, published the same sequence in the

another famous journal Science. The international consortium estimated that the

human genome contains around 31,780 genes codifying certain proteins, and until

that date had discovered around 22,000 genes. Celera claimed to have some evi-

dence of the existence of 26,000 genes, and also estimated that there were around

38,000 genes. Although the Human Genome Project (HGP) was completed in

April 2003, the exact number of genes is as yet unknown.

Figure 5.1: Science and Nature Front Pages

The sequence obtained is enormously significant, with many interesting points:

• Humans have only twice as many genes as the fruit fly, one third more

than the earthworm and only 5000 more than the plant Arabidopsis. At

least 98% of human DNA is identical to the chimpanzee’s and that of other

primates.

• Genes are made up of 3200 millions of base pairs, shared among 23 chromo-

some pairs. The denser chromosomes (with more genes codifying proteins)
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are numbers 17, 19 and 22. Chromosomes X, Y, 4, 18 and 23 are the most

arid ones.

• The Celera equipment used samples from twelve people to sequence the

human genome. Each person shares 99.99% of the genetic code with the

remainder of human beings. Only 1250 letters separate one person from

another.

• To date, 223 genes have been found to be similar to bacterial genes.

• Only 5% of the genome codifies proteins, while 25% of human genome is

almost void, with large free spaces existing between one gene and another.

• It is estimated that there are around 250-300,000 different proteins. There-

fore, each gene could be involved, on average, in the synthesis of ten pro-

teins.

• Somewhat more than 35% of the genome contains repeated sequences, this

part being known as garbage DNA.

• A high number of small variations among genes has been identified, which

is known as single nucleotide polymorphism (SNP). Most of them do not

have a specific clinical effect but, for example, whether a person is sensitive

or not to a given drug, or prone to suffer a given disease, depends on them.

A huge amount of information needs to be analyzed, for example, there is a

need to establish where genes start and finish, as well as to identify their exons,

introns and regulatory sequences. There is also a need to make comparisons of se-

quences of several species (Comparative Genomics). The sequence map generated

by this project is being used as a primary information source for human biology

and medicine. The public project led by the governments of the USA and of

several European countries have introduced all the information into a free-access

database [1].

Now that the Genome has been decoded, the great scientific challenge involves

investigating how genes interact and how the tiniest alterations in each of these

interactions predisposes a person to suffer a disease. Understating how genetic
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variants regulate cell phenotype, tissues and organs will constitute the objective of

research in the next century. It is estimated that there are about 8000 hereditary

diseases, but at present only 200 can be detected before birth.

Functional Genomics. The post-genomic age.

Structural Genomics is the branch of Genomics dealing with characterization

and localization of sequences forming the DNA of genes, thus allowing genetic

maps of organisms to be created. Functional Genomics is a research field dealing

with collection of information on the function of genes. Knowledge provided by

structural Genomics is essential to achieving this. Furthermore, the experimental

methodologies employed must be combined with computational analysis of the

results, due to the huge volume of information generated in these studies.

The aim of Functional Genomics is to fill the gap between the existing knowl-

edge of the sequences of a gene and its functionality, in order to disclose the

behaviour of biological systems. Biological research into the role of single pro-

teins and genes must be expanded to the study of all of these as a whole.

Figure 5.2: The Post Genomic Age
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Biochips

The technological bases of Biochips lie in the development and minimization of

the affinity techniques that have been employed for years as common tools in

molecular biology. Development of initial pilot tests of affinity with immobilized

DNA over solid substrates began in the sixties with the first immunity pilot

tests. The next step arrived in the following decade when Edwin Sourthern [164]

began to employ filters of nitrocellulose to act as solid substrates for joining

DNA molecules. The immobilized DNA did not interact with other immobilized

molecules, but rather maintained its hybridization capacity with complementary

dissolute molecules. Detection of these hybridizations was performed by means of

detection of radioactive markers. This type of technique was called as Southern

blot and was later extended to the field of protein and RNA immobilization.

With the refinement of the Southern blot technique, the next step in the path

towards the emergence of Biochips consisted of developing immobilized biological

material matrixes, with the use of porous surfaces such as nitrocellulose or nylon

membranes.

Later, researchers started to work with surfaces with smaller pores and with

solid substrates, such as silicon or glass. At the same time, with the arrival and

development of miniaturization techniques, the size of these pores was reduced,

with the resulting higher density in these matrixes. The whole process finally led

to the development of micro-matrixes.

One of the most important events was at the end of the eighties when in an

Affymax laboratory, where a group of four researchers, Stephen Fodor, Michael

Pirrung, Leighton Read and Lubert Stryer, working on synthesis of polypeptides

over solid substrates, developed the GeneChip platform. The relevance of this

step lies in the great miniaturization capacity achieved by this system. The

technology developed by Affymetrix (the new brand of Affymax) subsequently

led to the rapid appearance of new companies and new developments, which

brought about the current high grade of technological diversity.
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Methodology for obtaining gene expression data

The methodology for conducting an experiment with a Biochip platform is divided

into two main steps, and some of these are conditioned by the type of Biochip

employed in the experiment. The methodology involved is basically the following:

Biochip Design: During the design process, we determine the type and the

quantity of biological material to be immobilized over the surface of the

solid substrate. This varies depending on the type of experiment. The

density of the integration is also selected.

Biochip Manufacturing: This step is highly diversified as a consequence of

the large amount of technological solutions existing on the market. It de-

termines the density of the integration that can be achieved in the chip. In

general, the chips manufactured by the big companies provide the highest

integration densities.

Sample Preparation: In this step, the biological sample is subjected to a

set of required processes in order to prepare it for this kind of experiments.

The process consists of extracting and purifying the material to be analyzed

(DNA, RNA or proteins), an amplification phase and, lastly, marking the

biological samples to allow their detection in the revealed process. The most

common markers are fluorescent, although radioactive markers can also be

used.

Hybridization and Washing: This step is practically the same for all com-

mercial chips and for the personalized ones too. It is a key step because it

consists of the affinity reaction in which the DNA of the marked samples is

hybridized for subsequent identification. Washing is performed to remove

the non-specific interactions produced by the sample and by the surface of

the Biochip.

Results Reading: This process is conditioned by the great variety of techno-

logical solutions. Among these solutions, the most common ones are the

utilization of laser scanners and CCD cameras for detecting the fluorescent

markers with which the sample was marked.
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Results Storage: After the Biochips are developed, the results must be stored

in an electronic device.

Results Analysis: This is the final phase of the experiments based on Biochips.

In this step, data are provided by the development process and these can be

presented in numeric form or in a 16 bits image. In these data, one can see

the points at which the hybridization reaction was positive, and when no

reaction took place. At the present time, Bioinformatic analytical software

is employed to extract relevant conclusions from the experiment.

Figure 5.3: Biochips Cycle

Applications

Technology based on Biochips is being applied to very different types of studies

and applications. Some of these are:

Genetic Supervision: It enables the simultaneous quantification of the expres-

sion of a very high number of genes. It also allows a quantitative approach

for determining expression patterns, as well as study of gene functionalities,
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in order to identify genes activated in a different way when submitted to

different conditions, for example, a tumoral process.

Polymorphism and Mutation Detection: It allows study of all possible poly-

morphism, as well as detection of mutations of complex genes. The meaning

in the variation of human genetics is analyzed through a correlation of the

mutations of normal gene sequences with respect to those of specific dis-

eases.

Clinical Diagnostic: Biochips are used in microbiology with many objectives

in mind: biological comprehension of microorganisms, development of pre-

ventive measures against mortal diseases. Furthermore, microarrays can

also be employed in the analysis of clinical aspects for diagnosis of different

kinds of tumours.

Screening and Drug toxicology: The idea involves analyzing the rapid trans-

formations of genetic expression profiles that take place when a patient is

administered a drug.

Figure 5.4: Single Nucleotide Polymorphism
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5.2 An Introduction to Supervised Classifica-

tion of Gene Expression Data

As we pointed out in the previous section, the study of the expressions of thousand

of genes in a single clinical test enables us to perform comparisons among tissues,

pathological phases or the different responses to different biological conditions.

Consequently, a huge amount of data is generated, which needs to be assessed

and analyzed.

This technology has been successfully applied to a wide range of carcinogenic

diseases such as breast cancer [173], embryonic central nervous system cancer

[144], colon cancer [7], Hopkins lymphoma [5], etc. The main contributions of

these studies involve the description of new disease subtypes that were indistin-

guishable under the current diagnosis methods, and they have raised important

open questions to the research community, due to the heterogeneity of the re-

sponses to many cancer treatments. Early diagnosis for some kinds of cancer

diseases, such as ovarian cancer or colon cancer, was a big problem in medical

research prior to the emergence of these tools. One of the main drawbacks of

this approach lies in the identification of genes directly involved in the biological

processes leading to these pathologies. This problem arises because, in the exper-

iments, thousands of genes are analyzed, while only a few are usually relevant.

Supervised classification techniques (Chapter 2) have been applied to the anal-

ysis of genomic data (see [66] for a review of these applications). Apart from

supervised classification, another two important research lines have been success-

fully exploited:

Gene Regulatory Networks or Genetic Networks: They are Network-based

representations that attempt to encode gene relations. Many studies have

been published with the aim of inferring gene regulatory Networks. [69; 70;

74; 79; 88; 139; 167; 169; 191]

Dynamic Bayesian Networks: Gene Expressions should be considered to in-

volve a temporal process that varies throughout the cellular cycle, and these

networks are therefore intended to achieve better modelling of these expres-

sions [13; 86; 107; 133; 143].
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Figure 5.5: Gene Regulatory Networks or Genetic Networks

Bayesian Classifiers represent a very active line of research in the field of

gene expression data. They are often combined with gene selection methods to

improve classification performance by removing noisy and irrelevant genes but,

in particular, to determine which genes really define and predict the class values

and, therefore, are involved in the underlying biological process leading to the

different values of the variable of interest.

For example, in [12] several gene selection methods were presented. Each one

was evaluated using a Naive Bayes. Moler et al. [131] also used the Naive Bayes

and the Support Vector Machine model, another competitive classifier, for gene

selection. Several learning methods (IB1, NB, C4.5 and CN2) were employed by

[94] for cancer prediction. This study thereof focuses upon a gene selection process

which uses a wrapper approach. In a posterior extension of the previous study,

[93], it was jointly applied filter and wrapper techniques for the gene selection

task. They applied two types of filter measures: continuous (p-metric and t-

metric) and discretized (Shannon’s entropy, Euclidean distance, Kullback-Leibler

divergence). They validated the results once again with IB1, NB, C4.5 and CN2.

Better results were obtained when data were discretized. Many other studies

apply supervised classification to gene expression data problems [16; 17; 35; 65;

81; 87; 122; 140; 192]
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5.3 An Overview of Diffuse Large-B-Cell Lym-

phoma

Lymphoma:

Lymphoma is a cancer of the white blood cells, namely lymphocytes, which forms

the lymphatic system. There are two main types of lymphoma: Hodgkin lym-

phoma and non-Hodgkin lymphoma. Lymphoma represents the most common

blood cancer and the third most common cancer in children. Lymphoma oc-

curs when lymphocytes, a type of white blood cell, present abnormal growth.

The body has two types of lymphocytes: B lymphocytes, or B-cells, and T lym-

phocytes, or T-cells. B-cell lymphomas are more common, developing into lym-

phomas, although both cell types can develop it. As with normal lymphocytes,

those that turn malignant can grow in many parts of the body, including the

lymph nodes, spleen, bone marrow, blood or other organs.

Non-Hodgkin lymphoma:

There are around 35 types of lymphoma, 30 of these being classified as non-

Hodgkin lymphoma (NHL). Nearly all non-Hodgkin lymphoma cases occur in

adults, with average age of diagnosis in the 60s. Scientists do not yet know

the exact causes of non-Hodgkin lymphoma. Most people diagnosed with non-

Hodgkin lymphoma do not belong to a risk group, although an increasing number

of scientists believe that infections may play an important role in causing some

types of non-Hodgkin lymphoma.

Diffuse large B-cell lymphoma:

Diffuse large B-cell lymphoma (DLBLC) is the most common of the non-Hodgkin

lymphomas, accounting for up to 30 percent of newly diagnosed cases. Diffuse

large B-cell lymphoma is an aggressive, or fast-growing lymphoma. It can arise

in lymph nodes or outside the lymphatic system, in the gastrointestinal tract,

testes, thyroid, skin, breast, bone or brain. Often, the first sign of diffuse large

B-cell lymphoma is painless or occasionally painful and presents rapid swelling
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in the neck, armpit or groin caused by enlarged lymph nodes. Other symptoms

include night-time sweating, unexplained fevers and weight loss.

Diagnosis of Diffuse large B-cell lymphoma:

Doctors usually diagnose diffuse large B-cell lymphoma by taking a small sample

(known as a biopsy) of the tumour and observing the cells under a microscope.

They will also examine other organs, such as the spleen, liver and bone marrow.

Additional tests, such as blood tests, X-rays, and scans may be used and can also

help to determine how far the cancer has spread, thus indicating its stage. In

stage I, the lymphoma appears only in one group of lymph nodes in a particular

body region, while in patients with stage II, the disease is present in more than

one lymph node group, but limited to one side of the diaphragm (midline of chest

and abdomen). In contrast, patients with stage III disease have the lymphoma

on both sides of the diaphragm, while those with stage IV disease have involve-

ment of other non -lymph node organs such as the liver or bone marrow. Most

patients with diffuse large B-cell lymphoma are adults, although this lymphoma

is sometimes seen in children.

Figure 5.6: Mechanisms of B-cell lymphoma pathogenesis [115].
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Molecular Subtypes of Diffuse Large B-cell lymphoma:

One of the main problems of DLBCL is that it is clinically heterogeneous: around

40% of patients respond well to therapy and have prolonged survival, whereas the

remainder succumb to the disease. Alizadeh et al. [5] found in 2000 that there

was an underlying molecular heterogeneity in these tumours. They used DNA

microarrays to conduct a systematic characterization of gene expression in B-

cell malignancies and found that there was diversity in gene expression among

tumours in DLBCL patients (Figure 5.3 shows an image of this microarray).

They also found that this diversity was apparently correlated with the variation

in tumour proliferation rate, host response and differentiation state of the tumour.

They therefore conclude that there are actually two distinct molecular forms of

DLBCL:

Activated B Cell-like (ABC): with a pattern of genetic expression that is

similar to healthy, activated B cells.

Germinal center B Cell-like (GCB): with a pattern of genetic expression

that is similar to germinal center B cells and a chromosomal translocation

involving the gene bcl-2.

There were some remaining DLBCL cases, called ”Type III”, that are unre-

lated to any of the two subclasses, but that are used as a control group.

Most important, patients with germinal center B-like DLBCL had a signifi-

cantly higher overall survival rate than those with activated B-like DLBCL.
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Figure 5.7: Image of microarray results obtained by Alizadeh et al. [5].
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Chapter 6

Selective Gaussian Naive Bayes

Models for DLBCL Classification

In this chapter we present two new versions of a Selective Naive Bayes classi-

fication model that deal with the peculiarities of gene expression data. These

models perform a gene selection for the the problem of classifying Diffuse Large

B-Cell Lymphoma (DLBCL) in two subtypes: Activated B Cell-like (ABC) and

Germinal Center B Cell-like (GCB) (see Chapter 5 for an introduction to this

problem).

6.1 Motivation

DLBCL gene expression data, like other gene expression datasets, have several

characteristics preventing direct adaptation of standard classification models.

From an automatic learning point of view, the following are the three main fea-

tures requiring the design of classification models that consider these specific

issues:

High Dimensionality: In Section 5 it was shown how Biochips can analyze

thousand of genes in one single experiment. Thus, genomics research ex-

ploits this possibility and attempts to analyze as many genes as possible.

Therefore, gene expression datasets usually involve several thousands of
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variables. In the case of DLBCL, the datasets employed have around 8000

genes.

Reduced Size: Although Biochips can evaluate thousand of genes effortlessly,

a different issue involves obtaining a high number of samples from which

to extract their genetic profiles. As was shown in Section 5.1, the process

for preparing biological tissue for analysis is a complex one and can not be

performed in a totally automatic manner. Furthermore, the availability of

a high number of patients is also another problematic issue. It is therefore

quite common to have gene expression datasets with a few tens of samples.

Concretely, the DLBCL dataset has a little over 200.

Very Noisy: Noise is another component to be taken into account on analysing

this kind of data. Processes such as gene marking, hybridization reaction

and extraction of results with CCD cameras to which gene analysis is sub-

mitted, introduce an important noisy component in the continuous values

representing their activity index.

For the first issue, the high dimensionality, Feature Selection (Section 2.4)

appears to constitute a suitable approximation that can reduce the number of

variables detecting irrelevant genes. Although wrapper methods (Section 2.4.2)

are the most powerful in the general case, their direct application is not feasible

due to the high number of variables. Thus, the combined used of a quick filter

approach (Section 2.4.1) with a wrapper feature selection method seems to be a

reasonable option and will therefore be the one used in this study.

The small size of gene expression datasets obliges us to avoid very complex

classification models demanding a high number of parameters. With a sample

size of around a few hundred samples and a strong noisy component, parameter

estimations become less accurate and the final classification model can suffer from

over-fitting. In the approaches presented herein, a Gaussian Naive Bayes model

( Section 2.2.1) is employed because, as these models have proved to be very

competitive in a broad range of classification problems (Section 2.2.1) and their

simplicity is especially effective in a domain in which the number of samples is

scarce.
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Another issue is how to handle continuous data. Previous work with Bayesian

classifiers has solved this problem by discretizating them [84] or assuming that

the predictive variables have a Gaussian distribution [42; 99]. The latter option is

taken in these approaches because Gaussian distributions present a good trade-

off between approximation capacity and reduced number of parameters (only

the mean and deviation have to be estimated). Concretely, independence and

normality of the variables shall be assumed when the class value is known.

6.2 The Selective Gaussian Naive-Bayes Model

The models we propose in this chapter are based on the Selective Naive Bayes

model [119], previously introduced in Section 2.2.2. In this section this model is

briefly described, the specific notation being given in context for this problem.

Gaussian naive Bayes classifier

We shall use G = {G1, . . . , Gn} to denote the set of genes describing the possible

samples to be classified (Gi is the variable related with the i-th gene), and C

is the class variable with two classes (ABC and GCB) corresponding to the two

subtypes of DLBCL. The classification problem reduces to find c∗ such as:

c∗ = argc max P (C = c|G1 = g1, . . . , Gn = gn)

Let us denote D = {~c,~g} as the DLBCL data learning set with T labelled

instances (cj,gj) with j = 1, ..., T . And ~gi|cj
shall denote the projection of D over

the variable Gi for those instances belonging to class cj.

In the Naive Bayes classifier [54], no structure learning is required. It is

assumed that genes G = {G1, . . . , Gn} are independent and distributed as a

Gaussian density when the variable to classify C is known. Thus, the subsequent

probability of the class cj given a test case g = {g1, . . . , gn} is computed as

follows:

P (C = cj|g) ∝ p(cj) ·
n∏

i=1

fN(Gi = gi : µij, σij)
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where µij is the mean and σij is the standard deviation of the values of the vector

~gi|cj
. And fN is the density function of a Gaussian distribution (see Section 2.2.1

for details).

Wrapper feature selection

Wrapper Feature Selection (WFS) begins with an empty set of selected genes,

and successively adds the gene Gmax ∈ G that maximizes a given evaluation

function. This is known in the literature as Forward Sequential Selection (FSS)

[118]. We use the accuracy of the classification as the evaluation function. This

score is obtained by the application of a Gaussian Naive Bayes classifier using a

leave-one-out cross-validation (LOO) scheme [168].

Let Fl be the set of selected features in step l of the WFS algorithm. Then,

in step l + 1, a new Gaussian Naive Bayes model is learned with the set of

features Fl+1 = Fl∪{Gmax} being Gmax, the gene that maximizes the increment in

classification accuracy in the training data set D using LOO validation. The WFS

algorithm continues selecting new features until a given stop criterion is verified.

Suppose Acc(Fl) is the classification accuracy in step l with the set of features Fl.

The algorithm stops if Max{Acc(Fl), Acc(Fl−1), . . . , Acc(Fl−q+1)} ≤ Acc(Fl−q),

where q is a given parameter of the algorithm. That is, the algorithm stops when

q consecutive steps are performed without an improvement in the classification

accuracy.

6.3 A Filter-Wrapper Approach with an Abduc-

tion Phase

In this section we present a new type of Selective Naive Bayes classification model

that handles continuous data and makes a gene subset selection in two stages.

As there is a large number of genes and it is unfeasible to use wrapper selec-

tion over all of them, we designed a two-step procedure. The first step is based

on ANOVA (a filter measure, Section 2.4.1) that performs a one-way analysis of

variance for each gene, in an attempt to obtain the most relevant and not cor-

related genes. The second gene selection method is a search method comprising
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two substeps: a wrapper phase and the abduction phase. The wrapper phase

selects a set of genes using the classification accuracy as the evaluation function.

One problem is that, due to the small number of instances in microarrays, the

selected genes have an important random component: small variations in the

training data can produce very different sets of genes. To increase the robustness

of the wrapper phase, an abduction phase is subsequently applied, which con-

sists of repeating the selection with different partitions of the training data and

then learning a Bayesian network that attempts to discover the patterns in the

different runs of the wrappers phase. By applying an abduction algorithm to the

learned Bayesian network, we can obtain the K-most probable configurations of

the variables of the net. These configurations shall correspond to the most likely

genes to be selected by the wrapper method.

This proposal is validated to select relevant genes for the classification of

instances of Diffuse Large B-Cell Lymphoma in two classes: the germinal centre

B cell-like (GCB) group and the activated B cell-like (ABC) group.

The rest of the section is organized as follows, Section 6.3.2 describes the

details of our proposed method. Section 6.3.3 gives the details of the experimen-

tal validation (the parameters used in the experimental setup, the experimental

results and a comparison with the results of [125; 189] for the same problem).

6.3.1 Filter Anova phase

In this phase, we performed a one-way analysis of variance for each gene of the

dataset in order to select a subset GA ⊆ G with the most relevant genes (a similar

approach was employed in [53]). The idea is to select genes Gi with a significant

difference between their means for the subclasses and not correlated with other

genes Gj. For this purpose, we used the F statistic. This statistic is used in the

literature to establish whether the means of a finite set of populations are the

same.

Given a gene Gi, the F statistic tests the hypothesis that the means of the

two set of values ~gi|c1 and ~gi|c2 are the same. If the hypothesis is accepted, then Gi

is not a good candidate to be included as a feature of the classifier. When there

is a big difference between the two subgroups, then the value F will be high, too.
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In order to remove redundant genes, this approach searches for the set of

genes correlated with a given Gi considering only one class cj, this set is denoted

as Rj(Gi), (j = 1, 2). To obtain Rj(Gi), the Pearson correlation coefficient ρ is

calculated using the ~gi|cj
vectors. The ρ parameter takes values in the continuous

interval [−1, 1]. When ρ is near 1.0 or −1.0 then the variables are correlated.

We consider that a feature Gl belongs to Rj(Gi) (j = 1, 2) if ρ(~gi|cj
, ~gl|cj

) > θ,

where ρ(, ) is the lower limit of the confidence interval at 95% of the Pearson

correlation coefficient between Gi and Gl and θ is a fixed threshold.

Thus, the Anova phase begins with the calculation of the F statistic value

for all the gene expressions. The genes are then sorted from higher to lower F

statistic values. Let Gs = {Gs(1), . . . , Gs(n)} be the sorted set of genes.

The following algorithm is applied twice to obtain two subsets Gcj
⊆ G

(j = 1, 2) of genes, one considering each one of the two classes:

Algorithm 9 Filter Anova Phase

Gs = {Gs(1), . . . , Gs(n)}; //Genes sorted by F-Statistics.

Gcj = ∅;

While Gs 6= ∅

• Include Gmax ∈ Gs with highest ranking in Gcj ;

• Calculate the set Rj(Gmax); //Genes correlated with Gmax in class cj

• Gs = Gs \ {Gmax};
• Gs = Gs \Rj(Gmax);

return Gcj ;

Finally, the resulting set of features in the Anova Phase is the set GA =

Gc1 ∩Gc2 . That is, once a gene G is selected, genes that are correlated with it

in both classes c1 and c2 are discarded.
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6.3.2 A wrapper method with an abduction phase

In this phase, we consider a method that combines a wrapper feature selection

methodology with the application of an abduction algorithm for Bayesian net-

works. The wrapper selection step is run m times to obtain m possible sets of

genes {F1 . . .Fm}. The m sets are used to learn a Bayesian network where each

node corresponds to each one of the possible features. The idea is to select a set

of genes that does not depend on the particular partition of training and test sets,

by repeating the selection and then computing the set of genes with the highest

probability. The started gene set is the one obtained by the above Anova phase,

GA.

Wrapper feature selection

The scheme for obtaining the different sets of features is similar to the k-fold

cross-validation [108]. It starts by decomposing the training dataset D into k

subsets of the same number of samples {D1, . . . , Dk}. Then, k training datasets

are defined as follows Tj = D \ Dj (for each j ∈ {1, . . . , k}). From each Tj we

obtain a subset of genes Fj.

The wrapper feature selection (WFS) algorithm (Section 6.2) is then applied

k times: in stage j (j ∈ {1, . . . , k}), Tj is used as the training dataset and Dj

as the test dataset. The Wrapper methodology begins with an empty set of

selected genes, and successively adds the gene Gmax ∈ GA that maximizes the

classification accuracy. Let Fl
j (j = 1, . . . , k) be the set of features selected in an

intermediate step l of the WFS algorithm. Then in step l + 1, a Gaussian Naive

Bayes model is learned for the set of features Fl
j using the training dataset Tj. We

obtain Fl+1
j = Fl

j ∪ {Gmax} (Gmax ∈ GA), Gmax being the gene that maximizes

the increment in classification accuracy in the test dataset Dj. When there are

several possible genes Gmax, we select the one with the highest F-value. The

WFS algorithm continues selecting new genes until the stop criterion is verified.

Assuming W (F, D) is the classification accuracy for the set of genes F in the

test dataset D. W (F, D) takes values on the interval [0.0, 1.0]. Consider that ∆l

is equal to ∆l = W (Fl+1
j , D)−W (Fl

j, D) (increment in classification accuracy in

step l by adding a new gene).
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Condition 1 (C1): ∆l > 0.02 · (l − 20). It attempts to avoid stopping in

local minima, allowing negative increments in accuracy.

Condition 2 (C2): W (Fl
j, D) < 1− l · 0.001.

Subsequently, the stop criterion is defined as: If Condition 1 and Condition

2 are true, then the iteration goes on; otherwise it stops. The idea of these two

conditions is to allow at the beginning the addition of genes, even if accuracy is

not improved, and when the number of already selected genes increases, these

conditions require greater increments in performance to include new genes (C1),

and stop when the accuracy is too high (C2).

Abduction phase

The above method obtains k different sets of genes {F1 . . .Fk}. If the complete

process is repeated t times, m = k × t sets of genes shall be obtained, F =

{F1 . . .Fm}. In this abduction phase [159] we will extract the final set of genes

from F.

Let us define a discrete variable Yi for each one of the genes Gi in the set

Φ = ∪j=1...mFj. Then Y is defined as an ordered set of discrete variables Y =

{Y1, . . . , Yp}, where p is the number of features in Φ. Now, let us define an

instance yj=(y1j, . . . , ypj) (j ∈ {1, . . . , m}) of Y where yij = 1 if Gi is included

in Fj and yij = 0 if Gi is not included in Fj. A new training dataset with m

instances can be considered as: M = {y1, . . . ,ym}.
From the data set M , a Bayesian network can be inferred with the K2-learning

algorithm [41]. In this Bayesian network we can compute the most probable con-

figuration y∗ with y∗ = arg maxy P (Y = y). And by means of an abduction

algorithm, we can also obtain the K most probable configurations {y∗1, ..., y∗K}
[159]. From each configuration y∗k = (yk,1, . . . , yk,p) with (k = 1, . . . , K), a candi-

date set of genes Gk is derived as follows: if y∗k,i = 1 then Gi is included into Gk.

This process gives rise to K candidates sets of genes: {G1, . . . ,GK}.
The final selected set of genes G∗ is the set Gk that minimizes the average

log-likelihood of the true class or Log-Score [153] in the complete training dataset

D using a Gaussian Naive Bayes classifier.
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6.3.3 Experimental evaluation

Experimental setup

We evaluated this proposal with the DLBCL classification problem [5]. The

dataset has been taken from [189]. This dataset contains 8503 features (clones)

with 134 samples belonging to class GCB, 83 samples belonging to class ABC

and 52 samples to Type III. Type III was not included in the original work of

Alizadeh et al. [5] but in Wright et al. [189], this last subtype was considered

in the test set to show how its elements were classified into the two main types.

They argued that in a good classifier, Type III cases should be distributed fairly

into classes GBC and ABC with similar frequencies.

In order to compare these results with those of [189] we applied a valida-

tion scheme in which the dataset was randomly divided into a training and test

dataset. All Type III cases were included in the test set as in [189]. These sets

were made up of the following sets of instances:

Training data set : 67 samples GCB, 42 samples ABC.

Test data set : 67 samples GCB, 41 samples ABC and 52 samples Type III.

This division process was repeated 10 times in order to obtain a more exact

estimation of the accuracy of the model. Confidence intervals of the accuracy

were also computed.

The parameters set to learn the model are the following:

• Threshold θ for the correlation coefficient in the Anova phase: θ = 0.15.

This value was selected because it produces around 80 genes, a feasible

number for the wrapper phase. With the use of θ = 0.20 we obtained 190

genes, which made the wrapper phase unfeasible in the computer in which

experiments were undertaken.

• k-fold-cross validation: In the search phase (Section 6.2) we used a k = 10

to divide the training dataset D into k randomly subsets. And k-fold-cross

partitions were repeated 3 times, and a sample of 30 sets of selected genes

was finally obtained.
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Table 6.1: Mean number of cases classified in each group, using only the Anova
phase.

Training Dataset
True class Predicted class

ABC GCB Unclassified
ABC 40.4± 1.03 1.2± 0.66 0.4± 0.37
GCB 0.8± 0.74 65.9± 1.42 0.3± 0.68

Test Dataset
True class Predicted class

ABC GCB Unclassified
ABC 37.3± 1.57 2.2± 0.87 1.5± 0.7
GCB 2.7± 1.77 63.2± 2.57 1.1± 1.0

Type III 19.2± 2.1 30.7± 2.5 2.1± 0.7

• K most probable configurations: We computed the K = 20 most probable

configurations in the Abduction Phase of Section 6.3.2.

• Unclassified samples: We classified a sample with class ci when the classi-

fier returned a probability P (C = ci|g) > 0.8. Otherwise, it shall be left

unclassified.

Experimental results

The performance of this approach is analyzed with only the Anova phase and,

subsequently, by application of the two phases: the Anova and the Wrapper

method with abduction.

Tables 6.1 and 6.2 show the classification data with the mean number of cases

assigned to each group (and the resulting 95% confidence interval) using only the

Anova phase (Table 6.1) and with the two phases (Table 6.2). The tables show

the classification results for the training and test datasets using a leave-one-out

cross-validation procedure [108] to estimate accuracy.

Results comparison

There are several proposed classifiers ([194], [124], [8]) for the dataset given in

[5]. This dataset contains 42 samples (21 GBC and 21 ABC). They attempt to

differentiate between two kinds of DLBCL: Germinal B-cell like (GBC) versus

Activated B-cell like (ABC). However, there are not too many proposed classifiers
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Table 6.2: Mean number of cases classified in each group, using the two phases.

Training Dataset

True class Predicted class
ABC GCB Unclassified

ABC 38.9± 2.0 0.6± 0.5 2.5± 1.03
GCB 0.7± 0.59 63.3± 1.86 3.0± 1.26

Test Dataset
True class Predicted class

ABC GCB Unclassified
ABC 32.7± 2.73 3.5± 1.27 4.8± 1.46
GCB 3.2± 1.64 58.8± 3.0 5.0± 1.4

Type III 15.3± 2.2 29.1± 2.1 7.6± 2.62

with the new dataset introduced by Rosenwald et al. [152] (274 cases). One of

the best classification results can be found in [189]. This paper shows a statistical

model based in a lineal predictor score (LPS) which is applied to the clustering

proposed by Rosenwald et al. [152]. The resulting classifier contains 27 genes.

If there is no class with a probability higher than 0.9, then the case is left un-

classified. The model was validated with the division of the dataset into two

groups: training dataset and test dataset. Wright et al. [189] give the classifica-

tion results shown in Table 6.3. The validation of the proposed classifier follows

a similar procedure (see section 6.3.3).

The Anova Phase approach (Table 6.1) provides very good results. It leaves

very little cases unclassified and the error predictions are low (around 5 cases).

However, the 80 genes selected in this phase appear to be excessive if relevant

biological information is sought.

The second approach proposed, the Wrapper method with an Abduction

phase, starts with the set of selected genes of the Anova phase. If the results

of this classifier (Table 6.2) are compared with those of Wright et al. [189] (Table

6.3), it can be said that the worst results are obtained. However, we obtain a

very low number of selected genes (around 7 versus 27). In addition, our model

was validated by means of 10 different partitions of the dataset. This endows

our classifier with better reliability. It should be pointed out that in some of the

10 experiments we obtained better performance in both approaches than that

obtained by Wright et al. [189].
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Table 6.3: Number of cases classified in each group with Wright’s classifier [189]

Training Dataset
True class Predicted class

ABC GCB Unclassified
ABC 37 1 4
GCB 1 58 8

Test Dataset
True class Predicted class

ABC GCB Unclassified
ABC 38 1 2
GCB 2 57 8

Type III 14 18 25

In a more recent paper Lossos et al. [125] proposed a model with 6 genes

(LM02, BCL6, FN1, CCND2, SCYA3 and BCL2) to predict the survival rate in

DLBCL. The selection is based on analysis of 36 genes whose expression had been

reported to predict survival in DLBCL in previous studies based upon biological

knowledge. The target of our model is different, but we believe that the genes

we obtain must be similar, because each class has a distinct survival rate. We

found that the Anova phase selected genes LM02 and BCL6 in 60% of the runs,

and gene CCND2 in 20%. When the genes were selected in the Anova phase,

they appeared in the final set of features in 33% (LM02 and BCL6) and 100%

(CCND2) of the runs. Thus, it can be concluded that we selected biologically

relevant genes, although biological information was not used in our procedure.
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6.4 Some Improvements in Preprocessing and

Variable Elimination

In this section, we present two significant improvements for gene selection with

wrapper methods: the first one consists of a fixed ranking of genes; and the

second involves the application of a method for elimination of irrelevant genes,

in which the irrelevance criteria is conditioned to the selected feature set of the

wrapper method. These approaches are validated with the Diffuse Large B-Cell

Lymphoma subtype classification problem (Section 5.3). These two changes con-

stitute an important improvement in the computational cost and the classification

accuracy of wrapper methods for this domain.

The remainder of the section is organized as follows. Section 6.4.1 analyzes

the importance of fixing a hierarchical ranking of genes for the performance of

the model and for reducing the search space. Section 6.4.2 shows the algorithm

for removing irrelevant genes based on a new heuristic. And finally, Section 6.4.3

shows the experiment results, comparing these with the results of Wright et al.

[189] and with the previous approach presented in Section 6.3.

6.4.1 Gene ranking in wrapper search

In this section we show how the use of a given ranking of genes can be used

to improve the accuracy of the classification and to reduce the search space for

wrapper methods.

Description of the proposed gene rankings

In the wrapper algorithm described in Section 6.2, it is possible to find in an l

step that there are several genes Gmax, so that Gmax = argG max{Acc(Fl∪{G})},
producing the same increment in classification accuracy, and therefore they are

all candidates for inclusion in the set Fl+1. In the domain of DNA microar-

rays (datasets with a high number of genes and few samples), this situation is

very common, due to the big difference in the proportion between variables and

samples. In particular, in the last steps of the wrapper search, the number of
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candidate genes producing the same increment in classification accuracy is very

high.

In order to provide a criterion to select one of these candidate genes, we

propose a previously set ranking thereof. When there are several candidate genes

Gmax, the one with the highest ranking is selected. This will greatly influence the

accuracy of the classification, as will be demonstrated in the experimental work.

Three methods are used to establish the most suitable one:

Random Ranking: The feature is randomly selected from among the ones pro-

ducing the same accuracy.

Anova Ranking: The set of genes is ordered according to a filter measure, from

higher to lower values. The measure considered is the Anova coefficient,

which is calculated with a standard one-way analysis of variance with re-

spect to the class variable (Section 6.3.1). The genes with a high Anova

coefficient present a statistical significant difference between the means of

their values for each class.

Accuracy Ranking: If a given classifier is trained using only one gene and a

leave-one-out cross validation scheme over the training data set is employed,

the accuracy of the classifier in relation to a concrete gene in the training

data set is computed. With this score, the whole set of genes can be sorted,

from higher to lower accuracy levels.

Section 6.4.3 shows that the classification accuracy of Wrapper methods varies

meaningfully depending on the ranking method used. In particular, accuracy

ranking produces the best results.

Reducing the search space in wrapper methods using gene ranking

In this section we show how the ranking of genes can be used to reduce the

search space in wrapper methods, without any significant loss of accuracy in the

classification.

The method is based on limiting the search of the gene Gmax in step l to the

set of the first t genes in a given ranking, where t is a fixed integer constant.
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This modification reduces the complexity of the construction of the classifier

from O(T 2 · η2 · n) to O(T 2 · η2 · t), in a database with T samples (cases) and n

genes. The value η represents the maximum number of variables selected by the

wrapper algorithm. This value is normally much lower than n. Furthermore, the

computation cost of the ranking of the genes needs to be added. This cost is the

following:

Anova Ranking The cost of computing this ranking is O(T · n).

Accuracy Ranking Now a cross validation must be performed to estimate the

accuracy for each variable. The resulting cost is O(T 2 · n).

In this way, the complexity of the wrapper algorithm no longer depends on

the number of genes n in the dataset. The number of genes only has influence in

the ranking stage. The reduction of the search space for new genes Gmax, in step

l of the algorithm, does not cause loss in the accuracy classification, as will be

shown in the experimental evaluation of Section 6.4.3. The resulting FSS wrapper

algorithm is as follows:

Algorithm 10 Limited Forward Sequential Selection (LFSS)

Make F0 = ∅, l = 0

While (G 6= ∅ and Max{Acc(Fl), Acc(Fl−1), . . . , Acc(Fl−q+1)} ≥ Acc(Fl−q))

• Gt = {Gi ∈ G : Order(Gi) ≤ t}
• Gmax = {Gl1 , . . . , Glp} = argsGi max{Acc(Fl ∪ {Gi}) : Gi ∈ Gt} //All

genes that maximizes the accuracy.

• Gmax = argGli
max{Order(Gli) : Gli ∈ Gmax}

• Fl+1 = Fl ∪ {Gmax}
• G = G \Gmax

• l = l + 1;

return argFi max{Acc(Fi) : i ∈ {1, . . . , l}};

where, as can be seen, Gmax represents the set of the genes that obtains maximum

accuracy with a ranking higher than t in step l. That is, each one of the genes in

Gmax verifies that Gi = argGi
max{Acc(Fl ∪Gi) : Gi ∈ Gt}, where Gt is the set

of the first t genes in the ranking given by the function Order(Gi).
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6.4.2 Elimination of irrelevant genes

The basic technique for removing irrelevant genes with a wrapper method is

known as Backward Sequential Elimination (Section 2.2.2). This method begins

with the complete set of features and successively removes the ones found to

be irrelevant. In [4] no evidence is found to indicate that this method is better

than Forward Sequential Selection. Subsequent research [109; 120] develops new

variants of the method. These obtain better accuracy rates, but the complexity

of the algorithms is still prohibitive when there are too many irrelevant variables.

Irrelevant features

There are several possible definitions for relevant and irrelevant variables (see

for example [6; 98]). All these definitions are based upon the correlation factor

among the states of the variable to be considered and the different values of the

class variable. In this section, we propose a new heuristic method for defining

irrelevant variables.

Let us denote by M a classifier model over a set of predictive features Y ⊂ X,

built with a dataset D with T instances. Assuming that CM
Y = (s1, s2, . . . , sT )

is a classification vector that determines whether classifier M classifies well each

of the cases in dataset D using only the features of Y. In a classification vector

CM
Y , si = 1, if the class of case i is correctly found, and si = 0 otherwise. Let us

now define a relation order between two classification vectors:

Definition 1 If r ∈ [0, 1] is a given input parameter and CM
Y = (s1, s2, . . . , sT )

and CM
Y′ = (s′1, s

′
2, . . . , s

′
T ) are two classification vectors obtained using two sets

of features Y and Y′ respectively, then:

CM
Y ≤r CM

Y′ if
P

T
< r

where P is the number of samples that are correctly classified by the classifier CM
Y

and not correctly classified by the classifier CM
Y′. Obviously, 0 ≤ P ≤ T .

The previous definition indicates that CM
Y ≤r CM

Y′ if the number of samples

correctly classified into CM
Y and not in CM

Y′ are below a given rate r. Now we can

define an irrelevant feature in the following way:
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Definition 2 Feature Xi is irrelevant with respect to a set of features Y if

CM
{Xi} ≤r CM

Y .

Thus, a feature Xi is irrelevant with respect to set Y if the cases correctly

classified using a classifier with only the feature Xi are included in the set of cases

correctly classified with a classifier with the set of features Y. The cases correctly

classified could reach the r% of the total. The basic intuition idea is to seek new

features classifying the cases that were incorrectly classified by current features

Y. The inclusion is not strict and there is a rate r of allowed exceptions.

A wrapper gene selection approach based on elimination of irrelevant

genes

Herein we propose a new approach to wrapper search for gene selection. At each

step l of the wrapper algorithm, the irrelevant genes with respect to the genes

included in the classifier are now eliminated. This procedure is conducted prior

to the search for a new gene Gmax. Thus, irrelevant genes are not removed a

priori as in [4; 109; 120], and this is based on the search process of the wrapper

algorithm. This process reduces the complexity of the wrapper algorithm, and

obtains better accuracy rates, as we will show in Section 6.4.3.

The wrapper algorithm that includes this new improvement and the ones

specified in Section 6.4.1 is the following:

Algorithm 11 Limited Forward Sequential Selection with Variable Elimination

(LFSS-VE)

Make F0 = ∅, l = 0

While (G 6= ∅ and Max{Acc(Fl), Acc(Fl−1), . . . , Acc(Fl−q+1)} ≥ Acc(Fl−q) )

• Gt = {Gi ∈ G : Order(Gi) ≤ t}
• Gmax = {Gl1 , . . . , Glp} = argsGi max{Acc(Fl ∪ {Gi}) : Gi ∈ Gt} //All

genes that maximizes the accuracy.

• Gmax = {Gl1 , . . . , Glp}
• Gmax = argGli

max{Order(Gli) : Gli ∈ Gmax}
• Fl+1 = Fl ∪ {Gmax};
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• Remove Gmax from the global set of features G

• Remove Gi ∈ G if CM
{Gi} ≤r CM

Fl+1
(Gi is irrelevant with respect to Fl+1)

• l = l + 1

return argFi max{Acc(Fi) : i ∈ {1, . . . , l}}

In the previous algorithm, the meaning of Gmax and Order(Gi) is the same

as in Algorithm 10. The loop now contains an additional stopping condition: if

set G is empty. The computational cost of this algorithm is low: O(T · n) where

T is the number of samples in the dataset and n the number of genes.

6.4.3 Experimental evaluation

Experimental setup

We validated the proposed approaches with two different datasets for the Diffuse

Large B-Cell Lymphoma subtype classification problem [5]:

D-Alizadeh: This data set was taken from [5]. It contains 348 genes with 42

samples. There are two classes: GCB and ABC with 21 samples each one.

D-Wright: This dataset was taken from [189]. This dataset contains 8503 fea-

tures (clones). Class GCB contains 134 samples and class ABC contains

83.

The validation of the classifier for D-Alizadeh is performed with the leave-

one-out (LOO) cross validation method [168], due to the low number of samples

of this dataset. For D-Wright, the dataset was randomly partitioned into two

parts of equal size: the training and test datasets. The number of features in D-

Wright is reduced by means of a previous filter (Section 6.3.1) based on one-way

analysis of variance for each feature. This filter method is employed in order to

make possible the evaluation of traditional wrapper methods in this big dataset,

because this evaluation is impossible with its 8503 features. This whole process is

repeated ten times, and 10 training datasets and 10 testing datasets are therefore

obtained and the mean of the ten evaluations is the final evaluation result. This

129



6.4 Some Improvements in Preprocessing and Variable Elimination

Table 6.4: Baseline Results using the whole set of genes.

D-Alizadeh
N of Genes 348± 0.0

LOO Accuracy Rate 97.6± 0.7 %
LOO log-likelihood −0.61± 4.9

D-Wright
N of Genes 78.7± 4.4

Test accuracy rate 94.1± 1.3 %
Test log-likelihood −0.53± 0.15

specific evaluation scheme was used in order to compare with the results of [189]

and of the previous approach of Section 6.3.

The parameters established in the implementation of the approaches in Sec-

tions 6.4.1 and 6.4.2 are the following:

• Stop Condition of FSS Algorithm. Parameter q = 2 (Section 6.2). That is,

the FSS algorithm will stop if there are two iterations without an improve-

ment in classifier accuracy.

• Wrapper Search Limit. Parameter t = 10 (Section 6.4.1). That is, the FSS

algorithm only searches in the first ten ranked variables.

• Irrelevant Condition. Parameter r = 0.02. (Section 6.4.2). That is, a

feature is irrelevant if the percentage of cases that are correctly classified

using its information using its information, and that were incorrectly clas-

sified with the current set of variables, is lower than 2%.

• Accuracy Ranking. (Section 6.4.1). This is the chosen ranking in all the

cases, except when another ranking is specified.

Baseline experimental results

We obtained the results shown in Table 6.4 using a Gaussian Naive Bayes classifier

including all the present genes for D-Alizadeh and all the genes in the reduced

D-Wright.

Experimental results: wrapper dependence of the feature ranking

With the use of the wrapper search algorithm described in Section 6.2, we then

performed three distinct runs of this algorithm using the three ranking methods

of Section 6.4.1. The results are shown in Table 6.5.
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Table 6.5: Evaluation of Algorithm LFSS with three different gene rankings.

Data Base Random Ranking Anova Ranking Accuracy Ranking
D-Alizadeh Accuracy 80.9± 4.9 81.0± 4.9 92.8± 2.1

log-like. −0.39± 0.2 −0.74± 1.42 −0.31± 0.30
N Genes 4.3± 0.5 3.2± 0.1 3.8± 0.5
N Eval. 74.900 77.790 82.300

D-Wright Accuracy 88.9± 0.6 91.0± 0.4 89.1± 0.5
log-like. −0.41± 0.15 −0.35± 0.1 −0.40± 0.13
N Genes 8.0± 3.2 9.0± 5.1 7.6± 4.0
N Eval. 8.002 8.630 7.709

Table 6.6: Evaluation of Algorithm LFSS and Algorithm LFSS-VE

Data Base Algorithm LFSS
D-Alizadeh Accuracy 92.8± 2.1

log-like. −0.36± 0.44
N Genes 3.8± 0.3
N Eval. 2840

D-Wright Accuracy 91.8± 0.4
log-like. −0.28± 0.07
N Genes 7.8± 3.0
N Eval 1080

Data Base Algorithm LFSS-VE
D-Alizadeh Accuracy 95.2± 1.4

log-like. −0.08± 0.03
N Genes 5.4± 0.1
N Eval. 1882

D-Wright Accuracy 93.0± 0.4
log-like. 0.25± 0.07
N Genes 8.1± 5.6
N Eval 1018

(a) (b)

Comparing with Table 6.4, we can see that the accuracy rate increases and

that the log-likelihood decreases with the ranking introduction in both datasets.

Experimental results: introduction of a ranking limit in the feature

space of the wrapper search.

Table 6.6 (a) shows the results for Algorithm LFSS choosing new features only

among the t first ones in the given ranking (Section 6.4.1). Comparing with

Table 6.5, we can see that there is a significant improvement in accuracy and

log-likelihood with respect to classic wrapper search (Random Ranking column

in Table 6.5) in both datasets. Secondly, there is a significant reduction of the

number of evaluations between the two algorithms, 96% in D-Alizadeh and

87% in D-Wright. In addition, one can see that these improvements are not

influenced by the number of selected genes, because they are similar in all three

cases.
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Table 6.7: Evaluation of Algorithm LFSS-VE with Anova and Accuracy Rank-
ings

Data Base Algorithm LFSS-VE Algorithm LFSS-VE
with Anova Ranking with Accuracy Ranking

D-Alizadeh Accuracy 88.1± 3.3 95.2± 1.4
log-like. −0.59± 1.43 −0.08± 0.03
N Genes 3.9± 0.1 5.4± 0.1
N Eval. 2.461 1.882

D-Wright Accuracy 90.7± 0.5 93.0± 0.4
log-like. −0.31± 0.08 −0.25± 0.07
N Genes 7.6± 2.7 8.1± 5.6
N Eval. 885 1.018

Experimental results: gene elimination

Table 6.6 (b) shows the results of applying Algorithm 11 of Section 6.4.2 (elimina-

tion of irrelevant variables). Comparing with Tables 6.5 and Table 6.6 (a), it can

be seen how Algorithm LFSS-VE improves the accuracy rate and the log-likelihood

of both datasets. We also obtained a reduction of the number of evaluations.

Experimental results: accuracy order vs Anova order

The results of Table 6.7 show that Algorithm 11 performs much better with the

accuracy ranking than with the ranking based on Anova. The introduction of the

variable elimination mechanism, however, is positive for both rankings.

Results comparison

There are several classifiers proposed in the literature [8; 124; 194] for the dataset

D-Alizadeh. However there are not too many classifiers proposed for the dataset

D-Wright introduced by [152]. Perhaps the best classification results can be

found in [189]. In [189] a statistical model is shown which is based on a lineal

predictor score (LPS) applied to the clustering proposed by [152]. The resulting

classifier contains 27 genes. If there is no class with a probability higher than 0.9,

then the case is left unclassified.

As can be seen in Table 6.8 and Table 6.9, the results of Algorithm LFSS-

VE are better than those of the previous approach of Section 6.3. This classifier

selects a similar number of genes (8.1 versus 7.0).
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Table 6.8: (a) Classifier of [189] (b) Approach of Section 6.3

Training Dataset

True class Predicted class
ABC GCB Unclass.

ABC 37 1 4
GCB 1 58 8

Test Dataset

True class Predicted class
ABC GCB Unclass.

ABC 38 1 2
GCB 2 57 8

Training Dataset

True class Predicted class
ABC GCB Unclass.

ABC 38.9 0.6 2.5
GCB 0.7 63.3 3.0

Test Dataset

True class Predicted class
ABC GCB Unclass.

ABC 32.7 3.5 4.8
GCB 3.2 58.8 5.0

(a) (b)

Table 6.9: Classifier of Algorithm LFSS-VE with Accuracy Rankingwith cutoff
for unclassified equal to 0.9 .

Training Dataset

True class Predicted class
ABC GCB Unclass.

ABC 37.3 1.0 3.7
GCB 0.5 60.0 6.5

Test Dataset

True class Predicted class
ABC GCB Unclass.

ABC 32.7 1.3 7.0
GCB 1.7 57.4 7.9
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On the other hand, the results of Algorithm LFSS-VE are similar to those

of [189], but the latter obtains a lower number of genes, 8 versus 27, and our

validation is performed in ten distinct partitions of the dataset in relation to the

only evaluation of the classifier of [189]. Indeed, there are better results than

[189] in several of the ten evaluations of our classifier.

6.5 Conclusions and Future Work

When treating with gene expression data (a very high number of features and

a low number of instances), the difficulty does not involve finding a complex

classification model, but rather reducing the high number of features.

In this chapter, we make two different proposals for dealing with the peculiar-

ities of this kind of data.

In Section 6.3, we proposed a filter-wrapper approach with an abduction

phase. A filter approach was first detailed in Section 6.3.1. We should high-

light the great capacity of the Anova function and of the correlation coefficient to

remove redundant and irrelevant genes. In the experiments of Section 6.3.3, the

initial 8503 genes were reduced to 75, obtaining accuracy rates of 94.1% while

biologically relevant genes were maintained. Another problem of DNA microar-

rays is the low number of available samples, which can give rise to overfitting

of classifiers. In order to deal with this, we employed a wrapper methodology

combined with the use of an abduction method (most probable explanation) to

predict a robust set of genes, Section 6.3.2. The experimental work shows that

this initial approach provides a high accuracy level. The results of this wrapper

model with an abduction phase are similar to the results of [189] for the DLBCL

classification problem.

In Section 6.4, we made some additional changes to the wrapper search in

order to improve performance and reduce its computational complexity, avoiding

the need to use fast filter methods. As can be seen in the experimental results

(Section 6.4.3), the gene ranking and the wrapper search in only the first t genes

constitute an excellent method for reducing the computational cost of the wrapper

search without any loss in the classification accuracy rate. Furthermore, the

introduction of a new heuristic for irrelevant gene elimination depending on the
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wrapper search process presented very good behaviour when applied to the Diffuse

Large B-Cell Lymphoma classification.

A future line of work involves the validation of theses models with other

datasets, for example ones dealing with breast cancer, colon cancer, leukemia, etc.

In addition, the use of other classification models with more complex structures

is another important issue that we wish to explore in the future.
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Applications to Information

Retrieval
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Chapter 7

Information Retrieval in Context

7.1 Introduction

The term information retrieval has many different meanings. Just picking up

a post-it from your work desk to read what you wrote is a form of information

retrieval. From a formal point of view, information retrieval might be defined

thus [38]:

Information retrieval (IR) is finding documents of an unstructured nature,

usually text, that meet an information need from within large collections,

usually stored in computers.

Thus, information retrieval used to involve the activity of a few specialists,

such as reference librarians. In the last decade, the World Wide Web has com-

pletely changed the way people pursue information. The emergence of popular

web search engines such as Google, Yahoo, Microsoft Live, etc. has provided the

most sophisticated information retrieval techniques to satisfy the information

needs of hundreds of millions of people every day.

IR can also embrace other kinds of information problems different from what

is indicated above. The term unstructured data defines a kind of data that is

not directly related to the underlying representations used by a computer. One

example of structured data would be the relational database widely used by com-

panies to store very different kinds of data. But, in reality, practically no data are
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completely unstructured, particularly for all written text data containing a la-

tent linguistic structure. Most text data have a structure, such as titles, headings

and paragraphs, which is usually defined in web documents by explicit markups.

Semi-structured search can be seen as an information retrieval approach that ex-

ploits this partial structure of text data: for example, search documents where

the title is devoted to supervised classification.

The IR field also involves supporting user browsing, filtering some kind of doc-

uments or further processing certain groups of retrieved documents. Two main

tasks, closely related to the Machine Learning field, are document clustering and

document classification. Document clustering consists of grouping documents

according to their content or to other features, as a latent approach to struc-

turing a large set of documents. Moreover, document classification deals with

the problem of assigning a predefined label to each document. It is widely used

in many real IR applications, one very common example being automatic email

spam classification.

Another distinction of information retrieval systems involves the scale at which

they are built. Three prominent scales are commonly distinguished. In web

search, the IR systems has to deal with billions of documents, stored in millions

of computers and requested by millions of user searches. Consequently, special

and specific issues have to be tackled in order to gather text data for indexing,

to work efficiently with this huge quantity of data and to handle specific aspects

of web documents, such as exploitation of html markups. These systems should

also be able to detect illegal page content manipulations in order to boost the

ranking in web search engines.

The other end of this scale involves personal information retrieval. In recent

years, operating systems have plugged IR systems into their core software: Ap-

ple’s Mac OS X Spotlight or Windows Vista’s Instant Search. Email applications

not only provide email search but also email classification, such as spam mail clas-

sification or automatic means for assigning predefined labels. The specific issues

handled by these IR systems include treatment of the different document types

in a common personal computer and rendering the system easy to maintain and

sufficiently lightweight in terms of computation and storage resources, in order

to avoid annoyance to users.
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Between these two previous scales lies the enterprise and domain-specific

search, where document collection involves the internal documents of a corpo-

ration, patent databases or research articles on computer science. In these cases,

all documents are stored in a centralized file system and dedicated machines are

employed to run the IR system.

In short, IR encompasses a wide area of research. It involves several very dif-

ferent issues related to supplying information for people’s day-to-day information

needs.

7.2 The Notion of Context

Context, once a promising concept, appears to have become a cause of confusion

in Information Retrieval (IR) and related fields. This confusion would seem to

be due to the scope of concept [40]. In the narrowest sense, the scope of context

in search can refer to elements surrounding words [e.g., 9; 61]. For example, by

looking at the words co-occurring with query terms in documents, one might un-

derstand a searcher’s underlying information need that was originally expressed

by few words. A wider scope of context is the history of interaction [e.g., 62].

If we look at iterative searches as a conversation between a searcher and an IR

system, then it makes sense to consider the past dialogue in order to understand

the current discourse. Similarly, by exploiting past search activities and interac-

tion with a search interface, one might better understand a searcher’s underlying

information need.

But, as was pointed out by [92], IR research is now conducted in multi-media,

multi-lingual, and multi-modal environments, but largely in a context-free man-

ner. However, it is well known that the process of retrieved information strongly

depends on time, place, interaction, task, and a wide range of factors that are

implicit in the user interaction and the environment: the context. All this contex-

tual information can be exploited to restrict the information space and, thereby,

to boost the performance of IR systems.

Recently, work tasks have been studied as a promising context [e.g., 104]. A

work task can be any information activity people perform on a day-to-day basis

motivating search activities [20]. Thus, this can be seen as an increase in the
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Figure 7.1: Nested model of context stratification for IR [92].

scope of the concept. It has been suggested that work tasks can indicate the

relevance of the genres of documents [63]; thus, the document genres can also be

seen as a context. In the field of Human Computer Interaction (HCI), environ-

mental factors such as location and time of activities have been investigated in

the development of context-aware systems [52]. Similarly, the devices that people

use in searches are seen as a contextual factor to be considered, for example, for

the presentation of search results on mobile devices [102].

Figure 7.1, taken from [92], shows a stratification of contexts related to IR

engines and systems. This stratification involves the traditional content features

of information objects (i.e. words placed inside paragraphs), hyperlinks and in-

teraction features (i.e. mouse movements and clicks during search session or

daily-life task situation). The main hypothesis states that by considering all the

information associated with these contexts, the next generation of IR systems

will outperform traditional context-free search engines.

Whether or not there is consensus regarding the scopes of context, researchers

appear to agree with the importance of context in IR. One implication of the

widening scope of context is that there can be many relevant contextual factors

when we study information seeking in particular environments or when we develop
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a context-aware search model/application.

These so-called context-aware systems [28] constitute a new area of IR systems

that attempts to overcome the limitations of traditional personalization systems.

In this scope, the term context can take many different meanings and no widely

accepted definition exists [56].

Several context-aware retrieval systems exist in the literature and most of

them are based on statistical models for combining preceding queries and click-

through documents with the current query in order to boost the ranking of doc-

uments [14; 61; 123]. But optimal IR systems should exploit as much contextual

information as possible whenever available. Relevance Feedback provides a com-

mon solution to this problem. However, its effectiveness is limited in real systems,

basically because of the reluctance of users to provide such information.

For this reason, implicit feedback has recently attracted much attention [32;

106; 180]. Needs for complex information involve the submission of different

queries by the user and viewing of different ranked documents before the user’s

information need is met. In such an interactive scenario, useful information natu-

rally emerges and is available to the IR system beyond the initial user query and

the document collection. Generally, an interaction history track can be exploited

by the retrieval system, including previous queries, click-through documents and

how users read these documents.

7.3 Context in Search

The integration of context ideas into IR systems is not new, although the notion

of context can be very different across the different approaches.

Lawrence et al. [123] offers a thorough review of the employment of context

in Web search. Explicit information can be submitted to a search engine as a

category restriction. This category can help to disambiguate a query and improve

the results. For instance, given the query “java”, possible categories are “island”

or “programming language” [75].

To the contrary, other systems automatically infer context information by

analyzing the documents displayed to the user [29]. These tools face difficulties

when documents are too long and involve several topics.
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Another family of IR systems considers the notion of context as a group of

information requests generated by the user. Thus, context become a form of

personalization and these systems keep track of a user’s previous queries and

click-through documents [14].

Other approaches for integrating context into searches involve the use of

domain-specific search engines [123]. IR systems that search the Invisible Web

(i.e., whose information content is not indexed by traditional search engines)

could become very useful, as they contain huge amounts of information within a

very defined domain.

As can be seen, there are many interpretations of the notion of context and

how this notion is implemented in IR systems. This variety probably arises

from the difficulties involved in this problem and determines the need for further

research in order to provide better knowledge of what context is and how it can

be exploited.

7.4 Interactive Information Retrieval

In the last few decades, most efforts in IR research have focused on methods

for matching text representations with query representations. However, IR re-

searchers have recently addressed the task of understanding the role of the user

in IR. The basic hypothesis is that knowledge of how users interact with IR sys-

tems constitutes an effective way to improve the performance of theses systems.

Therefore, the line of research involving users in the process of consulting an IR

system is known as interactive information retrieval (IIR). IIR can be seen as a

limited, initial and direct way to implement context-aware IR systems, because

they consider certain aspects of the broad spectrum of factors detailed in Section

7.2.

Traditional models of IR hardly consider the dynamic nature of the interaction

phenomenon between users and IR systems. Herein we detail four basic models

exploring the underlying dynamics of interactive IR:

• Saracevic’s (1997) stratified model of interactive IR [157]: This model con-

siders multiple dimensions of user participation in IR processes. That is,
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this model accounts for user knowledge, along with its environment and

situation. It is partially capable of describing the complexities surrounding

the interaction between users and IR systems.

• Belkin’s (1996) episodic model of IR interaction [11]: This model is based on

user commitments to their anomalous states of knowledge. It basically con-

siders that users carry out search tasks with different degrees of knowledge

in relation to the subject of their searches.

• Spink’s (1997) interactive feedback and search process model [166]: This

model is based on the description of the interactive feedback and search

processes regarding the complexities and cyclical nature of IR interaction.

It includes time as a critical factor in IIR.

• Ingwersen’s (1996) cognitive model of IR interaction [89]:

In this model, Ingwersen attempted to synthesizes many of the aspects

considered by the above models. He attempted to model interactive IR

from a global perspective, stating that a wide range of factors, such as

social environment influences the IR process.

Each of these models attempts to provide an alternative to traditional models

of information retrieval. The limitations of these traditional approaches have

been shown by IIR research. Mainly because these approaches do not consider the

complexities of interaction among humans or among users and IR systems or with

respect to explicit or implicit feedback provided by users [165; 166]. Aiming to

face these limitations, a growing number of researches started to address problems

associated with the interaction dynamics in IR, most of which are summarized in

the four models enumerated above.
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Chapter 8

Investigating the impact and

dependency of contextual factors

in relevance modelling

This chapter presents an approach for measuring the effectiveness of contextual

factors to predict the relevance of click-through documents. The approach en-

ables us to investigate the impact of a range of aspects such as topics, search

interface features, task complexity, search stage, and search experience on rele-

vance modelling.

8.1 Motivation

A prominent role of context in information retrieval (IR) involves improving mod-

elling of document relevancy. Estimating the potential impact of contextual fac-

tors can facilitate the development of new search models which exploit context.

However, eliciting promising contextual factors from a number of potentially rel-

evant factors poses a challenging task, since there is no easy way to measure the

potential effect of context. Dependency of contextual factors is even more diffi-

cult to measure. This is important, however, as search activities are shaped not

by one single contextual factor, but rather by multiple ones. [91].

In order to address these generic research problems on IR in context, this

chapter proposes an approach for measuring the potential impact of contextual
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factors using aggregated relevance judgements that are made in controlled envi-

ronments. The contributions of this chapter are as follows. First, we propose an

approach which enables us to measure the impact of context and to find effective

features for relevance modelling. Second, we demonstrate that the strength of

context in people’s relevance judgements can be captured by query-independent

document features. Third, we provide empirical evidence that shows that more

contexts can improve relevance modelling performance. Finally, we suggest a set

of robust features that can be used for future work.

The remainder of the chapter is structured as follows. Section 8.2 reviews

existing studies to elicit significant context. Section 8.3 discusses the methodology

used in our approach to measure the strength of context. Section 8.4 provides

descriptions of the experiments performed in our study. Section 8.5 presents the

results of our experiments, followed by the discussion of the main findings and

implications in Section 8.6. Section 8.7 concludes with the implications for future

work.

Definition of terms

This chapter uses several terms as follows.

Context is an element encompassing an information searching process. A con-

text can have several instances, each of these instances will be called as

context group. For example, Search experience context has two groups,

more experienced and less experienced.

Contextual relevance refers to relevance of documents perceived by searchers

in a particular context.

Contextual document grouping refers to a process of grouping click-through

documents (along with subsequent relevance judgements) to represent a

context and its contextual relevance.

Features refer to a set of variables extracted from retrieved objects. These are

used to generate relevance models.

Feature category refers to a particular category to which a feature belongs.
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8.2 Measuring the Impact of Context

8.2 Measuring the Impact of Context

A series of forums have been held to address aspects of context in information

seeking and retrieval [40; 44; 45; 90; 91; 154]. The advances reported in the

forums ranged from theoretical ones, such as a taxonomy of contextual features,

to empirical ones, for instance, deriving new context from environments and to

constructive ones, such as new applications that exploit context. Our study at-

tempts to make a methodological advance in this area by developing a framework

for measuring the impact of contextual factors. Therefore, this section discusses

different approaches taken to measure the impact of context for modelling doc-

ument relevancy. It should be noted that in this study we take the view on the

scope of context as shown in the Ingwersen context stratification [92] (see Section

7.3 for details).

One way to examine the impact of contextual features is to investigate the

factors that influenced people’s relevance judgements. For example, [10] discussed

two sets of semi-structured interviews carried out to establish the criteria used for

judging document relevancy. The study identified ten criteria categories common

to both interviews. Their results highlighted the fact that people employed non-

topical factors such as quality of sources for relevance judgements. Tombros et

al. [172] observed interactive search sessions to extract the factors influencing

people’s relevance judgements. They identified five groups of influential factors

based on 24 participants performing three different search tasks on the Web.

Their results suggest that non-textual elements in documents such as structure

and visual features affect people’s relevance assessments.

Another way to examine the impact of contextual features is to investigate

their effect on searching behaviour. For example, [105] studied the effect of tasks

and searchers on reading time of retrieved documents. Their experiments show

a significant correlation between contextual features and searching behaviour.

Reading time was found to vary across search tasks as well as individual searchers.

This suggests that reading time can be difficult with regard to modelling relevance

without context. A similar approach was taken by [181], who studied the effect

of topic complexity, search experience, and search stage in the performance of

implicit relevance feedback. Implicit feedback was used to suggest expansion
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terms in the study. A mixture of measures such as subject assessments, take-up

rate of suggested terms and retrieval effectiveness was used to capture the effect

of the contextual features. Study thereof shows that all three factors affect the

utility of implicit relevance feedback.

A different approach employed by [62] involved modelling document relevancy

based on a history of interactions. They analysed a couple of dozen user interac-

tions and explicit relevance judgements to construct predictive Bayesian models.

It can be seen that the accuracy of relevance prediction of the models was used as

a measure of impact in their study. One advantage of their approach is the num-

ber of variables that can be investigated. While other approaches can examine

two or three factors at a time, the classifiers enable a large number of potentially

effective factors to be investigated. A disadvantage is that the dependency of

features in the models generated is not always clear or interpretable.

Another way to find a dependency between contextual features is to mea-

sure the frequency of their co-occurrence in search environments. For example,

[63] looked at two contextual features, document genres and work tasks, to find

the dependency between them. The use of documents in a software engineering

workplace was analysed in their study. The experiments show that there is a sig-

nificant correspondence of document genres with the types of work tasks, which

suggests that one can learn relevant genres by understanding the roles and tasks

of an organization.

Compared with existing studies, our work presents the following character-

istics. First, as in [172], we measure the impact of context based on searchers’

relevance assessments. This is because relevance judgements are a fundamental

process in search, and because we are also interested in better relevance context

modelling. Second, we use a probabilistic classifier to model document relevancy.

This allows us to go beyond the subjective assessments or simple frequencies to

measure the impact of contextual features on document relevancy. We use query-

independent document features for modelling, as opposed to interaction data used

in [62]. Third, our work evaluates the range of context features that have been dis-

cussed in this section ( document textual, visual/graphical, visual/typographical,

layout, structural and other selective features). Finally, the approach proposed
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enables us to understand the dependency of contextual features, a similar objec-

tive to [63], in the same single framework.

The next section discusses our approach for measuring the impact of context

in details.

8.3 The Methodology: Divide and Conquer

Our approach is based on a set of relevance judgements made in controlled envi-

ronments. An overview of our approach is as follows. All click-through documents

recorded in a user study were seen as a dataset full of context. Explicit (binary)

relevance judgements were obtained for all click-through documents during the

study. The full dataset was then divided into subsets based on a contextual fac-

tor in question. The relevance models were generated for all sets of data, and

prediction accuracy was compared to measure the impact of the context. This

process is shown in Figure 8.1, where search experience was used as an instance

of context.

An assumption underlying this approach was that if a context was significant,

it would have an effect on people’s relevance assessments that could be captured

by a relevance model (a classifier in our case). The performance of relevance

models for predicting document relevancy was therefore used to measure the

impact of context.

The rest of the section presents our approach in greater detail. It first de-

scribes how context is represented in the methodology. The conceptual category

of document features used to model contextual relevance is then shown. This is

followed by a formal description of the modelling approach.

8.3.1 Representing context using aggregated relevance judge-

ments

The first step for measuring the impact of context in our approach involved

representing contextual relevance. While there are different ways to represent

contextual relevance, we take a simple approach which grouped a set of documents

that were accessed and judged by searchers in a given context. For example, for
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Figure 8.1: Proposed approach to measure the impact of context (e.g., search
experience).

search experience context, all documents judged by searchers were divided into

two groups: those that were judged by more experienced searchers, and those

judged by less experienced ones (See Figure 8.1). As we will see in Section 8.5,

this contextual grouping of documents provides us with a simple and intuitive

interpretation of the impact of context. Moreover, one can apply the grouping

to different representations of contextual factors such as binary data (presence or

absence of a factor) or continuous data (e.g., first 5 minutes, second 5 minutes,

etc.). The grouping was repeated for all contextual factors investigated in this

study. Section 8.4 will show the details of the contextual factors.

It should be noted that disagreement of relevance judgements can be found

in this implementation of the contextual grouping. This could cause a problem

on measuring the impact of context. In this study, we chose to discard the

documents from the analysis only when there was complete disagreement (i.e.,

50% of judgements was relevant and the other half was non-relevant). Otherwise,

relevance of documents was determined by the vote of the majority of judgements.

In general, the proportion of discarded documents was very small. The details of

relevance judgements are found in Section 8.4.
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Table 8.1: Categories of query-independent document features.
Feature category Code Size Example
Document textual features Text 13 Page length
Visual/Graphical features Visual 16 Image area
Visual/Typographical features Vis-tag 17 Frequency of b tag
Layout features Layout 14 Frequency of div tag
Link structure features Structure 10 Number of outlinks
Selective words Other 22 “search”
Selective HTML tags Oth-tag 24 Frequency of script tag

8.3.2 Conceptual categories of object features

The second step of our approach involved identifying candidate features that can

be extracted from retrieved documents. With the use of some informal exper-

imentation and of literature survey, we identified over 100 document features.

To increase understanding of candidate features in relevancy prediction, we then

grouped them into a set of feature categories. The structure used for the cate-

gorisation is shown in Table 8.1. As can be seen, there are seven categories. An

overview of the main categories is as follows.

Document textual features: This category consists of features that were re-

lated to textual contents of documents. The examples of features included

the number of words in a document and anchor texts, number of upper-case

words, number of digits, Shannon’s entropy value [161] for a document and

anchor texts.

Visual/Graphical features: This category consisted of features related to graph-

ical and colour elements of documents. Examples of features included the

number of images, dimension of images, background colour, etc.

Visual/Typographical features: This category was similar to the previous

category in that the features were mainly visual elements of documents.

However, this category included the typographical elements, such as size

and colours of fonts.
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Layout features: This category contained the features related to the layout

of documents, such as number of paragraphs, tables, and alignments of

elements.

Structural features: This category consists of features related to hyperlink and

site structure of documents. The examples include the depth of document

in a URL, the number of outlinks, PageRank scores.

Other selective features: The last two categories consisted of features that did

not necessarily fit into the abovementioned categories. Selective words in

document included the presence of selective words such as address, search,

and help. Selective HTML tags included a set of HTML tags such as form,

object, and script and their attributes.

Table 8.2 lists all the features used in our experiments. The following sections

describe a methodology proposed for building a classifier, for selecting significant

features, and finally, for validating the results.

8.3.3 Modelling contextual document relevancy

This section provides a formal account of how query-independent document fea-

tures were used to model contextual relevance in our approach.

Methodology discussion

Firstly, we discuss the proposed methodology for measuring the strength of a

context in relevance modelling.

Language Models and query-independent features: In this approach,

contextual relevance is modelled through its probabilistic relationship with doc-

ument object features, also known as query-independent features because they

do not depend on the query. In order to better understand how this modelling

can be derived from a general IR framework, we will make use of the Language

modelling framework (LM) [145].

The Language modelling framework enables incorporation of query-independent

features into the information retrieval task. The derivation of the LM retrieval
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Table 8.2: Members of document features.
Text (13) Visual (16) Vis-tag (17) Layout (14) Structure (10)
# Words # Link Style # b # area # links
# Different Words % Area Web # big # center # link-mail
# Digits # Images # font # br # In-host links
# Upper Case Words % Image Area # i # div # Out-host links
Entropy # Background (BG) Images # H1-6 # map # HTML Links
% Entropy Color Foreground # small # hr # Non HTML Links
# Words (a) Color Background # span # li Levels of URL
# Different Words (a) Width of Web # strong # p Page Rank (PR) Score
# Digits (a) Height of Web # u # table PR Score of Host Page
# Upper Case Words (a) Image Disk Size # style # td URL Domain
Entropy (a) BG Image Disk Size # alt # tr
% Entropy (a) % BG Image Area # border # th
Page length µ Images Width # color # align

µ Images Height # face # size
µ BG Images Width # bgcolor
µ BG Images Height # cellpadding

# title
Other (22) Oth-tag (24)
# email # email (a) # address # action # onmouseover
# address # address (a) # form # method # onmouseout
# tel # tel (a) # input # scrolling
# updated # updated (a) # label # src
# search # search (a) # object # checked
# help # help (a) # script # media
# sitemap # sitemap (a) # select # onload
# contact # contact (a) # meta # onunload
# contacts # contacts (a) # numLinkArea # onchange
# home # home (a) # lang # onsubmit
# languages # languages (a) # accesskey # onclick
#: Frequency of occurrence of a feature; %: Percentage of a feature value in a page; µ: Mean of multiple

instances; (a): Occurrence in anchor texts.
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model is estimated indirectly by invoking Bayes’ rule. Thus, the probability of

relevance P (R|Q,D) given a query Q and a document D is computed as follows:

P (R|Q,D) =
P (Q,D|R)P (R)

P (D,Q)
(8.1)

= P (Q|D, R)P (D|R)
P (R)

P (Q,D)
(8.2)

= P (Q|D, R)P (R|D)
P (D)

P (Q,D)
(8.3)

Assuming independence between queries and documents P (Q,D) = P (Q)P (D)

and given that P (Q) is just a proportional constant:

P (R|Q,D) ∝ P (Q|D, R)P (R|D)

where P (Q|D, R) is the query likelihood and P (R|D) is the document prior, that

is to say, how the query-independent features of a document affect the relevance

(D denotes the vector of query-independent features of the document).

In Equation (8.1), we consider a strong independence assumption, but it was

considered to obtain, by means of simple transformations, a final formulation

with dependence on P (R|D). The derivation presented in [117], which connects

Language models with the probabilistic model of retrieval, took a more reasonable

assumption, Q and D are independent under r̄ (non-relevance), and starting from

the odds-ratio of Relevance, the final relevance score is dependent on P (r|D)/(1−
P (r|D)), which also shows the abovementioned dependence relation with the

document prior.

In many of the common applications of LM, P (R|D) is taken to be uniform

and discarded from the model. However, the incorporation of prior evidence

is known to boost the performance of IR systems in many different situations

[43; 114]. But no accepted model as yet exists for incorporating and combining

this prior evidence [15; 142].

Justifying the probabilistic classification approach: Some big problems

arise when modelling P (R|D). Firstly, the number and nature of query-independent
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document features can be vary greatly and are not well defined [43; 114]. Sec-

ondly, many of the previous approaches that have attempted to model the relation

of several query-independent features assume independence [114] or use a linear

combination where the weights associated with each feature are set using heuris-

tic methods. Furthermore, to our knowledge, unlike our study, no previous one

handles more than one hundred features. Most of them do not employ more than

5 or 10 features. Thus, the previous approaches will probably find more problems

dealing with this high number of features.

Another important issue in modelling relevance with query-independent fea-

tures can be seen in the fact that not all proposed or examined features need to

be valid or suitable for this purpose. Many of them will probably be too noisy

or irrelevant. A recent study [141] has shown that retrieval performance can be

further enhanced by selecting query-independent features depending on the query

submitted to the system. Hence, the modelling relevance approach should also

integrate a feature selection mechanism.

Considering these problems, the modelling approach used herein is based on

the use of supervised classification models as described in Chapter 2. We argue

that this approach naturally models this kind of conditional probabilistic relations

and has therefore been widely employed by the Machine Learning community for

this purpose.

The main disadvantage of this approach with respect to the above mentioned

ones is its supervised nature, that is to say, a previous pool of data is needed to

learn the model encoding the conditional distribution P (R|D). This problem can

be overcome because, in this study, we avail of a set of relevance judgements of a

wide set of web documents compiled in controlled environments.

Probabilistic classification: Generally speaking, the classification problem

involves the ability to predict a given feature of an object using another set of

features of the same object (see Chapter 2 for details). In this concrete problem,

we seek to predict the relevance (more concretely, the aggregated relevance) of a

web document using its query-independent features.

Now we proceed to detail the specific notation. In the probabilistic classifica-

tion paradigm, the classification problem involves two types of random variables:
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Class variable: R. This random variable is the variable to be predicted. In

this case, the class variable takes two cases {Relevance, Non−Relevance},
as the two possible predictions that can be made.

Predictive/Attribute variables: X = {X1, X2, ..., Xn}. In this case, the pre-

dictive variables are the query-independent features or document features,

Section 8.3.2. Thus, X is the set of variables described in Table 8.2.

Thus, our objective is to learn the probability distribution P (R|X) which is

estimated by applying Bayes’s Theorem as follows:

P(R|X1, . . . , Xn) ∝ P (X1, . . . , Xn|R)P (R) (8.4)

In order for the estimation of P (X1, . . . , Xn|R) to be feasible, classification

probabilistic approaches perform a factorization of this distribution using some

conditional independence assumptions. The best known and simplest one is the

Naive Bayes (Section 2.2.1) where all the variables are assumed to be independent

if the class variable is known.

Justifying the context division approach: An initial natural attempt to

introduce context information would involve defining a random variable C taking

as many cases as context groups (i.e., search-experience would be the context

variable taking two cases: more-exp and less-exp) and, subsequently introducing

it into the probability distribution:

P(R|X1, . . . , Xn, C) ∝ P (X1, . . . , Xn|R, C)P (R|C)

The problem with this approach is that the conditional independencies ex-

ploited to encode the probability distribution P (X1, . . . , Xn|R, C) have to be

maintained for the different context groups of C. This imposes strict restrictions

with regard to modelling contextual relevance; for example, it is necessary to

have the same query-independent features modelling contextual relevance and

the same conditional independencies across the different context cases. However,

previous works [126; 141] have shown that relevant features and their relations

can vary across different queries and/or topics.
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The approach we use here is related to the notion of context-specific indepen-

dencies or asymmetric conditional independencies [21]. These kind of conditional

independencies have been widely studied in Machine Learning literature and sev-

eral models for handling them have been proposed [21; 71; 95; 170].

Firstly, we give the definitions of context-specific independencies and of con-

ditional independencies in order to compare both definitions:

Conditional Independence: We say that X and Y are conditionally inde-

pendent given R, if ∀x ∈ X, ∀y ∈ Y, ∀r ∈ R the following equality is

maintained:

P (x, y|r) = P (x|r)P (y|r)

Context-specific independence [21]: In this case, given a fixed value c ∈ C,

we say that X and Y are contextually independent given R and the context

case c if ∀x ∈ X, ∀y ∈ Y, ∀r ∈ R the following condition is maintained:

P (x, y|r, c) = P (x|r, c)P (y|r, c)

It should be noted that if the above condition is true for all values c ∈
C, we would have the previous formulation of conditional independence.

In context-specific independence the above condition only holds for some

specific values of c ∈ C.

As was mentioned in Section 8.3.1, contextual relevance was represented us-

ing aggregated relevance judgements. Thus, the relevance of a document is de-

termined by the particular context group (i.e., more-exp users) in which users

judgements were made. Thus, and assuming the need to handle context-specific

independencies, we approached the contextual relevance modelling by building

different probabilistic models for each context group (i.e. one model for more-exp

users and another model for less-exp users). Thus, the Equation 8.4 is newly

defined as follows:
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Figure 8.2: The updating of a knowledge state through the selection of, and
subsequent exposure to, information. [31].

Pc(Rc|X1, . . . , Xn) ∝ Pc(X1, . . . , Xn|Rc)P (Rc) (8.5)

where the role of the specific context group in which the modelling is performed

is now integrated into the probability distribution Pc itself and the relevance is

also subjected to this specific context group Rc for the aforementioned reasons.

As has been mentioned, to measure the impact of the context search-experience

two models were built: Pmore−exp(Rmore−exp|X) for more-experience users and

Pless−exp(Rless−exp|X) for less-experience users.

The a priori probability of relevance P (R): Equation 8.5 can be inter-

preted from a belief updating point of view. Along these lines, this updating

was expressed in the ostensive model of developing information needs proposed in

[31]. A rough description of the knowledge updating process used in this model

can be seen in Figure 8.2.

This model relates changes in the knowledge state of a user in response to

information presented during information seeking activities. Extrapolating this

model to our specific problem, it can be said that a user has a determined knowl-

edge state “k” and takes an action “a” which, in our case, involves clicking on

a given document link of the result list to access the web document content “i”.

The user is immediately exposed to this information through the process “e” and

reaches another knowledge state “k′”. Again, the user takes another action that

can involve bookmarking this document as relevant, returning to the results list

to click on another document of the result list or formulating another query.
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In the probabilistic approach this process can be modelled considering P (R)

as the prior belief about the relevance of the click-through document prior to

being exposed to its content. Once the user has been exposed to the content of

the document (to the concrete values of the query-independent features of this

document, x ), he/she updates his/her belief about the relevance of the document

as a posteriori probability P (R|x). Based on this new updated belief P (R|x), the

user then decides to bookmark or not to bookmark the click-through document

as relevant. This modelling implies the Bayesian conception of probabilities as a

subjective degree of belief [46] (for a review of the use of subjective probabilities

in IR refers to [171]).

Once we have provided a belief updating interpretation to our modelling ap-

proach, it will become easier to understand why we opted to fix an uninformative

a priori probability of relevance: P (r) = P (r̄) = 0.5.

Firstly, fixing an a priori probability of relevance higher than 0.5 could be

argued by stating that when a user clicks on a document his/her predisposition

or personal belief is biased towards relevancy. However, the marginal probability

of relevance that can be estimated from the data of the two user studies employed

in this research does not reveal a clear trend in favour of relevant or non-relevant

documents (see Table 8.4 for details). Moreover, handling datasets presenting

a clear imbalance of their classes is known to deteriorate the performance of a

classifier [96].

We found neither theoretical nor practical reasons to employ non uniform

a priori probabilities of relevance, and therefore opted to learn the classifica-

tion models from balanced datasets (with the same number of relevant and non-

relevant documents). To address this issue, we randomly removed the samples

from the larger class until the portion was balanced from the training set. Test

datasets were excluded from this processing.

Measuring the effect of context: To measure the effect of a context we es-

timate how well the contextual relevance modelling given by Pc(Rc|X) fits its

real distribution. That is to say, given a concrete web document or, more pre-

cisely, the concrete values of the query-independent features for this document,

the model will make a prediction about the relevance of the document and this
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prediction will be compared with the real aggregated relevance judgements made

by users in this context. The percentage of the correct predictions by this clas-

sification model is defined as classification accuracy and this measure will tell

us how well contextual relevance can be modelled by document object features

inside this context (the concrete method used to estimate this accuracy will be

subsequently detailed in Section 8.3.3). Our assumption is the following: the

higher the classification accuracy, the stronger the context. We will consider that

a classification accuracy is indicative of contextual relevance modelling when it is

statistically significant higher than 50%. We took this baseline because this is the

expected classification accuracy rate if no modelling of the contextual relevance is

performed. That is to say, if we assume, as discussed in the previous section, that

the a priori probability of relevance is uniform, the expected accuracy rate will be

50%, and the modelling of contextual relevance will therefore be significant when

the accuracy rate obtained by means of the knowledge of the query-independent

features is higher than this threshold.

In those contexts or feature categories, when the classification accuracy is not

statistically significant higher than 50%, it can be said that there is no contextual

relevance modelling or, simply, no modelling.

Methodology implementation

Once the methodology has been discussed, we will provide details of the imple-

mentation. The concrete models and approaches employed in this study were

intended to be simple and standard, although some adaptations were made in or-

der to solve some of the peculiarities relating to this problem. We point out that

more specific models and approaches could be used instead of those employed

here. But as an initial study, we do not explore the broader possibilities that can

be applied in order to model the distribution Pc(Rc|X).

The classification model: The chosen classifier model was the AODE classi-

fier (Section 2.2.6 ). This classifier was selected for its competitive performance,

as well as for its low variance component, which performs well with a relatively

low sample size.
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Another issue was the preprocessing of attribute variables. As can be seen

in Table 8.2, a number of attribute variables were continuous in our study. In

machine learning, a discretization is often performed for continuous variables,

specially in classifiers designed for discrete variables, such as AODE. We used the

equal frequency discretization method [55] to split the continuous variables into

10 intervals.

Feature selection and combination schemes: The feature selection in the

supervised classification paradigm (see Section 2.4 for details) attempts to find a

minimum set of attribute variables that can achieve the best performance. The

selection of significant features in the problem space can prevent the classifiers

from introducing noisy evidence into the training stage. The feature selection can

also reduce the number of variables to be considered in the problem space, and

can therefore facilitate our understanding of significant variables.

While several techniques have been proposed for the feature selection [78],

we used a wrapper method [109]. This method employs a ”Best First Search”

procedure which evaluates each candidate set of features using the accuracy of

an AODE classifier trained with them. The current selection process was simi-

lar to the cross validation method described in Section 8.3.3. The 10-fold-cross

validation repeated 10 times gives us 100 different data splits with 90% of the

samples of the total dataset. In each one of these splits a wrapper feature selec-

tion method was run. The final set of features was generated by the features that

were selected in at least N% of these 100 splits. We used 50%, 80%, and 90%

as the cutoff levels in the feature selection. Again, each one of these cutoff levels

was evaluated and the best accuracy was reported.

The feature selection process was independently applied to each one of the

seven feature categories defined in Section 8.3.2. Another combined category is

also evaluated combining the selected features at the same cutoff levels in each

one of the feature categories. Again the three nested feature sets were evaluated

and the best accuracy was reported.

Estimating the classification accuracy: With the aim of providing a robust

estimation of the accuracy of a classifier, the set of data was partitioned into two
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separated sets. The training set was used to build the classifier and the test

set was used to estimate the performance. The K-fold-cross validation method

was used to partition the dataset as follows. The dataset D was divided into

K random subsets with the same size {D1, ..., DK}, thus, the validation process

was repeated K times. In other words, in step i with i = 1...K a training

dataset was defined Ti = D \Di, subset Di was used as a test set, and accuracy

measurement was based on these. The mean of the K accuracy measures was

reported as the final estimated performance of the classifier. In our study, a 10

fold-cross validation was repeated 10 times to measure performance (i.e., based

on 100 repeated estimations).

Accuracy of prediction is defined by the portion of correct predictions in the

total number of click-through documents. The correct prediction is a sum of true

positive and true negative cases (i.e., predicting a relevant document as relevant,

and predicting a non-relevant as non-relevant). This prediction accuracy was

used to represent the impact of contextual features for relevance modelling. In

other words, a stronger contextual feature made it easier for classifiers to model

the relevance of documents.

In order to detect statistically significant improvements for the expected prob-

ability, 50 % (i.e., Relevant or not), due to the balancing step of the training

dataset, we used a corrected paired t-test [134]. This test is stricter than the

common t-test and was specifically designed for considering the overlapping be-

tween the datasets used.

Because three cutoff levels were used in the feature selection step (Section

8.3.3), the classifier was evaluated with three different feature sets. Thus, three

dependent hypothesis were simultaneously tested. To address this issue, we also

applied the Bonferroni correction [18] to the previous t-test dividing by 3 the

statistical level of the test.

In same cases, there were significant increments in classification accuracy in

relation to 50%, but these were not meaningful. This is mainly due to the fact that

the feature selection stage left an empty or very reduced set of selected features. In

many of these cases, classifiers always predicted the same class (i.e., non-relevant)

independently from the query-independent feature combinations they received.

Thus, they showed a classification accuracy rate higher than 50%. This problem
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was detected by observing the true positive and true negative classification rates

and discarding those estimations in which any of these two values were lower than

50% (a completely non-informative prediction presents 100% of true positive rate

and 0% of true negative rate or viceversa). We will refer to those discarded cases

as degenerated relevance modelling.

In short, our approach was designed to divide the dataset (click-through docu-

ments and subsequent relevance judgements) based on a context. We then trained

the classification model with individual sets of data to measure the impact of con-

text on relevance modelling.

Dividing data to measure the impact of a variable is not a new concept in

classification. For example, Lachin’s approach [116] was based on building these

divisions for making predictions through the application of Bayesian decision

rules. A stepwise procedure was employed to select a minimum set of variables

and their Cartesian product was then used to define each one of the splits of

the data. Our approach differed from Lachin’s in the following way. In Lachin’s

approach, each split described a unique class prediction (for instance, always

relevant) and the set of variables involved was always the same. When we used a

context variable, an independent feature selection process was applied to the data

corresponding to its different values. In our approach, in each set of data, the

selected set of variables could therefore be different, as well as the way in which

they influenced the prediction. This was considered to be more appropriate for

measuring the impact of different contextual factors, in comparison to Lachin’s

approach.

8.4 Experiments

This section presents the experimental design of our study. We first provide an

overview of the original studies from which the experimental data were extracted.

The set of contexts examined is then discussed. Finally, the data on click-through

documents and relevance assessments are presented.
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8.4.1 Overview of original studies

While a new study can be conducted to collect experimental data and measure the

impact of context, we nevertheless decided to revisit two former experiments as a

preliminary study of the proposed approach. More specifically, two user studies

[100; 101], conducted independently, formed the basis of our investigation. An

overview of the two original studies is as follows.

Study 1 The first of the two original studies investigated the effects of the

level of document representations on searchers’ interaction with a search engine

[101]. This study will be referred as to Study 1 in this research. Four interfaces

were devised in Study 1 to vary the level of document representations shown in

search results as document surrogates. Study 1 was particularly interested in the

effectiveness of textual and visual representations as the additional component in

document surrogates. The baseline interface had no additional representation and

was based on Google’s search result presentation. The second interface augmented

the baseline interface with top-ranking sentences (TRS ) as the additional textual

representation. A version of the software originally developed by [178] was used

to generate TRS. The third interface augmented the baseline interface with a

thumbnail image of documents as the additional visual representation. The final

interface combined the TRS and thumbnail image.

24 participants were recruited in the study and each of them performed a

search task for four topics using a different order of the four interfaces. Partici-

pants were also divided into two subject groups based on their search experience:

the more experienced group and the less experienced one. The search experience

was established by an entry-questionnaire prior to the experiment. There were

therefore two independent variables (level of document representation, and search

experience) and one controlled variable (topics) in Study 1.

Study 2 The second of the two original studies investigated the effectiveness

of a search result browsing support function [100]. This study will be referred as

to Study 2 in this work. Two interfaces were devised in Study 2. The baseline

interface was similar to the one used in Study 1. The experimental interface

was designed to offer an independent area called Workspace in which users can
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group the search results based on the terms appearing in the document surrogate

of retrieved documents. The design of the browsing support was inspired by a

faceted approach to exploring search results. The interface was devised to offer

greater control in the way search results are organised and explored.

As in Study 1, 24 participants were recruited in the study and each performed

four search tasks using a different order of the two interfaces. However, the

topics were different from Study 1. In addition, two levels of complexity were

manipulated for the four search tasks by varying the amount of description given

for the task background and relevant information. Thus, there were also two

independent variables (presence of the browsing support, and task complexity)

and one controlled variable (topics).

Simulated work task framework [19] was used in both studies to facilitate

participants’ engagement in the simulated tasks. The framework described a task

as a type of short scenario. The scenario explained the contexts and motivation of

the search with sufficient information on the relevance of pages. Participants were

asked to bookmark the documents during the tasks when they perceived relevant

information to be found. User interaction with the interfaces was recorded so that

all click-through documents and their relevance judgements made by participants

were used in the analysis.

8.4.2 Contexts and sub-groups

Based on the independent and controlled variables used in the original studies,

we formed a set of context to investigate their impact on searchers’ relevance as-

sessments. In addition, we devised Search stage context which was suggested to

be affective in [178]. As a result, six main contextual factors and three interaction

factors were formulated, as shown in Table 8.3. The main contexts were Topic,

Search experience, Interface I (Document representation), Interface II (Brows-

ing support), Task complexity, and Search stage. The interactions were between

Interface II and Task complexity, Interface II and Search stage, and Task com-

plexity and Search stage. As illustrated in Table 8.3, each contextual factor had

more than one sub-group. For example, the searchers had greater and lesser de-

grees of experience in the Search experience context. Two topics in Study 1 were
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Table 8.3: Contexts and sub-groups.
Context Group Description Study
All all-1 All documents judged by participants 1

all-2 All documents judged by participants 2
Topic topic-1 Recent change of student populations 1

topic-2 Best Hi-Fi speakers available within a target price 1
topic-3 Dust allergy in workplace 2
topic-4 Music piracy on the Internet 2
topic-5 Petrol price 2
topic-6 Art galleries and museums in Rome 2

Search experience more-exp More experienced searchers 1
less-exp Less experienced searchers 1

Interface I sys-rep1 Baseline system with no additional representation 1
(Document sys-rep2 Experimental system with TRS 1
representation) sys-rep3 Experimental system with thumbnail 1

sys-rep4 Experimental system with TRS and thumbnail 1
Interface II sys-brw1 Baseline system with no browsing support 2
(Browsing support) sys-brw2 Experimental system with browsing support 2
Task complexity low-cmp Low complexity task 2

high-cmp High complexity task 2
Search stage stage-1 First 1/3 of search session 2

stage-2 Second 1/3 of search session 2
stage-3 Last 1/3 of search session 2

Interface II brw1-low Baseline system (sys-brw1) in low complexity tasks 2
× brw1-high Baseline system (sys-brw1) in high complexity tasks 2
Task complexity brw2-low Experimental system (sys-brw2) in low complexity tasks 2

brw2-high Experimental system (sys-brw2) in high complexity tasks 2
Interface II brw1-stg1 Baseline system (sys-brw1) in the first 1/3 of session 2
× brw1-stg2 Baseline system (sys-brw1) in the second 1/3 of session 2
Search stage brw1-stg3 Baseline system (sys-brw1) in the last 1/3 of session 2

brw2-stg1 Experimental system (sys-brw2) in the first 1/3 of session 2
brw2-stg2 Experimental system (sys-brw2) in the second 1/3 of session 2
brw2-stg3 Experimental system (sys-brw2) in the last 1/3 of session 2

Task complexity low-stg1 First 1/3 of search sessions in low complexity tasks 2
× low-stg2 Second 1/3 of search sessions in low complexity tasks 2
Search stage low-stg3 Last 1/3 of search sessions in low complexity tasks 2

high-stg1 First 1/3 of search sessions in high complexity tasks 2
high-stg2 Second 1/3 of search sessions in high complexity tasks 2
high-stg3 Last 1/3 of search sessions in high complexity tasks 2
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Table 8.4: Number of relevance judgements and documents.
Judgements Documents

Context Group Relevant Non-rel Total Relevant Non-rel Discarded Total
All all-1 154 670 824 102 457 10 569

all-2 528 513 1041 341 362 34 737
Topic topic-1 75 138 213 59 122 2 183

topic-2 56 212 268 30 144 7 181
topic-3 155 102 257 117 80 6 203
topic-4 114 109 223 78 90 5 173
topic-5 104 137 241 62 85 7 154
topic-6 155 165 320 84 107 16 207

Search more-exp 81 333 414 65 266 4 335
experience less-exp 73 337 410 46 239 5 290
Interface I sys-rep1 52 139 191 41 113 2 156

sys-rep2 33 170 203 29 146 2 177
sys-rep3 25 179 204 22 149 0 171
sys-rep4 44 182 226 35 145 2 182

Interface II sys-brw1 271 278 549 196 212 18 426
sys-brw2 257 235 492 192 194 8 394

Task low-cmp 236 270 506 164 197 13 374
complexity high-cmp 292 243 535 204 189 12 405
Search stage-1 179 164 343 123 121 9 253
stage stage-2 159 159 318 136 138 4 278

stage-3 190 190 380 155 165 10 330

Interface II brw1-low 116 143 259 88 114 6 208
× brw1-high 155 135 290 120 109 9 238
Task brw2-low 120 127 247 98 104 2 204
complexity brw2-high 137 108 245 107 94 5 206
Interface II brw1-stg1 84 96 180 64 78 4 146
× brw1-stg2 87 78 165 79 70 2 151
Search brw1-stg3 100 104 204 89 94 4 187
stage brw2-stg1 95 68 163 75 56 1 132

brw2-stg2 72 81 153 69 74 0 143
brw2-stg3 90 86 176 76 78 5 159

Task low-stg1 68 93 161 53 69 5 127
complexity low-stg2 74 86 160 63 71 2 136
× low-stg3 94 91 185 76 83 4 163
Search high-stg1 111 71 182 77 58 5 140
stage high-stg2 85 73 158 77 68 2 147

high-stg3 96 99 195 85 87 6 178
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removed from Topic context due to the small size of documents for the classifiers.

However, all documents were used for other contexts (i.e., Search experience and

Interface I) in Study 1. For a similar reason, search stage context was not used

in Study 1.

The number of click-through documents and participants judgements with

regard to these are shown in Table 8.4. As can be seen, there was a total of

824 and 1041 relevance judgements made on 569 and 737 different documents in

Study 1 and 2, respectively. The size of relevance judgements was more balanced

in Study 2 than in Study 1. As discussed in Section 8.3.1, we discarded the

documents when there was complete disagreement among participants in relation

to judgements. The number of discarded documents was shown in the eighth

column in the table. As can be seen, the proportion of discarded documents was

small across the contextual groups. The resulting dataset formed the basis of our

investigation.

8.5 Results

This section presents the results of our experiments. Section 8.5.1 shows the effect

of context by looking at the performance of relevancy prediction on contextual

relevance. Section 8.5.2 shows the performance of feature categories for individual

contexts. Finally, Section 8.5.3 looks at the members of feature categories that

were found to be effective at modelling contextual relevance.

8.5.1 Impact of context

As discussed in Section 3, we used the prediction accuracy of classifiers as the

measure of context impact on searchers relevance assessments. Table 8.5 shows

an overview of the context impact. The first column shows the contexts examined

in our study. The second column presents a set of groups within each context.

The third column shows the relative increase of relevancy prediction accuracy

from the expected probability of 50% (i.e., Relevant or not). Lastly, the fourth

column is the average increase in each context (“-” values were not considered to

compute this mean).
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Table 8.5: Overall effect of context.

Context Group Increase (%) Average
All all-1 7.7

all-2 6.9 7.30
Topic topic-1 14.0

topic-2 10.8
topic-3 10.0
topic-4 -
topic-5 15.5
topic-6 14.8 13.02

Search experience more-exp 11.9
less-exp 10.4 11.15

Interface I sys-rep1 12.1
(Document representation) sys-rep2 16.6

sys-rep3 -
sys-rep4 12.9 13.87

Interface II sys-brw1 6.3
(Browsing support) sys-brw2 7.6 6.95
Task complexity low-cmp 7.8

high-cmp 7.8 7.8
Search stage stage-1 8.1

stage-2 -
stage-3 - 8.1

Interface II brw1-low 11.9
× brw1-high 11.1
Task complexity brw2-low 14.8

brw2-high 13.0 12.70
Interface II brw1-stg1 -
× brw1-stg2 10.4
Search brw1-stg3 -
stage brw2-stg1 12.4

brw2-stg2 14.6
brw2-stg3 - 12.47

Task low-stg1 16.8
complexity low-stg2 11.9
× low-stg3 -
Search high-stg1 12.1
stage high-stg2 -

high-stg3 12.7 13.38
’-’ indicates that there was not any statistically significant
increment in any of the feature categories.
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For example, when all contexts were considered without grouping of docu-

ments, the classifiers predicted the document relevancy in an average of 57.35%

of cases. All the increases presented in Table 8.5 are statistically significant com-

pared to the baseline probability of 50%, except for those cases marked with “-”

where there was no statistically significant increment in any of the feature cate-

gories. We used the corrected paired t-test [135] with the critical value of p ≤ .05

in this study, unless otherwise stated.

As can be seen in the average increase, the prediction accuracy was generally

higher when the grouping of documents was performed to represent a context,

compared with the all-contexts set. This constituted important empirical evi-

dence, supporting the idea that modelling of document relevancy can be improved

by exploiting the contextual factors of search environments.

The second finding was that the effect of context varied. For example, Topic

and Interface I (Document representation) were found to constitute strong con-

texts in our experimental conditions, while Interface II (Browsing support), Task

complexity, and Search stage were found to have a relatively weak effect. Simi-

larly, there are strong groups and weak groups within each context. For instance,

Topic 4 does not have any feature category with significant increments, while

Topic 3 and 4 appeared to have a weaker effect than other topics in Topic con-

text. When we looked at Interface I and Interface II contexts, the baseline

systems (i.e., sys-rep1 and sys-brw1) appeared to have a weaker effect than the

experimental systems (i.e., sys-rep2, rep4, and sys-brw2) except for sys-rep3, in

which no significant increment was observed. This suggests that it is important

to examine the performance of sub-groups when a particular context is exploited

for relevancy modelling. One may find a particular subgroup easier to model than

the other groups within a context. That is to say, for some subgroups, classifiers

are capable of predicting the relevancy of their documents but for the documents

of other subgroups, this will not be possible.

The third finding was that the interaction effect of contexts was worth in-

vestigating. In our experimental conditions, contexts such as Browsing support

and Task complexity were found to have a weak effect on relevancy modelling.

The performance was relatively similar across the sub-groups of the two contexts.
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However, the strength of effect increased when they interacted with other con-

textual factors. For example, group brw2-low, showed one of the strongest effects

among all context groups. This highlights the importance of examining the de-

pendency of contextual factors. This aspect will be discussed in Section 8.5.2 in

greater detail.

8.5.2 Context and feature categories

This section presents the relationship between context and eight feature cate-

gories used to model contextual relevance. In our experiments, there were seven

query-independent document feature categories and one that combined them all

(see Section 8.3.3 for details). In other words, the performance of single feature

categories indicated whether or not contextual relevance was associated with a

particular aspect of documents. The performance of the combined category, on

the other hand, indicated whether or not contextual relevance required the range

of feature categories for effective modelling (all features independently selected

in each of the seven feature categories were considered by the classifier for mod-

elling relevance). Table 8.6 shows the increase in relevancy prediction based on

the query-independent document feature categories. The two bottom rows of the

table show the average and standard deviation of the increase over the context

groups.

One of the aspects we attempted to discover was the robustness of feature

categories across different context groups. We were interested in finding whether

any feature category worked well across the range of contexts. The results show,

however, that the effective category for modelling contextual relevance varies.

Indeed, none of the single categories performed well enough to stand out from

the crowd.

The lack of consistent performance of single categories seems to lead the com-

bined category (Comb’d column) achieving the best performance in many context

groups. The average increase supports this. Therefore, the results suggest that

combining evidences from different feature categories is the most robust way to

model contextual relevance. This is not surprising given that the combined cat-

egory employed the range of document features to capture the effect caused by
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Table 8.6: Performance of feature categories.
Context Group Text Visual Vis-tag Layout Structure Other Oth-tag Comb’d
All all-1 - - 5.6 7.7 4.2 - 4 -

all-2 6.9 3.8 6.2 5.1 - - 6.1 6.8
Topic topic-1 4.4 - 6.2 5.4 14 - 10.9 7.6

topic-2 5.2 10.2 - 10.8 - - - 4.8
topic-3 10 - - 6.8 8.3 8.7 6.2 9.6
topic-4 3 - 3.8 10 8.9 2 4.9 9.1
topic-5 2.6 12.2 11.7 9 8.9 15.5 12.9 13.8
topic-6 8.8 13.1 6.2 9.5 9.7 10.4 8.6 14.8

Search more-exp 3.8 - 4.2 7.5 11.9 - 10.3 8.6
experience less-exp 5.1 0.8 10.4 6 - - - -
Interface I sys-rep1 - 12.1 - - 5.6 - - 5.9

sys-rep2 5.9 2.8 - 11.1 16.6 8.3 4.5 11.5
sys-rep3 - 5.1 3.2 7.3 7.3 - - 7.8
sys-rep4 - 9.8 12.9 6.4 - - - 2.7

Interface II sys-brw1 - 4.3 4.4 1.8 - - 6.3 5.9
sys-brw2 7.3 6.2 7.2 7.4 - 7.6 4.2 7.5

Task low-cmp 5.3 5.3 3.8 4.4 2.5 - 7.8 4.8
complexity high-cmp 3.5 4.1 5.9 1.3 1.7 6.6 1.7 7.8
Search stage-1 5 5.3 8.1 3.7 2 - 4.3 7.8
stage stage-2 5.5 6.4 - 4.9 - 4 2.6 5.0

stage-3 4.8 - 1.7 2.4 4.9 - 3.2 4.6
Interface II brw1-low - - 7.2 4.9 2.9 11.9 7.4 5.6
× brw1-high 8 3.1 6.2 - 11.1 - 8.5 9.7
Task brw2-low 11.4 - 11.2 9.5 - 14.8 5.9 11.3
complexity brw2-high 7.4 10.5 - 9 3.2 9.7 8.6 13.0
Interface II brw1-stg1 - - 9.9 - 4.9 - 10.2 7.2
× brw1-stg2 8.9 7.9 - - - 10.4 5.2 4.4
Search brw1-stg3 - - - 4.8 8.5 6.7 6.3 7.0
stage brw2-stg1 4.7 9.1 7.2 11.6 4 - 6.9 12.4

brw2-stg2 12.9 12.5 5.7 5.8 8.2 11.8 2.8 14.6
brw2-stg3 1.3 10.4 - 3.1 4.2 - 8.7 9.6

Task low-stg1 11.2 - 16.8 4.4 5.3 - 8.6 13.2
complexity low-stg2 8 - - 7.9 5.3 11.9 - 11.9
× low-stg3 7.6 2.5 - 1.7 - - 6.3 7.0
Search high-stg1 - 6.1 5.7 8.3 10.5 5.9 4.6 12.1
stage high-stg2 4.2 5.5 5.5 1.7 1.6 4.9 8.4 5.0

high-stg3 8.1 8.6 8.1 - 12.7 3 3.9 5.2

Mean 6.14 6.03 6.77 5.73 6.66 7.56 5.61 8.45
SD (σ) 2.92 3.76 3.47 2.96 4.10 4.40 2.70 3.30

Bold: Increase is stastistically significant by t-test. Underline: Highest increase in each context group.
”-” indicates there was a degenerated relevance modelling
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context in document relevancy. However, the results suggest that it is impor-

tant to consider not only the textual but also the non-textual features for robust

modelling of contextual relevance.

Nonetheless, the performance of feature categories helped us to infer the char-

acteristics of contextual relevance, not from a user’s point of view (like [10]), but

rather from a modelling perspective. While a user’s perception of relevance was

useful for the design of better user experience, modelling of relevance was essen-

tial for development of search models exploiting context. The following are some

of the characterisations of the context groups based on the performance of feature

categories.

In Search experience context, the more experienced and less experienced

groups had a very different feature category to model the relevance. While cate-

gory Structure was found to be the most effective in the more experienced group,

Vis-tag category was the most effective in the less experienced one. This is a

sound example with regard to demonstrating that the sub-groups in the same

context are closely associated with a different category of document features.

Perhaps the less experienced searchers were more likely to make relevance assess-

ments based on the visual effect of web pages than the more experienced ones.

However, searchers might not be aware of such behaviour, since this characteristic

was inferred by the document features.

In Interface I context (Document representation), the relevancy of documents

was modelled by different features categories. The baseline system sys-rep1 was

modelled by category Visual ; in sys-rep2 (TRS), structure stands out as the

stronger category; sys-rep3 (Thubmanil) does not have any feature category

that significantly models relevance; and in sys-rep4 (Thubmanil+TRS), category

Visual-Tag appears as the relevant one. Unlike the Search experience context, we

found no pattern about the behaviour of feature categories across the different

context groups.

As discussed in Section 8.5.1, the overall effect of Interface II (Browsing sup-

port) and Task complexity contexts was found to be weak in our experimental

conditions. However, the effect was strengthened by their interaction. For exam-

ple, the document relevancy of sys-brw1 (no browsing support) was only modelled

by category Oth-tag when no task complexity was considered. However, it can

172



8.5 Results

be seen that category Other and category Structure were more effective with re-

gard to modelling the contextual relevance in the low complexity tasks and high

complexity tasks, respectively, for sys-brw1.

On the other hand, sys-brw2 (with browsing support) had several feature

categories that were effective for modelling the relevance when no task complexity

was considered. The interaction results show that the effect of the browsing

support was stronger in the low complexity tasks. And the vis-tag, Other, Text

and Layout categories were effective for modelling the contextual relevance for sys-

brw2. In the high complexity tasks, the Visual Layout and Other-tag categories

were effective. The interaction of two (weak) contexts therefore helped us to elicit

the stronger contextual groups based on the distribution of performance increase

across the feature categories.

The results of Search stage suggest that searchers might be shifting the rel-

evance criterion as the search progresses. The visual-tag features were effective

for modelling relevance in the first 5 minutes of the search, while it became more

difficult for the classifiers to model the relevance in the second stage (stage-2) and

the last 5 minutes (stage-3) of the search. The interactions with other contexts

show an improvement in prediction performance as was seen in the interaction

between Interface II and Task complexity. For example, Visual-tag was effective

in the first 5 minutes of the search, but was much more effective in this interval

when the search was in low-complexity tasks, while the relevance modelling dis-

appears for high-complexity ones. This explains why it was weakly detected by

classifiers in the Search stage context: there was a mixture of strong (low-stage1)

and ineffective modelling (high-stage1).

This again suggests that there was a interdependence among context groups,

which affected people’s relevance assessments. However, it became clear from the

results that it is not always easy to understand why a certain category worked

better than the others in a particular context group.

With respect to the behaviour of the combined category, it can be said that

this was the one that showed the best performance. It provides the best aver-

aging classification accuracy and most often reaches the highest accuracy in a

context. Although, the single feature category is the one that obtains the best
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Table 8.7: Effective variables based on all context groups.
Feature selection Average performance increase

Rank Category Feature Rate (%) Category Feature Increase (%)
1 Structure PageRank (PR) Score 91.9 Layout p tag 6.6
2 Layout size att 91.2 Layout size att 6.6
3 Layout p tag 90.7 Layout div tag 6.3
4 Structure URL level 90.3 Layout align att 6.3
5 Vis-tag b tag 90.2 Layout br tag 6.3
6 Structure HTML link 89.9 Vis-tag b tag 6.2
7 Layout div tag 87.9 Structure Outlink 5.8
8 Text †Digit 87.2 Layout †li tag 5.7
9 Layout br tag 86.5 Structure PageRank (PR) Score 5.7

10 Layout align att 86.5 Visual Image area 5.7
11 Structure Host’s PR Score 86.1 Visual style tag 5.6
12 Text †Page length 85.3 Structure URL level 5.6
13 Structure †Outlink 85.3 Oth-tag src att 5.5
14 Visual Image area 84.6 Oth-tag †meta tag 5.4
15 Structure Non-HTML link 83.2 Oth-tag †script tag 5.3
16 Oth-tag src att 83.0 Structure Host’s PR Score 5.3
17 Visual style tag 81.0 Visual Disk size of image 5.2
18 Visual Disk size of image 80.8 Vis-tag style att 5.2
19 Structure †Inlink 80.4 Structure Non-HTML link 5.2
20 Vis-tag style att 79.6 Vis-tag †H1-6 tag 5.2

†Features that appear in only either of the lists. The HTML tags and attributes (denoted as att),

links, and digits are based on their frequency of occurrence in a document.

accuracy and, consequently, the best relevance modelling in a given context (see,

for example, sys-resp1, sys-resp4, high-stage3 ).

8.5.3 Effectiveness of document features

The previous sections looked at the effects of context and its relationship with

the feature categories. This section investigates the individual features that were

effective for modelling contextual relevance. The effectiveness of features was

measured by the increase in the robustness and performance of prediction ac-

curacy. Robustness was defined as the likelihood of a feature being selected of

modelling the relevance of the context groups (see Section 8.3.3 for the feature

selection process). In other words, when a feature was selected more frequently

within each feature category to model the contextual relevance, it was seen to be

more robust. The increase in performance was, on the other hand, the current

contribution made by the feature with regard to improving prediction accuracy.

This value was computed by averaging the classification accuracy rates listed in

Table 8.6 in which the feature was included for relevance modelling, following the
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steps detailed in Section 8.3.3. Table 8.7 lists the top 20 features ranked by the

increase in robustness and average performance based on all context groups.

From column Feature selection, we can see the features that were frequently

selected within each feature category. For example, the PageRank score and

URL levels were selected in the feature selection process in 90% of cases, and can

therefore be seen as the robust features in category Structure.

On comparing the lists, many features appear in both of them. This is be-

cause there is a correlation between the increases in robustness and performance.

However, some features did not appear in the Average performance increase col-

umn. One example involves the two features in Text category. The number of

digits in a document and length of the documents were both found to be robust

in the category. However, since the Text category’s overall prediction accuracy

was relatively low across the context groups, neither feature was ranked in the

top 20 in the list of average performances increases. Instead, the features in Lay-

out category (i.e., number of li tags) and the Oth-tag categories (i.e., number of

meta and script tags) were ranked higher.

In short, the features listed in Table 8.7 were frequently selected to model the

contextual relevance in different context groups, as shown by the feature selection

rate. This means that, while the performance of feature categories varies across

the context groups, the effective features within the individual categories remain

consistent. We observed the top ranked features in individual context groups and

confirmed that this was the case for most of them. Another implication is that

these features were frequently used in the combined category discussed in Section

8.5.2.

8.6 Discussion

This chapter presented an approach for measuring the impact of context by look-

ing at the relevance model derived from documents assessed in particular context

groups. This section first summarises the main findings of the experimental re-

sults of our study. The implications of the findings are then discussed, followed

by the limitations of our study.
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8.6.1 Main findings

As discussed in Section 8.2, one of the objectives of our research was to make

a methodological advance in IR in the context area by developing a framework

for measuring the impact of context. Our results showed that grouping of click-

through documents was a viable way to represent a context and to infer the

impact on people’s relevance assessments. The framework proposed also enabled

us to examine the dependency of contextual factors. The findings of our study

were as follows.

The first finding was that query-independent document features can be suc-

cessfully exploited to model contextual relevance. The document features in-

vestigated in our study performed significantly better than the value expected

in many context groups. More significantly, the relevance models derived from

contextually-partitioned document sets almost always performed better than the

models derived from the whole set of documents. In other words, the effect of

context was elicited through document grouping, and the document features were

capable of quantifying it to model relevance. This supported our approach for

measuring the strength of context in people’s relevance assessments.

The results showed that topics, search experience, and document representa-

tion clearly biased people’s relevance assessments, and we therefore found signifi-

cant contexts in our experimental setting. On the other hand, browsing support,

task complexity, and search stage generally exerted a lower level of bias than the

first three contexts. However, a stronger effect was observed when these con-

texts interacted with other factors. The interaction effect was consistent across

the weak contexts. This empirically demonstrated that greater knowledge of

the context of search environments helped to increase the accuracy of relevance

modelling.

Another finding was that no single document feature category showed consis-

tent performance across the context groups. Most categories performed well in

some context groups but poorly in the others. As far as average performance was

concerned, the difference was small across the feature categories (See Table 8.6).

This was somehow disappointing, as we wished to find one or two robust features

for modelling relevance in a range of contexts. Instead, we found a relationship
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between strength of context and feature categories. More specifically, as the bias

of context strengthened, it became more likely that the contextual relevance could

be modelled by a single feature category. When the bias was weak, there was a

need to employ the combined category.

The last finding was that the performance of features in a given document-

feature category was relatively consistent. In other words, a similar set of features

was often selected in the feature selection stage and used to model contextual rele-

vance within the same category across context groups. This meant that there was

a consistent membership of effective features within individual feature categories.

8.6.2 Implications

First, the findings of this study have implications for the design and development

of IR applications exploiting context. First and foremost, our results support the

benefits of leveraging context in order to improve a system’s modelling of rele-

vance [92]. We showed many cases in which the prediction accuracy of document

relevancy improved significantly when a contextual factor was available in search

environments. Measuring the potential effect of candidate factors will facilitate

the development of context-aware search models.

Second, an understanding of individual search environments is essential with

regard to eliciting significant context. Our study showed varying levels of impact

across the contextual factors. Based on the findings, we speculate that a contex-

tual factor that works consistently across different environments is not likely to

be found. Instead, a better strategy appears to involve collecting the user data in

a target environment and measuring the impact of candidate contextual factors.

This is similar to supervised machine learning techniques, where the training data

were supplied to train classifiers. The sampling of search environments can help

us find effective contextual factors.

Third, the subgroups of a context may require different features in order to

model relevance. We rarely found a case in which the same document feature

category worked well across the subgroups of contextual factors. This means

that even if a system was designed to leverage a single contextual factor, different

features can be used to model individual subgroups for better performance. This
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is similar to the findings of [63], who found that different document genres were

associated with different work tasks. A related implication is that investigating

the dependency of contextual factors appears to be as important as finding signifi-

cant factors. If there was an important contextual factor in a search environment,

and an initial benchmark suggested a weak effect, examining an interaction effect

with other candidate factors might show a condition in which the target context

factor has a greater impact.

Fourth, the performance of feature categories suggests that the range of docu-

ment features should be explored in order to achieve robust modelling of contex-

tual relevance. In this study, several feature categories were devised for relevance

modelling. Four of these were non-textual features. This has important implica-

tions, especially for implicit feedback. While several models have been proposed

to capture relevance feedback from users, existing implicit feedback techniques

still rely on existing text-based models [e.g., 179]. Our results showed that other

document features such as images, layout, and structures constitute promising

aspects with regard to modelling contextual relevance. We found many context

groups in which these non-textual features outperformed the text-based ones.

This also supports the findings of [172], who observed that searchers were influ-

enced by non-textual factors of documents in their relevance assessments.

8.6.3 Limitations

Investigation of the effect of context constitutes a vast research area. It would

require a number of theoretical and empirical studies to advance our understand-

ing and use of context in IR. This research investigated only a small fraction of

such an area. One of the limitations of our study is that the data were collected

from user studies performed in controlled environments. The controlled environ-

ments enabled us to isolate independent variables as candidate contextual factors.

Nonetheless, generalisation of our findings might be limited when different search

environments are examined. In particular, we used Google API to retrieve docu-

ments in both of the original studies. Collection thereof is not static, and thus, it

is possible to update indexes during the time period in which both studies were

carried out. No attempt was made to ensure that an identical list of URLs was
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retrieved by the same query. Participants in the original studies were mostly uni-

versity students, although their background varied. Significant context is likely

to differ in other populations. We will continue to apply our framework to other

data in order to gain a comprehensive understanding of context in search.

Other limitations lie in the concrete implementation of the modelling ap-

proach. Preprocessing of the features is a very important and challenging step

that can be further improved. Use of only one classifier model, AODE, also limits

the relevance modelling capacity. More classifiers could be employed in an at-

tempt to model the complex dependence structures underlying query-independent

features. However, multiple hypothesis testing would generate other problems.

Likewise, the feature selection method can be further improved and adapted to

the peculiarities of this problem. When a non statistically significant modelling

was found, it did not imply that the particular feature category was unable to

model the contextual relevance. This means that, with the particular modelling

employed in this work, no empirical evidence was found to support the possibility

of relevance modelling.

8.7 Conclusion and future work

Finding relevant information is an activity embedded in multiple layers of context

[52; 92]. To facilitate understanding and leveraging of contexts in IR, we proposed

an approach that can be used to measure the impact of context on searchers

relevance assessments. The approach enabled us to quantify the impact of several

contextual factors, provided that these can divide the dataset. Furthermore,

we showed that dependence of contextual factors can also be examined by our

method. We believe that the approach proposed can be applied to many different

environments to provide further insight into the role of context in IR.

There are several issues for future research. One aspect involves investigat-

ing other features to model contextual relevance. Interaction features have been

shown to be a promising candidate [62]. We are interested in comparing the

effectiveness of object features and interaction features on relevance modelling.

Another aspect relates to investigation of the impact of contextual factors in mul-

timedia retrieval. People’s relevance assessment criteria can differ and therefore
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difficult to model in multimedia retrieval, due to the ambiguity of multimedia

objects. We are interested in comparing the significant context in textual and

multimedia retrieval.

Additionally, the limitations derived from the concrete implementation of the

modelling approach detailed in the previous section gives rise to new issues for

future work. One of the main aspects thereof involves employment of classification

models capable of handling context-specific independencies. Furthermore, better

handling of the continuous features, rather than simple discretization, is another

important aspect to be considered. In short, we could consider any supervised

classification technique that can improve the difficult task of contextual relevance

modelling.
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Chapter 9

Conclusions and Future Works

This last chapter presents the general conclusions of the dissertation. The specific

conclusions of each contribution were previously given at the end of each corre-

sponding chapter. The list of publications and future works are also included

here.

The whole dissertation has been devoted, as its title indicates, to supervised

classification models and their applications to Genomics and Information Re-

trieval.

Following the introduction, the methodology section considers two different

approaches to supervised classification. The first one presents a new semi-Naive

Bayes classifier with grouping of cases. This classifier exploits the joining of vari-

ables and the grouping of cases in these new compound variables, in order to

achieve competitive performance, particularly in terms of quality of class prob-

abilities estimates, while reducing the number of parameters that encoded the

conditional distribution. The experimental evaluation showed that this approach

demands very low memory resources.

The second methodological advance was related to classification trees. In

this case, a Bayesian approach was employed to address some of issues relating

to single classification trees and ensembles thereof. We showed how Bayesian

techniques can be very useful for solving specific and practical problems relating

to these classification models. Concretely, a Bayesian smoothing approach was

presented to improve the quality of the probability class estimates produced by

classification trees. This only involves some additional effort when learning the
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tree, but implies neither more space requirements nor more time in classification

time. Moreover, a new random Bayesian split operator has been introduced to

build random forests that presented better behaviour in terms of bias-variance

error decomposition than its counterpart based on frequentistic or information-

based measures.

The application of supervised classification methodologies to real problems

was one of the main concerns of this dissertation, as in many cases, the concrete

classifier depends of the characteristics of the problem we face. Two different

applications were considered. The first one was the classification of the diffuse

large B-cell lymphoma into two molecular subtypes. This classification was based

on gene expression data extracted from tumoral tissues with this disease. A

Gaussian Naive Bayes model was employed as the basic classification model. The

problem arose with the high dimensionality of this data and the low number

of samples. Two different versions of a wrapper approach for feature selection

were proposed to address these issues. Both of them performed successfully in

this respect when compared with state-of-the-art approaches. Low classification

errors and a small set of genes were obtained in both cases.

The other application studied focused on information retrieval in context.

The problem addressed involved measurement of the strength or the effect that a

given contextual factor such as topic in-hand, search experience, task complexity

etc. can have in relevance modelling with query-independent features. The use of

classification models and feature selection techniques provided suitable tools for

addressing this complex problem. Empirical evidence was given of the role played

by these contextual factors and its dependency on the relevance assessments made

by users in two controlled user studies.

As a general conclusion, this dissertation attempts to contribute to the state

of the art of supervised classification models and to application thereof to real

problems.

9.1 List of Publications

The different studies included in this dissertation have been presented in the

following publications (some of them still in revision process):
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[13] J. Abellán, S. Moral, M. Gómez, and A. R. Masegosa, “Varying parame-

ter in classification based on imprecise probabilities,” in SMPS (J. Lawry,
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9.2 Future Work

This last section attempts to provide a general overview of the previous specific

comments, regarding future research, in each chapter.

Undoubtedly, there are many unanswered questions in the different studies

presented in this dissertation. Firstly, in the semi-Naive Bayes with grouping

of cases presented in Chapter 3, we plan to work on the application of this ap-

proach, involving grouping of cases, to other kinds of classifiers such as AODE

(Section 2.2.6) where we expect to achieve the same important reduction in the

number of parameters of this model without further reduction in its classification

performance.
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In the section dealing with the Bayesian account of classification trees, an

important part of the research has been left for the future. The employment of a

prior distribution of the parameters different from the uniform distribution con-

stituted a key step with regard to improving the quality of probability estimates

in the approach presented in Section 4.3. Some of the future work related to this

approach could be based on the definition of different prior distributions of the

parameters of the tree model in order to make good use of the flexibility that

Bayesian approaches offer in this issue. In the part related with ensembles of

classification trees, we plan to apply a more thorough Bayesian method to this

problem. More exactly, we attempt to apply a Markov chain Monte Carlo method

to sample the different classification trees of the ensemble.

In the part of the dissertation related to practical applications, there is also

much room for further research. The application of the proposed classifiers to

other Genomics problems different for diffuse large B-Cell lymphoma classifica-

tion will provide an additional evaluation of their behavior. Another line of future

research could involve the application of Bayesian methodologies in order to in-

tegrate prior knowledge that can be extracted from genetic research in this field.

For example, addressing the gene selection problem with a Bayesian approach

and defining a prior distribution of the genes that are known to have an effect on

the diseases analyzed. The utilization of classification models different from the

Gaussian naive Bayes is also another important point that needs to be further

investigated.

And, finally, the part devoted to information retrieval in context also presents

very interesting points for further research. There are many open possibilities for

the refinement and improvement of the proposed methodology. We are very

interested in the employment of classifiers capable of encoding probability distri-

butions with context-specific dependencies which, as we showed, are present in

this kind of data. Moreover, the definition of other different features for relevance

modelling, as well as the application of this methodology to other related prob-

lems in multimedia IR or web page classification, involves other lines for future

research.
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Table 1: Number of Kilobytes of memory needed to define the classification mod-
els (Full expanded Table 3.9 of Chapter 3)

Dataset NB SNB-G WNB J48 WSNB TAN AODE HNB WAODE
anneal 6.2 3.7 2.8 1.8 - 20.9 814.5 826.4 814.8
audiology 33.4 21.8 9.4 5.6 12.3 84.7 5927.4 5965.7 5928.0
autos 6.2 3.5 2.4 2.4 37.5 26.7 693.1 698.4 693.3
balance-scale 0.3 0.2 0.2 1.0 0.3 0.6 2.9 3.1 2.9
wisconsin-cancer 0.5 0.2 0.4 0.2 0.5 1.4 14.3 15.0 14.3
horse-colic 1.0 0.4 0.2 0.1 0.9 2.9 67.6 71.7 67.8
credit-rating 0.9 0.4 0.4 0.4 1.2 2.9 47.1 49.1 47.2
german-credit 1.0 0.5 0.4 1.4 1.2 3.3 70.1 73.6 70.3
pima-diabetes 0.3 0.2 0.2 0.3 0.4 0.6 5.7 6.3 5.8
Glass 1.6 1.5 1.3 1.3 3.1 4.7 46.6 47.4 46.7
cleveland-disease 0.5 0.3 0.2 0.4 0.5 1.1 15.1 16.6 15.2
hungarian-disease 1.3 0.7 0.7 0.2 1.6 2.9 40.2 41.7 40.3
heart-statlog 0.4 0.2 0.2 0.3 0.2 0.6 8.9 10.4 9.0
hepatitis 0.6 0.4 0.2 0.1 0.3 1.1 22.1 25.2 22.2
hypothyroid 2.2 0.8 0.8 0.5 - 5.2 156.6 163.7 156.9
ionosphere 2.2 0.3 0.5 0.2 1.2 8.5 297.1 306.7 297.4
iris 0.3 0.3 0.2 0.1 0.2 0.9 4.6 4.8 4.7
kr-vs-kp 1.2 0.3 0.2 0.5 - 2.4 89.9 100.6 90.2
labor 0.6 0.3 0.1 0.1 0.1 1.2 19.7 22.0 19.9
lymphography 1.7 1.3 0.9 0.5 0.7 4.8 91.0 93.8 91.1
mushroom 2.0 0.2 0.5 0.4 83.4 11.0 251.9 256.0 252.0
primary-tumor 10.1 8.6 8.5 7.5 10.0 33.3 599.1 601.6 599.2
segment 9.6 5.6 3.3 2.3 - 84.1 1682.5 1685.6 1682.6
sick 1.0 0.4 0.3 0.4 - 2.0 59.7 66.7 59.9
sonar 1.3 0.4 0.2 0.2 1.0 1.8 107.5 136.6 108.0
soybean 17.7 17.1 10.8 9.1 28.1 58.5 2107.7 2117.8 2108.0
splice 6.8 4.5 2.6 4.1 - 32.3 1967.7 1996.8 1968.2
car 0.8 0.4 0.7 3.8 1.0 2.8 19.5 19.9 19.6
vehicle 2.3 0.9 1.1 2.2 25.7 9.0 171.6 174.4 171.7
vote 0.5 0.2 0.1 0.1 0.1 1.1 18.1 20.3 18.2
vowel 4.5 5.5 4.1 8.0 463.8 19.3 232.0 233.1 232.1
waveform 3.0 0.5 1.6 6.9 - 9.4 386.0 399.1 386.3
zoo 7.7 2.5 4.5 0.5 2.1 60.4 1086.3 1088.8 1086.5
Average 3.9 2.5 1.8 1.9 26.1 15.2 518.9 525.4 519.1
Desv 6.4 4.8 2.7 2.6 80.0 23.3 1108.3 1114.7 1108.4
Minimum 0.3 0.2 0.1 0.1 0.2 0.6 2.9 3.1 2.9
Maximum 33.4 21.8 10.8 9.1 463.8 84.7 5927.4 5965.7 5928.0
* Data sets at WSNB column with ”-” symbol indicates a memory overflow at training time.
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Table 2: Memory space ratio respect to SNB-G (Full expanded Table 3.10 of Chapter 3)

DataSet NB WNB J48 WSNB TAN AODE HNB WAODE
anneal 1.6 0.8 0.5 - 5.6 217.4 220.5 217.5
audiology 1.5 0.4 0.3 0.6 3.9 271.5 273.2 271.5
autos 1.8 0.7 0.7 10.8 7.7 200.5 202.1 200.6
balance-scale 1.7 1.4 6.4 1.8 3.8 18.8 20.1 19.1
wisconsin-cancer 2.4 2.0 1.0 2.7 7.2 72.5 76.5 72.9
horse-colic 2.6 0.5 0.2 2.4 7.5 172.4 182.9 172.8
credit-rating 2.1 1.1 0.9 2.9 7.4 117.9 122.9 118.2
german-credit 2.2 0.9 3.0 2.6 7.1 149.9 157.3 150.2
pima-diabetes 1.6 1.1 1.9 2.0 3.5 31.1 34.6 31.5
Glass 1.1 0.9 0.9 2.2 3.2 31.9 32.4 32.0
cleveland-diseas 1.8 0.9 1.5 1.9 4.1 57.3 63.1 57.7
hungarian-diseas 1.8 1.0 0.4 2.3 4.1 57.2 59.4 57.4
heart-statlog 1.7 0.7 1.3 1.1 2.9 39.9 46.9 40.4
hepatitis 1.4 0.5 0.4 0.8 2.7 53.7 61.3 54.1
hypothyroid 2.7 0.9 0.6 - 6.4 192.0 200.6 192.3
ionosphere 6.3 1.4 0.6 3.6 24.8 867.9 895.9 868.7
iris 1.0 0.5 0.3 0.5 2.8 14.2 14.8 14.4
kr-vs-kp 3.8 0.6 1.4 - 7.7 284.4 318.2 285.3
labor 1.7 0.4 0.2 0.4 3.5 60.0 66.8 60.4
lymphography 1.3 0.7 0.4 0.6 3.8 72.6 74.8 72.7
mushroom 9.5 2.4 1.9 399.1 52.4 1205.6 1225.4 1206.5
primary-tumor 1.2 1.0 0.9 1.2 3.9 69.8 70.1 69.9
segment 1.7 0.6 0.4 - 15.0 299.5 300.1 299.6
sick 2.6 0.8 1.2 - 5.4 160.9 179.9 161.6
sonar 3.4 0.6 0.6 2.5 4.6 279.8 355.4 281.0
soybean 1.0 0.6 0.5 1.6 3.4 123.2 123.8 123.3
splice 1.5 0.6 0.9 - 7.2 436.9 443.4 437.0
car 1.9 1.8 9.4 2.5 6.9 48.2 49.1 48.3
vehicle 2.5 1.2 2.3 27.7 9.7 185.0 188.0 185.2
vote 2.5 0.6 0.4 0.3 5.0 84.9 95.5 85.5
vowel 0.8 0.7 1.4 83.7 3.5 41.9 42.1 41.9
waveform 6.3 3.4 14.7 - 19.9 814.1 841.8 814.7
zoo 3.0 1.8 0.2 0.8 23.8 427.9 428.9 428.0
Mean 2.4 1.0 1.7 21.5 8.5 217.0 226.3 217.3
Deviation 1.8 0.6 2.9 69.1 9.6 265.2 271.5 265.4
Minimum 0.8 0.4 0.2 0.4 2.7 14.2 14.8 14.4
Maximum 9.5 3.4 14.7 399.1 52.4 1205.6 1225.4 1206.5
* Data sets at WSNB column with ”-” symbol indicates a memory overflow at training time.
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Table 3: Accuracy Performance (Full expanded Table 3.11 of Chapter 3)

Dataset SNB-G NB AODE TAN WAODE HNB WNB J48 WSNB *
anneal 98.13 95.95 • 97.88• 98.32 ◦ 98.63 ◦ 98.20 ◦ 97.95 • 98.57 ◦ -
audiology 72.98 72.64 • 72.73• 72.86 • 77.05 ◦ 73.94 ◦ 76.09 ◦ 76.73 ◦ 73.35 ◦
autos 71.58 65.17 • 74.76◦ 78.40 ◦ 81.08 ◦ 80.83 ◦ 70.26 • 80.79 ◦ 71.40 •
balance-scale 73.08 71.56 • 69.96• 71.36 • 70.06 • 69.67 • 71.55 • 77.82 ◦ 72.33 •
wisconsin-cancer 95.85 97.20 ◦ 97.05◦ 96.47 ◦ 97.00 ◦ 96.20 ◦ 96.81 ◦ 95.01 • 96.38 ◦
horse-colic 80.71 79.54 • 82.45◦ 82.07 ◦ 81.74 ◦ 81.63 ◦ 84.16 ◦ 85.13 ◦ 83.45 ◦
credit-rating 85.01 86.22 ◦ 86.67◦ 85.71 ◦ 86.17 ◦ 84.88 • 85.48 ◦ 85.68 ◦ 85.78 ◦
german-credit 74.59 75.04 ◦ 75.83◦ 74.25 • 75.72 ◦ 75.65 ◦ 73.53 • 71.13 • 72.99 •
pima-diabetes 74.66 75.26 ◦ 75.70◦ 75.56 ◦ 75.61 ◦ 74.57 • 75.19 ◦ 74.49 • 74.45 •
Glass 71.87 71.94 ◦ 74.53◦ 73.11 ◦ 73.26 ◦ 73.77 ◦ 71.97 ◦ 67.63 • 70.15 •
cleveland-disease 82.64 83.47 ◦ 82.87◦ 81.85 • 82.61 • 81.95 • 79.77 • 77.17 • 80.86 •
hungarian-disease 83.00 84.20 ◦ 84.33◦ 84.13 ◦ 85.28 ◦ 84.87 ◦ 81.69 • 80.16 • 80.70 •
heart-statlog 83.07 82.56 • 82.70• 82.48 • 82.07 • 82.74 • 81.44 • 78.15 • 79.63 •
hepatitis 83.85 84.34 ◦ 85.36◦ 84.01 ◦ 84.52 ◦ 85.55 ◦ 82.47 • 79.22 • 80.93 •
hypothyroid 99.03 98.19 • 98.53• 99.23 ◦ 99.14 ◦ 99.06 ◦ 98.83 • 99.54 ◦ -
ionosphere 89.09 89.40 ◦ 91.09◦ 91.83 ◦ 92.40 ◦ 91.48 ◦ 90.77 ◦ 89.74 ◦ 90.15 ◦
iris 93.33 93.33 ◦ 93.07• 93.80 ◦ 92.93 • 92.07 • 93.00 • 94.73 ◦ 93.40 ◦
kr-vs-kp 92.35 87.79 • 91.03• 92.05 • 94.18 ◦ 92.35 ◦ 94.35 ◦ 99.44 ◦ -
labor 90.10 88.57 • 88.43• 90.40 ◦ 91.57 ◦ 90.83 ◦ 87.83 • 78.60 • 87.67 •
lymphography 85.58 85.10 • 86.86◦ 86.65 ◦ 88.22 ◦ 85.57 • 81.42 • 75.84 • 79.69 •
mushroom 99.96 95.76 • 99.95• 99.99 ◦ 99.98 ◦ 99.96 ◦ 99.63 • 100.00 ◦ 100.00 ◦
primary-tumor 46.94 49.71 ◦ 49.77◦ 46.76 • 47.94 ◦ 47.85 ◦ 44.01 • 41.21 • 39.79 •
segment 94.60 91.15 • 95.07◦ 95.23 ◦ 96.59 ◦ 96.47 ◦ 93.61 • 96.79 ◦ -
sick 97.48 97.12 • 97.33• 97.40 • 97.72 ◦ 97.54 ◦ 97.66 ◦ 98.72 ◦ -
sonar 75.25 76.71 ◦ 77.05◦ 76.51 ◦ 77.24 ◦ 76.13 ◦ 72.34 • 73.61 • 71.39 •
soybean 93.84 92.94 • 93.21• 95.23 ◦ 94.33 ◦ 94.67 ◦ 92.46 • 90.82 • 92.55 •
splice 94.07 95.42 ◦ 96.12◦ 95.39 ◦ 96.36 ◦ 96.13 ◦ 95.35 ◦ 94.08 ◦ -
car 97.69 85.46 • 91.41• 94.44 • 90.94 • 93.01 • 85.26 • 92.22 • 76.54 •
vehicle 69.19 61.06 • 70.32◦ 71.22 ◦ 70.89 ◦ 70.62 ◦ 63.28 • 72.28 ◦ 67.32 •
vote 95.08 90.02 • 94.28• 94.69 • 94.36 • 94.32 • 96.18 ◦ 96.57 ◦ 95.59 ◦
vowel 67.07 61.99 • 71.47◦ 68.73 ◦ 75.26 ◦ 74.00 ◦ 62.07 • 79.82 ◦ 72.26 ◦
waveform 78.97 79.97 ◦ 85.01◦ 81.49 ◦ 85.05 ◦ 84.87 ◦ 81.40 ◦ 75.25 • -
zoo 91.05 93.21 ◦ 94.66◦ 92.69 ◦ 98.10 ◦ 97.11 ◦ 91.12 ◦ 92.61 ◦ 88.39 •
Average 83.89 82.67 84.72 84.54 85.47 84.96 83.30 83.93 79.60
H/L 15/18 20/13 23/10 27/6 24/9 13/20 18/15 9/17

◦, • indicates a higher or a lower mean respect to the mean of SNB-G
H/L number of data sets with ◦ or with • respectively

* Data sets at WSNB column with ”-” symbol indicates a memory overflow at training time.
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Table 4: Log-likelihood Performance (Full expanded Table 3.11 of Chapter 3)

Dataset SNB-G NB AODE TAN WAODE HNB WNB J48 WSNB *
anneal -0.10 -0.18 ◦ -0.12 ◦ -0.11 ◦ -0.10 ◦ -0.10 • -0.14 ◦ -0.19 ◦ -
audiology -2.48 -4.07 ◦ -4.00 ◦ -4.26 ◦ -3.22 ◦ -4.10 ◦ -1.48 • -2.07 • -1.64 •
autos -1.69 -2.90 ◦ -1.38 • -1.48 • -1.51 • -1.34 • -1.42 • -1.41 • -1.29 •
balance-scale -0.75 -0.87 ◦ -0.83 ◦ -0.84 ◦ -0.83 ◦ -0.81 ◦ -1.03 ◦ -0.93 ◦ -1.00 ◦
wisconsin-cancer -0.22 -0.43 ◦ -0.17 • -0.19 • -0.18 • -0.17 • -0.39 ◦ -0.25 ◦ -0.20 •
horse-colic -0.77 -1.18 ◦ -0.71 • -0.83 ◦ -0.72 • -0.72 • -0.65 • -0.60 • -0.62 •
credit-rating -0.53 -0.65 ◦ -0.54 ◦ -0.53 ◦ -0.54 ◦ -0.54 ◦ -0.56 ◦ -0.53 ◦ -0.52 •
german-credit -0.78 -0.77 • -0.74 • -0.79 ◦ -0.75 • -0.74 • -0.77 • -0.86 ◦ -0.78 •
pima-diabetes -0.74 -0.78 ◦ -0.74 ◦ -0.73 • -0.74 ◦ -0.74 ◦ -0.75 ◦ -0.81 ◦ -0.75 ◦
Glass -1.29 -1.32 ◦ -1.13 • -1.29 ◦ -1.18 • -1.20 • -1.32 ◦ -1.63 ◦ -1.24 •
cleveland-disease -0.60 -0.67 ◦ -0.58 • -0.58 • -0.58 • -0.57 • -0.67 ◦ -0.77 ◦ -0.62 ◦
hungarian-disease -0.64 -0.63 • -0.56 • -0.54 • -0.52 • -0.50 • -0.69 ◦ -0.79 ◦ -0.67 ◦
heart-statlog -0.58 -0.68 ◦ -0.61 ◦ -0.58 ◦ -0.60 ◦ -0.58 • -0.65 ◦ -0.76 ◦ -0.68 ◦
hepatitis -0.65 -0.80 ◦ -0.62 • -0.66 ◦ -0.61 • -0.58 • -0.65 ◦ -0.70 ◦ -0.65 ◦
hypothyroid -0.06 -0.08 ◦ -0.07 ◦ -0.05 • -0.05 • -0.05 • -0.07 ◦ -0.03 • -
ionosphere -0.71 -2.34 ◦ -0.88 ◦ -0.93 ◦ -0.76 ◦ -0.81 ◦ -0.62 • -0.45 • -0.47 •
iris -0.31 -0.32 ◦ -0.26 • -0.30 • -0.29 • -0.35 ◦ -0.35 ◦ -0.31 • -0.35 ◦
kr-vs-kp -0.26 -0.42 ◦ -0.35 ◦ -0.27 ◦ -0.29 ◦ -0.31 ◦ -0.44 ◦ -0.05 • -
labor -0.34 -0.39 ◦ -0.41 ◦ -0.37 ◦ -0.34 ◦ -0.34 • -0.55 ◦ -0.84 ◦ -0.54 ◦
lymphography -0.59 -0.62 ◦ -0.54 • -0.57 • -0.53 • -0.57 • -0.70 ◦ -0.98 ◦ -0.84 ◦
mushroom -0.00 -0.17 ◦ -0.00 ◦ -0.00 • -0.00 • -0.00 ◦ -0.04 ◦ -0.00 ◦ -0.02 ◦
primary-tumor -2.72 -2.67 • -2.62 • -2.97 ◦ -2.81 ◦ -2.81 ◦ -2.80 ◦ -3.35 ◦ -2.94 ◦
segment -0.27 -0.75 ◦ -0.26 • -0.27 ◦ -0.19 • -0.17 • -0.29 ◦ -0.26 • -
sick -0.14 -0.16 ◦ -0.14 • -0.13 • -0.12 • -0.13 • -0.13 • -0.07 • -
sonar -0.80 -1.21 ◦ -0.97 ◦ -0.78 • -0.85 ◦ -0.77 • -0.93 ◦ -1.06 ◦ -0.81 ◦
soybean -0.33 -0.54 ◦ -0.35 ◦ -0.17 • -0.25 • -0.19 • -0.36 ◦ -1.31 ◦ -0.36 ◦
splice -0.28 -0.21 • -0.17 • -0.21 • -0.17 • -0.17 • -0.21 • -0.33 ◦ -
car -0.07 -0.48 ◦ -0.43 ◦ -0.28 ◦ -0.39 ◦ -0.33 ◦ -0.48 ◦ -0.41 ◦ -0.91 ◦
vehicle -1.01 -2.89 ◦ -0.96 • -0.91 • -0.91 • -0.89 • -1.37 ◦ -1.01 • -1.07 ◦
vote -0.24 -0.89 ◦ -0.21 • -0.26 ◦ -0.23 • -0.25 ◦ -0.20 • -0.17 • -0.25 ◦
vowel -1.29 -1.46 ◦ -1.13 • -1.22 • -0.96 • -1.01 • -1.47 ◦ -1.53 ◦ -2.13 ◦
waveform -1.03 -1.10 ◦ -0.47 • -0.61 • -0.47 • -0.49 • -0.75 • -1.04 ◦ -
zoo -0.20 -0.18 • -0.15 • -0.35 ◦ -0.11 • -0.16 • -0.42 ◦ -0.69 ◦ -0.80 ◦
Average -0.69 -0.99 -0.70 -0.74 -0.67 -0.69 -0.71 -0.79 -0.85
H/L 5/28 19/14 16/17 21/12 22/11 9/24 11/22 8/18

◦, • indicates a higher or a lower mean respect to the mean of SNB-G
H/L number of data sets with ◦ or with • respectively

* Data sets at WSNB column with ”-” symbol indicates a memory overflow at training time.
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Appendix of Chapter 4

Table 5: Detailed Accuracy Rate (Full expanded Table 4.2, 4.3 and 4.4 of Chapter 4)

Dataset ?C4.5ρ βS=1 βS=2 βS=|C| β̂S=1 β̂S=2 β̂S=|C| β̂θ
S=1 β̂θ

S=2 β̂θ
S=|C|

anneal 98.75 99.60 99.52 99.57 99.51 99.25 99.45 98.79 98.71 99.45
audiology 76.69 83.41 83.67 83.28 83.33 83.59 83.44 78.32 75.90 78.37
autos 76.56 78.51 78.66 79.62 77.83 78.12 79.10 70.04 69.18 74.72
breast-cancer 75.26 72.60 73.51 73.51 72.43 72.71 72.71 72.43 72.71 72.71
horse-colic 85.83 82.42 82.48 82.48 83.75 83.96 83.96 83.75 83.96 83.96
german-credit 71.31 70.24 70.48 70.49 69.91 70.49 70.49 69.91 70.49 70.49
pima-diabetes 75.10 73.58 73.89 73.89 73.58 74.31 74.31 73.58 74.31 74.31
glass2 76.80 80.19 80.13 80.13 80.20 80.43 80.43 80.20 80.43 80.43
hepatitis 81.18 76.33 76.40 76.40 77.62 78.87 78.87 77.62 78.87 78.87
hypothyroid 96.85 96.61 96.61 96.70 96.54 96.61 96.75 96.52 96.66 96.65
ionosphere 89.40 87.78 88.77 88.77 88.69 89.34 89.34 88.69 89.34 89.34
kr-vs-kp 99.44 99.55 99.54 99.54 99.55 99.56 99.56 99.55 99.56 99.56
labor 88.63 83.17 84.57 84.57 84.10 85.43 85.43 84.10 85.43 85.43
letter 80.30 82.73 82.77 84.00 82.04 82.07 83.83 74.20 73.53 80.97
lymphography 78.08 76.11 76.05 74.24 76.92 77.53 74.97 76.31 77.07 75.91
mfeat 76.69 79.60 79.57 79.32 79.78 79.76 79.85 79.45 79.43 79.03
mushroom 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
optdigits 77.85 78.58 78.75 78.69 78.08 78.41 78.65 74.74 74.80 77.76
segment 92.32 93.29 93.39 93.40 93.27 93.29 93.28 91.96 91.81 92.81
sick 93.63 92.87 92.98 92.98 93.06 93.15 93.15 93.06 93.15 93.15
solar-flare 97.84 96.51 96.51 96.51 96.60 96.88 96.88 96.60 96.88 96.88
sonar 71.07 69.31 69.51 69.51 68.50 68.56 68.56 68.50 68.56 68.56
soybean 92.55 93.65 93.41 93.04 93.43 93.29 92.75 91.53 90.50 92.94
sponge 92.50 93.21 93.79 93.79 95.00 95.00 95.00 95.00 95.00 95.00
vote 96.27 94.48 94.96 94.96 95.52 95.68 95.68 95.52 95.68 95.68
vowel 75.11 73.85 73.76 80.67 72.80 72.76 79.99 60.79 59.95 74.23
zoo 92.61 94.95 94.95 97.82 98.11 98.11 96.72 97.72 95.54 97.91
Average 85.50 85.30 85.50 85.85 85.56 85.82 86.04 84.03 83.98 85.37

193



9.2 Future Work

Table 6: Detailed Log-likelihood (Full expanded Table 4.2, 4.3 and 4.4 of Chapter 4)

Dataset ?C4.5ρ βS=1 βS=2 βS=|C| β̂S=1 β̂S=2 β̂S=|C| β̂θ
S=1 β̂θ

S=2 β̂θ
S=|C|

anneal -0.23 -0.22 -0.07 -0.06 -0.21 -0.11 -0.09 -0.22 -0.22 -0.17
audiology -2.08 -2.00 -1.21 -1.27 -1.95 -1.23 -1.24 -1.91 -1.90 -1.52
autos -1.64 -1.59 -1.15 -1.04 -1.59 -1.27 -1.11 -1.64 -1.66 -1.41
breast-cancer -0.82 -0.86 -0.86 -0.86 -0.87 -0.85 -0.85 -0.87 -0.85 -0.85
horse-colic -0.58 -0.65 -0.64 -0.64 -0.62 -0.60 -0.60 -0.62 -0.60 -0.60
german-credit -0.84 -0.86 -0.88 -0.88 -0.87 -0.83 -0.83 -0.87 -0.83 -0.83
pima-diabetes -0.78 -0.81 -0.81 -0.81 -0.80 -0.78 -0.78 -0.80 -0.78 -0.78
glass2 -0.74 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67
hepatitis -0.67 -0.73 -0.75 -0.75 -0.70 -0.67 -0.67 -0.70 -0.67 -0.67
hypothyroid -0.13 -0.14 -0.13 -0.13 -0.14 -0.13 -0.13 -0.14 -0.13 -0.13
ionosphere -0.44 -0.44 -0.45 -0.45 -0.44 -0.43 -0.43 -0.44 -0.43 -0.43
kr-vs-kp -0.05 -0.04 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
labor -0.45 -0.58 -0.58 -0.58 -0.55 -0.54 -0.54 -0.55 -0.54 -0.54
letter -1.86 -1.77 -1.07 -0.99 -1.74 -1.10 -0.99 -1.71 -1.71 -1.38
lymphography -0.90 -0.96 -0.94 -0.96 -0.93 -0.89 -0.89 -0.93 -0.90 -0.86
mfeat -1.30 -1.21 -1.18 -1.16 -1.20 -1.14 -1.09 -1.20 -1.23 -1.14
mushroom -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
optdigits -1.35 -1.40 -1.19 -1.12 -1.38 -1.17 -1.08 -1.39 -1.39 -1.21
segment -0.51 -0.47 -0.34 -0.32 -0.47 -0.36 -0.33 -0.48 -0.49 -0.42
sick -0.31 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21
solar-flare -0.15 -0.18 -0.18 -0.18 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17
sonar -0.89 -0.92 -0.97 -0.97 -0.94 -0.91 -0.91 -0.94 -0.91 -0.91
soybean -1.16 -1.23 -0.41 -0.36 -1.22 -0.47 -0.42 -1.15 -1.16 -0.83
sponge -0.48 -0.43 -0.43 -0.43 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38
vote -0.20 -0.25 -0.25 -0.25 -0.23 -0.22 -0.22 -0.23 -0.22 -0.22
vowel -2.07 -1.93 -1.30 -1.07 -1.92 -1.41 -1.17 -1.94 -1.95 -1.62
zoo -0.68 -0.80 -0.38 -0.25 -0.74 -0.39 -0.37 -0.75 -0.77 -0.60
Average -0.79 -0.79 -0.63 -0.61 -0.78 -0.63 -0.60 -0.78 -0.77 -0.69
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Table 7: Detailed Error for BRS ensembles M=1, 3; and Trees=10, 50, 100, 200;
(BRSM

Trees) - Section 4.4.4

Dataset BRS1
10 BRS1

50 BRS1
100 BRS1

200 BRS3
10 BRS3

50 BRS3
100 BRS3

200
anneal.arff 0.010 0.009 0.009 0.009 0.010 0.008 0.008 0.008
audiology.arff 0.269 0.250 0.239 0.238 0.263 0.238 0.239 0.238
autos.arff 0.306 0.273 0.264 0.264 0.278 0.262 0.259 0.256
breast-cancer.arff 0.280 0.276 0.273 0.277 0.277 0.275 0.274 0.275
colic.arff 0.199 0.187 0.182 0.183 0.195 0.179 0.181 0.178
credit-g.arff 0.278 0.262 0.262 0.262 0.276 0.264 0.265 0.261
diabetes.arff 0.276 0.274 0.272 0.269 0.268 0.265 0.267 0.266
glass2.arff 0.208 0.184 0.190 0.185 0.197 0.188 0.180 0.185
hepatitis.arff 0.185 0.181 0.180 0.181 0.194 0.190 0.187 0.188
hypothyroid.arff 0.043 0.042 0.042 0.042 0.042 0.041 0.041 0.041
ionosphere.arff 0.099 0.091 0.089 0.087 0.094 0.087 0.086 0.084
kr-vs-kp.arff 0.020 0.015 0.014 0.014 0.014 0.010 0.010 0.009
labor.arff 0.118 0.104 0.102 0.091 0.132 0.107 0.104 0.107
lymph.arff 0.193 0.172 0.166 0.164 0.184 0.170 0.176 0.175
segment.arff 0.063 0.052 0.052 0.051 0.060 0.054 0.054 0.052
sick.arff 0.065 0.064 0.064 0.064 0.064 0.064 0.064 0.064
solar-flare-1.arff 0.029 0.029 0.029 0.029 0.032 0.030 0.030 0.030
sonar.arff 0.282 0.238 0.234 0.233 0.257 0.233 0.233 0.227
soybean.arff 0.070 0.063 0.061 0.061 0.067 0.061 0.062 0.063
sponge.arff 0.068 0.064 0.063 0.063 0.066 0.063 0.064 0.063
vote.arff 0.050 0.044 0.041 0.041 0.046 0.042 0.041 0.040
vowel.arff 0.220 0.181 0.172 0.169 0.238 0.206 0.202 0.199
zoo.arff 0.058 0.057 0.056 0.057 0.076 0.067 0.066 0.065
Average 0.147 0.135 0.133 0.132 0.145 0.135 0.134 0.134
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Table 8: Detailed for Error BRS ensembles M=5, Log N; and Trees=10, 50, 100,
200; (BRSM

Trees) - Section 4.4.4

Dataset BRS5
10 BRS5

50 BRS5
100 BRS5

200 BRSLogN
10 BRSLogN

50 BRSLogN
100 BRSLogN

200
anneal.arff 0.010 0.008 0.008 0.008 0.010 0.008 0.008 0.008
audiology.arff 0.250 0.225 0.229 0.233 0.248 0.233 0.227 0.227
autos.arff 0.280 0.255 0.254 0.251 0.280 0.255 0.254 0.251
breast-cancer.arff 0.284 0.273 0.278 0.278 0.282 0.279 0.274 0.272
colic.arff 0.194 0.174 0.178 0.177 0.194 0.174 0.178 0.177
credit-g.arff 0.276 0.266 0.265 0.264 0.276 0.266 0.265 0.264
diabetes.arff 0.267 0.266 0.264 0.264 0.267 0.264 0.264 0.264
glass2.arff 0.210 0.195 0.190 0.196 0.208 0.191 0.183 0.186
hepatitis.arff 0.201 0.190 0.190 0.185 0.201 0.190 0.190 0.185
hypothyroid.arff 0.041 0.040 0.040 0.040 0.041 0.040 0.040 0.040
ionosphere.arff 0.092 0.084 0.083 0.082 0.089 0.084 0.084 0.085
kr-vs-kp.arff 0.011 0.009 0.009 0.009 0.010 0.008 0.009 0.008
labor.arff 0.137 0.125 0.126 0.132 0.137 0.125 0.126 0.132
lymph.arff 0.195 0.189 0.186 0.177 0.195 0.189 0.186 0.177
segment.arff 0.060 0.055 0.055 0.055 0.060 0.055 0.055 0.055
sick.arff 0.065 0.064 0.065 0.064 0.065 0.064 0.065 0.064
solar-flare-1.arff 0.029 0.029 0.029 0.029 0.030 0.029 0.029 0.028
sonar.arff 0.276 0.237 0.237 0.241 0.288 0.238 0.241 0.242
soybean.arff 0.068 0.066 0.065 0.065 0.072 0.066 0.065 0.065
sponge.arff 0.064 0.063 0.063 0.063 0.070 0.067 0.064 0.064
vote.arff 0.043 0.040 0.041 0.040 0.043 0.040 0.041 0.040
vowel.arff 0.258 0.235 0.233 0.235 0.249 0.218 0.217 0.216
zoo.arff 0.078 0.074 0.075 0.076 0.078 0.074 0.075 0.076
Average 0.147 0.138 0.137 0.138 0.148 0.137 0.137 0.136

Table 9: Detailed Bias for BRS ensembles with M=1, 3; and Trees=10, 50, 100,
200; (BRSM

Trees) - Section 4.4.4

Dataset BRS1
10 BRS1

50 BRS1
100 BRS1

200 BRS3
10 BRS3

50 BRS3
100 BRS3

200
anneal.arff 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.003
audiology.arff 0.102 0.127 0.127 0.127 0.108 0.114 0.122 0.123
autos.arff 0.106 0.116 0.120 0.120 0.105 0.108 0.111 0.113
breast-cancer.arff 0.213 0.216 0.214 0.218 0.215 0.215 0.211 0.217
colic.arff 0.139 0.153 0.158 0.160 0.137 0.144 0.147 0.147
credit-g.arff 0.208 0.212 0.215 0.219 0.199 0.209 0.214 0.213
diabetes.arff 0.201 0.211 0.211 0.208 0.198 0.200 0.207 0.206
glass2.arff 0.099 0.086 0.092 0.095 0.083 0.091 0.088 0.098
hepatitis.arff 0.141 0.146 0.146 0.145 0.145 0.149 0.145 0.153
hypothyroid.arff 0.026 0.027 0.027 0.027 0.024 0.026 0.025 0.025
ionosphere.arff 0.072 0.072 0.075 0.073 0.064 0.068 0.066 0.065
kr-vs-kp.arff 0.007 0.007 0.007 0.007 0.005 0.005 0.005 0.005
labor.arff 0.033 0.038 0.036 0.030 0.029 0.046 0.034 0.040
lymph.arff 0.110 0.114 0.112 0.117 0.109 0.107 0.112 0.115
segment.arff 0.030 0.029 0.029 0.030 0.028 0.030 0.031 0.031
sick.arff 0.051 0.053 0.053 0.053 0.052 0.052 0.053 0.053
solar-flare-1.arff 0.026 0.026 0.026 0.025 0.026 0.025 0.026 0.026
sonar.arff 0.154 0.163 0.161 0.169 0.140 0.154 0.169 0.166
soybean.arff 0.040 0.043 0.044 0.043 0.038 0.040 0.042 0.043
sponge.arff 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053
vote.arff 0.031 0.031 0.031 0.030 0.030 0.031 0.032 0.032
vowel.arff 0.052 0.050 0.050 0.052 0.060 0.066 0.068 0.068
zoo.arff 0.017 0.020 0.026 0.025 0.029 0.025 0.026 0.024
Average 0.083 0.087 0.088 0.088 0.082 0.085 0.087 0.088
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Table 10: Detailed Bias for BRS ensembles M=5, Log N; and Trees=10, 50, 100,
200; (BRSM

Trees) - Section 4.4.4

Dataset BRS5
10 BRS5

50 BRS5
100 BRS5

200 BRSLogN
10 BRSLogN

50 BRSLogN
100 BRSLogN

200
anneal.arff 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003
audiology.arff 0.102 0.109 0.109 0.114 0.106 0.114 0.108 0.110
autos.arff 0.099 0.107 0.107 0.108 0.099 0.107 0.107 0.108
breast-cancer.arff 0.214 0.213 0.214 0.215 0.220 0.222 0.217 0.212
colic.arff 0.146 0.140 0.147 0.147 0.146 0.140 0.147 0.147
credit-g.arff 0.200 0.210 0.213 0.213 0.200 0.210 0.213 0.213
diabetes.arff 0.202 0.204 0.205 0.205 0.191 0.198 0.205 0.206
glass2.arff 0.083 0.082 0.076 0.087 0.094 0.096 0.089 0.089
hepatitis.arff 0.157 0.151 0.155 0.149 0.157 0.151 0.155 0.149
hypothyroid.arff 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024
ionosphere.arff 0.065 0.063 0.063 0.062 0.063 0.063 0.061 0.062
kr-vs-kp.arff 0.005 0.005 0.006 0.006 0.005 0.005 0.005 0.005
labor.arff 0.053 0.045 0.049 0.055 0.053 0.045 0.049 0.055
lymph.arff 0.120 0.120 0.115 0.120 0.120 0.120 0.115 0.120
segment.arff 0.030 0.032 0.032 0.032 0.030 0.032 0.032 0.032
sick.arff 0.053 0.052 0.053 0.053 0.053 0.052 0.053 0.053
solar-flare-1.arff 0.024 0.025 0.025 0.025 0.026 0.025 0.026 0.025
sonar.arff 0.149 0.160 0.177 0.179 0.171 0.168 0.173 0.177
soybean.arff 0.040 0.040 0.040 0.041 0.043 0.040 0.039 0.040
sponge.arff 0.051 0.053 0.053 0.053 0.053 0.053 0.053 0.053
vote.arff 0.033 0.033 0.032 0.032 0.033 0.033 0.032 0.032
vowel.arff 0.079 0.083 0.083 0.084 0.075 0.074 0.079 0.078
zoo.arff 0.030 0.032 0.029 0.028 0.030 0.032 0.029 0.028
Average 0.085 0.086 0.087 0.089 0.087 0.087 0.088 0.088

Table 11: Detailed Variance for BRS ensembles with M=1, 3; and Trees=10, 50,
100, 200; (BRSM

Trees) - Section 4.4.4

Dataset BRS1
10 BRS1

50 BRS1
100 BRS1

200 BRS3
10 BRS3

50 BRS3
100 BRS3

200
anneal.arff 0.007 0.005 0.005 0.005 0.006 0.005 0.005 0.005
audiology.arff 0.167 0.123 0.112 0.111 0.155 0.124 0.117 0.114
autos.arff 0.200 0.158 0.145 0.145 0.173 0.154 0.148 0.143
breast-cancer.arff 0.067 0.059 0.059 0.059 0.062 0.059 0.063 0.058
colic.arff 0.060 0.033 0.025 0.024 0.059 0.035 0.034 0.031
credit-g.arff 0.070 0.050 0.047 0.043 0.077 0.055 0.051 0.048
diabetes.arff 0.075 0.063 0.061 0.062 0.070 0.065 0.060 0.060
glass2.arff 0.109 0.098 0.097 0.090 0.114 0.097 0.092 0.088
hepatitis.arff 0.044 0.035 0.034 0.036 0.049 0.041 0.042 0.035
hypothyroid.arff 0.017 0.015 0.015 0.015 0.017 0.015 0.015 0.015
ionosphere.arff 0.027 0.019 0.014 0.014 0.030 0.019 0.020 0.020
kr-vs-kp.arff 0.013 0.007 0.007 0.007 0.009 0.005 0.005 0.004
labor.arff 0.084 0.066 0.066 0.061 0.103 0.061 0.069 0.067
lymph.arff 0.082 0.059 0.053 0.048 0.075 0.062 0.065 0.060
segment.arff 0.032 0.023 0.022 0.021 0.032 0.024 0.023 0.021
sick.arff 0.013 0.011 0.011 0.011 0.012 0.011 0.011 0.011
solar-flare-1.arff 0.004 0.003 0.003 0.004 0.006 0.005 0.004 0.004
sonar.arff 0.128 0.076 0.074 0.065 0.118 0.079 0.065 0.061
soybean.arff 0.030 0.020 0.017 0.018 0.029 0.021 0.020 0.020
sponge.arff 0.016 0.012 0.011 0.011 0.013 0.011 0.012 0.011
vote.arff 0.020 0.013 0.010 0.011 0.016 0.011 0.009 0.008
vowel.arff 0.168 0.131 0.122 0.117 0.178 0.140 0.133 0.131
zoo.arff 0.042 0.038 0.031 0.032 0.048 0.043 0.041 0.042
Average 0.064 0.049 0.045 0.044 0.063 0.050 0.048 0.046
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Table 12: Detailed Variance for BRS ensembles M=5, Log N; and Trees=10, 50,
100, 200; (BRSM

Trees) - Section 4.4.4

Dataset BRS5
10 BRS5

50 BRS5
100 BRS5

200 BRSLogN
10 BRSLogN

50 BRSLogN
100 BRSLogN

200
anneal.arff 0.006 0.005 0.005 0.005 0.007 0.005 0.005 0.005
audiology.arff 0.148 0.116 0.120 0.119 0.142 0.119 0.119 0.117
autos.arff 0.181 0.148 0.147 0.143 0.181 0.148 0.147 0.143
breast-cancer.arff 0.069 0.060 0.064 0.063 0.062 0.057 0.057 0.060
colic.arff 0.048 0.035 0.031 0.030 0.048 0.035 0.031 0.030
credit-g.arff 0.076 0.056 0.052 0.051 0.076 0.056 0.052 0.051
diabetes.arff 0.065 0.062 0.059 0.059 0.076 0.065 0.059 0.058
glass2.arff 0.128 0.113 0.114 0.109 0.114 0.096 0.094 0.097
hepatitis.arff 0.044 0.039 0.035 0.036 0.044 0.039 0.035 0.036
hypothyroid.arff 0.017 0.016 0.016 0.015 0.017 0.016 0.016 0.015
ionosphere.arff 0.027 0.021 0.020 0.021 0.027 0.021 0.022 0.023
kr-vs-kp.arff 0.006 0.004 0.003 0.003 0.005 0.004 0.004 0.003
labor.arff 0.084 0.080 0.077 0.076 0.084 0.080 0.077 0.076
lymph.arff 0.076 0.069 0.071 0.057 0.076 0.069 0.071 0.057
segment.arff 0.030 0.023 0.023 0.023 0.030 0.023 0.023 0.023
sick.arff 0.012 0.012 0.011 0.011 0.012 0.012 0.011 0.011
solar-flare-1.arff 0.005 0.004 0.004 0.005 0.004 0.004 0.003 0.003
sonar.arff 0.127 0.077 0.060 0.062 0.117 0.069 0.068 0.065
soybean.arff 0.028 0.026 0.025 0.024 0.029 0.025 0.026 0.025
sponge.arff 0.013 0.011 0.011 0.011 0.017 0.014 0.012 0.012
vote.arff 0.011 0.008 0.009 0.008 0.011 0.008 0.009 0.008
vowel.arff 0.179 0.152 0.150 0.150 0.174 0.145 0.139 0.139
zoo.arff 0.049 0.043 0.046 0.048 0.049 0.043 0.046 0.048
Average 0.062 0.051 0.050 0.049 0.061 0.050 0.049 0.048

Table 13: Detailed Error for RF ensembles M=1, 3; and Trees=10, 50, 100, 200;
(RFM

Trees) - Section 4.4.4

Dataset RF 1
10 RF 1

50 RF 1
100 RF 1

200 RF 3
10 RF 3

50 RF 3
100 RF 3

200
anneal.arff 0.034 0.021 0.020 0.019 0.025 0.019 0.016 0.016
audiology.arff 0.348 0.305 0.300 0.298 0.356 0.307 0.301 0.300
autos.arff 0.315 0.308 0.298 0.298 0.293 0.269 0.272 0.272
breast-cancer.arff 0.297 0.290 0.292 0.291 0.324 0.320 0.312 0.312
colic.arff 0.248 0.202 0.198 0.198 0.208 0.187 0.182 0.180
credit-g.arff 0.290 0.280 0.278 0.277 0.280 0.269 0.269 0.267
diabetes.arff 0.294 0.275 0.276 0.273 0.281 0.269 0.267 0.269
glass2.arff 0.243 0.206 0.202 0.196 0.204 0.193 0.182 0.185
hepatitis.arff 0.181 0.179 0.174 0.181 0.189 0.175 0.172 0.177
hypothyroid.arff 0.060 0.058 0.058 0.058 0.057 0.055 0.055 0.055
ionosphere.arff 0.108 0.100 0.098 0.096 0.104 0.089 0.089 0.089
kr-vs-kp.arff 0.067 0.035 0.030 0.028 0.032 0.019 0.017 0.017
labor.arff 0.140 0.089 0.082 0.082 0.156 0.116 0.111 0.100
lymph.arff 0.214 0.169 0.170 0.161 0.213 0.174 0.172 0.167
segment.arff 0.081 0.064 0.062 0.060 0.069 0.054 0.052 0.051
sick.arff 0.064 0.063 0.063 0.063 0.064 0.063 0.064 0.064
solar-flare-1.arff 0.027 0.029 0.027 0.027 0.029 0.030 0.029 0.029
sonar.arff 0.335 0.267 0.249 0.235 0.310 0.239 0.234 0.232
soybean.arff 0.116 0.086 0.081 0.080 0.104 0.080 0.076 0.075
sponge.arff 0.064 0.063 0.063 0.063 0.063 0.063 0.063 0.063
vote.arff 0.064 0.049 0.047 0.048 0.047 0.040 0.040 0.039
vowel.arff 0.244 0.167 0.156 0.150 0.223 0.165 0.160 0.156
zoo.arff 0.053 0.061 0.055 0.055 0.069 0.062 0.054 0.058
Average 0.169 0.146 0.143 0.141 0.161 0.142 0.139 0.138

198



9.2 Future Work

Table 14: Detailed Error for RF ensembles M=5, Log N; and Trees=10, 50, 100,
200; (RFM

Trees) - Section 4.4.4

Dataset RF 5
10 RF 5

50 RF 5
100 RF 5

200 RF LogN
10 RF LogN

50 RF LogN
100 RF LogN

200
anneal.arff 0.021 0.014 0.013 0.012 0.018 0.014 0.012 0.012
audiology.arff 0.346 0.302 0.298 0.300 0.351 0.295 0.295 0.297
autos.arff 0.287 0.262 0.266 0.260 0.287 0.262 0.266 0.260
breast-cancer.arff 0.332 0.326 0.327 0.320 0.330 0.321 0.316 0.317
colic.arff 0.190 0.169 0.168 0.171 0.190 0.169 0.168 0.171
credit-g.arff 0.284 0.268 0.266 0.264 0.284 0.268 0.266 0.264
diabetes.arff 0.285 0.272 0.269 0.269 0.277 0.267 0.268 0.266
glass2.arff 0.210 0.191 0.186 0.187 0.212 0.190 0.187 0.182
hepatitis.arff 0.206 0.188 0.181 0.183 0.206 0.188 0.181 0.183
hypothyroid.arff 0.055 0.053 0.052 0.052 0.055 0.053 0.052 0.052
ionosphere.arff 0.103 0.089 0.086 0.086 0.105 0.089 0.089 0.088
kr-vs-kp.arff 0.021 0.014 0.013 0.013 0.019 0.013 0.013 0.012
labor.arff 0.146 0.133 0.126 0.126 0.146 0.133 0.126 0.126
lymph.arff 0.205 0.183 0.176 0.174 0.205 0.183 0.176 0.174
segment.arff 0.062 0.050 0.050 0.049 0.062 0.050 0.050 0.049
sick.arff 0.065 0.064 0.064 0.064 0.065 0.064 0.064 0.064
solar-flare-1.arff 0.032 0.031 0.032 0.032 0.032 0.032 0.030 0.031
sonar.arff 0.293 0.251 0.235 0.229 0.296 0.250 0.244 0.233
soybean.arff 0.100 0.081 0.078 0.079 0.105 0.081 0.082 0.081
sponge.arff 0.062 0.063 0.063 0.063 0.066 0.063 0.063 0.063
vote.arff 0.049 0.040 0.040 0.039 0.049 0.040 0.040 0.039
vowel.arff 0.223 0.189 0.183 0.182 0.222 0.174 0.167 0.169
zoo.arff 0.082 0.078 0.073 0.073 0.082 0.078 0.073 0.073
Average 0.159 0.144 0.141 0.140 0.159 0.143 0.140 0.139

Table 15: Detailed Bias for RF ensembles M=1, 3; and Trees=10, 50, 100, 200;
(RFM

Trees) - Section 4.4.4

Dataset RF 1
10 RF 1

50 RF 1
100 RF 1

200 RF 3
10 RF 3

50 RF 3
100 RF 3

200
anneal.arff 0.009 0.008 0.009 0.008 0.006 0.006 0.005 0.005
audiology.arff 0.124 0.153 0.158 0.160 0.123 0.152 0.162 0.158
autos.arff 0.142 0.174 0.168 0.171 0.122 0.134 0.133 0.137
breast-cancer.arff 0.224 0.228 0.230 0.233 0.237 0.239 0.230 0.228
colic.arff 0.155 0.155 0.158 0.163 0.128 0.147 0.146 0.149
credit-g.arff 0.224 0.250 0.252 0.252 0.209 0.227 0.231 0.230
diabetes.arff 0.206 0.207 0.213 0.212 0.197 0.202 0.199 0.207
glass2.arff 0.117 0.125 0.114 0.115 0.082 0.095 0.095 0.102
hepatitis.arff 0.134 0.152 0.144 0.147 0.137 0.136 0.136 0.141
hypothyroid.arff 0.046 0.048 0.048 0.048 0.042 0.045 0.044 0.045
ionosphere.arff 0.077 0.084 0.086 0.086 0.070 0.072 0.075 0.075
kr-vs-kp.arff 0.020 0.015 0.013 0.013 0.011 0.009 0.008 0.009
labor.arff 0.022 0.030 0.015 0.015 0.068 0.050 0.048 0.048
lymph.arff 0.118 0.131 0.130 0.128 0.141 0.132 0.133 0.131
segment.arff 0.033 0.036 0.037 0.036 0.028 0.029 0.029 0.030
sick.arff 0.054 0.055 0.055 0.055 0.052 0.053 0.054 0.054
solar-flare-1.arff 0.022 0.023 0.023 0.023 0.022 0.025 0.025 0.024
sonar.arff 0.161 0.157 0.166 0.159 0.160 0.152 0.161 0.161
soybean.arff 0.051 0.056 0.056 0.058 0.051 0.053 0.053 0.054
sponge.arff 0.053 0.053 0.053 0.053 0.051 0.053 0.053 0.053
vote.arff 0.037 0.032 0.035 0.038 0.029 0.032 0.033 0.033
vowel.arff 0.036 0.039 0.039 0.036 0.046 0.042 0.043 0.043
zoo.arff 0.019 0.023 0.024 0.024 0.021 0.017 0.022 0.017
Average 0.091 0.097 0.097 0.097 0.088 0.091 0.092 0.093
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Table 16: Detailed Bias for RF ensembles M=5, Log N; and Trees=10, 50, 100,
200; (RFM

Trees) - Section 4.4.4

Dataset RF 5
10 RF 5

50 RF 5
100 RF 5

200 RF LogN
10 RF LogN

50 RF LogN
100 RF LogN

200
anneal.arff 0.005 0.005 0.005 0.004 0.005 0.004 0.004 0.004
audiology.arff 0.135 0.153 0.154 0.161 0.150 0.145 0.156 0.158
autos.arff 0.115 0.113 0.120 0.112 0.115 0.113 0.120 0.112
breast-cancer.arff 0.232 0.226 0.234 0.227 0.237 0.235 0.230 0.227
colic.arff 0.135 0.135 0.138 0.144 0.135 0.135 0.138 0.144
credit-g.arff 0.207 0.215 0.221 0.219 0.207 0.215 0.221 0.219
diabetes.arff 0.198 0.200 0.202 0.204 0.196 0.199 0.205 0.204
glass2.arff 0.100 0.095 0.094 0.093 0.101 0.100 0.108 0.103
hepatitis.arff 0.138 0.150 0.148 0.146 0.138 0.150 0.148 0.146
hypothyroid.arff 0.039 0.040 0.040 0.041 0.039 0.040 0.040 0.041
ionosphere.arff 0.068 0.069 0.069 0.069 0.073 0.067 0.070 0.069
kr-vs-kp.arff 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
labor.arff 0.072 0.065 0.062 0.058 0.072 0.065 0.062 0.058
lymph.arff 0.123 0.136 0.141 0.133 0.123 0.136 0.141 0.133
segment.arff 0.027 0.028 0.029 0.029 0.027 0.028 0.029 0.029
sick.arff 0.052 0.053 0.053 0.054 0.052 0.053 0.053 0.054
solar-flare-1.arff 0.023 0.027 0.026 0.027 0.023 0.027 0.027 0.027
sonar.arff 0.153 0.172 0.177 0.171 0.149 0.177 0.177 0.162
soybean.arff 0.052 0.052 0.052 0.054 0.050 0.052 0.058 0.056
sponge.arff 0.051 0.053 0.053 0.053 0.051 0.053 0.053 0.053
vote.arff 0.034 0.033 0.033 0.032 0.034 0.033 0.033 0.032
vowel.arff 0.049 0.054 0.053 0.055 0.045 0.048 0.048 0.049
zoo.arff 0.031 0.032 0.031 0.036 0.031 0.032 0.031 0.036
Average 0.089 0.092 0.093 0.093 0.090 0.092 0.094 0.092

Table 17: Detailed Variance for RF ensembles M=1, 3; and Trees=10, 50, 100,
200; (RFM

Trees) - Section 4.4.4

Dataset RF 1
10 RF 1

50 RF 1
100 RF 1

200 RF 3
10 RF 3

50 RF 3
100 RF 3

200
anneal.arff 0.025 0.013 0.011 0.011 0.019 0.012 0.011 0.011
audiology.arff 0.224 0.152 0.143 0.138 0.233 0.155 0.139 0.141
autos.arff 0.173 0.134 0.130 0.127 0.171 0.135 0.140 0.135
breast-cancer.arff 0.073 0.062 0.062 0.059 0.087 0.081 0.083 0.083
colic.arff 0.093 0.046 0.040 0.035 0.080 0.040 0.037 0.030
credit-g.arff 0.066 0.030 0.026 0.025 0.071 0.041 0.038 0.037
diabetes.arff 0.088 0.068 0.063 0.062 0.085 0.067 0.068 0.062
glass2.arff 0.126 0.081 0.088 0.081 0.121 0.098 0.087 0.083
hepatitis.arff 0.047 0.026 0.030 0.034 0.052 0.039 0.035 0.036
hypothyroid.arff 0.014 0.010 0.009 0.009 0.015 0.011 0.011 0.010
ionosphere.arff 0.031 0.016 0.012 0.009 0.034 0.017 0.014 0.014
kr-vs-kp.arff 0.046 0.020 0.018 0.015 0.021 0.011 0.009 0.008
labor.arff 0.118 0.060 0.068 0.068 0.089 0.066 0.062 0.052
lymph.arff 0.097 0.038 0.040 0.033 0.072 0.043 0.039 0.036
segment.arff 0.047 0.028 0.025 0.024 0.041 0.025 0.023 0.021
sick.arff 0.011 0.009 0.008 0.008 0.012 0.010 0.009 0.010
solar-flare-1.arff 0.004 0.006 0.004 0.004 0.007 0.005 0.004 0.005
sonar.arff 0.174 0.110 0.082 0.076 0.150 0.087 0.073 0.071
soybean.arff 0.066 0.030 0.025 0.022 0.052 0.026 0.023 0.021
sponge.arff 0.012 0.011 0.011 0.011 0.012 0.011 0.011 0.011
vote.arff 0.027 0.016 0.012 0.010 0.018 0.008 0.007 0.007
vowel.arff 0.207 0.128 0.117 0.114 0.177 0.124 0.117 0.113
zoo.arff 0.035 0.039 0.032 0.032 0.049 0.046 0.033 0.042
Average 0.078 0.049 0.046 0.044 0.073 0.050 0.047 0.045
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Table 18: Detailed Variance for RF ensembles M=5, Log N; and Trees=10, 50,
100, 200; (RFM

Trees) - Section 4.4.4

Dataset RF 5
10 RF 5

50 RF 5
100 RF 5

200 RF LogN
10 RF LogN

50 RF LogN
100 RF LogN

200
anneal.arff 0.016 0.010 0.008 0.008 0.013 0.010 0.009 0.008
audiology.arff 0.212 0.148 0.145 0.139 0.201 0.150 0.139 0.139
autos.arff 0.173 0.149 0.145 0.148 0.173 0.149 0.145 0.148
breast-cancer.arff 0.100 0.100 0.093 0.093 0.094 0.086 0.086 0.090
colic.arff 0.055 0.034 0.030 0.027 0.055 0.034 0.030 0.027
credit-g.arff 0.077 0.053 0.045 0.045 0.077 0.053 0.045 0.045
diabetes.arff 0.087 0.072 0.067 0.065 0.081 0.067 0.063 0.062
glass2.arff 0.110 0.095 0.092 0.094 0.111 0.090 0.078 0.079
hepatitis.arff 0.067 0.038 0.033 0.037 0.067 0.038 0.033 0.037
hypothyroid.arff 0.016 0.012 0.012 0.012 0.016 0.012 0.012 0.012
ionosphere.arff 0.034 0.019 0.017 0.017 0.032 0.022 0.019 0.019
kr-vs-kp.arff 0.013 0.006 0.006 0.006 0.012 0.007 0.006 0.006
labor.arff 0.074 0.068 0.064 0.068 0.074 0.068 0.064 0.068
lymph.arff 0.081 0.047 0.035 0.041 0.081 0.047 0.035 0.041
segment.arff 0.034 0.022 0.021 0.020 0.034 0.022 0.021 0.020
sick.arff 0.013 0.011 0.011 0.010 0.013 0.011 0.011 0.010
solar-flare-1.arff 0.008 0.004 0.006 0.005 0.008 0.005 0.003 0.004
sonar.arff 0.141 0.079 0.057 0.058 0.147 0.074 0.067 0.071
soybean.arff 0.048 0.030 0.026 0.024 0.055 0.029 0.024 0.025
sponge.arff 0.011 0.011 0.011 0.011 0.014 0.011 0.011 0.011
vote.arff 0.014 0.007 0.007 0.006 0.014 0.007 0.007 0.006
vowel.arff 0.175 0.135 0.130 0.127 0.177 0.126 0.119 0.120
zoo.arff 0.051 0.046 0.042 0.038 0.051 0.046 0.042 0.038
Average 0.070 0.052 0.048 0.048 0.070 0.051 0.046 0.047
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In J. Gámez and A. Salmerón, editors, Proceedings of the 1st European

Workshop on Probabilistic Graphical Models, pages 222–230, 2002. 46, 47,

60, 77, 87

[40] C. Cool and A. Spink. Issues of context in information retrieval (ir): an

introduction to the special issue. Inf. Process. Manage., 38(5):605–611,

2002. 139, 146

[41] G. Cooper and E. Herskovits. A bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9:309–347, 1992. 119

[42] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic

Networks and Expert Systems. Statistics for Engineering and Information

Science.Springer-Verlag, New York, 1999. 10, 114

[43] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. Relevance weight-

ing for query independent evidence. In SIGIR ’05: Proceedings of the 28th

annual international ACM SIGIR conference on Research and development

206



REFERENCES

in information retrieval, pages 416–423, New York, NY, USA, 2005. ACM

Press. 153, 154

[44] F. Crestani and I. Ruthven, editors. Information Context: Nature, Impact,

and Role; 5th International Conference on Conceptions of Library and In-

formation Sciences, CoLIS 2005, Glasgow, UK, June 4-8, 2005; Proceed-

ings, volume 3507 of Lecture Notes in Computer Science. Springer, 2005.

146

[45] F. Crestani and I. Ruthven. Introduction to special issue on contextual

information retrieval systems. Information Retrieval, 10(2):111–113, April

2007. 146

[46] B. de Finetti. Theory of Probability. J. Wiley and Sons, Inc, New York,

1974. 158

[47] J. Demsar. Statistical comparisons of classifiers over multiple data sets.

Journal Machine Learning Research, 7:1–30, 2006. 61, 78, 88, 92, 93

[48] T. G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomiza-

tion. Machine Learning, 40(2):139–157, 2000. 23, 24, 82

[49] P. Domingos. Bayesian model averaging in rule induction. In In Preliminary

papers of the Sixth International Workshop on Artificial Intelligence and

Statistics, pages 157–164, 1997. 72

[50] P. Domingos and M. J. Pazzani. On the optimality of the simple bayesian

classifier under zero-one loss. Machine Learning, 29(2-3):103–130, 1997. 9,

14, 15

[51] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised

discretization of continious features. In Twelfth International Conference

on Machine Learning, pages 194–202, 1995. 10

[52] P. Dourish. What we talk about when we talk about context. Personal and

Ubiquitous Computing, 8(1):19–30, 2004. 140, 179

207



REFERENCES

[53] S. Draghici, O. Kulaeva, B. Hoff, A. Petrov, S. Shams, and M. Tainsky.

Noise sampling method: an anova approach allowing robust selection of

differentially regulated genes measured by dna microarrays. Bioinformatics,

19:1348–1359, 2003. 116

[54] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.

John Wiley Sons, New York, 1973. 2, 8, 9, 56, 114

[55] R. O. Duda and P. E. Hart. Pattern Classification. Wiley Interscience,

2000. 160

[56] B. Edmonds. The pragmatic roots of context. In P. Bouquet, L. Serafini,
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