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CITIC-UGR.

A Zlatko Trajanoski, de la sección de Bioinformática de la Universidad de Inns-

bruck, por permitirme realizar una fructı́fera estancia en el Instituto de Genómica
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Abstract

This dissertation presents a set of contributions that can be grouped into three parts.

The first part of the thesis is related to the integration of heterogeneous biological

data for the prediction of functional associations between proteins. This topic has

become in the last years one of the major goals of current biological studies. In the

literature, there exist several machine learning methods applied to the integration

of heterogeneous biological data sources. However, all of them suffer from the

same common problem: interpretability and simplicity for the decision maker. Due

to this, it is proposed a data integration methodology based on interpretable and

simple IF-THEN rules that reflect the contributions of different types of evidences

or data sources toward the prediction of functional associations between proteins.

Through a multi-objective genetic programming (MO-GP) approach run in parallel

architectures, a set of pareto optimal IF-THEN classification rules are provided and

each rule can be used to build an functional linkage network (FLN) with a given

level of accuracy. Furthermore, the decision maker does not have to specify partial

preferences on the desired accuracy of the FLN, since covering the entire pareto,

different FLNs are obtained, each one with a different level of accuracy.

The second part of the dissertation is related to the automation of Affymetrix 3’

microarray data analysis. Microarray data are commonly used in the data integra-

tion previously described so that it is proposed a microarray data analysis tool with

the following features: (1) automated detection of low quality microarrays so that

the decision maker is able to decide whether one or more arrays are defective or

not based on a full set of quantitative and qualitative measures, (2) automated se-

lection of the best pre-processing methods among several ones for a given data set

through objective quality metrics and (3) automated generation of confident and

1



Abstract 2

complete lists of differentially expressed genes according to the set of best pre-

processing methods selected before. This automation means an important advance

in microarray data analysis and a great help to the decision maker, since the auto-

matic detection of low quality microarrays and the automatic selection of the best

pre-processing methods will avoid that posterior phases on microarray data anal-

ysis, such as classification, are affected by low quality arrays and/or an incorrect

choice of pre-processing methods.

The third part of the dissertation is related to the problem of distributing the original

data set (input/output data) into two representative and balanced sets for function

approximation tasks and to the problem of model selection. Two contributions are

proposed. The first one is related to one of the most common methodologies to

evaluate models built by supervised learning algorithms. Such methodology con-

sists in partitioning the original data set (input/output data) into two sets: learning

and test. The learning set is used for building models that capture the relationships

between inputs and outputs while the test set is used for checking models’ general-

ization ability with data not used in the learning process. Usually, in the literature,

the partition into learning and test sets does not usually take into account the vari-

ability and geometry of the original data. This might lead to non-balanced and

unrepresentative learning and test sets and, thus, to wrong conclusions in the accu-

racy of the learning algorithm. Thus, it is proposed a new deterministic data mining

approach to distributing a given data set (input/output data) into two representative

and balanced sets of roughly equal size to be used in function approximation prob-

lems. The distribution takes into account the variability of the data set with the

purpose of allowing both a fair evaluation of learning’s accuracy and to make re-

producible machine learning experiments usually based on random distributions.

The second contribution is associated to one of the problems related to the selec-

tion of the best model for Radial Basis Function Neural Network (RBFNN) in time

series prediction tasks. This problem is given by the methodology commonly used

in the literature to select the best structure model. Such methodology is based on

K-fold cross-validation model evaluation strategy which has some drawbacks, such

as its random nature and the subjective decision for a proper value of K. Thus, it is

proposed a new deterministic model selection methodology with applications for

incremental Radial Basis Function Neural Network (RBFNN) construction in time
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series prediction problems. Such model selection approach is a combined algo-

rithm which takes advantage of balanced and representative training and validation

sets obtained through the data distribution approach previously described for their

use in all the steps of the RBFNN design: initialization, optimization and network

model evaluation. This way, the model prediction accuracy is improved, reduc-

ing the computation time spent in selecting the model and avoiding random and

computationally expensive model selection methodologies based on K-fold cross-

validation procedures.





Resumen

Esta tesis doctoral presenta un conjunto de aportaciones que pueden ser agrupadas

en tres partes. El primer bloque de la tesis está relacionado con la integración de

diversas fuentes biológicas heterogéneas para la predicción de nuevas relaciones

funcionales entre proteı́nas. Esta lı́nea de investigación es uno de los mayores re-

tos actuales de la biologı́a. En la literatura, existen numerosas herramientas de

aprendizaje aplicadas a la integración de diversas fuentes heterogéneas de datos.

Sin embargo, todas ellas adolecen de un problema común: interpretabilidad y sen-

cillez de cara al investigador. Debido a esto, se ha desarrollado una metodologı́a

de integración basada en reglas SI-ENTONCES que reflejan de forma clara y sen-

cilla las contribuciones de las diferentes fuentes de datos integradas para la tarea

de predicción de asociaciones funcionales. A través de una metodologı́a basada en

programación genética multi-objetivo ejecutada en arquitecturas paralelas, un con-

junto de reglas pareto-óptimas es obtenido, donde cada regla se puede utilizar para

construir una red de asociaciones funcionales de proteı́nas (Functional Linkage

Network, FLN) y diferentes reglas del pareto dan lugar a diferentes redes de aso-

ciaciones en términos de precisión. Además, a través de esta nueva metodologı́a,

el investigador no tiene que especificar preferencias en cuanto a la precisión de la

red deseada, ya que, cubriendo todo el pareto de soluciones, se obtienen diferentes

redes de asociaciones funcionales, cada una de ellas con un nivel de precisión.

El segundo bloque de esta Tesis Doctoral está relacionado con la automatización

del análisis de datos de microarrays de Affymetrix 3’. Los datos de microarrays

son utilizados comúnmente en la integración de datos previamente descrita. Ası́,

se ha desarrollado una herramienta de análisis de microarrays que ofrece las sigu-

ientes funcionalidades originales: (1) automatización del análisis de calidad de un
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conjunto de datos de microarrays de forma que el investigador es capaz de de-

cidir la eliminación de muestras defectuosas de acuerdo a un conjunto completo

de métricas cualitativas y cuantitativas, (2) selección automática de los mejores

métodos de pre-procesamiento de entre decenas de ellos para el conjunto de datos

dado a través de métricas objetivas de calidad, (3) generación automática de dos

listas de genes expresados diferencialmente: una con candidatos fiables y otra con

candidatos posibles. Esta automatización supone un gran avance en el análisis

de microarrays, ya que ayuda al usuario, posiblemente no experto, en la toma

de decisiones en el análisis de microarrays, de forma que la detección de mi-

croarrays de baja calidad y/o la selección automática de los mejores métodos de

pre-procesamiento evitará que posteriores etapas de dicho análisis, como la clasifi-

cación, se vean afectadas por la presencia de muestras defectuosas y/o una elección

incorrecta del método de pre-procesamiento.

La tercera parte de la tesis doctoral está relacionada con el problema de la dis-

tribución del conjunto de datos original (datos de entrada/salida) en dos conjuntos

representativos y balanceados para tareas de aproximación funcional y con el prob-

lema de selección del modelo. Se proponen dos aportaciones. La primera de ellas

está relacionada con una de las formas más utilizadas en la literatura para evaluar

un algoritmo de aprendizaje y que consiste en la partición del conjunto de datos de

entrada/salida en dos conjuntos: aprendizaje, utilizado para construir modelos que

reflejen la relación entre entradas y salidas, y test, para la evaluación del modelo

generado. De forma general, en la literatura, no se tiene en cuenta la variabilidad y

la geometrı́a del conjunto de datos en la partición, de forma que se pueden obtener

conclusiones erróneas acerca del algoritmo de aprendizaje. Ası́, se ha desarrol-

lado una metodologı́a determinista para una partición del conjunto de datos en dos

conjuntos balanceados y representativos teniendo en cuenta la variabilidad de di-

cho conjunto de datos original con el propósito de permitir una evaluación justa de

los algoritmos de aprendizaje y realizar experimentos reproducibles de aprendizaje

normalmente basados en distribuciones aleatorias.

La segunda contribución está asociada con uno de los problemas relacionados con

la selección del mejor modelo para redes neuronales de base radial (Radial Ba-

sis Function Neural Networks, RBFNNs) en tareas de predicción de series tem-

porales. Dicho problema viene dado por la elección comúnmente utilizada en la
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literatura para seleccionar el mejor modelo de red, la cual está basada en estrategias

de validación cruzada K-veces que tiene como principales inconvenientes su nat-

uraleza aleatoria y la elección de un valor adecuado de K. Ası́, se ha propuesto

una nueva metodologı́a de selección del modelo con aplicaciones en RBFNNs

en problemas de predicción de series temporales. La metodologı́a propuesta está

basada en un algoritmo combinado que hace uso de conjuntos balanceados y rep-

resentativos, como los obtenidos en la aportación anterior, en todas las etapas de

diseño de RBFNN: inicialización, optimización y evaluación del modelo de red. De

esta forma, la precisión en las predicciones del modelo es mejorada, reduciendo,

además, el tiempo de computación empleado en la selección del modelo y, evi-

tando de esta forma, metodologı́as de selección del modelo computacionalmente

costosas y aleatorias como las basadas en la validación cruzada K-veces.





Introducción

Esta introducción contiene una versión en español del Capı́tulo 1 y ha sido incluida

para cumplir con los requerimientos necesarios para poder optar a la mención de

Doctorado Europeo.

Antecedentes

El término ”Sistemas Inteligentes” es utilizado para describir sistemas y métodos

que simulan ciertos aspectos del comportamiento inteligente de los seres humanos

para diseñar modelos computacionales. El principal objetivo de los sistemas in-

teligentes es, por tanto, construir modelos que puedan representar su propio conocimiento

y razonar sobre él, que puedan planificar y actuar y que puedan asimilar nuevo

conocimiento de la experiencia y de la interacción con el entorno.

Los sistemas inteligentes son el paradigma clave en muchas de las aplicaciones ac-

tuales, como por ejemplo el diagnóstico médico, el control robótico, la predicción

del tiempo, la predicción de valores de bolsa, los procesos industriales, el control

de plantas, la industria financiera, los sistemas de visión, el análisis de secuencias

genómicas, la predicción de funciones/estructuras de proteı́nas, etc.

Esta tesis, presenta una serie de aportaciones dentro de la extensa área de las aplica-

ciones de los sistemas inteligentes. Concretamente, la tesis se centra en el desarrol-

lo/aplicación de sistemas inteligentes en dos campos: (1) la integración de diversas

fuentes biológicas heterogéneas para predecir asociaciones/relaciones funcionales

entre proteı́nas y (2) la aproximación funcional.

9
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Integración de fuentes biológicas heterogéneas para predecir asocia-
ciones funcionales entre proteı́nas

La predicción de relaciones funcionales entre genes/proteı́nas es, hoy dı́a, uno de

los mayores objetivos de los estudios relacionados con la biologı́a, debido a que

las tareas celulares complejas de un organismo normalmente dependen de asocia-

ciones entre proteı́nas que colaboran entre ellas como un bloque o módulo fun-

cional, el cual puede estar representado por un proceso biológico concreto o un

pathway especı́fico. Las asociaciones funcionales puede ser inferidas o extraı́das a

partir de fuentes heterogéneas de datos como los experimentos de micromatrices o

microarrays, los cuales detectan co-expresión entre genes, o los datos de secuen-

cias a partir de los que se pueden extraer correlaciones de perfiles filogenéticos. El

resultado de una búsqueda de relaciones o asociaciones funcionales entre proteı́nas

es representado como un grafo denominado Red de relaciones funcionales (Func-

tional Linkage Network, FLN, en inglés). En este grafo, los nodos representan

proteı́nas y las uniones entre ellas representan un grado de relación o similitud

funcional. Sin embargo, cada fuente de datos únicamente revela una cierta per-

spectiva del genoma completo y del mecanismo biológico existente subyacente.

Es más, algunas de las fuentes de datos son criticadas por su ruido y baja fiabilidad

y, por tanto, carecen del grado de especificidad requerido para predicciones pre-

cisas de relaciones funcionales. Debido a estos problemas, en los últimos años, la

integración de fuentes heterogéneas de datos para predecir relaciones funcionales

entre proteı́nas haciendo uso de metodologı́as de aprendizaje automático (machine

learning en inglés), representan una forma prometedora de superar todos estos

problemas, proporcionando una red de relaciones funcionales más completa donde

las predicciones de relaciones funcionales entre proteı́nas son más precisas.

En la literatura, diversas metodologı́as se han aplicado con éxito a la integración de

evidencias a partir de datos genómicos y proteómicos heterogéneos. No obstante,

y a pesar del incremento en la precisión de las predicciones de relaciones fun-

cionales cuando diversas fuentes son integradas, todavı́a existen diversas mejoras

que pueden ser tenidas en cuenta en dichas metodologı́as, como la interpretabilidad

y la sencillez de los modelos construı́dos por el método de integración y la posibili-

dad de proporcionar, sin un incremento excesivo del coste computacional, diversas
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FLNs con diferentes niveles de precisión ya que, a priori, el nivel de precisión de-

seado por un investigador en la relaciones funcionales predichas es desconocido.

Por otro lado, una red de relaciones funcionales (FLN) construı́da a partir de la in-

tegración de diversas fuentes biológicas heterogéneas, puede, además, ser utilizada

para predecir nuevos genes asociados con una determinada enfermedad. Para este

fin y para una enfermedad determinada, los genes conocidos asociados a esa en-

fermedad son marcados en la FLN y el resto de genes relacionados con los genes

enfermos marcados son identificados, de forma que estos últimos pueden asociarse

con dicha enfermedad con un nivel de confianza dado por el grado de asociación

con los genes enfermos. Los genes relacionados con una determinada enfermedad

y que son utilizados para ser marcados en la FLN pueden ser extraı́dos a partir de

experimentos a medida como los datos de microarray (o micromatrices) y, para

este fin, se debe llevar a cabo un análisis organizado de los datos de microarrays

en diferentes etapas como: análisis de calidad, pre-procesamiento de los datos y la

detección de genes expresados diferencialmente. Este análisis multi-etapa puede

llevarse a cabo utilizando numerosas herramientas de análisis de microarrays exis-

tentes en la literatura. Sin embargo y a pesar de ser herramientas muy completas,

todavı́a existe la necesidad de ayudar al usuario, probablemente no experto, en al-

gunas etapas del análisis mencionado. Por ejemplo, en la detección automática

de microarrays de baja calidad o en la selección automática de los mejores y más

apropiados métodos de pre-procesamiento para un experimento de datos dado. De

esta forma, los posibles errores presentes en etapas posteriores del análisis de mi-

croarrays, como la clasificación, debido a la presencia de microarrays de baja cali-

dad y/o una selección incorrecta de los métodos de pre-procesamiento, pueden ser

reducidos.

Aproximación funcional

Un problema de aproximación funcional puede definirse de la siguiente forma:

dado un conjuno de observaciones o datos de entrada/salida extraı́dos de una función

o sistema desconocido F, es deseado obtener un modelo F∗ h F a partir del cual

se puedan proporcionar salidas precisas a partir de datos de entrada del conjunto y,

además, con buena capacidad de predicción para nuevos datos de entrada.
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Los problemas de aproximación funcional han recibido gran atención en áreas

como la predicción de series temporales y la identificación del sistema. La predicción

de series temporales consiste en la predicción de valores futuros de una secuencia

a partir de valores pasados y es un reto en numerosos campos, como la predicción

de valores de bolsa o del consumo de electricidad. Por otro lado, la identificación

del sistema es uno de los aspectos más importantes en campos como el control de

plantas, las comunicaciones o el reconocimiento de patrones.

Existe una cuestión o asunto no tratado apropiadamente en la comunidad cientı́fica

en tareas de aproximación funcional. Este asunto está relacionado con una de

las metodologı́as comúnmente utilizadas para evaluar modelos construı́dos por al-

goritmos de aprendizaje supervisados. Esta metodologı́a consiste en la partición

del conjunto de datos original (datos de entrada/salida) en dos conjuntos: apren-

dizaje y test. El conjunto de aprendizaje, el cual puede ser dividido a su vez en

entrenamiento y validación, es utilizado para construir modelos que capturan las

relaciones entre las entradas y las salidas. Por otro lado, el conjunto de test es uti-

lizado para comprobar la capacidad de generalización de los modelos construı́dos

haciendo uso de datos no utilizados en el proceso de aprendizaje. Normalmente, en

la literatura, la partición o división del conjunto de datos original en los conjuntos

de learning y test es realizada de forma aleatoria o con algún tipo de muestreado

uniforme en un dominio determinado, es decir, la partición en aprendizaje y test no

tiene en cuenta la variabilidad y la geometrı́a de los datos originales. Esto puede

causar conjuntos de aprendizaje y test no balanceados y no representativos y, por

tanto, conclusiones erróneas en la precisión del algoritmo de aprendizaje. Es más,

las comparaciones entre el rendimiento obtenido por diversos algoritmos de apren-

dizaje en diferentes experimentos son complicadas si la distribución o partición se

ha obtenido de forma aleatoria debido a la necesidad de utilizar numerosas parti-

ciones aleatorias para obtener una estimación representativa de la calidad de los

algoritmos de aprendizaje. Ası́, cómo se realiza la partición o distribución es esen-

cial y es más importante cuando el conjunto de datos original es pequeño, debido a

la necesidad de reducir los efectos negativos debidos a la eliminación de muestras

del conjunto de datos original.

Por otro lado, dicha partición no sólo es útil para la evaluación de la precisión
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o rendimiento de un algoritmo de aprendizaje y para realizar experimentos re-

producibles de aprendizaje. También es útil en el contexto de la selección de la

mejor estructura de un modelo (por ejemplo, de diferente complejidades, diferentes

número de neuronas en la capa oculta para un perceptrón multicapa, etc) para un

problema determinado. Esto es conocido como selección del modelo. Como pre-

viamente se ha comentado, el conjunto de aprendizaje puede ser dividido a su vez

en dos conjuntos: entrenamiento, utilizado para la estimación de los parámetros

de una estructura determinada del modelo, y validación, utilizado para evaluar el

modelo entrenado, obteniendo ası́ un error de validación. La selección del mod-

elo está, por tanto, relacionada con la tarea de comparar numerosas estructuras del

modelo de acuerdo a estimaciones de sus errores de validación con el objetivo de

seleccionar la estructura del modelo más apropiada para un problema determinado.

Normalmente, en la literaura, la estimación del error de validación es obtenida

utilizando la estrategia de evaluación del modelo denominada validación cruzada

K-veces (K-fold cross-validation en inglés). Sin embargo, esta estrategia tiene nu-

merosos inconvenientes, por ejemplo, su naturaleza aleatoria (no tiene en cuenta

la variabilidad y la geometrı́a del conjunto de datos de aprendizaje cuando se con-

struyen los conjuntos de entrenamiento y validación) y la decisión subjetiva de un

valor apropiado para K, proporcionando un sesgo elevado para valores bajos y var-

ianza y coste computacional elevados para valores altos. Por tanto, es deseable

una metodologǵia de selección del modelo basada en una estrategia de evaluación

del modelo con las siguientes caracterı́sticas: (1) sesgo y varianza bajos, (2) sin

aleatoriedad, (3) con un coste computacional bajo y (4) que utilice conjuntos de

entrenamiento y validación balanceados y representativos.

Aportaciones de la tesis

Esta tesis presenta un conjunto de cuatro aportaciones que tratan de dar una solución

a las necesidades descritas previamente. Ası́ y relacionado con el tema de la inte-

gración de datos biológicos, proponemos dos contribuciones:
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• Una nueva metodologı́a para la integración de fuentes biológicas heterogéneas

para predecir relaciones funcionales entre proteı́nas. La metodologı́a desar-

rollada es interpretable ya que está basada en reglas de clasificación sen-

cillas de la forma SI-ENTONCES. Estas reglas reflejan las contribuciones

de los diferentes tipos de fuentes utilizadas en la tarea de predicción (rela-

ciones funcionales). A través de una propuesta basada en programación

genética multi-objetivo (multi-objective genetic programming, MO-GP, en

inglés) ejecutada en arquitecturas paralelas, se proporciona un conjunto de

reglas de clasificación SI-ENTONCES pareto-óptimas de forma que cada

regla es utilizada para construir una FLN con un nivel de precisión dado. Ası́,

la propuesta MO-GP evoluciona simultáneamente múltiples reglas de forma

que no se incrementa significativamente el tiempo de aprendizaje cuando se

compara con otras metodologı́as de integración de datos. Es más, el investi-

gador no tiene que especificar preferencias en la precisión de la FLN, ya que

cubriendo el pareto completo, se obtienen diferentes FLNs, cada una con un

nivel de precisión.

• Una nueva herramienta para las primeras tres etapas del análsis de datos de

microarrays del tipo Affymetrix 3’: análisis de calidad, pre-procesamiento

y detección de genes expresados diferencialmente. Esta nueva herramienta,

proporciona las siguientes caracterı́sticas:

– Detección automática de microarrays de baja calidad, de forma que el

investigador es capaz de decidir si elimina un microarray defectuoso

o no, de acuerdo a numerosas métricas cuantitativas y cualitativas de

calidad.

– Selección automática de los mejores métodos de pre- procesamiento

para un conjunto de datos dado a través de métricas de calidad ob-

jetivas. El objetivo es liberar al investigador de la ardua tarea de la

selección de uno o más métodos de pre-procesamiento.

– Generación automática de listas fiables y completas de genes expresa-

dos diferencialmente de acuerdo a los mejores métodos de pre- proce-

samiento obtenidos en el paso anterior.
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Por medio de esta herramienta, los genes relacionados con una determinada

enfermedad a partir de datos de microarrays, pueden ser extraı́dos y marca-

dos en la FLN para predecir nuevos genes que potencialmente pueden estar

asociados con la enfermedad bajo estudio.

Respecto al tema de aproximación funcional, proponemos dos contribuciones:

• Una nueva metodologı́a determinista para distribuir un conjunto de datos

de entrada/salida dado en dos conjuntos representativos y balanceados de,

aproximadamente el mismo tamaño para ser utilizado en problemas de aprox-

imación funcional. La distribución tiene en cuenta la variabilidad del con-

junto de datos con el objetivo de permitir una evaluación justa de la precisión

o el rendimiento de un algoritmo de aprendizaje y para realizar experimentos

reproducibles de aprendizaje automático normalmente basados en distribu-

ciones aleatorias. Los conjuntos son generados por medio de una combi-

nación de un procedimiento de clustering, especialmente diseñado para prob-

lemas de aproximación funcional, y de un algoritmo de distribución que dis-

tribuye, para cada cluster, un conjunto de datos en dos conjuntos de acuerdo

a una metodologı́a de vecinos más cercanos.

• Una nueva metodologı́a de selección del modelo con aplicación directa a la

construcción incremental de redes neuronales de base radial (Radial Basis

Function Neural Network, RBFNN, en inglés) en problemas de predicción

de series temporales. Dicha metodologı́a es un algoritmo combinado que

hace uso de los conjuntos balanceados y representativos de entrenamiento y

validación obtenidos mediante la metodologı́a de distribución propuesta an-

teriormente. Estos conjuntos son utilizados en la inicialización de la RBFNN,

en su optimización y en la evalución del modelo de red, mejorando, de esta

forma, la capacidad de predicción del modelo, obteniendo sesgo y varianza

bajos, reduciendo el tiempo empleado en seleccionar el modelo y evitando

metodologı́as de selección del modelo aleatorias y computacionalmente cos-

tosas como las basadas en procedimientos de validación cruzada K-veces.
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Estructura de la tesis

La tesis está estructurada en tres partes. La primera parte contiene tres capı́tulos

dedicados al problema de la integración de fuentes biológicas heterogéneas para

predecir relaciones funcionales entre proteı́nas. El capı́tulo 2 proporciona una in-

troducción al problema de la predicción de relaciones funcionales entre proteı́nas y

motiva el desarrollo del trabajo desarrollado en este bloque de la tesis. El capı́tulo

3 introduce algunos aspectos teóricos como una introducción básica a la biologı́a

y a la bioinformática, la cual constituye el campo de investigación de esta parte de

la tesis. Seguidamente, se revisan las metodologı́as existentes en la literatura para

la predicción de relaciones funcionales entre proteı́nas utilizando fuentes individ-

uales. Después, describimos las aproximaciones desarrollados por otros autores

para la misma tarea de predicción pero integrando diversas fuentes o evidencias.

El capı́tulo 4 presenta en detalle la metodologı́a MO-GP propuesta que proporciona

reglas de clasificación pareto óptimas para la integración de fuentes biológicas het-

erogéneas de datos para predecir relaciones funcionales entre proteı́nas. En este

capı́tulo, se lleva a cabo una evaluación de la metodologı́a propuesta ası́ como una

comparación con otras metodologı́as existentes.

El segundo bloque de la tesis está compuesto de tres capı́tulos, todos ellos dedica-

dos al análisis de datos de microarrays. El capı́tulo 5 proporciona una introducción

a las diferentes etapas que componen el análisis de datos de microarrays y motiva

el desarrollo del trabajo desarrollado en esta parte de la tesis. El capı́tulo 6 pro-

porciona una visión general de la tecnologı́a de microarrays, una descripción de

las diferentes etapas que componen el análisis de microarrays y una enumeración

de algunas de las herramientas que existen en la literatura para analizar microar-

rays. La herramienta de análisis de microarrays propuesta en esta tesis es decrita

en detalle en el capı́tulo 7, ası́ como su aplicación al conjunto de datos Chronic

Lymphocytic Leukemia, CLL.

La tercera parte de la tesis contiene tres capı́tulos dedicados al problema de la dis-

tribución de un conjunto de datos de entrada/salida en dos conjuntos balanceados

y representativos para aproximación funcional y al problema de la selección del
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modelo. El capı́tulo 8 proporciona una introducción a estos dos problemas, mo-

tivando el desarrollo de las metodologı́as propuestas en este bloque de la tesis.

El capı́tulo 9 presenta la metodologı́a propuesta para el particionamiento de un

conjunto de datos de entrada/salida en dos conjuntos representativos y balancea-

dos de, aproximadamente, el mismo tamaño para ser utilizados en problemas de

aproximación funcional. La nueva metodologı́a es evaluada y comparada con otras

metodologı́as existentes. Finalmente, la nueva metodologı́a de selección del mod-

elo para RBFNNs en problemas de predicción de series temporales es presentada

en el capı́tulo 10, con aplicaciones a varios problemas de series temporales ası́

como una comparativa con otras metodologı́as de predicción de series temporales.

Finalmente, las principales conclusiones de la tesis son discutidas en el capı́tulo

11. Las publicaciones relacionadas con las contribuciones de esa tesis son, además,

enumeradas.

Con el objetivo de hacer más sencilla la lectura de tesis, la siguiente guı́a puede ser

tenida en cuenta:

• Cada parte está compuesta de capı́tulos. Debido a que se proporciona un

conjunto de contribuciones diferentes, se proporciona una introducción en

cada parte o bloque de la tesis para su mejor entendimiento.

• Cada capı́tulo está dividido en secciones, que a su vez contienen subsec-

ciones y sub-subsecciones. Cuando proporcionamos una referencia hacia

cualquier parte del presente documento, la referencia incluye un número de

capı́tulo, seguido de un número de sección, subsección, etc.

• Las figuras y tablas son numeradas por capı́tulos. Por ejemplo, Figura 4.1.

• Las expresiones matemáticas siguen el mismo esquema que los capı́tulos y

tienen un número asociado. Por ejemplo, ecuación 9.1

• Las referencias bibliográficas se indican mediante el apellido de los autores

seguido del año de publicación si el trabajo tiene al menos 3 autores y por

el apellido del principal autor seguido de la abreviación et al., si el trabajo

tiene más autores. Ejemplo:[Gonzalez et al., 2003],[Paul and Kumar, 2002].





Chapter 1

Introduction

1.1 Antecedents

The term ”Intelligent Systems” is used to describe systems and methods that sim-

ulate certain aspects of the intelligent behavior of a human being in order to de-

sign computational models. The main goal of intelligent systems is therefore to

build models that can represent and reason knowledge, plan, act and assimilate

new knowledge from the experience and the environment.

Intelligent systems are the key paradigm in many of today’s applications, such as

medical diagnosis, robot control, weather forecasting, stock market indexes predic-

tion, industrial processes, plant control, financial industry, vision systems, genomic

sequence analysis, protein structure/function prediction, etc.

This dissertation presents a set of contributions inside the open-wide area of intel-

ligent system applications. Specifically, this thesis is focused on the developmen-

t/application of intelligent systems to two fields: (1) the integration of heteroge-

neous biological data to predict functional associations between proteins and (2)

function approximation.

19
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1.1.1 Integration of heterogeneous biological data to predict functional
associations between proteins

The prediction of functional associations between genes/proteins has become in the

last years one of the major goals of current biological studies, since the complicated

cellular tasks of an organism frequently rely on associations among proteins that

collaborate with each other as a functional module, which can be represented by

a particular biological process or a specific pathway. Functional associations can

be inferred from different heterogeneous data sources such as microarray experi-

ments, which detect co-expression among genes, or sequence data, from which cor-

relations of phylogenetic profiles can be extracted. The result of a search for such

associations is conveniently displayed as a graph, the so called Functional Linkage

Network (FLN), where the nodes represent proteins and the edges between them

expressing the degree of functional similarity. However, each data source can only

reveal a certain perspective of both the whole genome and the underlying complex

biological mechanism. Moreover, some of the data sources are criticized for their

noise and low reliability and thus may lack the degree of specificity required for an

accurate prediction of functional association. Due to these reasons, in recent years,

the integration of evidences from heterogeneous data sources to predict functional

associations by means of machine learning methods represents a promising way to

overcome these drawbacks, providing a complete genome-wide functional network

and more accurate inferences of new functional relationships between proteins.

Several methodologies have successfully been applied in the literature for the in-

tegration of evidences from heterogeneous genomic and proteomic data. Never-

theless and despite the increase in the prediction power of functional associations

when several data evidences are integrated, improvements of such methodologies

are still needed such as the interpretability and simplicity of the model built by

a data integration method and the possibility of providing, without a dramatic in-

crease in the computational cost, several FLNs with different levels of accuracy

since it is unknown, a priori, the partial preferences of a decision maker on the

accuracy of the functional associations predicted.

A functional linkage network (FLN) constructed by integrating several heteroge-

neous biological data sources can also be used to predict or prioritize new genes
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that are potentially associated with a given disease. For this purpose and given

a particular disease, genes known to be associated with this disease are labelled

as seeds in the FLN and all other genes are prioritized in terms of their associa-

tion with the disease based on the sum of the weights of their network links to the

seed genes. One can extract/discover genes related to a given disease from custom

experiments such as microarray data and, for this purpose, an organized analysis

of such data must be accomplished, including steps of quality data analysis, data

pre-processing and the detection of differentially expressed genes. This multistep

analysis can be carried out using several analysis tools available in the literature.

However and despite being complete enough tools for microarray data analysis,

there is still a need of helping the (non-expert) decision maker in some steps of the

analysis pipeline. For example, in the automatic detection of low quality arrays or

the automatic selection of the best and more suitable pre-processing methods for a

given data experiment. This way, the possible errors in posterior microarray anal-

ysis phases, such as classification, due to the presence of low quality arrays and/or

incorrect choice of pre-processing methods can be reduced.

1.1.2 Function approximation

A function approximation problem can be defined as follows: given a set of obser-

vations or input/output data sampled from an unknown function or system F, it is

desired to obtain a model F∗ h F by which accurate outputs from input data spec-

ified in the original data set can be provided and with good predictive performance

for new input data.

Function approximation problems have received great attention in areas such as

time series prediction or system identification. Time series forecasting consists in

the prediction of future values of a sequence of past values and is a challenge in

many fields, such as the prediction of stock market indexes or electricity consump-

tion. On the other hand, system identification is one of the most important aspects

in plant control, communication, pattern recognition and fault analysis fields.

There exists an issue not properly discussed or treated in the research community

in function approximation tasks. This issue is related to one of the most common
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methodologies to evaluate models built by supervised learning algorithms. Such

methodology consists in partitioning the original data set (input/output data) into

two sets: learning and test. The learning set, which can be in turn divided into train-

ing and validation sets, is used for building models that capture the relationships

between inputs and outputs. On the other hand, the test set is used for checking

models’ generalization ability with data not used in the learning process. Usu-

ally, in the literature, the partition into learning and test sets is made randomly or

with some kind of sampling uniformly in some domain, that is, the partition into

learning and test sets does not usually take into account the variability and geom-

etry of the original data. This might lead to non-balanced and unrepresentative

learning and test sets and, thus, to wrong conclusions in the accuracy of the learn-

ing algorithm. Moreover, comparisons between performances of several learning

algorithms in different experiments are difficult if randomness is present in the dis-

tribution due to the need of using several random splits to get a reliable estimate

of the quality of the learning algorithms. How the partitioning is made is there-

fore a key issue and becomes more important when the data set is small due to the

need of reducing the pessimistic effects caused by the removal of instances from

the original data set.

On the other hand, such proper partition is not only useful for the evaluation of

learning’s accuracy and to make reproducible machine learning experiments, but

also in the context of the selection of the best model structure (for example of

different complexities, different number of neurons in the hidden layer of multi-

layer perceptrons, etc) for a given problem, which is known as model selection.

As previously stated, the learning set can be, in turn, split into two sets: training,

used for parameter estimation for a given model structure, and validation, used

for evaluating the trained model, obtaining a validation error. Model selection

is, therefore, related to the task of comparing several model structures based on

estimations of their validation errors in order to select the most suitable model

structure for a given problem.

Usually, in the literature, the estimation of the validation error is obtained using

the K-fold cross-validation model evaluation strategy. However, this approach has

some drawbacks, such as its random nature (it does not take into account the vari-

ability and geometry of the learning data when building the training and validation
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sets) and the subjective decision for a proper value of K, resulting in large bias for

low values and high variance and computational cost for high values. So, it is desir-

able that a model selection approach is based on a model evaluation strategy with

the following features: (1) low variance and bias, (2) no randomness, (3) low com-

putational cost and (4) use of balanced and representative training and validation

sets.

1.2 Contributions of the Dissertation

This thesis presents a set of four contributions that try to bring a solution to the set

of needs described above. Related to the topic of biological data integration, we

propose two contributions:

• A new methodology for the integration of evidences from heterogeneous

biological data sources to predict functional associations between proteins.

The methodology developed is an interpretable approach since it is based on

simple IF-THEN classification rules that reflect the contributions of different

types of evidences toward the prediction task, in this case, functional associ-

ations. Through a multi-objective genetic programming (MO-GP) approach

run in parallel architectures, a set or pareto optimal IF-THEN classification

rules are provided and each rule can be used to build an FLN with a given

level of accuracy. This way, the MO-GP approach simultaneously evolves

toward multiple pareto optimal rules and does not dramatically increase the

learning time when compared to other data integration methodologies. Fur-

thermore, the decision maker does not have to specify partial preferences on

the desired accuracy of the FLN, since covering the entire pareto, different

FLNs are obtained, each one with a different level of accuracy.

• A new tool for the first three steps of standard Affymetrix 3’ expression ar-

rays data analysis pipeline: quality assessment, pre-processing and the detec-

tion of differentially expressed genes. This new tool provides the following

features:
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1. Automated detection of low quality microarrays so that the decision

maker is able to decide whether one or more arrays are defective or not

based on a full set of quantitative and qualitative measures.

2. Automated selection of the best pre-processing methods among several

ones for a given data set through objective quality metrics. The aim is

to free the researcher from taking a decision about the pre-processing

method(s) to be used.

3. Automated generation of confident and complete lists of differentially

expressed genes according to the set of best pre-processing methods

selected before.

By means of this tool, genes related to a given disease from a custom mi-

croarray data experiment can be extracted and labelled in an FLN to predict

new genes that are potentially associated with the disease under study.

With regard to the topic of function approximation, two contributions are proposed:

• A new deterministic data mining approach to distributing a given data set (in-

put/output data) into two representative and balanced sets of roughly equal

size to be used in function approximation problems. The distribution takes

into account the variability of the data set with the purpose of allowing both

a fair evaluation of learning’s accuracy and to make reproducible machine

learning experiments usually based on random distributions. The sets are

generated using a combination of a clustering procedure, especially suited

for function approximation problems, and a distribution algorithm which

distributes the data set into two sets within each cluster based on a nearest-

neighbor approach.

• A new deterministic model selection methodology with applications for in-

cremental Radial Basis Function Neural Network (RBFNN) construction in

time series prediction problems. Such model selection approach is a com-

bined algorithm which takes advantage of balanced and representative train-

ing and validation sets obtained through the data distribution approach previ-

ously proposed. These balanced and representative sets are used in RBFNN
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initialization, optimization and network model evaluation, improving, this

way, the model prediction accuracy, getting small variance and bias, reduc-

ing the computation time spent in selecting the model and avoiding random

and computationally expensive model selection methodologies based on K-

fold cross-validation procedures.

1.3 Structure of the Dissertation

The dissertation is arranged into three parts. The first part contains the three chap-

ters dedicated to the problem of integrating evidences from heterogeneous biolog-

ical data sources to predict functional associations between proteins. Chapter 2

gives an introduction to the problem of predicting functional associations between

proteins and motivates the development of the work done in this part of the disser-

tation. Chapter 3 introduces some theoretical basis such as a basic introduction to

some biological concepts and an overview of bioinformatics, which constitutes the

research field of this part of the dissertation. Then, the existing methodologies in

the literature for the prediction of functional associations between proteins using

single sources are reviewed. Next, we describe the approaches developed by other

authors for the same prediction task when several data sources or evidences are in-

tegrated. Chapter 4 presents in detail the proposed MO-GP approach to developing

pareto optimal classification rules for the integration of evidences from heteroge-

neous data sources to predict functional associations between proteins. An evalua-

tion of the proposed approach and a comparison with other existing methodologies

are also performed.

The second part of the dissertation is composed of three chapters, devoted to mi-

croarray data analysis pipeline. Chapter 5 gives an introduction to the different

steps involved in microarray data analysis and motivates the development of the

work done in Part II. Chapter 6 provides an overview to microarray technology,

an explanation of the different steps involved in microarray data analysis pipeline

and the description of some tools available in the literature to analyze microarray

experiments. In Chapter 7, the microarray data analysis tool proposed in this part,
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A2TOOL, is presented and applied to the Chronic Lymphocytic Leukemia (CLL)

data set.

The third part of this thesis contains the three chapters dedicated to the problem

of distributing the original data set (input/output data) into two representative and

balanced sets for function approximation tasks and the problem of model selection.

Chapter 8 provides an introduction to these problems, motivating the development

of the methodologies proposed in this part. Chapter 9 presents the proposed data

mining approach for a distribution of a data set (input/output data) into two repre-

sentative and balanced sets of roughly equal size to be used in function approxima-

tion problems. An evaluation of such methodology and a comparison with other

existing ones are also provided. Finally the new deterministic model selection

methodology for incremental RBFNN construction in time series prediction prob-

lems is presented in Chapter 10 with applications to several time series prediction

problems and a comparison with other existing time series prediction techniques.

Finally, the main conclusions of the dissertation are discussed in Chapter 11. The

publications supporting the contributions of this thesis are also enumerated.

In order to make easier the reading of this thesis, the following conventions were

taken:

• Each part is composed of chapters. Since a set of different contributions

are given in this dissertation, an introduction is provided in each part for its

better understanding.

• Each chapter is divided into sections, containing subsections and sub- sub-

sections. When a reference is given to any part of the text, this reference

will include the number of the chapter, followed by the number of section,

subsection and so on.

• Figures and tables are numbered by chapter. For example, figure 4.1.

• Mathematical expressions follow the same scheme that chapters and are

showed by their numbers. For example, equation 9.1.

• The bibliographic references are indicated by using the surname of the au-

thors followed by the year of publication if the work has at most 3 authors,



Chapter 1. Introduction 27

and by the surname of the main author followed by the abbreviation et al.

if the work has more authors. Example:[Gonzalez et al., 2003],[Paul and

Kumar, 2002].





Part I

Intelligent Systems for the
integration of biological data to
predict functional associations

between proteins
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Chapter 2

Introduction

A protein in an organism does not fulfill its function independently. The compli-

cated cellular tasks of an organism frequently rely on associations among proteins

[Xu et al., 2010],[Lees et al., 2011] that collaborate with each other as a functional

module, which can be represented by a particular biological process or a specific

pathway [Ravasz et al., 2002],[Hartwell et al., 1999]. For example, proteins are

functionally related when sharing a substrate in a common metabolic pathway,

when regulating each other transcriptionally or when participating in larger multi-

protein assemblies [Mering et al., 2003].

In biology, however, functional relationships among proteins often transcend direct

physical interactions [Lee et al., 2010]. Many proteins can be important for com-

mon biological processes without physically interacting. For example, proteins

functioning in the same biosynthesis pathway, but at different biochemical steps,

may never physically contact each other but are functionally associated because

they act in the same biological process.

Thus, given the importance of functional associations between proteins to the ex-

planations of cellular processes, the discovering of new functional relationships be-

tween proteins is one of the major goals of current biological studies and it is likely

to be an important challenge for many years to come [Lysenko et al., 2011],[Lee

et al., 2010],[Janga et al., 2011],[You et al., 2010],[Wang et al., 2009b],[Costello

et al., 2009],[Wu et al., 2010],[Bradford et al., 2010], [Mostafavi and Morris,

31
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2010],[Li et al., 2006],[Linghu et al., 2008],[Lee et al., 2004],[Lee et al., 2007]

and [Hwang et al., 2005].

Several quantities of high-throughput biological data have become available in re-

cent years to provide diverse insights of protein functions such as phenotypic pro-

files, gene expression microarrays, protein sequences, protein-protein interaction

data, protein phylogenetic profiles and Rosetta Stone sequence, among others [Ray

et al., 2009]. For most of them, various analytical techniques can be applied to

extract evidences of functional correlation/similarity between proteins [Li et al.,

2006] and the result of a search for such correlations is conveniently displayed as a

graph where the nodes represent proteins and the edges between them expressing

a correlation [Linghu et al., 2008]. The links are generally weighted, reflecting the

degree of functional similarity based on some of the data sources described above.

When the average number of edges per protein is sufficiently large, the result will

be a network of associations, the so-called functional linkage network (FLN) as

described in [Linghu et al., 2008] and also mentioned in [Lee et al., 2010],[Janga

et al., 2011], [Costello et al., 2009],[Lee et al., 2004],[Linghu et al., 2009],[Lee

et al., 2007].

An FLN can be constructed by using any of the data sources described above,

however there are two main drawbacks to using each data type in isolation:

• Each of these distinct data sources provides a different, partly independent

and complementary view of the whole genome [Hamid et al., 2009] and,

thus, each single data source often can only reveal a certain perspective of

the underlying complex biological mechanism [Li et al., 2006].

• Many single-source-based approaches are criticized for their noise and low

reliability [Li et al., 2006] and thus may lack the degree of specificity re-

quiered for an accurate prediction of functional associations [Bradford et al.,

2010]

In recent years, the integration of evidences for functional association from hetero-

geneous data sources by means of machine learning procedures is believed to pro-

vide a means to overcome these drawbacks, and thereby benefit studies of genomic
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functions, to cross-validate noisy data sets and to gain broad interdisciplinary views

of large genomic and proteomic data sets [Hackl et al., 2010],[Lysenko et al.,

2011],[Lee et al., 2010],[Janga et al., 2011],[You et al., 2010],[Re and Valen-

tini, 2010],[Xiong et al., 2006], [Yao and Ruzzo, 2006],[Li et al., 2006],[Linghu

et al., 2009],[Linghu et al., 2008],[Lee et al., 2004],[Lee et al., 2007],[Hamid et al.,

2009], [Ray et al., 2009]. By combining multiple forms of evidences, it is ex-

pected to provide a complete genome-wide FLN and more accurate inferences of

new functional relationships between proteins [Li et al., 2006]. Moreover, through

this network, a further step can be taken: to infer individual proteins’ functions

on the basis of linked neighbors, that is, a decision rule for transfering the func-

tion of annotated proteins to unannotated proteins using direct methods [Lee et al.,

2004],[Linghu et al., 2008],[Janga et al., 2011],[Costello et al., 2009],[Bradford

et al., 2010], [Xiong et al., 2006],[Lee et al., 2007] although this topic is out of the

scope of this work.

Several methodologies have successfully been applied in the literature for the in-

tegration of evidences from heterogeneous genomic and proteomic data such as

Bayesian models [Xu et al., 2010],[Lee et al., 2004],[Lee et al., 2007],[Lee et al.,

2010],[Wang et al., 2009b],[Costello et al., 2009], [Bradford et al., 2010],[Li et al.,

2006],[Linghu et al., 2008],[Linghu et al., 2009], Artificial Neural Networks [Linghu

et al., 2008],[Xiong et al., 2006], Fisher’s method [Hwang et al., 2005], Decision

Trees [Qi et al., 2006], Random Forests [Qi et al., 2006], Logistic Regression [Qi

et al., 2006], Kernel methods [Lanckriet et al., 2004] [Wu et al., 2010] or Random

walks on a graph [Lees et al., 2011], most of them being supervised-based learn-

ing methodologies that require a gold standard, which is a trusted representation of

the functional information one might hope to discover. A gold standard generally

consists of sets of samples grouped as either ”positive” or ”negative” examples. In

spite of the increase in the prediction accuracy when several data sources or ev-

idences are integrated, all of these methodologies suffer from at least one of the

following problems:

• The computational cost of obtaining several FLNs with different levels of

accuracy. From a biological viewpoint, it is desirable to obtain several FLNs
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with different levels of accuracy since it is unknown, a priori, the partial pref-

erences of a decision maker (i.e. the researcher) on the desired accuracy of

the functional associations predicted. For supervised-based learning and in

the case of prediction of functional relationships between proteins, the set

of negative samples is much greater than the set of positive ones, so, to ob-

tain several FLNs with different levels of accuracy, a cost-sensitive learning

approach should be used, in which the varying costs of different misclassifi-

cation types are considered. However, since such costs are usually unknown,

different cost setups have to be explored within a reasonable range and, for

each cost setup, a model must be learned to obtain an FLN with a given level

of accuracy which, obviously, introduces extra computational cost.

• Interpretability. It is also desirable, from the biological point of view, for

the model built by the data integration approach to be interpretable in the

sense that (i) simple rules are provided to predict functional associations

between proteins and (ii) the contributions of different types of evidences

in the integration process toward predicting such functional associations are

given.

Thus, in this part of the dissertation, it is proposed a new methodology for the in-

tegration of evidences from heterogeneous biological data sources to predict func-

tional associations between proteins that tries to overcome these problems. The

proposed methodology is a interpretable approach since it is based on simple IF-

THEN rules that reflect the contributions of different types of evidences toward

the prediction task. Through a multi-objective genetic programming (MO-GP) ap-

proach that takes into account simultaneously different misclassification costs, a

set or pareto optimal IF-THEN classification rules are provided and each rule can

be used to build an FLN with a given level of accuracy. This way, the MO-GP

approach simultaneously evolves toward multiple pareto optimal rules and does

not dramatically increase the learning time when compared to other integration

methodologies where several costs have to be explored. Moreover, the decision

maker does not have to specify partial preferences on the desired accuracy of the

FLN, since covering the entire pareto, different FLNs are obtained, each one with

a different level of accuracy.
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This part of the thesis is structured as follows. Chapter 3 introduces some theo-

retical background for the understanding of this part such as a basic introduction

to some biological concepts necessary for computer scientists and an overview of

bioinformatics, which constitutes the research field of this part of the dissertation.

Then, the methodologies present in the literature for the prediction of functional as-

sociations between proteins using single sources are reviewed. Next, we describe

the approaches developed by other authors for the prediction of functional associ-

ations when several data sources or evidences are integrated. Chapter 4 presents

the proposed MO-GP approach to developing pareto optimal classification rules

for data integration.





Chapter 3

Prediction of functional
associations between proteins:
concepts and methodologies

The aim of this chapter is three-fold. First, to introduce some basic concepts of

biology and an overview of bioinformatics (section 3.1). Second, to review the

methodologies present in the literature for the prediction of functional associa-

tions between proteins using single sources (Section 3.2) and third, to describe the

approaches developed by other authors for the prediction task when several data

sources are integrated (Section 3.3).

3.1 Biology and Bioinformatics

In this section, the universal characteristics of all the living organisms are outlined.

We briefly discuss the cellular diversity, the Deoxyribonucleic Acid (DNA) ge-

netic material and the central dogma of gene expression. Then, a global vision of

Bioinformatics is introduced.

37
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3.1.1 Biology

3.1.1.1 Prokaryotic and Eukaryotic Cells

The biological universe consists of two types of cells: prokaryotic and eukaryotic.

Prokaryotic cells consist of a single closed compartment that is surrounded by the

plasma membrane, lacks a defined nucleus, and has a relatively simple internal

organization (Figure 3.1). Bacteria, the most numerous prokaryotes, are single-

celled organisms; the cyanobacteria, or blue-green algae, can be unicellular or fila-

mentous chains of cells. Although bacterial cells do not have membrane-bounded

compartments, many proteins are precisely localized in their aqueous interior, or

cytosol, indicating the presence of internal organization [Lodish et al., 2007].

Figure 3.1: A Prokaryotic cell. The nucleoid, consisting of the bacterial DNA, is
not enclosed within a membrane. E. coli and some other bacteria are surrounded
by two membranes separated by the periplasmic space. The thin cell wall is

adjacent to the inner membrane [Lodish et al., 2007].

Eukaryotic cells, unlike prokaryotic cells, contain a defined membrane-bound nu-

cleus and extensive internal membranes that enclose other compartments, the or-

ganelles (Figure 3.2). The region of the cell lying between the plasma membrane

and the nucleus is the cytoplasm, comprising the cytosol (aqueous phase) and the

organelles. Eukaryotes comprise all members of the plant and animal kingdoms,

including the fungi, which exist in both multicellular forms (molds) and unicellu-

lar forms (yeasts), and the protozoans (proto, primitive; zoan, animal), which are
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exclusively unicellular. Eukaryotic cells are commonly about 10 − 100µm across,

generally much larger than bacteria. A typical human fibroblast, a connective tissue

cell, might be about 15µm across with a volume and dry weight some thousands of

times those of an E. coli bacterial cell. An amoeba, a single-celled protozoan, can

be more than 0.5 mm long. An ostrich egg begins as a single cell that is even larger

and easily visible to the naked eye.

Figure 3.2: A Eukaryotic cell. Only a single membrane (the plasma membrane)
surrounds the cell, but the interior contains many membrane-limited compart-
ments, or organelles. The defining characteristic of eukaryotic cells is segrega-
tion of the cellular DNA within a defined nucleus, which is bounded by a double
membrane. The outer nuclear membrane is continuous with the rough endo-
plasmic reticulum, a factory for assembling proteins. Golgi vesicles process and
modify proteins, mitochondria generate energy, lysosomes digest cell materials
to recycle them, peroxisomes process molecules using oxygen, and secretory
vesicles carry cell materials to the surface to release them [Lodish et al., 2007].

All cells are thought to have evolved from a common progenitor because the struc-

tures and molecules in all cells have so many similarities. In recent years, detailed

analysis of the DNA sequences from a variety of prokaryotic organisms has re-

vealed two distinct types: the so-called ”true” bacteria, or eubacteria, and archaea

(also called archaebacteria or archaeans). Working on the assumption that organ-

isms with more similar genes evolved from a common progenitor more recently

than those with more dissimilar genes, researchers have developed the evolution-

ary lineage tree shown in Figure 3.3. According to this tree, the archaea and the

eukaryotes diverged from the true bacteria before they diverged from each other.
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Figure 3.3: Evolutionary lineage tree from simple bacteria to complex mam-
mals. This family tree depicts the evolutionary relations among the three ma-
jor lineages of organisms. The structure of the tree was initially ascertained
from morphological criteria: Creatures that look alike were put close together.
More recently the sequences of DNA and proteins have been examined as a more
information-rich criterion for assigning relationships. The greater the similari-
ties in these macromolecular sequences, the more closely related organisms are
thought to be. The trees based on morphological comparisons and the fossil
record generally agree well with those based on molecular data. Although all
organisms in the eubacterial and archaean lineages are prokaryotes, archaea are
more similar to eukaryotes than to eubacteria (”true” bacteria) in some respects

[Lodish et al., 2007].

3.1.1.2 The Deoxyribonucleic Acid (DNA)

The information about how, when, and where to produce each kind of protein is

carried in the genetic material, a polymer called deoxyribonucleic acid (DNA). The

three-dimensional structure of DNA consists of two long helical strands that are

coiled around a common axis, forming a double helix. DNA strands are composed

of monomers called nucleotides; these often are referred to as bases because their

structures contain cyclic organic bases.

Four different nucleotides, abbreviated A (Adenine), T (Thymine), C (Cytosine),

and G (Guanine), are joined end to end in a DNA strand, with the base parts pro-

jecting out from the helical backbone of the strand. Each DNA double helix has a
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simple construction: wherever there is an A in one strand there is a T in the other,

and each C is matched with a G (Figure 3.4).

Figure 3.4: DNA: A diagram highlighting the helical strands around the outside
of the molecule and the A-T and G-C base pairs inside [Lodish et al., 2007].

This complementary matching of the two strands is so strong that if complementary

strands are separated, they will spontaneously zip back together in the right salt and

temperature conditions. Such hybridization is extremely useful for detecting one

strand using the other. For example, if one strand is purified and attached to a piece

of paper, soaking the paper in a solution containing the other complementary strand

will lead to zippering, even if the solution also contains many other DNA strands

that do not match.

3.1.1.3 Gene expression: The Central Dogma

The genetic information carried by DNA resides in its sequence, the linear order

of nucleotides along a strand. The information-bearing portion of DNA is divided

into discrete functional units, the genes, which typically are 5000 to 100,000 nu-

cleotides long. Most bacteria have a few thousand genes; humans, about 40,000.
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The genes that carry instructions for making proteins commonly contain two parts:

a coding region that specifies the amino acid sequence of a protein and a regulatory

region that controls when and in which cells the protein is made.

The indirect route of information from DNA to proteins is known as the central
dogma of molecular genetics and the cells use two processes in series to convert

the coded information in DNA into proteins (Figure 3.5). In the first, called tran-

scription, the coding region of a gene is copied into a single-stranded ribonucleic

acid (RNA) version of the double-stranded DNA. A large enzyme, RNA poly-

merase, catalyzes the linkage of nucleotides into a RNA chain using DNA as a

template. In eukaryotic cells, the initial RNA product is processed into a smaller

messenger RNA (mRNA) molecule, which moves to the cytoplasm. Here the ri-

bosome, an enormously complex molecular machine composed of both RNA and

protein, carries out the second process, called translation. During translation, the

ribosome assembles and links together amino acids in the precise order dictated by

the mRNA sequence according to the nearly universal genetic code.

3.1.2 Bioinformatics

Bioinformatics is a interdisciplinary research area at the interface between com-

puter science and biological science. A variety of definitions exist in the literature

and on the world wide web, but one might define Bioinformatics as the union of

biology and informatics: bioinformatics involves the technology that uses comput-

ers for storage, retrieval, manipulation, and distribution of information related to

biological macromolecules such as DNA, RNA and proteins [Xiong, 2006].

Bioinformatics differs from a related field known as computational biology. Bioin-

formatics is limited to sequence, structural, and functional analysis of genes and

genomes and their corresponding products. Computational biology encompasses

all biological areas that involve computation. For example, mathematical modeling

of ecosystems, population dynamics, application of the game theory in behavioral

studies and phylogenetic construction using fossil records all employ computa-

tional tools, but do not necessarily involve biological macromolecules.
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Figure 3.5: The coded information in DNA is converted into the amino acid
sequences of proteins by a multistep process. Step 1: Transcription factors bind
to the regulatory regions of the specific genes they control and activate them.
Step 2: Following assembly of a multiprotein initiation complex bound to the
DNA, RNA polymerase begins transcription of an activated gene at a specific
location, the start site. The polymerase moves along the DNA linking nucleotides
into a single-stranded pre-mRNA transcript using one of the DNA strands as a
template. Step 3: The transcript is processed to remove noncoding sequences.
Step 4: In a eukaryotic cell, the mature messenger RNA (mRNA) moves to the
cytoplasm, where it is bound by ribosomes that read its sequence and assemble
a protein by chemically linking amino acids into a linear chain [Lodish et al.,

2007].

Bioinformatics [Xiong, 2006] consists of two subfields: the development of com-

putational tools and databases and the application of these tools and databases in

generating biological knowledge to better understand living systems. These two

subfields are complementary to each other. The tool development includes writing

software for sequence, structural and functional analysis, as well as the construc-

tion and curating of biological databases. These tools are used in three areas of

genomic and molecular biological research: molecular sequence analysis, molecu-

lar structural analysis and molecular functional analysis.

The areas of sequence analysis include sequence alignment, sequence database

searching, motif and pattern discovery, gene and promoter finding, reconstruction
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of evolutionary relationships and genome assembly and comparison. Structural

analysis include protein and nucleic acid structure analysis, comparison, classifi-

cation and prediction. The functional analysis include gene expression profiling,

protein-protein interaction prediction, protein subcellular localization prediction,

metabolic pathway reconstruction and simulation.

Bioinformatics has not only become essential for basic genomic and molecular bi-

ology research, but is having a major impact on many areas of biotechnology and

biomedical sciences. It has applications, for example, in knowledge-based drug

design, forensic DNA analysis, and agricultural biotechnology. Computational

studies of protein-ligand interactions provide a rational basis for the rapid iden-

tification of novel leads for synthetic drugs. Knowledge of the three-dimensional

structures of proteins allows molecules to be designed that are capable of bind-

ing to the receptor site of a target protein with great affinity and specificity. This

informatics-based approach significantly reduces the time and cost necessary to

develop drugs with higher potency, fewer side effects and less toxicity than using

the traditional trial-and-error approach. There is no doubt that bioinformatics is a

field that holds great potential for revolutionizing biological research in the coming

decades.

3.2 Prediction of functional associations between proteins
by means of single sources

In recent years, several biological data sources have become available from which

new evidences for functional relationships between proteins can be predicted. It

is possible to distinguish different classes of evidences based on the type of data

they use and we are going to describe some of the commonly used in the literature:

experimental, sequence and literature-based evidences.

3.2.1 Experimental-based evidences

The first class of evidences for functional associations is based on high-throughput

data, such as protein-protein interactions, microarray data or gene interactions.
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3.2.1.1 Protein-protein interactions (PPI)

Physical interactions between proteins identified by mass spectrometry or one of

the hybrid approaches are used to generate protein interaction maps on a large-

scale which are used to infer functional associations between proteins [Janga et al.,

2011]. It is based on the assumption that proteins that physically interact are likely

to be functionally related [Janga et al., 2011], [Lee et al., 2004],[Linghu et al.,

2008],[Linghu et al., 2009].

3.2.1.2 Microarray profiles (Co-exp)

Microarray data are used to measure the expression levels of large numbers of

genes simultaneously or to genotype multiple regions of a genome. It has been

demonstrated that genes with high co-expression across different conditions, are

more likely to be functionally related than randomly chosen [Lee et al., 2004].

The strengh of co-expression is usually measured using the Pearson Correlation

coefficient [Li et al., 2006],[Linghu et al., 2008],[Lee et al., 2007] or the Mutual

Information [Li et al., 2006].

3.2.1.3 Genetic interactions (GI)

Genetic interactions are also used as a evidence for discovering functional linkage

relationships between proteins [Linghu et al., 2008]. In these approaches, rela-

tionships between genes are constructed by linking gene pairs which show signif-

icantly reduced fitness when both genes are knocked out compared to when each

gene is knocked out independently. These lethality assays are carried out on a

high-throughput scale to construct genome-scale relationships [Janga et al., 2011].

Table 3.1 shows some data sources available from which the relationships between

proteins can be extracted based on experimental data.
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Table 3.1: Experimental data for generating functional linkage associations be-
tween proteins and their sources

Approach Data source
PPI HPRD (http://www.hprd.org)

IntAct (http://www.ebi.ac.uk/intact)
MINT (http://cbm.bio.uniroma2.it/mint/)
BioGRID (http://www.thebiogrid.org)
DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi)
MIPS (http://mips.gsf.de/proj/ppi)

Microarray profiles GEO (http://www.ncbi.nlm.nih.gov/geo)
SMD (http://genome-www5.stanford.edu)
ArrayExpress (http://www.ebi.ac.uk/arrayexpress)
caArray (http://caarraydb.nci.nih.gov/caarray)
ATLAS (http://www.ebi.ac.uk/gxa/array/U133A)
STRING (http://string.embl.de)

GI BioGRID (http://www.thebiogrid.org)
DRYGIN (http://drygin.ccbr.utoronto.ca)
IM Browser (http://proteome.wayne.edu/PIMdb.html)
SGD (http://www.yeastgenome.org/)

3.2.2 Sequence-based evidences

Several computational methods have been proposed for discovering associations

between proteins from sequence data alone. Three different groups of sequence-

based evidences are going to be described: genomic context, sequence similarity

and protein domain sharing.

3.2.2.1 Genomic context evidences

These evidences include gene fusion, gene cluster or operon method and phyloge-

netic profiles and gene neighbor.

Gene fusion (GF) This approach, also known as the Rosetta Stone method, tries

to detect the fusion of two genes into a single protein coding gene in one of the se-

quenced genomes and thereby links them as a strong functional association [Linghu

et al., 2009].
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Gene cluster or operon method (GC) Within bacteria, proteins of closely re-

lated function are often transcribed from a single functional unit known as an

operon. Operons contain two or more closely spaced genes located on the same

DNA strand. These genes are often in proximity to a transcriptional promoter that

regulates operon expression [Bowers et al., 2004]. A series of genes are considered

functionally linked if the nucleotide distance between genes in the same orientation

was less than or equal to a specified distance threshold [Strong et al., 2003].

Phylogenetic profiles (PP) In this case, a vector of presence/absence of a protein

across all the analyzed genomes is constructed and compared to identify proteins

showing correlated profiles, as a measure of functional linkage. The rationale is

that two proteins showing similar profiles are expected to be functionally related

[Bowers et al., 2004],[Lee et al., 2004],[Linghu et al., 2008],[Linghu et al., 2009].

Gene neighbor (GN) This evidences is based on the assumption that if two

genes are found to be chromosomal neighbors in several different genomes, a func-

tional linkage can be inferred between the proteins they encode [Bowers et al.,

2004][Linghu et al., 2009].

Relationships between proteins based on the genomic context evidences can be

extracted from STRING [Szklarczyk et al., 2011] or Prolinks [Bowers et al., 2004]

databases.

3.2.2.2 Sequence similarity (SS) evidence

The similarity between the aminoacid sequences of two given proteins can also be

used as a evidence for functional relationships. It is based on the assumption that

the more similar the sequences of two proteins are, the more likely the functional

relationship is between them [Linghu et al., 2008]. To extract evidences for func-

tional associations based on sequences similarity, the blastp program can be used
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[Altschul et al., 1990]. This program finds regions of local similarity between pro-

tein sequences and calculates the statistical significance of matches, which can be

used as a score of functional relationship between proteins.

3.2.2.3 Protein domain sharing (PDS)

The rationale behind protein domain sharing is that proteins containing the same

protein domains tend to have similar function. Domains represent modular protein

subunits that are often repeated in various combinations throughout the genome.

To retrieve protein domain information, the Interpro database can be used [Mulder

et al., 2005].

3.2.3 Literature-derived evidences

3.2.3.1 Text mining (TextM)

Information on functional associations between proteins are also available from

Pubmed and other online resources. Evidences for protein associations can be

obtained by searching for statistically significant co-occurrences between protein

names, based on the assumption that the higher the frequency two proteins occur

in the same sentence/paragraph/abstract or article the more likely their functional

association [Bowers et al., 2004], [Linghu et al., 2009].

Examples of databases where functional relationships between proteins are ex-

tracted based on text mining are String [Szklarczyk et al., 2011] and Prolinks [Bow-

ers et al., 2004].

3.2.3.2 Functional semantic similarity in biomedical ontologies

The Gene Ontology (GO) [Ashburner et al., 2000] is a controlled vocabulary used

to describe various attributes of genes including their functions. GO organizes the

information by means of three different ontologies: cellular component, biological

process and molecular function. The ontologies of GO are structured as a Direct
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Acyclic Graph (DAG), with terms as nodes in the graph and the relations between

the terms as arcs. Where it is appropriate to talk about a parent-child relation-

ship between nodes, parent refers to the node closer to the root of the graph and

child to that closer to the leaf nodes; the parent would be a broader GO term and

the child would be a more specific term. The terms themselves do not describe

specific genes or gene products. Genes and gene products are annotated by collab-

orating databases in one or more terms at the most specific level possible, but are

considered to share the attributes of all the parent nodes.

Various methods have sought to derive evidences for functional associations be-

tween proteins using their associated GO terms. For example, Xia et al. [Xia

et al., 2006] and Rhodes et al. [Rhodes et al., 2005] used the following procedure

using the biological process ontology: (1) identify all biological process terms

shared by two proteins (2) count how many other proteins were assigned to each

of the shared terms as well (3) identify the shared biological process term with the

smallest count (Smallest Shared Biological Process, SSBP). In general, the smaller

the SSBP count, the more specific the biological process term and, therefore, the

higher degree of functional association between two proteins. The same proce-

dure has also been used in [Linghu et al., 2009] to get functionally related proteins

but using the molecular function ontology (Smallest Shared Molecular Function,

SSMF) and the cellular component ontology (Smallest Shared Cellular Compo-

nent, SSCC).

3.3 Prediction of functional associations between proteins
by means of the integration of evidences from hetero-
geneous data sources

As stated in the previous section, there are several heterogeneous data sources from

which evidences for functional relationships between proteins can be extracted.

However, each source has bias and errors. On the other hand, it is unlikely, given

the potential number of possible protein relationships, that two independent evi-

dences for functional association or prediction methods will give rise to the same
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false positive prediction. Due to this fact, it is expected an increase in both pre-

diction accuracy and coverage when several independent approaches or evidences

supporting the association between proteins are present. Due to these reasons, in

recent years, the integration of evidences from multiple heterogeneous data sources

by means of state-of-the-art procedures is believed to provide a means to overcome

the drawbacks of using data sources in isolation. These approaches learn rules from

existing knowledge, which can then be applied to make predictions on new data,

revealing relationships between proteins not distinguishable within single datasets.

In the literature, many approaches have integrated multiple type of evidences to

predict functional associations between proteins, namely, Bayesian integration, Ar-

tificial Neural Networks, Fisher’s method, Decision Trees, Random forest classi-

fiers, Logistic regression, Kernel methods and Random walks on a graph.

Most of these evidence/data integration methodologies require a gold standard, that

is, they are supervised-based learning methodologies. A gold standard is a trusted

representation of the functional information one might hope to discover. Such

standard, coupled with an effective means of evaluation, can be used to assess the

performance of a data integration method and serves as a basis for comparison

among different integration approaches [Myers et al., 2006].

First of all, some issues about the integration of evidences from multiple data

sources such as gold standards and the metrics for the evaluation of data integra-

tion methods, will be described (section 3.3.1.1). Then, some of the state-of-the-art

data integration methodologies will be explained, focusing with more detail on the

approaches used in this dissertation (section 3.3.2).

3.3.1 Gold standards and metrics for data integration evaluation

3.3.1.1 Gold standards

As previously stated, a gold standard is a trusted representation of the information

one wants to discover, in our case, functional associations. There are several issues

relating to gold standards such as their type or their size.
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Existing gold standards A number of different gold standards to be used in data

integration methodologies have been proposed in the literature. Each standard gen-

erally consists of sets of gene or protein pairs grouped as either ”positive” (Gold

Standard Positive, GSP) or ”negative” (Gold Standard Negative, GSN) examples.

GSPs are usually derived from functional classification schemes that capture as-

sociations of genes or proteins with specific biological processes as reported in

the literature [Lee et al., 2004],[Lee et al., 2007],[Linghu et al., 2008],[Linghu

et al., 2009]. Such classifications are available from multiple sources including the

Gene Ontology (GO) [Ashburner et al., 2000], KEGG [Ogata et al., 1999], FunCat

[Ruepp et al., 2004], the Munich Information Center for Protein Sequences (MIPS)

[Mewes et al., 2002] or the clusters of orthologous group (GOG) [Tatusov et al.,

1997].

However, choosing a proper GSN set is a challenging problem, due to the difficulty

in specifying genes/proteins that are not functionally related. In the literature, there

are several examples to generate a GSN set:

• The GSN generated is based on different cellular compartments [Li et al.,

2010],[Jansen and Gerstein, 2004]. However, localization data is likely not

representative of ”typical” unrelated protein pairs, since a pathway or a bi-

ological process can be composed of proteins located in different compart-

ments [Myers et al., 2006].

• Two genes/proteins are defined as belonging to the GSN set if they are not

functionally related in the GSP set [Li et al., 2010],[Lee et al., 2004],[Linghu

et al., 2009]. This method generates a large number of negative relationships,

but some of them may represent potentially positive relationships. Instead

of using the whole GSN set, a subset of negative protein pairs are selected

randomly from that GSN set. The main drawback of this procedure is that

the integration method must be run several times, each with a different subset

of GSN to get an average evaluation of the data integration methodology.

• Wu et al. [Wu et al., 2010] proposed a method to generate a GSN set based

on a graph approach in which a network is built using the defined GSP. The

most distant gene pairs in the network can be defined as a GSN set.
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Relative size of gold standard positive/negative sets Another issue about the

gold standard set is the relative size between GSP and GSN sets [Myers et al.,

2006]. The expected number of proteins involved in any particular biological pro-

cess is a small percentage of the proteome. This imbalance is particularly prob-

lematic in data integration methods based on pairwise associations between pro-

teins, where the expected number of protein pairs sharing functional relationships

is an even smaller fraction of all possible protein combinations. For instance, of

the 18 million possible protein pairs in yeast, it is expected that less than 1 mil-

lion are functionally related. So, to get a representative measure of how well one

could expect a data integration method to perform on whole-genome tasks, the ra-

tio of positive to negative examples in the gold standard sets should match that in

the application domain as closely as possible [Myers et al., 2006],[Linghu et al.,

2009],[Lee et al., 2004],[Lee et al., 2007] instead of using equi-sized GSP and GSN

sets as in [Wu et al., 2010] and [Linghu et al., 2008].

3.3.1.2 Metrics for data integration evaluation: ROC and precision-recall
curves

Sensitivity-specificity and precision-recall analysis are two approaches to measur-

ing the predictive accuracy of data from two classes given the class labels (positives

and negatives). Sensitivity and specificity are typically computed over a range of

thresholds and plotted with respect to one another, leading to the Receiver Operat-

ing Characteristic (ROC) curve and portrays the trade-off between sensitivity and

specificity. Each value of the threshold yields one point on the curve by consider-

ing protein pairs whose association in the data exceeds the threshold value to be

positive predictions and other pairs to be negative. Precision-recall analysis is done

in the same way, but with precision (or Positive Predictive Value, PPV) replacing

specificity. Precision is commonly used to evaluate data integration methodologies

[Linghu et al., 2008],[Lee et al., 2004],[Lee et al., 2007],[Wu et al., 2010] [Linghu

et al., 2009] because it is more informative than specificity when the size of the

GSN set is much greater than the size of the GSP set and it rewards methods that
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generate firm positive predictions, without regard to the accuracy of negative pre-

dictions, which are less helpful in guiding laboratory experiments [Myers et al.,

2006].

Specificity, sensitivity, precision and recall are defined as:

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

(3.1)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(3.2)

where true positives (TP) and false positives (FP) are protein pairs associated by

the data integration approach and annotated in GSP and GSN respectively. True

negatives (TN) and False negatives (FN) are protein pairs not associated by the data

integration methodology and annotated in GSN and GSP respectively.

Any point in both the ROC and Precision-Recall curves corresponds to a different

trade-off between FPs and FNs. ROC and precision-recall curves can be sum-

marized with a single statistic: the area under the curve (AUC). Precision-recall

characteristics can be summarized with a similar measure which is usually referred

as the AUPRC.

3.3.2 Data integration methods. State-of-the-art

In the literature, many approaches have integrated multiple source of evidences to

predict functional associations between proteins (i.e. to construct the FLN net-

work). In this section, some of the more relevant are described.
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3.3.2.1 Bayesian integration

The Bayesian integration method is a probabilistic model and it is the most widely

used strategy for the integration of evidences to predict functional associations be-

tween proteins [Wang et al., 2009b], [Bradford et al., 2010], [Linghu et al., 2008],

[Linghu et al., 2009], [Lee et al., 2004],[Lee et al., 2007] and [Lee et al., 2010].

Given the GPS and GSN sets and following the Bayes theorem, the prior odds

Oprior of finding a functional relationship between proteins can be calculated as:

Oprior =
PGSP
PGSN

(3.3)

where PGS P is the probability that a pair of proteins are functionally related within

all the possible protein pairs while PGS N stands for the possibility that a pair of

proteins are not related. When considering the given n evidences (E), i.e. the n

predictive features or data sets to be integrated, the posterior odds Oposterior of an

functional relationship can be computed as:

Oposterior =
P(GSP|E1, . . . , En)
P(GSN |E1, . . . , En)

(3.4)

Let the likelihood ratio (LR) be defined as:

LR(E1,...,En) =
P(E1, . . . , En|GSP)
P(E1, . . . , En|GSN)

, (3.5)

which represents the probability of observing the values in the evidence data sets

given that a pair of proteins are functionally related divided by the probability of

observing the values given that the pair is not functionally related. That is, it is a

score to quantify the degree of functional association between protein pairs.

The posterior odds of an interaction can be calculated as the product of the prior

odds and the likelihood ratio :

Oposterior = Oprior × LR(E1,...,En) (3.6)
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If the evidence types to be integrated are independent (or non-redundant), the like-

lihood ratio can be calculated simply as the product of individual likelihood ratios

from the respective evidence types:

LR(E1,...,En) =

n∏
i=1

LR(Ei), (3.7)

which is called the naı̈ve Bayesian model [Jansen and Gerstein, 2004],[Rhodes

et al., 2005],[Linghu et al., 2009]. Equation 3.7 is equivalent to the following,

where LLR represent log likelihood ratios:

LLR(E1,...,En) = LLR(E1) + . . . LLR(En), (3.8)

this way, scores greater than zero indicate that the evidences tend to functionally

link proteins, with higher scores indicating more confident linkages. Calculating

LLR for each feature means adjusting different evidences to a common benchmark.

That makes the different scores comparable even if they initially are of a different

nature.

As the prior odds is a constant, the composite LLR corresponding to a specific

biological evidence can be used to measure the predictive power or confidence

degree for predicting functional relationships [Linghu et al., 2009]. A cutoff of log

likelihood ratio (LLRcutoff ) is represented as an indicator whether a protein pair

functionally relates (that is, yes if the composite LLR(E1,...,En) is above LLRcutoff ,

no if not). By filtering in the Naı̈ve Bayesian model, the resulting protein pairs

with LLR(E1,...,En) above LLRcutoff are identified as functionally related and used

to construct the Functional Linkage Network (FLN). By varying the LLR cutoff,

FLNs with different levels of accuracy can be obtained:

• A low LLR cutoff will correspond to a dense and relative noisy network in

which most of the predictions are positives (TPs and FPs).

• A high LLR cutoff will correspond to a sparse and relative confident network

in which most of the predictions are negatives (TNs and FNs).
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Therefore, different LLR cutoffs will give several trade-offs between precision and

recall values (different ratios of FP/FN).

Bayesian integration has several features that make it suitable for data integration.

Each individual evidence is implicitly weighted according to its reliability, and

hence it is easy to interpret the probability relationships for each evidence. Also,

this method can accommodate missing data.

On the other hand, as previously stated, Naı̈ve Bayesian integration assumes the

evidence types to be integrated are independent or non-redundant, that is, the

conditional probability of a evidence given a class (functionally related or non-

functionally related) is assumed to be independent from conditional probabilities

of other evidences given that class. Due to this assumption, the predictive power of

Naı̈ve Bayes may be reduced if evidence dependencies are present. We may have

three choices when this dependence exists:

• To use the fully-connected Bayes network (eq. 3.5) which benefits from the

advantages of the Naı̈ve Bayes approach and does not assume independence

between features. However, a fully-connected BN may be computationally

expensive (learning a Bayes Network structure is an NP-hard problem) [Li

et al., 2006].

• To make a correction for conditional dependencies [Elefsinioti et al., 2009].

• To use a heuristic modification to the strict Bayesian approach by incorpo-

rating the relative weighting of the data as well as capturing simple aspects

of their relative independence [Lee et al., 2004],[Lee et al., 2007].

However, the relative independence of the various evidences can be difficult to

estimate in the Bayesian framework [Lee et al., 2004]. Some other works have

shown that correcting for conditional dependencies does not significantly improve

the performance [Lu et al., 2005] and that the Naı̈ve Bayes classifier can still be

applied even when the independence assumption is not strictly satisfied [Linghu

et al., 2009].
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3.3.2.2 Artificial Neural Networks

Artificial neural networks (ANNs) [Smith, 1993] are signal processing systems that

try to emulate the behavior of biological nervous systems by providing a mathe-

matical model of numerous neurons connected in a network.

The various models of ANNs are designated by:

• The network topology, which refers to the structure of interconnections among

the various nodes (neurons) in terms of layers and/or feedback or feedfor-

ward links.

• Node characteristics, which mainly specify the operations it can perform,

such as summing weighted inputs incident on it and then amplifying or ap-

plying some aggregation operators on it.

• The updating rules, which may be for weights and/or states of the neurons.

Thus, ANNs can be viewed as weighted directed graphs in which artificial neu-

rons are nodes and directed edges (with weights) are connections between neuron

outputs and neuron inputs.

Most practical applications of ANNs involve a multilayer structure, such as the

popular multilayer perceptron (MLP) model [Haykin, 1998], grouped into the cat-

egory of Feedforward networks in which there are no loops in the architecture.

MLPs consist of a number of interconnected processing elements (neurons) ar-

ranged in layers. Assuming, for example, a MLP with two hidden layers, the out-

puts of the neurons in the first hidden layer, second hidden layer, and output layer,

respectively can be written as:
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pk = f

 n∑
j=1

w(p)
k j x j

 , k = 1, ..., L;

qk = g

 L∑
j=1

w(q)
k j p j

 , k = 1, ..., S ;

ok = h

 S∑
j=1

w(o)
k j q j

 , k = 1, ...,C

(3.9)

where x j is the j-th input variable to the MLP (there are n inputs), pk and qk are

the outputs of the k-th neuron in the first and second hidden layers respectively and

ok is the real-value output of the kth neuron in the output layer. In standard neural

classifiers, the class returned is arg maxk ok, k = 1, . . . ,C [Zhou and Liu, 2006].

f (.), g(.) and h(.) are activation functions, such as the sigmoid function, a Gaussian

function or a linear function, which transform the activation level of a neuron into

an output signal. L and S are the number of neurons in the first and second hidden

layers, respectively and C is the number of neurons in the output layer. The network

size (i.e., L and S ) and the network weights (i.e. w(p)
k j s, w(q)

k j s and w(o)
k j ) are adjusted

or trained to achieve a desired overall behavior of the network in terms of predicting

the phenotype of samples in the training set. The back-propagation algorithm is

commonly used to train MLP networks [Ressom et al., 2008].

With regard to the integration of evidences from heterogeneous biological data

sources to predict functional associations between proteins, each input variable

x j is related to one evidence and the output layer has two nodes, one related to

functional relationship and the other related to non-functional relationship between

proteins [Linghu et al., 2008].

However, if FLNs with both different sizes and different levels of accuracy are

to be constructed, a more sophisticated methodology must be followed in which

the FP/FN cost ratio must be varied. This way, a FP/FN cost ratio close to 0 will

give a classifier with most of the predictions positives (a dense and relative noisy

FLN network) whereas a large FP/FN cost ratio will provide a classifier with most

of the predictions negatives (a sparse and relative confident network). For this
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purpose, a cost-sensitive neural network can be used [Zhou and Liu, 2006] in which

different misclassification costs (FP/FN cost ratios) must be taken into account to

get different trade-offs between precision and recall.

There are several approaches to train neural networks with different misclassifi-

cation costs. Two of the most successfully applied in the literature are threshold-

moving [Zhou and Liu, 2006] and the minimization of the misclassification costs

[Kukar and Kononenko, 1998].

Threshold-moving This methodology moves the output threshold toward inex-

pensive classes so that examples with higher cost become harder to be misclassi-

fied. The approach trains an artificial neural network once as usual and the cost-

sensitivity is introduced in the test phase.

Suppose there are C classes (i.e. C neurons in the ouput layer) and let Cost[k, c],

with k, c ∈ {1..C}, be the cost of misclassifying a k-class instance as a c-class

instance with Cost[k, k]=0.

In threshold-moving and assuming that
∑C

k=1 ok = 1 and 0 ≤ ok ≤ 1, instead of

returning the class given by arg maxk ok, the class returned is arg maxk o∗k where:

o∗k = µ

C∑
c=1

ok ·Cost[k, c] (3.10)

where µ is a normalization term such that
∑C

k=1o∗k = 1 and 0 ≤ o∗k ≤ 1.

Minimization of the misclassification costs This approach changes the error

function that is being minimized by the artificial neural network. Instead of mini-

mizing the squared error, as usual in multilayer perceptrons, the misclassification

cost is minimized. Let us suppose a set of m samples {pi}
m
i=1 belonging to C dif-

ferent classes. Assuming that the MLP output layer has C nodes, if class(pi) = c,

c ∈ {1, . . . ,C}, then the desired output for the c-th output neuron for sample pi

is o
′

c(pi) = 1 and the desired output for the j-th output neuron for sample pi is

o
′

j(pi) = 0, ∀ j ∈ [1, . . . ,C] and j , c. As defined in [Kukar and Kononenko,
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1998], the error function is corrected by introducing the factor Φ[class(pi), k] so

that:

Error =

m∑
i=1

·

C∑
k=1

((o
′

k(pi) − ok(pi)) · Φ[class(pi), k])2 (3.11)

where ok(pi) ∈ [0, 1]. If class(pi) = c, two cases are considered:

1. When dealing with output neuron k such as k = c, the difference between the

desired and the real output of the neuron c is o
′

c(pi)− oc(pi) = 1− oc(pi) and

can be interpreted as a probability of misclassifying the training example

pi into any of the incorrect classes. In the ideal case oc(pi) = 1 and the

misclassification probability is 0. The misclassification probability should

be weighted with the expected misclassification cost of the class c, that is

CostVector[c].

2. For all other output neurons k ∈ [1, . . . ,C] with k , c, the difference between

the desired and the real output of the neuron k is o
′

k(pi)−ok(pi) = 0−o j(pi) =

−o j(pi) (actually, this expression is squared, so its sign can be ignored). This

can be interpreted as a probability that the example pi that belongs to the

class c will be incorrectly classified into the class k. This probability should

be weighted with the cost of misclassifying a c-class instance as a k-class

instance, that is, Cost[c, k].

The factor Φ[class(pi), k] should therefore be defined as follows:

Φ[class(pi), k] =


CostVector[c], if k = c

Cost[c, k], otherwise
(3.12)

where CostVector[c] represents the expected cost of misclassifying an example

that belongs to the c-th class:

CostVector[c] =
1

1 − P(c)

C∑
k=1

P(k)Cost[c, k], with k , c (3.13)
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where P(c) is an estimate of the prior probability that an example belongs to class

c. For a two-class problem, CostVector[c] = Cost[c, k].

As can be noticed, this approach trains a different artificial neural network for each

FP/FN cost ratio, where the cost of FP is given by Cost[−,+] and the cost of FN is

given by Cost[+,−].

3.3.2.3 Other approaches for data integration

There are also other methodologies used to integrate several evidences to predict

functional associations between proteins. Here, some of them are described to-

gether with their advantages and disadvantages.

Fisher’s method This methodology [Hwang et al., 2005] uses an optimization al-

gorithm to minimize the number of false positives and false negatives and it makes

no assumptions about the number of data sets to be integrated; on the contrary, it is

for general purposes and may be applied to integrate from any existing technolo-

gies. The method is able to deal with the low overlap between source data sets and

does not need trained or supervised based on experimental gold standard data sets

of protein associations [Hackl et al., 2010]. Therefore, if only genomic context

evidences (see section 3.2.2.1) are used, Fisher’s predictions can be considered in-

dependent of the public repositories of protein associations [Lees et al., 2011]. A

weighted version of Fisher method provides the ability to optimize contributions

from each data source [Hwang et al., 2005].

Decision Trees Decision trees (DTs) [Quinlan, 1993] are trees where the nonleaf

nodes are labeled with attributes (in our case, the data sources or evidences used in

the integration process), the arcs out of a node are labeled with each of the possible

values of the attribute and the leaves of the tree are labeled with classifications (in

our case, functional relationship or non-functional relationship). A decision tree

learns a classification function to predict the value of a dependent response (vari-

able) given the values of the input attributes. DTs have been used in the prediction
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of functional associations between proteins [Qi et al., 2006] and it is a useful ap-

proach because it presents all the rules used in the prediction task, showing which

attribute combinations are most informative. However, in general, rules that are

read directly off a decision tree are far more complex than necessary [Witten and

Frank, 2005]. For example, when integrating diverse biological datasets for the

prediction of co-complexed protein pairs, the decision tree obtained has tens of

leaves [Zhang et al., 2004], difficulting the interpretability of the model.

Random Forest Random Forests (RFs) classifiers [Breiman, 2001] ”grow” many

Decision Trees simultaneously where each node uses a random subset of the data

sources or evidences. They have also been applied to the integration of evidences

from heterogeneous biological data sources for the prediction of functional rela-

tionships between proteins [Qi et al., 2006]. To classify, for example, a pair of

proteins, the different evidences for that pair are subjected to analysis by each of

the trees in the forest. Each tree provides (votes) a classification output (functional

or non-functional relationship) and the forest chooses the classification based on

majority vote over all the trees in the forest. RFs provide an efficient means of

increasing performance with respect to decision trees, however they are computa-

tionally more expensive [Lin et al., 2004] and prone to overfitting for noisy datasets

[Segal, 2004] as this might be a problem for the integration of evidences from het-

erogeneous biological data sources since it is well known that some of them are

characterized for their noise and low reliability [Li et al., 2006].

Logistic regression Logistic Regression (LR) [Agresti, 2006] is a generalized

linear statistical model that can predict a discrete outcome from a set of variables

that may be continuous, discrete, dichotomous or a mixture of these. It applies

maximum likelihood estimation after transforming the dependent variable into a

logit variable (the natural log of the odds of the dependent variable occurring or

not). In this way, logistic regression can be used to estimate the probability of a cer-

tain event, for example, functional relationships between proteins. This approach

has been used to predict physical protein-protein interactions, co-complex relation-

ship and functional relationships between proteins [Qi et al., 2006], although being

outperformed by random forests.
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Kernel methods Kernel-based statistical methods are also used for integrating

evidences from heterogeneous biological data types [Qiu and Noble, 2008], [Lanck-

riet et al., 2004], [Wu et al., 2010]. One can describe kernel-based statistical learn-

ing approaches using two basic steps: (1) to choose the right kernel for each evi-

dence or data set to build the so-called kernel matrix, which essentially constitutes

similarity measures between pairs of entities (proteins, for example) and (2) to

combine the kernels from the different data sources to give a complete representa-

tion of the available data for a given statistical task. Basic mathematical operations

such as multiplication, addition, and exponentiation preserve properties of kernel

matrices and hence produce valid kernels. Lanckriet et al. [Lanckriet et al., 2004]

used kernel-based Support Vector Machine (SVM) methods to predict functional

associations between proteins and Wu et al. [Wu et al., 2010] used a kernel-based

Relevance Vector Machine (RVM) approach for the same task. Although one of

the advantages of kernel methods is that kernel matrices can be defined for any

type of data as well as their ability to incorporate prior knowledge through the ker-

nel function [Qiu and Noble, 2008], one of the main drawbacks of kernel-based

approaches is the prohibitive computational cost associated with SVMs/RVMs for

problems with large data size, which is still a challenge [Wu et al., 2010].

Random walks on a graph A random walk on a graph describes the sequence of

steps taken by a walker who moves from one node to a randomly selected adjacent

node with a probability proportional to the weight associated with the edge con-

necting the two nodes [Lovasz, 1993]. They have been used in two ways for the

integration of evidences from heterogeneous data sources. In the first, each data

set is considered separately as a graph from which a random walk-based similarity

is derived and used to rank the genes or proteins. A rank aggregation method is

then used for the data integration step. The second integration approach consists in

merging the different source data sets into one graph from which a random walk-

based measure of similarity is derived and used for ranking genes. Although these

approaches have been essentially used to predict disease genes from heterogenoeus

biological data sources [Li and Patra, 2010a] [Li and Patra, 2010b], they could be

applicable to the prediction of functional relationships between proteins.





Chapter 4

A multi-objective GP approach to
developing pareto optimal
IF-THEN classification rules for
data integration

4.1 Motivation and goals

All the methodologies described in section 3.3 for integrating several evidences

from heterogeneous data sources to predict functional associations between pro-

teins have their advantages and disadvantages in their own right and we are going

to discuss them in terms of the following issues: (i) the use of unbalanced GSP

and GSN sets, (ii) the computational cost of obtaining several FLNs with differ-

ent levels of accuracy and (iii) the interpretability of the model built by the data

integration method:

• Use of unbalanced GSP and GSN sets. An important issue about the

gold standard set is the relative size between GSP and GSN sets (see sec-

tion 3.3.1.1): it is desirable that the ratio of positive to negative examples in
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the gold standard matches that in the application domain as closely as pos-

sible, as stated in [Myers et al., 2006]. In the case of predicting functional

associations between proteins, the expected number of protein pairs sharing

functional relationships is a very small fraction of all possible protein com-

binations so, ideally, the GSP and GSN sets have to be unbalanced with the

size of GSN much greater than the size of GSP. This imbalance will avoid

misleading evaluations of different data integration methodologies, so that

an evaluation on gold standards will be a representative measure of how well

one could expect a method to perform on whole-genome data. Moreover, it

is important to use all the information available instead of using equi-sized

GSP and GSN sets as sometimes carried out in the literature due to the com-

putational cost of data integration methodologies [Wu et al., 2010] [Linghu

et al., 2008] when unbalanced GSP and GSN sets are used. All data inte-

gration methodologies described in the previous chapter, but Naı̈ve Bayes,

increase their computational cost when unbalanced GSP and GSN sets are

used during learning and the computational requirements can be sometimes

prohibitive such as in the case of kernel-based methods (SVMs or RVMs).

• The computational cost of obtaining several FLNs with different levels
of accuracy. From a biological viewpoint, it is desirable to obtain several

FLNs with different levels of accuracy, that is, from a dense and relative

noisy network, in which most of the predictions are positives, to a sparse and

relative confident network in which most of the predictions are negatives. It

is unknown, a priori, the partial preferences of a decision maker (i.e. the

researcher) on the accuracy of the functional associations predicted (i.e. the

accuracy of the FLN), so that, a proper data integration approach must offer,

without dramatically increasing the computational cost, several FLNs with

different levels of accuracy. According to this fact, threshold-moving-based

ANNs and Naı̈ve Bayes are the only approaches that offer several FLNs

with different levels of accuracy with low additional computational cost. In

the case of threshold-moving-based ANNs, the cost-sensitivity is introduced

once the artificial neural network has been trained so that different FLNs can

be obtained at relative low computational cost. In Naı̈ve Bayes, by vary-

ing the LLR cutoff, different quality FLNs are obtained, providing several
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trade-offs between precision and recall values (different FP/FN ratios). This

is because the classification cutoff used (LLR cutoff) is completely indepen-

dent of the likelihood ratios learned during training. For the rest of method-

ologies, a cost-sensitive learning approach can be used in which different

FP/FN cost ratios must be taken into account to build different FLNs from

noisy networks to confident ones. This can be prohibitively time consuming,

since several FP/FN cost ratios have to be explored within a reasonable range

and, for each cost ratio, a model must be learned to obtain an FLN with a

given accuracy level.

• Interpretability. It is also desirable, from the biological point of view, for

the model built by the data integration approach to be interpretable in the

sense that (i) simple rules are provided to predict functional associations be-

tween proteins and (ii) the contributions of different types of evidences in the

integration process toward predicting such functional associations are given.

This can greatly help us to gain insight of the underlying biological rela-

tionships. Decision Trees represent an appropriate approach for these issues

[Zhang et al., 2004] [Qi et al., 2006], however they have been outperformed

by other data integration methodologies [Qi et al., 2006] and usually offers

a tree (a set of rules) with tens of leaves [Zhang et al., 2004] which difficult

the interpretability of the results [Witten and Frank, 2005].

It must be noticed that Fisher’s method does not need to be trained or supervised

based on gold standards, however, it does not provide functional associations be-

tween proteins in the form of simple rules.

According to these issues, it is desirable a data integration approach that fulfills

the following requirements: (i) handling of high unbalanced GSP and GSN sets

whose size reflects the application domain as closely as possible; (ii) possibility of

providing the decision maker with several FLNs with different levels of accuracy

without dramatically increasing the computational cost and (iii) construction of

an interpretable model with simple rules in which the contributions of different

types of data or evidences integrated for the prediction task at hand are provided.

The first requirement is not directly related to the data integration methodology,

since it depends on the selection made for the GS sets, but it is indirectly related,



Chapter 4. A MO-GP approach to developing pareto optimal IF-THEN rules 68

since some of the data integration methodologies described in section 3.3.2 force

to balance the size of GSP and GSN sets due to the increase in the computational

cost when high unbalanced sets are used. So, it is desirable that the data integration

methodology is not significantly affected by large-scale gold standard sets in terms

of computational cost.

So, in this chapter a new methodology for the integration of evidences from hetero-

geneous biological data sources to predict functional associations between proteins

is presented. This methodology overcomes both the drawbacks given when using

isolated data sources for building FLNs and the problems described for the cur-

rent methodologies of data integration described above. The proposed approach

is based on a multi-objective genetic programming algorithm to developing pareto

optimal IF-THEN classification rules. These rules are interpretable and reflect the

contributions of different types of evidences toward the discovery of functional as-

sociations. The MO-GP approach simultaneously evolves toward multiple pareto

optimal rules and does not dramatically increase the learning time as compared to

other integration methodologies where several FP/FN costs ratios have to be ex-

plored. This way, the decision maker does not have to specify partial preferences

on the desired accuracy of the FLN, since covering the entire pareto, different FLNs

are obtained, each one with a different level of accuracy (each rule is better than

any other on at least one of two conflicting objectives, in our case, precision and

recall).

This chapter is structured as follows. Section 4.2 reviews some basic concepts

about classification rules, genetic programming and multi-objective evolutionary

optimization. The architecture of the proposed approach is presented and explained

in detail in section 4.3. In section 4.4, the results obtained through our approach

when integrating ten evidences from heterogeneous data sources for the uncovering

of functional associations between proteins in Saccharomices Cerevisiae (Baker’s

yeast) organism are presented. A comparison of the proposed methodology with

respect to others present in the literature is also reported through a statistical anal-

ysis of the results. Moreover, the flexibility and the interpretability of the designed

methodology together with its suitability to be executed in parallel architectures

are explained in detail. Finally, some conclusions and future work are presented in

section 4.5.
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4.2 Classification rules and Genetic Programming

4.2.1 Classification rules

Classification rules are a simple and easily interpretable way to represent knowl-

edge [Witten and Frank, 2005]. A classification rule has the following format:

IF < antecedent > T HEN < consequent >

The rule antecedent contains a combination of conditions for the predicting at-

tributes. Usually, a condition is composed of a binary relational operator (=,,, >

, <,≤,≥) comparing the value of an attribute with a constant or another attribute.

Usually conditions form a conjunction by means of the AND logical operator, but

in general any logical operator can be used to connect elemental conditions. The

rule consequent contains the value predicted for the class. This way, a rule assigns

a data instance to the class pointed out by the consequent if the values of the pre-

dicting attributes satisfy the conditions expressed in the antecedent. From a data

mining viewpoint, this kind of knowledge representation has the advantage of be-

ing intuitively comprehensible and interpretable for the user, as long as the number

of discovered rules and the number of terms in the rule antecedent are not large

[Espejo et al., 2010].

4.2.2 Evolutionary Algorithms. Genetic Programming

The evolutionary algorithm (EA) paradigm is based on the use of probabilistic

search algorithms inspired by certain points in the Darwinian theory of evolution

[Spears et al., 1993]. Several different techniques are grouped under the generic

denomination of EA. The essential features shared by all EAs are [Espejo et al.,

2010]:

1. The use of a population (a group) of individuals (candidate or partial solu-

tions) instead of just one of them.
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2. A generational inheritance method. Genetic operators are applied to the in-

dividuals of a population to give birth to a new population of individuals (the

next generation). The main genetic operators are crossover (recombination)

and mutation. Crossover swaps a part of the genetic material of two indi-

viduals, whereas mutation randomly changes a small portion of the genetic

material of one individual.

3. A fitness-biased selection method. A fitness function is used in order to

measure the quality of an individual. The better the fitness of an individual,

the higher its probability of being selected to take part in the breeding of

the next generation of individuals, thus, increasing the probability that its

genetic material will survive throughout the evolutionary process.

The general scheme of an evolutionary algorithm is given in Fig. 4.1.

Initialisation

Parent selection

Recombination

Mutation

Survivor selection

Termination

Population

Parents

Offspring

Figure 4.1: The general scheme of an evolutionary algorithm as a flow-chart
(Introduction to Evolutionary Computing, [Eiben and Smith, 2008])

Genetic Programming (GP) is essentially considered to be a variant of EAs that

uses a complex representation language to codify individuals. The most commonly

used representation schema is based on trees. The original goal of GP was the evo-

lution of computer programs but, nowadays, GP is used to evolve other abstractions

of knowledge, like mathematical expressions or rule-based systems. GP individ-

uals are usually seen as trees, where leaves correspond to terminal symbols (vari-

ables and constants) and internal nodes correspond to non-terminals (operators and

functions). The set of all the nonterminal symbols allowed is called the function
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set, whereas the terminal symbols allowed constitute the terminal set. Two condi-

tions must be satisfied to ensure that GP can be successfully applied to a specific

problem: sufficiency and closure. Sufficiency states that the terminals and nonter-

minals (in combination) must be capable of representing a solution to the problem.

Closure requires that each function of the nonterminal set should be able to handle

all values it might receive as input [Espejo et al., 2010].

GP offers a wide range of possibilities in the classifier induction task: GP is a

search and optimization algorithm and, thus, it can be employed to search in the

space of classifiers to find the best one. The fitness function of GP is used as

the preference criterion that drives the search process and the flexibility of the GP

representation allows it to employ many different kinds of models such as decision

trees, discriminant functions or classification rules like the ones described in the

previous section.

Regardless of the model used, the quality of classifiers must be measured by means

of the fitness function. Usually, quality is based on accuracy, and it is often mea-

sured as the ratio between the number of correctly classified examples and the to-

tal number of examples, but other possibilities exist for measuring accuracy, such

as precision, support, confidence, recall, sensitivity and specificity (see section

3.3.1.2).

4.2.2.1 Multiobjective evolutionary optimization. Non-dominated Sorting
Genetic Algorithm II (NSGA-II)

In many problems, there are several goals which have to be optimized simulta-

neously. These goals are often conflicting, so that the optimization of one of the

performance measures implies an unacceptably poor performance for other mea-

sures.

In this kind of problem, known as a multiobjective optimization (MO) problem,

there is usually not a single solution, but instead a set of equivalent nondominated

solutions, known as a Pareto front, composed of all the solutions where it is not

possible to enhance some objectives without degrading some others. To clarify and

for a set of multiple conflicting objectives f1, f2, . . . , fM that have to be minimized
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(or maximized) simultaneously, a solution x1 is said to dominate another solution

x2 if x1 is at least as good as x2 on every objective and is better than x2 on at least

one objective. Formally, ∀i = 1, 2, . . . ,M : fi(x1) ≤ fi(x2) ∧ ∃i = 1, 2, . . . ,M :

fi(x1) < fi(x2). A solution x is said to be non-dominated or Pareto optimal if

there is no other feasible solution that dominates x. The set of all Pareto optimal

solutions is referred to as the Pareto front.

EAs can be applied to MO problems easily and suitably, since different individuals

in the population can search for different solutions in parallel. When EAs are

applied to this kind of problem, the term employed is multiobjective optimization

evolutionary algorithm (MOEA) (MOGP if the EA is a GP) [Espejo et al., 2010]

[Deb et al., 2000]. For example, in [Zhao, 2007] a multi-objective optimization

Genetic Programming system is used to obtain pareto optimal decision trees for

classification, in which each decision tree is better than any other on at least one of

two conflicting objectives, e.g. minimizing false negative rate vs minimizing false

positive rate.

Several MOEAs have been proposed in recent years, considering SPEA2 [Zit-

zler et al., 2002] and NSGA-II [Deb et al., 2000] as the most representative ones.

Briefly, NSGA-II has two key features [Gacto et al., 2008]:

• The fitness evaluation of each solution is based on Pareto ranking and a

crowding measure. Each solution in the current population is evaluated in

the following manner. First, Rank 1 is assigned to all non-dominated solu-

tions in the current population. All solutions with Rank 1 are removed from

the current population. Then, Rank 2 is assigned to all non-dominated solu-

tions in the reduced current population and, again, all solutions with Rank 2

are removed from the reduced current population. This procedure is iterated

until all solutions are removed from the current population. This way, a dif-

ferent rank is assigned to each solution where solutions with smaller ranks

are viewed as being better than those with larger ranks. Among solutions

with the same rank, the so called crowding measure criterion is taken into

account. For a given solution, the crowding measure calculates the distance

between its adjacent solutions with the same rank in the objective space. Less

crowded solutions with larger values of the crowding measure are viewed as
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being better than more crowded solutions with smaller values of the crowd-

ing measure.

• The elitist generation update procedure. When the next population is to

be constructed, the current and offspring populations are combined into a

merged population. Each solution in the merged population is evaluated us-

ing both the Pareto ranking and the crowding measure. The next population

is constructed by choosing a specified number (i.e., population size) of the

best solutions from this merged population.

4.3 A multi-objective GP approach to developing pareto
optimal classification rules for the integration of evi-
dences to predict functional associations between pro-
teins

As previously stated, the approach proposed in this chapter is based on a multi-

objective genetic programming (MO-GP) methodology to developing Pareto Optimal

IF-THEN Classification Rules (POCR). These rules are said to be Pareto optimal,

in that each rule is better than any other on at least one of the conflicting objectives,

in our case, precision and recall. The methodology satisfies the requirements for a

data integration methodology:

• It can deal with large gold standard sets, so that high unbalanced GSP and

GSN sets can be used.

• It provides a set of simple classification rules since the GP methodology can

simultaneously evolve toward multiple alternative non-dominated solutions.

Each rule in the pareto reflects the evidences integrated and is used to build

an FLN (i.e. to predict functional associations between proteins) with a given

level of accuracy. Covering the entire Pareto, different FLNs are obtained,

each one with a different quality (trade-off between precision and recall) and,

thus, different size. This way, the computational cost of obtaining different

FLNs is dramatically reduced.
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• Each FLN is based on a single rule. This means, that the FLN can be de-

scribed in terms of an interpretable and comprehensive rule. Moreover, the

rule provides the contributions of the different types of data or evidences

used in the integration process toward predicting functional associations.

4.3.1 Classification rules for the integration of evidences to predict
functional associations between proteins

In section 3.2, there are several data sources from which evidences for functional

associations between proteins can be extracted. For example, when microarray

data is used, it has been demonstrated that genes with high co-expression across

different conditions, are more likely to be functionally related than randomly cho-

sen [Lee et al., 2004]. So, the greater the co-expression value between two proteins

is, the more likely a functional association between them exists.

In table 4.1 some of the evidences for functional association described in section

3.2 together with the assumption or hypothesis assumed for the evidence to predict

such associations are shown. As can be observed, some evidences are continuous

and others are discrete.

The problem of predicting functional associations between proteins is a binary clas-

sification problem, that is, the class predicted is either ”functional relationship” or

”non-functional relationship”. This would simplify the optimization process of the

multi-objective genetic programming approach, since the rules to be optimized are

the ones that provide the class predicted ”functional relationship”. The instances

not covered by these rules, are assigned to the other class (”non-functional rela-

tionship”).

To justify the rules to be used, let us suppose that we are dealing with just a single

data source or evidence, co-expression from microarray data (Co-exp). According

to this evidence (see table 4.1, Type column), the greater the co-expression score is,

the more likely the inferred functional linkage between proteins will be true posi-

tives. The following is an example of classification rule for predicting functional

associations between proteins when Co-exp evidence is used:
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Table 4.1: Evidences commonly used in the literature for predicting functional
associations (see details in section 3.2) Co-exp, correlated gene expression; GF,
gene fusion; PP, phylogenetic profile; GN, gene neighbor; SS, sequence sim-
ilarity; TextM, text mining; SSMF, Smallest Shared Molecular Function (GO
ontology); SSCC, Smallest Shared Cellular Component (GO ontology). Type
column refers to the type of hypothesis assumed for the evidence to predict func-
tional association between proteins: (a) ascendant and descendant mean that the
greater and lower respectively the evidence score is, the more likely the func-
tional relationship between two proteins is a true positive, (b) existence means
that when the evidence score is 1 (existence), the more likely the functional re-
lationship between two proteins is a true positive. Domain column refers to the

continuous or discrete interval allowed for the evidence score

Evidence Description Type Domain
Co-exp Expression correlation from multiple ascendant [aCo−exp, bCo−exp]

microarray data
PPI Protein-protein interactions existence {0, 1}
GI Genetic interactions existence {0, 1}
GF Protein pairs fused into one single ascendant [aGF , bGF]

protein in other species
PP Protein pairs having correlated ascendant [aPP, bPP]

phylogenetic profiles
GN Gene pairs located close to each ascendant [aGN , bGN]

other along the chromosome
SS Protein pairs having similar aminoacid descendant [aS S , bS S ]

sequences
TextM Co-ocurrence in PubMed abstracts ascendant [aTextM , bTextM]
SSMF Protein pairs sharing same molecular descendant [aS S MF , bS S MF]

function terms in GO
SSCC Protein pairs sharing same descendant [aS S CC , bS S CC]

cellular component terms in GO

IF Co-exp ≥ αCo−exp THEN functional relationship

where Co-exp is the co-expression score for two proteins and αCo−exp is the co-

expression value used as threshold for predicting functional associations (Co-exp,

αCo−exp ∈ [aCo−exp, bCo−exp]). This classification rule will provide a curve with

different values of precision and recall by varying αCo−exp in [aCo−exp, bCo−exp].

When αCo−exp = aCo−exp all functional association predictions will be positives

(true and false), providing high recall and low precision. On the other hand, when

αCo−exp = bCo−exp, most of functional association predictions will be negatives

(true and false), providing low recall and high precision.

Since it is desired to integrate diverse evidences from heterogeneous data sources

to infer functional linkages between proteins, the rules will be in the form of:
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IF E1 ≥ αE1 AND/OR E2 ≤ αE2 AND/OR . . . En ≥ αEn

THEN functional relationship

where n data sources or evidences Ei are being used (or integrated) to infer a func-

tional linkage between proteins. Notice that each condition is made up of a binary

relational operator comparing the score of an evidence Ei with a threshold αEi . The

relational operator in a condition depends on the type of evidence used in that con-

dition (see table 4.1). Evidences of type ”ascendant” have the relational operator ≥

in the condition. Evidences of type ”descendant”, have the relational operator ≤ in

the condition and evidences of type ”existence” will have the relational operator =.

As can be observed, the rule antecedent contains a combination of conditions for

the predicting evidences. The conditions can form a conjunction by means of the

AND logical operators or a disjunction by means of the OR operator. For example,

if all conditions form a conjunction, the rules will be in the form of:

IF E1 ≥ αE1 AND E2 ≤ αE2 . . . AND . . . En ≥ αEn

THEN functional relationship

where a functional relationship between proteins is inferred when it is supported

by the n evidences used. This is not a valid approach, since all the evidences are

considered for predicting a functional link and, due to the noisy nature of several

sources, it is likely that a given relationship is supported by a (unknown) subset of

evidences.

On the other hand, if all conditions form a disjunction, the rules will be in the form

of:
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IF E1 ≥ αE1 OR E2 ≤ αE2 . . . OR . . . En ≥ αEn

THEN functional relationship

This time, for predicting a functional relationship between proteins it is enough

if the link is supported by at least one source, which is considered very permis-

sive, assuming, again, the noisy nature of the data sources. This kind or rules will

produce a very high number of false positives.

So, it seems that a proper rule will lie in between these two formats: the rule

antecedent is made up of a set of compound conditions connected by a logical OR

operator and each compound condition is made up of a set of single conditions

connected by a logical AND operator:

IF (E1 ≥ αE1 AND E2 ≤ αE2 AND . . . AND Ek ≥ αEk ) . . . OR

. . . (En−p ≤ αEn−p AND . . . AND En−1 ≥ αEn−1 AND En ≥ αEn) (4.1)

THEN functional relationship

this way, each compound condition of the rule restricts the prediction of functional

association to a subset of evidences at the same time. By connecting the compound

conditions by a logical OR operator, we are also given the possibility to study

several subsets of evidences to predict associations between proteins. This rule

represents an entire solution for the classification problem at hand. For example,

the following rule:

IF (Co-exp ≥ 0.7 AND PPI = 1) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship
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predicts functional relationship for a given pair of proteins if their microarray co-

expression score is greater or equal than 0.7 AND they physically interact OR

their gene fusion score is greater or equal than 0.5 and the similarity between their

aminoacid sequences is lower or equal than 0.2. Otherwise, no functional rela-

tionship is predicted between such pair of proteins. In this example, it is assumed

that the scores of the continuous evidences are normalized in some interval, for

example [0,1].

However, the following rule:

IF (Co-exp ≥ 0 AND PPI = 1) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

is equivalent to:

IF PPI = 1 OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

since, the prediction of a functional associations between two proteins is supported

enough when there is a protein-protein interaction between them (it does not matter

the value of their microarray co-expression score) OR their gene fusion score is

greater or equal than 0.5 AND the similarity between their aminoacid sequences is

lower or equal than 0.2.

As can be observed, for evidences with score values in a continuous interval, if the

threshold for that evidence in the condition takes the minimum possible value, a

functional relationship is supported by that evidence regardless of its score value.

This is fulfilled for evidences of type ”ascendant”. In the case of evidences of

type ”descendant”, the threshold in the condition must take the maximum possible

value. In consonance with this type of evidences, the relational operator of evi-

dences whose score is discrete, such as PPI and GI, is changed to ≥. This way,

when, for example, we have the following rule:
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IF (Co-exp ≥ 0.7 AND PPI ≥ 1) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

it predicts functional relationship for a given pair of proteins if their microarray

co-expression score is greater or equal than 0.7 AND they physically interact OR

their gene fusion score is greater or equal than 0.5 and the similarity between their

aminoacid sequences is lower or equal than 0.2.

However, when the rule is:

IF (Co-exp ≥ 0.4 AND PPI ≥ 0) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

this is equivalent to:

IF Co-exp ≥ 0.4 OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

since the prediction of functional association between two proteins is supported

enough when their co-expression score is greater or equal than 0.4 (it does not

matter whether they interact physically or not) OR their gene fusion score is greater

or equal than 0.5 and the similarity between their aminoacid sequences is lower or

equal than 0.2. Notice that the domain of PPI is still {0, 1}. The only difference is

related to the relational operator, which is changed from = to ≥, since the greater

the value for PPI evidence score (a true physical interaction, 1), the more likely

a functional association between a pair of proteins is a true positive. This way, if

the threshold for PPI evidence in the condition takes the minimum possible value
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(zero) a functional relationship is supported by PPI regardless of its score value.

The same applies to Gene Interaction (GI).

4.3.2 Proposed MO-GP approach

As previously stated, a multi-objective genetic programming approach is used to si-

multaneously evolve multiple alternative non-dominated classification rules. Each

rule in the pareto represents an entire solution for the prediction of functional as-

sociations between proteins so that an FLN with a given level of accuracy is built.

Covering the entire pareto, different FLNs are obtained, each one with a different

quality (trade-off between precision and recall) and, thus, different network size.

In the following subsections, the components of the multi-objective genetic pro-

gramming approach are described in detail, namely, solution encoding or repre-

sentation of individuals (section 4.3.2.1), population (section 4.3.2.2), evaluation

or fitness function (section 4.3.2.3) and the genetic operators: recombination and

mutation (section 4.3.2.4). Although the size of the individuals is fixed in the GP

approach, some evidences present in the final pareto optimal classification rules

may not be necessary for the prediction task. So, once the optimization of the MO-

GP is done, a post-procedure is applied to detect irrelevant evidences in the set of

pareto rules (section 4.3.2.5).

4.3.2.1 Solution encoding

The rules to be used in the multi-objective Genetic Programming approach will be

the one described in the expression 4.4.3.3:

IF (E1 ≥ αE1 AND E2 ≤ αE2 AND . . . AND Ek ≥ αEk ) . . . OR

. . . (En−p ≤ αEn−p AND . . . AND En−1 ≥ αEn−1 AND En ≥ αEn)

THEN functional relationship
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where αEi ∈ [aEi , bEi],∀i = 1, . . . , n and the rule antecedent is made up of a set

of compound conditions connected by a logical OR operator and each compound

condition is made up of a set of single conditions connected by a logical AND

operator. This rule can be represented naturally as a tree in the MO-GP approach

to codify individuals. For example, the following rule

IF (E1 ≥ 0.3 AND E2 ≤ 0.7) OR (E4 ≥ 0.1 AND E7 ≥ 0.9) OR

(E2 ≤ 0.6 AND E8 ≥ 0.55) THEN functional relationship

is composed of three compound conditions linked by the OR operator and each

compound condition is made up of two conditions linked by the AND operator.

This rule is represented as a tree in Fig. 4.2.

OR

AND

>=

E1 0.3

<=

E2 0.7

AND

>=

E4 0.1

>=

E7 0.9

AND

<=

E2 0.6

>=

E8 0.55

Figure 4.2: Example of an individual in the MO-GP approach

As can be noticed from Fig. 4.2, the rule consequent is not encoded into the genetic

material of the individual, since it is a binary or two-class problem. The instances

not covered by this rule, are assigned to the other class (”non-functional relation-

ship”). An individual represents an entire solution to the prediction problem of

functional relationships between proteins.

In GP, the user must specify all the functions, variables and constants that can

be used as nodes in a tree. Functions, variables and constants which require no
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arguments become the leaves of the tree and are called terminals. Functions which

require arguments form the branches of the trees are called non-terminals. The set

of all terminals is called the terminal set and the set of all non-terminals is called

non-terminal set or sometimes called function [Koza, 1992].

For our individual representation (Fig. 4.2), the terminal set consists of the different

evidences for functional associations Ei and the threshold values αEi . The function

or non-terminal set consists of logical operators (AND,OR) and relational operators

(”≤”,”≥”).

Next, we specifiy syntactical and semantic constraints associated with the indi-

vidual representation. It should be stressed that some constraints are used in the

generation of individuals in the initial population and the production of new indi-

viduals via crossover or mutation (sections 4.3.2.2 and 4.3.2.4).

In conventional GP systems, the property of closure must be satisfied [Koza, 1992],

which means that all the functions (non-terminals) must accept arguments of a

single data type (i.e. float) and return values of the same data type. This means

that all non-terminals return values that can be used as arguemnts for any other

non-terminal or function. This property is satisfied, for instance, if the function

set contains only mathematical operators (like +,-, /,*) and all terminal symbols

are real-valued variables or constants. However, in a data mining scenario, the

situation is more complex, since one wants to mine a data set with a mixing of

logical and relational operators.

Thus, the individual representation includes several constraints useful for data min-

ing applications, such as classification rules. First, for each function of the function

set, it is specified what the data types valid for the input arguments and the output

of the function are. As said before, the function set of the GP consists of logical

operators (AND,OR) and relational operators (”≤”,”≥”). The valid data types for

the input arguments and output of these operators as well as the arity (i.e. the num-

ber of input arguments is takes) are shown in table 4.2. This table refers, without

loss of generalization, to the individual described in Fig. 4.2.

The data type restrictions specified in table 4.2 naturally suggest the individual

representation based on hierarchy of functions. At the deepest level in the tree, the
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Table 4.2: Valid data types for each function’s input arguments and output in a
GP individual

Function Arity Input arguments Output
OR 3 (Boolean,Boolean,Boolean) Boolean
AND 2 (Boolean,Boolean) Boolean
”≤”,”≥” 2 (real,real) Boolean

leaf nodes are terminal symbols (evidences and their thresholds). One level up (see

Fig.4.2), there are internal or non-terminal nodes containing relational operators.

Each one of these nodes has two nodes as offspring, one of them containing an

evidence and the other containing a threshold, both of them in the domain of that

evidence. If the type of evidence in question is ”ascendant” or ”existence”, then

the internal node is ”≥”. On the other hand, if type of evidence is ”descendant”,

then the internal node is ”≤”. In any case, the output of such an internal node is a

Boolean value (yes or no). Notice that the relational operator, the evidence and the

threshold form a single condition in the rule.

One level up, the internal nodes contain only AND operators and in the highest

level, there is a unique node (or root node) which contains an OR operator. There-

fore, the output of the tree (i.e. the output of the root node) will be a boolean

value, indicating whether a pair of proteins satisfies the rule antecedent encoded in

the individual. Notice that an AND node cannot be the ancestor of an OR node.

This way, the individuals represent a set compound antecedents in disjunctive nor-

mal form (DNF) - i.e. an individual consists of a logical disjunction of compound

conditions, where each compound condition is a logical conjunction of conditions

(evidence-relational operator-threshold).

To summarize, the hierarchical individual representation has the following syntac-

tic constraints:

• If a terminal node is an evidence, it shares its parent with another terminal

node which is the related threshold for that evidence.

• If a terminal node is a threshold, it shares its parent with another terminal

node which is the related evidence for that threshold.
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• A terminal node can have as parent only a relational operator: ”≤” if the

terminal node (evidence or threshold) is of type ”descendant” and ”≥” if the

terminal is of type ”ascendant” or ”existence”.

• An internal node containing a relational operator (”≥”,”≤”) must have as

parent only an AND logical operator.

• An internal node containing an AND operator must have as parent only an

OR operator.

• An internal node containing an OR operator does not have any parent, it is

the root node.

Notice that these constraints, implicitly, ensure that the depth of a tree has exactly

four levels:

• The first level contains only the root node (OR node).

• The second level holds only nodes with AND logical operators.

• The third level contains only nodes with relational operators (≤ or ≥).

• The fourth level holds terminal nodes with either evidences or thresholds

related to evidences.

However, the above constraints do not restrict the number of nodes in the second

level and the number of nodes in the third level. This makes it possible to use rules

with any number of compound conditions (i.e. any number of nodes in the second

level of the tree) and any number of single conditions for each compound condition

(i.e. any number of nodes in the third level).

To simplify the MO-GP procedure, the size of the individuals (the number of nodes

in the second and third levels) is fixed. However, as previously described, the

following rule

IF (Co-exp ≥ 0 AND PPI ≥ 1) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship
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is equivalent to:

IF PPI ≥ 1 OR (GF ≥ 0.5 AND SS ≤ 0.2) THEN functional relationship

which is shorter than the first case. However, the MO-GP does not remove the

condition Co-exp ≥ 0 from the rule during the optimization process for simplicity.

Instead, a post-procedure (a pruning approach) method is run once the MO-GP

has finished (see section 4.3.2.5) to remove useless conditions. If conditions are

removed from rules, the final pareto classification rules may have variable length.

To increase the probability of obtaining final rules of variable length, the domain

of the threshold parameter can be modified. For example, assuming that Co-exp ∈

[0, 1] the following rule:

IF (Co-exp ≥ 1.1 AND PPI ≥ 1) OR (GF ≥ 0.5 AND SS ≤ 0.2)

THEN functional relationship

is equivalent to:

IF GF ≥ 0.5 AND SS ≤ 0.2 THEN functional relationship

since αCo−exp ∈ [0, 1+ϑ]. The whole compound condition Co-exp ≥ 1.1 AND PPI ≥

1 is removed from the rule, since there are no protein pairs whose co-expression

score is greater or equal than 1.1 (Co-exp ∈ [0, 1]) and, at the same time, physically

interact.

So, by extending the domain of thresholds αEi to values out of the domain of the

related evidence, the probability of obtaining pareto optimal rules of variable length

after the pruning approach is higher.

To clarify things, when an individual is created and during the optimization of the

MO-GP approach:

• αEi ∈ [aEi , bEi +ϑi], ϑi > 0 when the type of evidence is ”ascendant” and Ei ∈

[aEi , bEi] (see table 4.1). When αEi = bEi + ϑi it means that the threshold is
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out of the domain of its related evidence [aEi , bEi]. In this case, the threshold

value is defined as strict, since there are no protein pairs whose evidence

score is greater or equal than bEi +ϑi. On the other hand, when αEi = aEi , the

threshold value is defined as permissive, since all protein pairs have evidence

score greater or equal than aEi . Evidences of type ”existence”, such as PPI

and GI will be treated as evidences of type ascendant in which their related

thresholds take a value from a discrete range {aEi , bEi , bEi + ϑi}, ϑi > 0.

• αEi ∈ [aEi − ϑi, bEi], ϑi > 0 when the type of evidence is ”descendant”

and Ei ∈ [aEi , bEi] (see table 4.1). When αEi = aEi − ϑ it means that the

threshold is out of the domain of its related evidence [aEi , bEi]. In this case,

the threshold value is defined as strict, since there are no protein pairs whose

evidence score is lower or equal than aEi − ϑ. On the other hand, when

αEi = bEi , the threshold value is defined as permissive, since all protein pairs

have evidence score lower or equal than bEi .

This way, a variable size of the individuals (length of rules) is introduced implicitly

in the MO-GP by means of the modified domain for the thresholds although, again,

the individual size is fixed during optimization.

4.3.2.2 Initial population

In the previous section, the tree structure of an individual and their syntactical

constraints have been described. The initial population is composed of a set of

individuals, each representing an entire solution for the classification task.

The are two things one has to decide before the initial population is created:

1. The number of compound conditions linked by the OR operator or, in other

words, the number of nodes at level 2 in the tree containing the logical oper-

ator AND (see Fig.4.2).

2. The number of single conditions linked by the AND operator for each com-

pound condition, that is, the number of nodes at level 3 in the tree containing

relational operators (”≥”,”≤”).



Chapter 4. A MO-GP approach to developing pareto optimal IF-THEN rules 87

The more the number of nodes at level 2 and 3 are, the more complex the individual

is (the classification rule will be less interpretable). The number of compound

conditions and the number of single conditions for each compound condition is the

same for all the individuals of the population.

Thus, once the number of nodes in levels 2 and 3 has been chosen, for each indi-

vidual of the population, the two offspring of nodes at level 3 are created. For each

internal node at level 3 (a relational node) an evidence Ei and a threshold value

αEi are created randomly as offspring. The constraints for individuals have already

been described in section 4.3.2.1.

There is a constraint of uniqueness of an evidence in a given compound condition

of the rule when an individual is created. This means that a given evidence or

data source must be unique in a given compound condition, but can be present in

another compound condition of the same rule (i.e. must be unique in a subtree

rooted at an AND node).

4.3.2.3 Fitness evaluation and objective trade-offs

The fitness function is used in order to measure the quality of an individual. In a

MO-GP system, the fitness is assigned on the basis of its relative non-dominance

and for NSGA-II, it is based on Pareto ranking and crowding measure (see section

4.2.2.1). In our MOGP approach, we use the following two-objective problem:

Maximize f1(xi) and f2(xi)

where f1(xi) and f2(xi) are the precision and recall respectively of training patterns

by the i-th individual (xi), representing a classification rule. (See section 3.3.1.2

for a definition of precision and recall).

Therefore, the goal of the MO-GP approach is to maximize two conflicting objec-

tives at the same time, precision and recall, to obtain Pareto optimal classification

rules in which each rule (individual) is better than any other on at least one of two

conflicting objectives. A similar approach has been followed in [Zhao, 2007] to

developing Pareto optimal decision trees in other type of classification problems.
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4.3.2.4 Genetic operations: recombination and mutation

There are two major genetic operations: recombination (or crossover) and muta-

tion.

Recombination Recombination in GP creates offspring by swapping genetic ma-

terial among the selected parents. In technical terms, it is a binary operator creating

two child trees from two parent trees. The most common implementation is sub-

tree crossover, which works by interchanging the subtrees starting at two randomly

selected nodes in the given parents [Eiben and Smith, 2008].

Nevertheless, in the NSGA-II implementation we used in this dissertation, a single

offspring is created from two parent trees given, so, a modified version of subtree

crossover is used as follows.

1. Select the level of the subtree to be modified. In our proposal, we offer two

types of subtrees: a subtree whose root node contains an AND operator or

a subtree rooted in a node containing a relational operator. So the type of

subtree is selected with equal probability (i.e. it is chosen between level 2 or

3 of the individual). This way we avoid to choose internal nodes that contain

relational operators with more probability.

2. Select randomly a crossover point (node) in the level chosen in the previous

step. This node is selected in one of the parent individuals, here called the

first parent.

3. Select randomly a node in the same level in the other parent individual (the

second parent).

4. The crossover is performed by replacing at the crossover point in the first

parent, the subtree rooted at the selected point in the second parent.

This way, it is ensured that the crossover always produces valid individuals and

guarantees that all tree nodes have inputs and output of a valid data type as spec-

ified in table 4.2. Moreover, the crossover provides individuals with exactly the
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same tree structure (the same number of levels in the tree). This will avoid the

phenomena known as bloat in GP, in which the average tree size is growing during

the GP run [Eiben and Smith, 2008].

In Fig. 4.3, an example of a recombination is shown. Note that the individuals in

this example has only two AND nodes.
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E2 0.6
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E8 0.55
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E7 0.9

AND
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E2 0.6

>=

E8 0.55

Parent 1 Parent 2

Offspring after crossover

Figure 4.3: Example of recombination. 1) Level 2 (internal nodes that contain
AND operators) is randomly chosen, 2) The first node of Level 2 is randomly
selected in the first parent, 3) The second node of Level 2 is randomly chosen in
the second parent, 4) The subtree rooted at the node selected in the second parent

is used to replace the subtree rooted at the crossover point in the first parent

Mutation The task of mutation in GP consists in creating a new individual from

an old one through some small random variation. The most common implemen-

tation works by replacing the subtree starting at a randomly selected node by a

randomly generated tree.
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In our case, the mutation procedure in an individual is described as follows. Select,

with equal probability, among levels 2, 3 and 4 of an individual. Three cases are

possible:

• If the selected level is 4, we randomly select a leaf node containing a thresh-

old. That threshold is randomly changed according to its domain.

• If the selected level is 3, an internal node of this level which contains a re-

lational operator, is randomly selected and the subtree rooted at this selected

node is randomly generated. This means that its two offspring (an evidence

and its related threshold) are randomly changed. It must be taken into ac-

count that the relational operator may also change according to the assump-

tion of functional relationship related to the new evidence selected (see table

4.1).

• If the selected level is 2, an internal node of this level, which contains an

AND operator, is randomly selected and the subtree rooted at this selected

node is randomly generated. The procedure previously described when the

selected level is 3 is applied for each of the offspring of the AND node.

In Fig. 4.4, an example of a mutation is shown. Note that the individual in this

example has only two AND nodes.

4.3.2.5 Pruning approach

Once the MO-GP methodology has finished and produced pareto optimal classi-

fication rules, a pruning approach is applied to each optimal individual (rule) to

remove useless evidences.

The pruning procedure works at follows:

1. For each AND node of level 2, check the evidences (offspring nodes of level

4) related to that node according to the following possibilities:

• If one (or both) of the evidences have a strict threshold value in their

conditions, the subtree rooted at the AND node is removed.
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Figure 4.4: Example of mutation. 1) Level 3 (internal nodes that contain a rela-
tional operators) is randomly chosen. 2) The second node of Level 3 is randomly
selected and the subtree rooted at this node is randomly generated: evidence 9
and a threshold of 0.32 are chosen. Assuming that evidence 9 is based on an
ascendant assumption of functional linkage, the relational node is changed to

” >= ”

• If both evidences are in conditions with permissive thresholds values,

the whole tree is reduced to the single rule : IF any evidence has any

value THEN functional relationship

• If both evidences are equal, two cases are possible:

– If the evidences are of type ascendant, remove the evidence whose

related threshold is lower. From the evidence to be removed, its

parent (relational node) and its related threshold are also removed.

– If the evidences are of type descendant, remove the evidence whose

related threshold is higher. From the evidence to be removed, its

parent (relational node) and its related threshold are also removed.

The subtree rooted at the ancestor of the other evidence (a relational

node) is now a direct offspring of the root node OR.

2. Get pairs of evidences of level 4 that are repeated under more than one AND

node (level 2) along the individual. Three cases are possible:

• Each pair of evidences is of type ascendant. If the lowest threshold

values are given for a pair of evidences under the same AND node, the

remaining subtrees in the individual rooted at the AND nodes with the

same pair of evidences as offspring are removed.
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• One of the evidences is of type ascendant and the other is of type de-

scendant in all pairs. If the lowest threshold value and the highest

threshold value are given, respectively, for an evidence of type ascen-

dant and an evidence of type descendant under the same AND node,

the remaining subtrees in the individual rooted at the AND nodes with

the same pair of evidences as offspring are removed.

• Each pair of evidences is of type descendant. If the highest threshold

values are given for a pair of evidences under the same AND node, the

remaining subtrees in the individual rooted at the AND nodes with the

same pair of evidences as offspring are removed.

3. For each remaining AND node of level 2, check again the pair of evidences

related to that node (offspring of level 4). If one of the evidences has a per-

missive threshold, remove that evidence and its related relational node (par-

ent) and threshold. The subtree rooted at the ancestor of the other evidence

(a relational node) is now a direct offspring of the root node OR.

4. Check all evidence nodes whose ancestor (a relational node) is a direct off-

spring of the root node OR. If there are repeated evidences and:

• they are of type ascendant, keep the one with the lowest threshold and

remove the other repeated evidences and their related relational nodes

and thresholds.

• they are of type descendant, keep the one with the highest threshold

and remove the other repeated evidences and their related relational

nodes and thresholds.

If the evidence kept has a permissive threshold, then the whole tree is re-

duced to the single rule :IF any evidence has any value THEN functional

relationship

In Fig. 4.5, an example of the pruning approach is shown. Note that the individ-

ual in this example has three compound conditions (three AND nodes) and two

conditions for each compound condition.
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Figure 4.5: Example of the pruning approach once the MO-GP is finished. The
methodology is applied to each individual belonging to the set of pareto optimal

classification rules (individuals)

4.4 Experiments and results

This section presents the experimental design and results of our study for the in-

tegration of evidences from heterogeneous biological data sources to predict func-

tional associations between proteins in the Saccharomyces Cerevisiae (Baker’s

yeast) organism. Examples of discovering functional relationships between pro-

teins using this organism are widely study in the literature [Lee et al., 2004],[Lee

et al., 2007],[Lee et al., 2010], [Mostafavi and Morris, 2010], [Xiong et al., 2006],

[Linghu et al., 2008].

Our goal is to predict new functional relationships between proteins (i.e. to con-

struct the FLN) by integrating genomic and proteomic features from disparate data

sources to establish functional links between yeast proteins. Since each evidence
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or data source usually characterizes only one type of functional association be-

tween proteins and covers a limited set of proteins, functional relationships from

several evidences need to be combined to attain maximal accuracy and coverage.

In this dissertation, 10 different features or evidences are assembled and comprise

experimental evidences (Microarray profiles, Protein-protein interactions and Gene

interactions), Sequence-based evidences (Gene fusion, phylogenetic profiles, gene

neighbor, sequence similarity) and literature-derived evidences (co-ocurrence in

PubMed abstracts and protein pairs sharing same molecular function terms and

same cellular components in GO). These evidences are summarized in table 4.3.

Table 4.3: Evidences assembled in this disseration for FLN construction (see de-
tails in section 4.4.1.2) grouped by experimental, sequence-based and literature-
derived evidences. Co-exp, correlated gene expression; GF, gene fusion; PP,
phylegenetic profile; GN, gene neighbor; SS, sequence similarity; TextM, text

mining; MF, molecular function; CC, cellular component

Group Evidences Description Downloaded/

extracted from
Experim. Co-exp Expression correlation from multiple STRING1

large-scale expression datasets
PPI Protein-protein interactions SGD2

GI Genetic interactions SGD2

Sequence- GF Protein pairs fused into one single STRING1

based protein in other species
PP Protein pairs having correlated STRING1

phyloegenetic profiles
GN Gene pairs located close to each STRING1

other along the chromosome
SS Protein pairs having similar aminoacid blastp3

sequences
Literature- TextM Co-ocurrence in PubMed abstracts STRING1

derived SSMF Protein pairs sharing same molecular SGD2

function terms in GO
SSCC Protein pairs sharing same SGD2

cellular component terms in GO

1STRING database [Szklarczyk et al., 2011]
2SGD database [Cherry et al., 1997]
3blastp [Altschul et al., 1990]

The data integration approach proposed in this dissertation, Pareto Optimal Classi-

fication Rules (POCR) obtained by a multi-objective Genetic Programming method-

ology, is applied to the integration of the evidences mentioned for predicting func-

tional association between proteins. For comparison purposes, this methodology

will be compared to other approaches:
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1. Naı̈ve Bayes, which is the most widely used strategy for the integration of

evidences to predict functional associations between proteins [Wang et al.,

2009b],[Bradford et al., 2010][Linghu et al., 2008][Linghu et al., 2009] [Lee

et al., 2004][Lee et al., 2007] [Lee et al., 2010] (section 3.3.2.1).

2. Multilayer Perceptrons using two different approaches to train neural net-

works with different misclassification costs: Threshold-Moving, TM and

Minimization of the Misclassification Costs, MMC (see section 3.3.2.2) which

are named MLP-TM and MLP-MMC respectively from now on. In this dis-

sertation, these cost-sensitive MLP methodologies are applied to the data

integration problem for comparisons purposes.

First, the gold standard, input set and evidences and their scoring used in the exper-

iments will be explained in section 4.4.1. Then, the methodology used to evaluate

a data integration approach is briefly described (section 4.4.2). The results from

Naı̈ve Bayes, Multilayer Perceptrons (MLP-TM and MLP-MMC), and the pro-

posed data integration methodology are reported, together with a statistical com-

parison among them in section 4.4.3. The suitability of the designed methodology

for being executed in parallel architectures are explained in detail in section 4.4.4.

4.4.1 Gold Standard, input set and evidences and their scoring

4.4.1.1 Gold Standard

KEGG [Ogata et al., 1999] is chosen as our functional ontology or Gold Standard

Set because its endpoint, pathway presence, is relatively well defined. KEGG has

also been used in other works as gold standard [Linghu et al., 2008],[Lee et al.,

2004].

Data downloaded from KEGG [KEGG, 2010] contains 1543 unique yeast proteins

annotated to 93 different pathways. Of this set of proteins, 237,991 pairs co-occur

in at least one KEGG pathway, and similar to [Linghu et al., 2008], this set can be

the Gold Standard for True Positives (GSP) . Since there is no standard guideline

to define the True Negative Gold Standard (GSN) set (see 3.3.1.1), we followed
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Table 4.4: Fraction of total KEGG proteins (first column) or protein pairs (sec-
ond column) by each KEGG pathway. The first ten more annotated pathways are

shown

KEGG proteins KEGG protein Pathway
fraction (%) pairs fraction (%)
40.83 83.25 Metabolic pathways
14.78 10.87 Biosynthesis of secondary

metabolites
9.33 4.33 Ribosome
8.23 3.36 Meiosis - yeast
8.10 3.25 Cell cycle - yeast
5.96 1.76 Purine metabolism
4.93 1.20 Oxidative phosphorylation
4.47 0.99 Pyrimidine metabolism
4.34 0.93 Spliceosome
3.56 0.62 RNA degradation

the approach described in [Lee et al., 2004] [Lee et al., 2007] and [Linghu et al.,

2009] in which the GSN is composed of the collection of protein pairs that: (1)

are annotated in KEGG and (2) never occur in the same KEGG pathway based on

current knowledge. There are 951,662 such pairs.

It is interesting to examine the distribution of pathway terms to check whether GSP

pairs are skewed toward particular pathways. It can be observed from table 4.4

that the KEGG pathways ”Metabolic pathways” and ”Biosynthesis of secondary

metabolites” are the two most populous pathways with 83.25% and 10.87% of the

GSP respectively. So, the frequency distribution of annotated proteins are heavily

biased toward these two pathways. To avoid that such bias affects the data integra-

tion methodologies and similarly to other works [Lee et al., 2007],[Linghu et al.,

2009], these two pathways are excluded from the KEGG annotation data.

After removing these biased KEGG terms and since there are some proteins that

are only annotated to one of these pathways, the number of proteins annotated in

KEGG drops from 1543 to 1536. Thus, the Gold standard sets must be built again,

yielding to 52,335 GSP pairs and 1,126,545 GSN pairs.
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4.4.1.2 Input set, evidences and their scoring

Since only a subset of the Saccharomyces Cerevisiae genome is annotated in KEGG,

we need to define the whole input set (annotated and unannotated proteins). This

input set includes only yeast proteins which have sequences in the Reference Se-

quence (RefSeq) [Pruitt et al., 2009],[RefSeq, 2010] and measurements from both

sequence-based and experimental evidences (see section 3.2) since the sequence

data and experimental data have the largest proteome coverage. The same pro-

cedure has been followed in [Linghu et al., 2008] and ensures the integration by

providing at least eight input features or evidences (see table 4.3).

Table 4.5 shows the number of unique yeast proteins in RefSeq and in the evidences

downloaded from different databases in this dissertation (see table 4.1).

Table 4.5: Evidences (databases) and number of unique yeast proteins contained
in each evidence. Datasets were downloaded in August, 2010

Evidences (database) Number of
unique proteins

RefSeq 5880
Co-exp,GF,PP,GN,TextM (STRING) 6142
PPI (SGD) 5569
GI (SGD) 5311
SSMF (SGD) 3080
SSCC (SGD) 4663

As previously said, the input set only includes yeast proteins that have sequences

in the Reference Sequence (RefSeq) and measurements from both sequence-based

evidences (Gene fusion, Phylogentic Profiles, Gene Neighbor, Sequence Similar-

ity) and experimental evidences (co-expression from microarray data, PPI and GI).

This input set will be then the intersection of the yeast proteins contained in Ref-

Seq (5880), STRING database (6142), proteins contained in PPI predictions from

the SGD database (5569) and proteins contained in GI predictions from the SGD

database (5311) (see table 4.5). The intersection set, or final input set, contains

5079 proteins or nearly 13 million protein pairs.
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Of these 5079 proteins, 1443 are annotated in KEGG (28.41% of the input set) and

after removing both the KEGG proteins not contained in the input set and the two

most biased pathways, the GSP and GSN sets contain 46,636 and 993,767 protein

pairs respectively, and these would be our final gold standard sets. Notice that, for

our gold standard sets, it is assumed that the ratio of functionally related protein

pairs to non-functionally related protein pairs is approximately 1:22 (from 22 pro-

tein pairs in our gold standard set, one pair is expected to be functionally related

and 21 pairs are not, i.e. they are unbalanced sets). In [Myers et al., 2006], they

assume that of the 18 million possible pairs in yeast, it is expected than, approxi-

mately, 900,000 are functionally related. This corresponds to a ratio of functionally

related proteins to non-functionally related of 1:20. As stated in the same work and

in section 4.1, it is desirable that the ratio of positive to negative examples in the

gold standard matches that in the application domain as closely as possible so that

an evaluation of a data integration methodology on gold standards will be a repre-

sentative measure of how well one could expect such methodology to perform on

whole-genome data. Although our GSP and GSN sets are not perfect, the ratio of

positive to negative associations is quite close to the expected ratio of positive to

negative relationships at whole-genome level.

As previously described in table 4.3, we are going to use ten different data sources

from which functional relationship evidences between proteins can be predicted.

Each of the ten evidences contributes one component to the feature vector charac-

terizing a protein pair:

1. Microarray profiles, Co-exp. We downloaded protein pairs with corre-

lated gene expression and their associated correlation scores from STRING

database [Szklarczyk et al., 2011] [STRING, 2010]. A total of 58,444 pairs

of proteins have an score greater than zero in 2066 unique proteins. Pairs not

having correlation score take the default value of 0.

2. Protein-protein interactions, PPI. Protein-protein interactions are down-

loaded from the Sachharomyces Genome Database [SGD, 2010], [Cherry

et al., 1997]. Similar to [Linghu et al., 2008], the following PPI subtypes

are included: Two-hybrid, Affinity Capture-MS, Affinity Capture-Western,

Co-purification, Co-localization, Affynity Capture-Luminescence, Affynity
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Capture-RNA, Biochemical Activity, Co-crystal Structure, Co-fractionation,

FRET, Far Westerns, PCA and Reconstituted Complex. A binary value

serves as the input feature denoting existence (1) or absence (0) of an inter-

action for a pair of proteins. In total, 49,536 pairs among 5073 proteins are

known to interact, with self interaction and redundant interactions removed.

3. Genetic interactions, GI. Genetic interactions are also downloaded from

the Sachharomyces Genome Database [SGD, 2010], [Cherry et al., 1997].

Similar to [Linghu et al., 2008], the following GI subtypes are included: Syn-

thetic Lethality, Synthetic Growth Defect, Dosage Lethality, Dosage Growth

Defect, Dosage Rescue, Negative Genetic, Phenotypic Enhancement, Phe-

notypic Supression, Positive Genetic, Synthetic Haploinsufficiency and Syn-

thetic Rescue. We also used a binary value serving as the input feature de-

noting existence (1) or absence (0) of a genetic interaction for a given pair of

proteins. In total, 104,347 pairs among 5076 proteins are known to interact

genetically, with self interaction and redundant interactions removed.

4. Gene fusion, GF. Protein pairs with domain fusions and their scores are

downloaded from STRING database [Szklarczyk et al., 2011],[STRING,

2010]. A total of 986 pairs have a score greater than zero in 847 proteins.

Pairs not having fusion events, take the default value of 0.

5. Phylogenetic profiles, PP. Protein pairs with correlated phylogenetic pro-

files and their associated correlation scores are downloaded from STRING

database [Szklarczyk et al., 2011],[STRING, 2010]. In total, 2353 pairs have

non zero phylogenetic profile score among 1082 unique proteins. Pairs not

having phylogenetic profile score take the default value of 0.

6. Genomic neighborhood, GN. Protein pairs identified by gene neighbor ap-

proach and their associated interaction scores are downloaded from STRING

database [Szklarczyk et al., 2011],[STRING, 2010]. A total of 13,623 pairs

have a score greater than zero in 1033 proteins. Protein pairs not having

genomic neighborhood events, take the default value of 0.

7. Sequence similarity, SS. Protein sequences from RefSeq [Pruitt et al., 2009],[Ref-

Seq, 2010] are downloaded and blastp in blast 2.2.23 is used to perform an
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all against all blast within the proteome. As in [Linghu et al., 2008], pairs are

filtered by requiring that their best alignment has an E-value lower than 0.1

and the smaller protein aligns to the larger in at least 50% of its length. The

E-value serves as the input feature and pairs not passing this filter take the

default E-value of 1.0. A total of 3384 protein pairs in 1786 proteins passed

the filter.

8. Text-mining, TextM. We downloaded yeast text mining data from STRING

database [Szklarczyk et al., 2011],[STRING, 2010] with each protein pair

associated with a corresponding text mining score. A total of 64,761 protein

pairs in 4217 proteins have a text-mining score greater than 0. Pairs not

having a text-mining score take the default value of 0.

9. Sharing molecular-function terms in Gene Ontology. This approch makes

use of the Gene Ontology database [Ashburner et al., 2000] to extract func-

tional associations between proteins. We downloaded all GO molecular

function annotations for yeast from the Sachharomyces Genome Database,

SGD [SGD, 2010], [Cherry et al., 1997]. To avoid potential circularity with

the rest of data sources to be integrated and, thus, achieve the strongest ev-

idence, only the most reliable GO annotations, namely, IDA (Inferred from

Direct Assays), IMP (Inferred from Mutant Phenotype) and TAS (Traceable

Author Statement) are taken into account. Also, all GO terms labelled as

”not” associated with the respective gene product were ignored, similar to

other studies [Bradford et al., 2010]. As a measure of functional association

for two proteins with one or more shared GO Molecular Function (GO-MF)

terms, the Smallest Shared Molecular Function (SSMF) count is obtained,

similar to the SSBP count described in section 3.2.3.2. A lower SSMF score

corresponds to higher degree of functional association between a pair of pro-

teins. A total of 1,643,935 protein pairs corresponding to 2893 proteins have

a score less than 5079, which is the number of proteins that are present in

the root GO term. Pairs of proteins in the input set that do not share any GO

term take the default SSMF score of 5079.

10. Sharing cellular-component terms in Gene Ontology. The same proce-

dure described for GO-MF is applied to GO Cellular Component (GO-CC)
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ontology, in which the Smallest Shared Cellular Component (SSCC) count

is obtained as a measure of functional association for two proteins. In to-

tal, 9,324,840 protein pairs corresponding to 4326 proteins have a score less

than 5079, which is the number of proteins that are present in the root GO

term. Pairs of proteins in the input set that do not share any GO term take

the default SSCC score of 5079.

4.4.2 Evaluation methodology

In this section, the methodology used to evaluate the different data integration

methodologies used is described.

Regardless of the data integration methodology used (Naı̈ve Bayes, MLP-MMC,

MLP-TM or POCR), to evaluate the overall performance of the prediction of func-

tional relationship (pathway sharing) for protein pairs, we did a stratified ten-fold

cross-validation (10-CV). First, both GSP and GSN sets are randomly divided into

ten disjoint subsets of approximately equal size, in which the ratio of positive to

negative examples is kept in all subsets. Then, nine of the ten subsets are used

as the learning set to train the data integration approach and the remaining subset

is used as the validation set to identify the positive (pathway sharing) and nega-

tives (non-pathway sharing). We ran this process ten times so that each of the ten

subsets was a validation set and the remaining nine constituted the learning set (10-

CV). Depending on the data integration methodology, the overall performance of

the prediction of functional relationships between proteins is obtained in different

ways:

• Naı̈ve Bayes. At the end of the 10-CV process, the number of true positives

(TP), false positives (FP), true negatives (TN) and false negatives (FN) are

averaged to get the precision (TP/(TP+FP)) and recall (TP/(TP+FN)) values

(see section 3.3.1.2) under different log likelihood ratio cutoffs (LLRcuto f f ).

In this context, precision is defined as the fraction of the GS protein pairs

that belong to the GSP set, and recall or sensitivity is defined as the fraction

of the GSP pairs that are functionally related. By varying the LLR cutoff,
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different tradeoffs between precision and recall values are obtained and plot-

ted in the linkage precision versus linkage recall plot. Each point in the

curve represents an FLN with a given size and quality. The area under the

precision-recall curve (AUPRC) is used to summarize the precision-recall

curve with a single statistic and, thus, to get a single quality measure of the

data integration approach. This statistic is calculated as in [Davis and Goad-

rich, 2006].

• MLPs. Two different approaches are followed depending on how the cost-

sensitivity is introduced in MLPs (MLP-TM or MLP-MMC):

– MLP-TM. At the end of the 10-CV process, the number of TP, FP, TN

and FN are averaged to get the precision and recall values under differ-

ent FP/FN cost ratios. In MLP-TM, the FP/FN cost ratio is introduced

in the validation phase (see Eq.3.10) of each trained network in the

10-CV procedure and varying the FP/FN cost ratio from very large to

very small, different tradeoffs between precision and recall values are

obtained. Again, each point in the precision-recall curve represents an

FLN with a given size and quality.

– MLP-MMC. In this case, for each FP/FN cost ratio, the 10-CV proce-

dure is run, since the cost-sensitivity is introduced in the training phase

of an MLP (see Eq.3.11). Varying the FP/FN cost ratio from very large

to very small, different tradeoffs between precision and recall values

are obtained, being each point in the precision-recall curve an FLN.

In both cases, the AUPRC statistic is used to get a single quality measure of

the data integration approach.

• POCR. For each learning set in the 10-CV procedure, the multi-objective

genetic programming (MO-GP) approach is run, providing pareto optimal

classification IF-THEN rules (POCR) which are evaluated through the val-

idation data to obtain a set of precision-recall values. Again, each point in

the curve corresponds to an FLN with a given size and quality. Notice that

each IF-THEN rule in the pareto represents an entire solution for the pre-

diction of functional associations between proteins. Since different FP/FN
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ratios are considered in the MO-GP procedure, to get the AUPRC statistic,

an AUPRC value is calculated for each learning/validation run of the 10-CV

procedure and a final AUPRC value is obtained by averaging the different

AUPRC values obtained in the 10-CV process.

Keeping the initial partition of the GSP and GSN sets, the 10-CV procedure de-

scribed above is repeated 10 times for MLP-TM, MLP-MMC and POCR approaches

to get average results, due to both the pseudo-random nature of MLPs when they

are initialized and the random nature of the MO-GP approach to obtain POCR. We

call this process as 10-times 10-CV.

It must also be noted that the initial division/partition of GSP and GSN into ten

subsets to be used in the 10-times 10-CV procedure is the same for all the data

integration methodologies used in the experiments section. This way, it is ensured

that a data integration methodology is evaluated under the same conditions. More-

over, to ensure that such initial random partition does not affect the accuracy of

a data integration method, the 10-times 10-CV procedure described above (or the

single 10-CV procedure in the case of Naı̈ve Bayes) will be run another 10 times,

each one with a different partition of the GSP and GSN sets into ten subsets. This

way, the data integration methodologies are studied under different random parti-

tions of GSP and GSN to get an average overview of their accuracy.

In order to demonstrate the usefulness of integration of several evidences for pre-

dicting functional relationships, the relations extracted by the different data inte-

gration methods are compared with those supported by each evidence on isolation.

In this case, protein pairs are ranked by the score of the evidence (for example,

correlated gene expression score) and the ranking is then thresholded with several

cutoffss to form predictions. Discrete evidences, such as PPI and GI, represent a

binary relation, so, a single point in the precision-recall curve is shown.

All the evidences used in this dissertation are normalized so that they lie in the

interval [0, 1]. Evidences extracted from STRING database (Co-exp, GF, PP, GN,

TextM) and others such as PPI, SGD and SS are already normalized to [0, 1]. How-

ever, SS evidence has pair of proteins with very low values (1e-250,1e-200,1e-

150...), so, scores from SS have been re-scaled to manageable values to be used
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by the data integration methods in the interval [0, 1]. SSMF and SSCC have been

normalized to [0, 1] since their original score values are in the interval [2, 5079].

4.4.3 Results

The results given by the different data integration methodologies are reported in

this section. First, the results of the approaches commonly used in the literature are

given, followed by the results of the proposed approach and a global comparison

among all of methodologies.

4.4.3.1 Results from Naı̈ve Bayes

In the Naı̈ve Bayesian model (section 3.3.2.1), the likelihood ratio can be calculated

as the product of individual likelihood ratios from the respective evidence types:

LR(E1,...,En) =

n∏
i=1

LR(Ei), (4.2)

where Eq. 4.2 is equivalent to the following where LLR represent log likelihood

ratios:

LLR(E1,...,En) = LLR(E1) + . . . + LLR(En), (4.3)

This composite LLR corresponding to a specific biological evidence can be used

to measure the predictive power or confidence degree for predicting functional re-

lationships [Linghu et al., 2009].

First of all, the predictive power of each of the individual evidences in predicting

functional associations between proteins is examined. For this purpose, it is enough

to calculate LLR(Ei) for each of the ten evidences. We have to distinguish between

evidences with binary scores (PPI and GI) and evidences with continuous scores

(the remaining evidences). Therefore, the calculation of log likelihood ratios (LLR)

for evidences Ei with binary scores is:
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LLR(Ei = 1) = log
P(Ei = 1|GSP)
P(Ei = 1|GSN)

LLR(Ei = 0) = log
P(Ei = 0|GSP)
P(Ei = 0|GSN)

(4.4)

where GSP and GSN denote belonging to Gold Standard Positive and Gold San-

tandard Negative Set, respectively.

For evidences Ei with continuous values, the scores must be binned into consecu-

tive intervals and then calculate a LLR for each individual bin. We define lboundi j

and uboundi j as the lower bound and upper bound for interval j of evidence i

(lboundi j < uboundi j) respectively. Thus

LLR(Ei bin j) = log
P(lboundi j ≤ Ei < uboundi j|GSP)
P(lboundi j ≤ Ei < uboundi j|GSN)

(4.5)

where GSP and GSN denote belonging to Gold Standard Positive and Gold San-

tandard Negative Set, respectively and Ei bin j denotes the j − th bin for Ei.

The LLR value for each bin was calculated over all evidences according to the

GSP and GSN sets. Contingency tables in appendix A, illustrate the correlations

between the evidences scores and the corresponding LLRs.

Clear correlations can be observerd in all the evidences used in this dissertation,

which indicates that the LLRs can be taken as a relative measure for predict-

ing functional linkages (pathway sharing) between proteins in Naı̈ve Bayes. Co-

expression score from microarray data (Co-exp, tableA.1), correlated phylogenetic

profile (PP, tableA.5), Gene neighbor (GN, tableA.6) and Sequence similarity cor-

relation (SS, tableA.7) have the most predictive power, whereas PPI and GI are the

less predictive evidences. For example, for microarray data a significant correla-

tion between the co-expression score and the LLR is found when the score is above

0.8 and for sequence similarity a significant correlation between the E-value and

the LLR is found when E-value < 1e − 50. This way, LLR values greater than

zero, indicate that the evidences tends to functionally link proteins, with higher

LLR scores indicating more confidente linkages.
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Therefore, all the evidences (a total of ten) are going to be integrated according to

Eq.4.3. In principle, Naı̈ve Bayes integration assumes conditional independence

among the different evidences to be integrated, but, as explained in section 3.3.2.1,

a Naı̈ve Bayes classifier can still be applied even when the independence assump-

tion is not strictly satisfied [Linghu et al., 2009].

First of all, let us compare whether the initial random partition of GSP and GSN

sets into ten sets to be used by the 10-CV procedure affects the accuracy of Naı̈ve

Bayes. From table 4.6, it can be observed that the Naı̈ve Bayes integration method

performs comparably when different random partitions of GSP and GSN sets are

used.

Table 4.6: AUPRC values of data integration by means of Naı̈ve Bayes approach.
10 different random partitions of GSP and GSN sets into ten sets used by the 10-
CV procedure are used. Each cell corresponds to the AUPRC value for a given

partition

Partition Naı̈ve Bayes
1 0.40889
2 0.40885
3 0.40888
4 0.40887
5 0.40889
6 0.40892
7 0.40886
8 0.40889
9 0.40891
10 0.40888

From Fig.4.6, it can be observed that data integration by means of Naı̈ve Bayes

outperforms individual evidences in terms of quantifying functional links between

yeast proteins (i.e. in terms of predicting pathway sharing). So, it has been demon-

strated the importance of data integration. In this plot, a random control curve is

also used. To build this curve, the class labels in the gold standard data sets are

randomized and then the Naı̈ve Bayes is run as usual. In Fig. 4.6b), it is shown

how each individual evidence or feature has different quality in terms of predicting

functional associations. For example, for a given recall value, 0.1, the noisiest evi-

dence is SSMF (predicts more FPs), whereas the most confident evidence is SSCC

(has better precision value). Another interesting example is sequence similarity
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(SS) evidence: As can be observed in Fig. 4.6b), different FLNs can be obtained

by varying the linkage weight cutoff and all of them are quite sparse due to the

fraction of TPs present in the network (low recall value). However, most of them

have a precision value greater than 0.8, which makes the FLNs very confident but

sparse. So, it has been demonstrated that each data source or evidence has dif-

ferent quality in terms of predicting functional relationships between proteins and,

probably, provides a complementary view of the yeast genome. By combining

multiple evidences, in this case by means of Naı̈ve Bayes, complete genome-wide

functional linkage network and more accurate inferences of new functional rela-

tionships between proteins are provided.

4.4.3.2 Results from MLPs

For comparison purposes, as stated at the beginning of section 4.4, a Multi-layer

Perceptron (MLP) is used to recognize whether two given proteins are in the same

pathway (functionally related) based on the ten evidences described in section

4.4.1.2. An MLP with one hidden layer is assumed. Each input node of the input

layer is related to one evidence and the output layer has two nodes, one correspond-

ing to functional relationship and the other related to non-functional relationship

between proteins, similar to [Linghu et al., 2008]. Since the best number of neu-

rons in the hidden layer is unknown beforehand, different number of neurons for

the hidden layer is explored: 2, 5, 10, 15, 20 and 25 neurons.

As aforementioned, to obtain FLNs with different accuracy level, two cost-sensitivity

approaches are used in MLPs: minimization of the misclassification costs [Kukar

and Kononenko, 1998] (MLP-MMC) and Threshold-moving [Zhou and Liu, 2006]

(MLP-TM). In any case, the Neural Network Toolbox [MATLAB, 2010b] from

MATLAB software [MATLAB, 2010c] is used to train an MLP, using the Leven-

berg Marquardt as the backpropagation algorithm [Parker, 1987].

MLP with minimization of the misclassification costs as cost-sensitivity ap-
proach, MLP-MMC As stated in section 3.3.2.2, through this approach the er-

ror function to be minimized is the misclassification cost. For a given number of
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Figure 4.6: Naı̈ve Bayes Data integration vs individual evidences in terms of
quantifying functional links between yeast proteins. Naı̈ve Bayes results corre-
sponds with one of the random partitions of GSP and GSN sets into ten sets used

by the 10-CV procedure.(a) x-axis on decimal scale; (b) x-axis on log scale

neurons in the hidden layer, this approach trains a different MLP for each FP/FN

cost ratio.

Since this fact makes this approach computationally expensive and to check its

suitability for predicting functional linkages between proteins, only five evidences

are used as inputs to the input layer: SS, PP, Co-exp, PPI and SSMF. These evi-

dences have strong predictive power in predicting functional associations between

proteins according to Tables A.1, A.2, A.5, A.7 and A.9. A range of different cost
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values on either the positive or negative class are used in Eq.3.12 to get different

values of precision and recall rates:

• The cost of misclassifying a negative example as a positive example, which

is referred as Cost[GS N,GS P], is varied in the range [1, 30] while main-

taining the cost of misclassifying a positive example as a negative example,

Cost[GS P,GS N] = 1. This run is named Cost(-).

• Cost[GS P,GS N] is varied in the range [1, 150] while maintaining the cost of

misclassifying a negative example as a positive example Cost[GS N,GS P] =

1. This run is named Cost(+).

This way, we try to cover the range from almost all predictions being true and false

negatives (a sparse and relative confident FLN network) to most of the predictions

being true and false positives (a dense and relative noisy FLN network). By the use

of different cost values, a Precision-Recall (PRC) curve is obtained.

From Fig. 4.7, it can be observed a strange behavior when applying MLP-MMC

to data integration, regardless of the number of neurons in the hidden layer. For

example, with recall values greater than 0.2, the precision of the FLNs obtained

is very low for any number of neurons in the hidden layer. When recall is below

0.2, FLNs with disparate accuracy (precision) are built so it seems that predictions

made by the MLP-MMC approach for any number of neurons in the hidden layer

are random.

To confirm the hypothesis of random predictions, instead of using Precision-recall

curves to evaluate the performance of the MLP-MMC approach, ROC curves are

used (see section 3.3.1.2) in which the relative trade-offs between the true positives

and the false positives are highlighted. It can be observed from Fig.4.8 that, regard-

less of the number of neurons in the hidden layer, MLP-MMC appear very close

to the diagonal, which represents a random guess prediction, in our case, random

predictions of pathway sharing between pair of proteins.

So, it has been demonstrated that MLPs which are made cost-sensitive by means

of the minimization of the misclassification costs (MLP-MMC), are not proper
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Figure 4.7: Data integration by means of MLP-MMC approach to predict func-
tional links between yeast proteins. Five evidences are integrated: SS, PP, Co-
exp, PPI and SSMF. Different number of neurons in the hidden layer are used.
The results shown corresponds to one of the random partitions of GSP and GSN

sets into ten sets used by the 10-CV procedure
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The results shown corresponds to one of the random partitions of GSP and GSN

sets into ten sets used by the 10-CV procedure
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approaches for integrating several evidences to predict functional associations be-

tween proteins probably for two main reasons:

• Its computational cost. For a given number of neurons in the hidden layer, a

different MLP must be trained for each FP/FN cost used.

• The distribution of evidence scores in the input domain.

The last issue can probably be the main reason of poor performance for MLP-

MMC when predicting functional associations between proteins. If we have a look

at the contingency table detailing the distribution of SSCC scores (SSCC evidence)

in the input domain (table 4.7), it can be observed that the majority of protein

pairs (including GSP and GSN pairs) have an SSCC score that lie in the interval

[1000, 5079], which is considered, for Naı̈ve Bayes methodology, the worst bin

in terms of predicting functional associations taking into account this evidence

(LLR < 0, see tableA.10).

Table 4.7: Contingency table detailing the distribution of SSCC scores (SSCC
evidence) in the input domain

Bin GSP GSN TOTAL
[0, 10[ 417 18 2222
[10, 50[ 2860 1060 24243
[50, 100[ 3704 2949 61429
[100, 500[ 7955 40232 508104
[500, 1000[ 5910 100254 969801
[1000, 5079[ 25790 849254 11329782

In the case of other evidences (see Appendix A), the same tendency is observed:

for each evidence, the majority of protein pairs have a score that lies in the interval

in which a functional association is less likely to exist according to the Naı̈ve Bayes

methodology (LLR < 0). Artificial Neural Networks whose error function is the

minimization of misclassification cost are not suitable for this kind of data, since

the majority of true positive cases (GSP) are in the same interval or bin where the

majority of true negative cases (GSN) are, i.e. the evidence score by itself cannot

be used as a predictor for functional links between proteins. This is, probably,
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the main reason that this type of cost-sensitive MLP makes random predictions of

functional association between proteins for several FP/FN cost ratio values.

MLP with threshold-moving as cost-sensitivity approach, MLP-TM Due to

the problems described for MLPs when the cost-sensitivity is introduced in the

training phase, an alternative approach is threshold-moving, in which the cost-

sensitivity is introduced in the validation phase where the outputs of the MLP are

manipulated.

For a given number of neurons in the hidden layer, this approach trains a neural

network once and the cost-sensitivity is introduced in the validation phase. In this

validation phase, a range of different cost values on either the positive or negative

class are used to get different values of precision and recall rates (i.e. different

quality for the FLNs built):

• The cost of misclassifying a negative example as a positive example, which is

reffered as Cost[GS N,GS P], is varied in the range [1, 400] while maintain-

ing the cost of misclassifying a positive example as a negative one, Cost[GS P,GS N] =

1.

• Cost[GS P,GS N] is varied in the range [1, 400] while maintaining the cost

of misclassifying a negative example as a positive Cost[GS N,GS P] = 1.

This run is named Cost(+).

The AUPRC scores of the MLP-TM approach with different number of neurons

in the hidden layer and different initial partitions of GSP and GSN sets for the 10

times 10-CV procedure are shown in table 4.8.

It will be checked whether the AUPRC values are affected by two factors: the

hidden layer size (number of neurons in that layer) and the partition of the GSP and

GSN sets to be used in the 10 times 10-CV procedure. For this purpose, a two-way

ANalysis Of VAriance (ANOVA) analysis [Box et al., 1978] is performed, since it

is a useful test when it is suspected that one or more factors affect a response. The

statistical parameter considered in this test is the significant level and if it is lower

than 0.05, then the corresponding levels of the factor are statistically significant
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Table 4.8: AUPRC values of data integration by means of a cost-Sensitive MLP.
Threshold-moving is used to make the MLP cost-sensitive (MLP-TM). 10 dif-
ferent random partitions of GSP and GSN sets into ten sets are used by the 10
times 10-CV procedure. Each cell corresponds to the average AUPRC value for

a given partition and a given number of neurons in the hidden layer

Partition MLP-TM-2 MLP-TM-5 MLP-TM-10
1 0.349 ± 0.014 0.400 ± 0.016 0.412 ± 0.016
2 0.354 ± 0.011 0.389 ± 0.018 0.407 ± 0.016
3 0.356 ± 0.025 0.389 ± 0.015 0.4193±0.0043
4 0.298 ± 0.045 0.402 ± 0.014 0.403 ± 0.019
5 0.350 ± 0.017 0.395 ± 0.015 0.4198 ± 0.0037
6 0.345 ± 0.022 0.4066 ± 0.0072 0.4184 ± 0.0028
7 0.359 ± 0.014 0.4065 ± 0.0074 0.4206 ± 0.0014
8 0.3636 ± 0.0042 0.399 ± 0.015 0.4186 ± 0.0068
9 0.3569 ± 0.0096 0.396 ± 0.013 0.413 ± 0.015

10 0.338 ± 0.022 0.399 ± 0.015 0.411 ± 0.017
Partition MLP-TM-15 MLP-TM-20 MLP-TM-25

1 0.408 ± 0.021 0.41 ± 0.02 0.41 ± 0.02
2 0.4248 ± 0.0016 0.403 ± 0.034 0.4193 ± 0.0092
3 0.4252 ± 0.0025 0.4206 ± 0.0095 0.421 ± 0.016
4 0.419 ± 0.016 0.412 ± 0.035 0.40 ± 0.02
5 0.410 ± 0.021 0.42607 ± 0.00092 0.412 ± 0.022
6 0.416 ± 0.017 0.408 ± 0.034 0.411 ± 0.019
7 0.417 ± 0.016 0.413 ± 0.018 0.420 ± 0.017
8 0.41 ± 0.02 0.4231 ± 0.0021 0.418 ± 0.016
9 0.417 ± 0.016 0.4253 ± 0.0015 0.417 ± 0.017

10 0.407 ± 0.035 0.415 ± 0.016 0.418 ± 0.017

with a confidence level of 95%. The dependent or response variable is the AUPRC

score and the factors are the hidden layer size, whose levels are 2,5,10,15,20 and 25

neurons, and the partition, whose levels are the different partitions used (a total of

10). The normality, independence of populations and homocedasticity assumptions

for ANOVA test are accomplished. The results of the ANOVA test for the AUPRC

response variable can be observed in table 4.9, in which the hidden layer size factor

presents the greatest statistical relevance (P < 0.05), which means that at least one

of the levels of the hidden layer size factor affects the AUPRC score or, in other

words, AUPRC values statistically depend on the number of neurons in the hidden

layer size. The partition factor is not statistically significant, which means that

AUPRC scores do not statistically depend on the partition performed.

From Fig.4.9, it can be observed that when the MLP has 10 or more neurons in

the hidden layer, it achieves statistically better results (AUPRC values) than MLPs
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Table 4.9: ANOVA table for the analysis of the main variables (hidden layer size
and partition) for the AUPRC response when threshold-moving MLP (MLP-TM)

is used as a data integration approach

Main Sum of D.F. Mean F-Ratio Sig.level
factors squares square
H.Layer size 0.037 5 0.007 88.11 0
Partition 0.003 9 0 1.74 0.11

with a hidden layer size of 2 or 5 neurons. On the other hand, there are no statistical

differences (P > 0.05) among MLPs with 10 or more neurons in the hidden layer.

So, among these MLPs, it is preferable to choose the simplest one according to the

parsimony principle, i.e. 10 neurons in the hidden layer.

Figure 4.9: Means and 95% Least Significant Differences (LSD) intervals of the
different sizes of hidden layer through the AUPRC values

From Fig.4.10, it can be observed that data integration by means of a cost-sensitive

MLP through the Threshold-moving approach (MLP-TM) outperforms individual

evidences in terms of quantifying functional links between yeast proteins (i.e. in

terms of predicting pathway sharing). In this plot, a random control curve is also

used. To build this curve, the class labels in the gold standard data sets are ran-

domized and then the MLP-TM approach with 10 nodes in the hidden layer is run

as usual.

It has been demonstrated that when the cost-sensitivity is introduced in the vali-

dation phase, that is, the outputs of the MLP are manipulated, data integration by
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Figure 4.10: Data integration by means of MLP-TM with 10 neurons in the
hidden layer vs individual evidences in terms of quantifying functional links
between yeast proteins. Results from MLP corresponds to one of the random

partitions of GSP and GSN sets used by the 10 times 10-CV procedure

means of MLPs outperforms individual evidences in terms of quantifying func-

tional links between yeast proteins. It is easy to manipulate the outputs of MLPs

and, this way, the problem of the distribution of evidence scores in the input domain

can be avoided.

4.4.3.3 Results from pareto optimal classification rules (POCR) obtained by
a multi-objective genetic programming approach

In this section, classification rules that use several evidences to predict functional

relationships between proteins are applied. The multi-objective genetic program-

ming (MO-GP) approach described in section 4.3.2 is run to extract such Pareto

optimal classification rules (POCR).

As explained in section 4.3.2.1, the rules to be used in the MO-GP approach will

be of the form:



Chapter 4. A MO-GP approach to developing pareto optimal IF-THEN rules 116

IF (E1 ≥ αE1 AND E2 ≤ αE2 AND . . . AND Ek ≥ αEk ) . . . OR

. . . (En−p ≤ αEn−p AND . . . AND En−1 ≥ αEn−1 AND En ≥ αEn)

THEN functional relationship

in which the rule antecedent is made up of compound conditions linked by a log-

ical OR operator and each compound condition is made up of single conditions

connected by a logical AND operator.

In this dissertation, five compound conditions linked by a logical OR operator are

used. For each compound condition, two single conditions connected by a logical

AND operator are selected, that is:

IF (E1 >= αE1 AND E2 <= αE2) OR (E3 >= αE3 AND E4 >= αE4) OR

(E5 >= αE5 AND E6 >= αE6) OR (E7 >= αE7 AND E8 >= αE8) OR

(E9 >= αE9 AND E10 >= αE10) THEN functional relationship

Using this subtype of rules, each compound condition in the antecedent of the

rule restricts the prediction of functional associations to two evidences at the same

time. By connecting the compound conditions by a logical OR operator, it is also

given the possibility to study several subsets of two evidences to predict associ-

ations between proteins. Only two single conditions are used in each compound

condition since, to keep high interpretability, a very low number of conditions are

recommended when they are linked by an AND operator [Mendel, 2001]. On the

other hand, interpretability is not significantly affected when several conditions are

linked by OR operators [Mendel, 2001]. We still consider rules as interpretable

when 5 compound conditions are linked by an OR operator. Thus, protein pairs

covered by this subtype of rules, are predicted to be functionally related if this pre-

diction is supported by, at least, two evidences, that is, a single rule represents an

entire solution for the classification problem at hand. Using this structure in the

rule, all evidences used in the experiments (see table 4.3) may be present in the

rule at the same time.
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As described in section 4.3.2.2, this rule can be represented naturally as a tree in

the GP approach to codify individuals. This structure does not change during the

execution of the MO-GP approach and the relational operator between an evidence

and its related threshold depends on the type of evidence (see table 4.10): ≥ for ev-

idences of type ”ascendant” and ≤ for evidences of type ”descendant”. According

to the guidelines described in section 4.3.2.1, the domain of the evidences and the

threshold parameter are shown in table 4.10

Table 4.10: Domain of the evidences and thresholds used in the experiments for
the classification rules, ϑ > 0

Evidences, Ei Domain of Ei Type of evidence Domain of αEi

Co-exp [0, 1] ascendant [0, 1 + ϑ]
PPI {0, 1} ascendant {0, 1, 1 + ϑ}

GI {0, 1} ascendant {0, 1, 1 + ϑ}

GF [0, 1] ascendant [0, 1 + ϑ]
PP [0, 1] ascendant [0, 1 + ϑ]
GN [0, 1] ascendant [0, 1 + ϑ]
SS [0, 1] descendant [0 − ϑ, 1]
TextM [0, 1] ascendant [0, 1 + ϑ]
GO-MF [0, 1] descendant [0 − ϑ, 1]
GO-CC [0, 1] descendant [0 − ϑ, 1]

In this dissertation, the multi-objective evolutionary implementation of NSGA-II

in MATLAB’s Global Optimization toolbox TM[MATLAB, 2010a] is used. The

most relevant parameters of the MO-GP approach are shown in table 4.11. Several

population sizes are explored: 150, 200, 250, 300, 350, 400, 450, 500, 550 and

600 individuals are used in the experiments. The maximum number of generations

and the stall generation limit are chosen to be high enough (in fact, we checked

that none of the MO-GP executions achieve the limits of these parameters). The

rest of parameters has default values. It must also be emphasized, that the num-

ber of pareto optimal rules (individuals) returned by MATLAB’s multi-objective

evolutionary approach is equal to populationS ize ∗ paretoFraction.

In table 4.12, it is shown the AUPRC scores of data integration by means of the

pareto optimal classification rules. Each cell corresponds to a given population size

used in the MO-GP approach and a given partition of GSP and GSN sets to be used

in the 10 times 10-CV procedure.
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Table 4.11: Parameters of the MO-GP system to obtain pareto optimal classifi-
cation rules for data integration

Parameter Description Value
Population size The number of individuals in the population 150-600
Crossover fraction The fraction of the population that

is created by the crossover function 0.8
Mutation fraction The fraction of the population that

is created by the mutation function 0.2
Max. no. of Maximum number of iterations
generations before the algorithm halts 1000
Pareto fraction Fraction of individuals to keep on

the first pareto front while the 0.35
solver selects individuals from lower fronts

StallGenLimit The algorithm stops if there is no
improvement in the objective function 100
for StallGenLimit consecutive generations

Selection function Function that selects parents of
crossover and mutation children Tournament

Again, it will be checked whether the AUPRC values are affected by two factors:

the population size (number of individuals) of the MO-GP approach and the par-

tition of the GSP and GSN sets to be used in the 10 times 10-CV procedure. For

this purpose, a two-way ANOVA analysis is performed. The statistical parame-

ter considered in this test is the significant level and if it is lower than 0.05, then

the corresponding levels of the factor are statistically significant with a confidence

level of 95%. The dependent or reponse variable is AUPRC score and the fac-

tors are the population size of the MO-GP, whose levels are 150,200,...,600, and

the partition factor, whose levels are the different partitions used (a total of 10).

The normality, independence of populations and homocedasticity assumptions for

ANOVA test [Box et al., 1978] are accomplished. The results of the ANOVA test

for the AUPRC response variable can be observed in table 4.13, in which the popu-

lation size factor presents the greatest statistical relevance (P < 0.05), which means

that AUPRC scores statistically depend on the number of individuals of the popu-

lation in the MO-GP approach. The parittion factor is not statistically significant,

which means AUPRC scores do not statistically depend on the partition performed.
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Table 4.13: ANOVA table for the analysis of the main variables (hidden layer
size and partition) for the AUPRC response when POCR is used is used as a data

integration approach for predicting functional linkages between proteins

Main factors Sum of D.F. Mean F-Ratio Sig.level
squares

Population size 1.70e-3 9 1.89e-4 921.01 0
Partition 1.45e-6 9 1.61e-7 0.78 0.63

From Fig.4.11 it can be observed that when the MO-GP approach used to obtain

POCR has 550 or 600 individuals in the population size, achieves statistically better

results (AUPRC values) than population size with 500 individuals or less. On the

other hand, there are no statistical differences (P > 0.05) among MO-GPs with 550

or 600 individuals. Among these, it is preferable to choose the MO-GP approach

with less number of individuals (550) according to the parsimony principle.

Figure 4.11: Means and 95% Least Significant Differences (LSD) intervals of
the different sizes of population in MO-GP approach through the AUPRC values

From Fig.4.12, it can be observed that data integration by means of the POCR

approach proposed in this dissertation outperforms individual evidences in terms

of quantifying functional links between yeast proteins (i.e. in terms of predicting

pathway sharing). Since the FP/FN ratios are considered in the MO-GP procedure,

to plot a single precision-recall curve in Fig.4.12, we merged all the precision-

recall points on validation data obtained in the 10 times 10-CV procedure and a

single curve was approximated from this set of points by Least-Squares Support

Vector Machine (LS-SVM) [Suykens et al., 2002] using the MATLAB package

LS-SVMLab [Pelckmans et al., 2002]. In this plot, a random control curve is
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also used. To build this curve, the class labels in the gold standard data sets are

randomized and then the MO-GP approach with the same settings described in

table 4.11 is run to obtain POCR. The procedure to obtain a single precision-recall

curve described above is also applied.
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Figure 4.12: Data integration by means of POCR obtained by a MO-GP ap-
proach with 550 individuals vs individual evidences in terms of quantifying func-
tional links between yeast proteins. Results from POCR corresponds with one
of the random partitions of GSP and GSN sets used in the 10 times 10-CV pro-

cedure

4.4.3.4 Comparison among Naı̈ve Bayes, MLP-TM and POCR

In this section, the POCR obtained by the MO-GP approach will be compared

to the other data integration approaches used in the experiments section, namely,

Naı̈ve Bayes and MLP with threshold-moving to introduce cost-sensitivity, MLP-

TM . The suitability of these methods for quantifying links between yeast proteins

over individual evidences has been demonstrated in section 4.4.3.1 and 4.4.3.2 re-

spectively.

Among MLP-TMs with different number of neurons in the hidden layer and ac-

cording to the discussion given in section 4.4.3.2 the results provided by a MLP-

TM with 10 neurons in the hidden layer, MLP-TM-10, are used in this comparison

(see table 4.9). With regard to Naı̈ve Bayes, the results obtained in section 4.4.3.1

are taken for the comparison (table 4.6). In the case of POCR and according to
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the discussion given in section 4.4.3.3, the results reported in this comparison are

given by the POCR when 550 individuals are used as the population size in the

MO-GP approach (see table 4.12).

Thus, the three data integration approaches (Naı̈ve Bayes, MLP-TM-10 and POCR

with MO-GP-550) will be evaluated in terms of quantifying functional links be-

tween yeast proteins when several evidences are integrated. Table 4.14 shows the

AUPRC values of these methodologies for several partitions of the GSP and GSN

sets into subsets to be used by the 10 times 10-CV procedure.

Table 4.14: Average AUPRC values of different data integration approaches
compared in this dissertation: Naı̈ve Bayes, MLP-TM and POCR (MO-GP-550).
10 different random partitions of GSP and GSN sets to be used by the 10 times
10-CV procedure (single 10-CV procedure in the case of Naı̈ve Bayes) are used.
Each cell corresponds to the AUPRC value for a given partition and a given data

integration approach

Partition N.Bayes MLP-TM-10 POCR
MO-GP-550

1 0.40889 0.412 ± 0.016 0.41380 ± 0.00045
2 0.40885 0.407 ± 0.016 0.41419 ± 0.00035
3 0.40888 0.4193 ± 0.0043 0.41390 ± 0.00035
4 0.40887 0.403 ± 0.019 0.4135 ± 0.0014
5 0.40889 0.4198 ± 0.0037 0.41393 ± 0.00041
6 0.40892 0.4184 ± 0.0028 0.41403 ± 0.00072
7 0.40886 0.4206 ± 0.0014 0.41415 ± 0.00072
8 0.40889 0.4186 ± 0.0068 0.41415 ± 0.00021
9 0.40891 0.413 ± 0.015 0.41364 ± 0.00057
10 0.40888 0.411 ± 0.017 0.41388 ± 0.00051

It would be interesting to check whether the differences in the AUPRC values

among the different data integration methodologies and the different partitions used

are due to chance. For this purpose, a two-way ANOVA test could be useful as in

previous sections, but this time, the homocedasticity assumption is not accom-

plished. Thus, the equivalent non-parametric test has to be used, in this case, the

Friedman test [Friedman, 1937]. This test will check only for effects of one factor

(main factor) after adjusting for possible effects of other factor, providing a ranking

of the levels of the main factor and a related statistic. Since the statistic given by

the Friedman test produces a conservative undersirably effect [Garcı́a et al., 2009],

Iman and Davenport statistic [Iman and Davenport, 1980], which is a derivation
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from the Friedman’s statistic, is also used to detect significant differences of the

main factor under study.

Since our main interest is related to differences among the different data integration

methodologies, this will be the main factor under study for Friedman test. Table

4.15 shows the average ranks obtained by each data integration algorithm in the

Friedman test. At can be observed, the POCR approach achieves the best rank,

followed by MLP-TM-10 and Naı̈ve Bayes approaches.

Table 4.15: Average ranks obtained by each data integration method in the Fried-
man test for the AUPRC response variable

Data integration algorithm Ranking
N.Bayes 2.8
MLP-TM-10 1.7
POCR (MO-GP-550) 1.5

Table 4.16 shows the statistic related to Friedman’s test and also the statistic of

applying the Iman-Davenport test. The table shows the Friedman and ImanDav-

enport values, χ2 and F, respectively, and it relates them with the corresponding

critical values for each distribution by using a level of significance α = 0.05. The

p-value obtained is also reported for each test. Given that the p-value of Friedman

and Iman-Davenport are lower than the level of significance considered α = 0.05,

there are significant differences among the different data algorithms (Naı̈ve Bayes,

MLP-TM-10 and POCR) with a confidence level of 95%.

Table 4.16: Results of the Friedman and Iman-Davenport tests (α = 0.05) for
the analysis of the main factor (algorithm) for the AUCPRC response

Factor Friedman’s statistic Value in χ2 p-value
Data integration algorithm 9.8 5.99 0.0074

Iman-Davenport’s Value in F p-value
statistic

Data integration algorithm 8.65 3.55 0.0023

Since the Friedman and Iman-Davenport test only inform us about the presence of

statistical differences among all samples of result compared, a post-hoc statistical
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analysis is needed to detect the existing differences among the data integration al-

gorithms. A control algorithm, in our case the one with the best rank (POCR) is

chosen so that the post-hoc procedure proceeds to compare this control algorithm

with the remaining algorithms, in our case Naı̈ve Bayes and MLP-TM-10. The

post-hoc procedure chosen is Holm [Holm, 1979], which sequentially checks the

hypothesis of no differences between algorithms ordered according to their signif-

icance. It is one of the most powerful post-hoc methods [Garcı́a et al., 2009].

Table 4.17 shows all the adjusted p values obtained for Holm’s procedure (Holm p)

for each comparison which involves the control algorithm (POCR). The unadjusted

and the adjusted p values are indicated in each comparison, considering a level of

significance α = 0.05. According to this table, POCR is not statistically better than

MLP-TM-10 (Holm p > 0.05), but statistically better than Naı̈ve Bayes (Holm

p < 0.05) with a confidence level of 95%.

Table 4.17: Holm’s post-hoc procedure to detect differences among the data
integration algorithms using POCR as the control algorithm (α = 0.05). z is the

statistic for comparing two algorithms

i Data integration algorithm z = (R0 − Ri)/SE Unadjusted p Holm p
2 N.Bayes 2.9069 0.0037 0.0073
1 MLP-TM-10 0.4472 0.6547 0.6547

Table 4.18 shows the average learning time for each of the data integration method-

ologies compared in this section. Not surprisingly, Naı̈ve Bayes is the fastest data

integration methodology. Once the different bins to be used with continuous evi-

dences have been decided, to build contingency tables (Equations 4.4 and 4.5) sim-

ple calculations of probabilities are needed. However, MLP-TM and the MO-GP

approach to obtain pareto optimal classification rules, are more computationally

expensive, being the POCR obtained by the MO-GP approach the data integration

methodology with the highest values.

In spite of the computational cost needed to obtain POCR, the methodology pro-

posed in this dissertation can be considered a valid alternative not only in terms of

accuracy (see table 4.17) but also in terms of flexibility and interpretability as will

be examined in the following section.
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Table 4.18: Average learning time (in sec.) of the different data integration
approaches compared in this dissertation: Naı̈ve Bayes, MLP-TM and POCR
(MO-GP-550). For Naı̈ve Bayes, each cell corresponds to the average time in
the 10-CV procedure needed to learn log likelihood ratios LLR(Ei),∀i (i.e. time
needed to build the contingency tables for all evidences, see Equations 4.4 and
4.5). For MLP-TM-10, each cell corresponds to the average time in the 10-
CV procedure needed to learn the network. For POCR (MO-GP-550), each cell
corresponds to the average time in the 10-CV needed by the MO-GP approach
to optimize a set of classification rules (i.e. time needed to obtain pareto optimal

classification rules).

Partition N.Bayes MLP-TM-10 POCR
MO-GP-550

1 1.94 ± 0.08 2400 ± 350 5420 ± 100
2 1.81 ± 0.10 2040 ± 270 5382 ± 38
3 1.91 ± 0.10 2420 ± 260 5358 ± 43
4 1.97 ± 0.09 2320 ± 270 5415 ± 35
5 1.81 ± 0.10 2350 ± 130 5363 ± 22
6 1.80 ± 0.15 2080 ± 260 5400 ± 58
7 1.96 ± 0.12 2380 ± 140 5397 ± 57
8 1.86 ± 0.18 2096 ± 82 5363 ± 21
9 1.82 ± 0.15 2280 ± 450 5387 ± 47
10 1.91 ± 0.13 2080 ± 220 5383 ± 73

4.4.3.5 Flexibility and interpretability of the POCR approach

The MO-GP approach to developing POCR for data integration proposed in this

dissertation fulfills the desirable requirements for a data integration methodology

described in section 4.1 since:

• It can deal with large gold standard sets, so that high unbalanced GSP and

GSN sets can be used.

• It provides a set of simple classification rules since the GP methodology can

simultaneously evolve toward multiple alternative non-dominated solutions.

Each rule in the pareto reflects the evidences integrated and is used to build

an FLN (i.e. to predict functional associations between proteins) with a given

level of accuracy. Covering the entire Pareto, different FLNs are obtained,

each one with a different quality (trade-off between precision and recall) and,

thus, different size.
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• Each FLN is based on a single rule. This means, that the FLN can be de-

scribed in terms of an interpretable and comprehensive rule. Moreover, the

rule provides the contributions of the different types of data or evidences

used in the integration process toward predicting functional associations.

To demonstrate these advantages, the MO-GP approach is run to obtain POCR

using the whole GSP and GSN sets available. The number of individuals in the

population for the MO-GP is 550 (the best results were achieved through this pop-

ulation size in section 4.4.3.3) and the parameters of the MO-GP approach are set

according to table 4.11. The MO-GP approach has been run 10 times (10 different

POCR sets are obtained) and the execution with the best AUPRC value is kept as a

final solution.

In Fig. 4.13 the precision-recall curve for FLNs through the best POCR set is

shown. Its AUPRC value is 0.4159.
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Figure 4.13: Data integration by means of pareto optimal classification rules ob-
tained by a multiobjective genetic programming approach with 550 individuals.

Full GSP and GSN sets are used for data integration.

One of the main advantages of the proposed approach is that a single rule, and thus

an FLN built using that rule, can be obtained from a specified precision or recall

value. For example, if the decision maker has a partial preference, let’s say, a recall

of 0.8, a single rule can be obtained through the pareto optimal classification rules

obtained:
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IF SS ≤ 0.83 OR TextM ≥ 0.02 OR SSMF ≤ 0.3 OR

SSCC ≤ 0.24 OR Co-exp ≥ 0.01 THEN functional relationship

this rule achieves a recall of 0.7972 and a precision of 0.0708 and five evidences

are used. In this case, all the conditions in the rule form a disjunction by means

of the OR operator. Obviously, the pruning procedure described in section 4.3.2.5

has been applied to obtain this rule. This way useless evidences are removed and

the rules are more interpretable.

Another example is given by the following rule:

IF Co-exp ≥ 0.01 OR SSMF ≤ 0.013 OR TextM ≥ 0.02

OR SSCC ≤ 0.17 THEN functional relationship

in which four evidences are used to predict functional association and this rule

achieves a recall of 0.5309 and a precision of 0.2103.

If the decision maker wants the rule with the highest precision value, it is given by:

IF (Co-exp ≥ 0.5 AND SSMF ≤ 0.0003) OR (Co-exp ≥ 0.77 AND SSCC ≤ 0.2)

OR (TextM ≥ 0.99 AND SSCC ≤ 0.12) OR (Co-exp ≥ 0.47 AND SSCC ≤ 0.009)

OR (PP ≥ 0.32 AND TextM ≥ 0.62) THEN functional relationship

which provides a precision of 1 and a recall of 0.0338.

On the other hand, it is also useful to examine different issues regarding the pareto

optimal classification rules obtained:

• The number of compound conditions or terms linked by the OR operator,

which will provide information about the complexity of the rule. A com-

pound term is made up of two conditions linked by the AND logical op-

erator, so, the number of compound terms linked by the OR operator will
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provide the number of AND operators present in the rule. It is possible that

there are less or no AND operators in the rule, in which case it is interesting

to measure the number of single condition terms linked by the OR operator.

For example, the following rule:

IF TextM ≥ 0.28 OR SSCC ≤ 0.013 OR (Co-exp ≥ 0.01 AND PPI ≥ 1) OR

(SSMF ≤ 0.03 AND SSCC ≤ 0.17) OR (Co-exp ≥ 0.13 AND SSCC ≤ 0.21)

THEN functional relationship

has three compound terms linked by the OR operator and two single condi-

tion terms linked by the OR operator.

Fig. 4.14 shows the distribution of compound and single condition terms

linked by the OR operator along different values of recall. It can be observed

that, for very low recall values (high precision scores), the number of com-

pound terms is very high. This is obvious because high precision with low

recall values means the prediction of a small number of positive functional

associations, but most of them being true (a compound term restricts the pre-

diction to two evidences). To this end, the rules are more complex since it is

made up of a set of compound terms and the threshold values are more strict.

On the other hand, for very high recall values (low precision), there are no

compound terms in the rules obtained and those are made of single condition

terms linked by the OR operator. In this case, rules are easier and the thresh-

old values are more permissive: most of the predictions are positives (true

and false) and the rule does not have to restrict the results by means of a set

of compound terms with high threshold values. As can be observed, there is,

in general, a correlation between the recall values and the average number

of compound and single condition terms. As the recall value increases, the

average number of compound terms decreases as well, whereas the average

number of single condition terms increases. In other words, as the recall

value increases, the rule complexity decreases.

• Average number of evidences per rule. This issue is related to the number

of the compound terms linked by the OR operator previously described. The
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Figure 4.14: Distribution of compound and single condition terms linked by the
OR operator along different values of recall

more number of compound terms in a rule, the more number of evidences

since the rule is more complex. Fig. 4.15 shows the distribution of the av-

erage number of evidences per rule along different recall intervals. For each

interval under study, how often a single evidence appears in the classification

rules of that interval is also provided. It can be observed that, in general, less

number of evidences are used as the recall increases, which means that the

rules are more complex for low recall values (high precision) and simpler for

high recall values (low precision). These results are consistent with the ones

given from Fig.4.14.

Moreover, Fig. 4.15 highlights the importance of Co-exp, TextM, SSMF and

SSCC evidences in the POCR set. This means that these evidences have a

strong predictive power in terms of quantifying functional associations for

any level of recall or precision. It can also be concluded that gene neighbor

(GN) evidence is useful only for very low values of recall and that gene

interaction (GI) evidence is suitable for rules with medium-high values of

recall.

• The presence of evidences in the POCR. It is checked the proportion of clas-

sification rules of the pareto that contains a given evidence. From Fig.4.16,

it can be observed that in the POCR obtained, a total of 193 rules, Co-exp,
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Figure 4.15: Distribution of the average number of evidences per rule along
different recall intervals.

SSMF and SSCC evidences are present in more than 95% of the classifica-

tion rules and TextM evidence is present in around 92% of the rules. On the

other hand, sequence similarity (SS), phylogenetic profile (PP), gene neigh-

bor (GN) and gene fusion (GF) are present in less than 10% of the rules.

These results are consistent with the ones given in Fig.4.15.
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Figure 4.16: Presence of evidences in the pareto optimal classification rules

• Total number of times that a given evidence is referenced in the pareto op-

timal classification rules. In our case, in the set of 193 pareto optimal clas-

sification rules, there are 1337 referenced evidences (this includes repeti-

tions of evidences). Around 30% of them correspond to the SSCC evidence
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(see Fig.4.17). This means that such evidence appears around 407 times and

since the number of classification rules in the pareto is 193, this suggests that

SSCC evidence appears more than once in several classification rules. The

second and third most referenced evidences are Co-exp and SSMF respec-

tively (around 22% for Go-exp and 17% for SSMF of referenced evidences).

This also means that these evidences appear more than once in some rules.

On the other hand, sequence similarity (SS), phylogenetic profile (PP), gene

neighbor (GN), gene fusion (GF) and genetic interactions (GI) evidences are

the least referenced evidences (less than 2% each).
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Figure 4.17: Number of times (in %) that a given evidence is referenced in the
pareto optimal classification rules

4.4.4 High-performance computing for the MO-GP approach

It must be emphasized that the executions of the MO-GP approach to develop-

ing POCR, have been done in the context of high-performance computing through

the use of parallel architectures. To be more precise, the computer cluster of our

department, called BIOATC, has been used to take advantage of its several compu-

tational resources. BIOATC offers several possibilities for our MO-GP approach

since, it is well known, that such type of optimization methodologies are quite

demanding both in time and in space.
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From Fig.4.18, the procedure to run the MO-GP approach with different population

size is shown. BIOATC cluster is made up of 19 hosts, providing up to 304 CPUs

and 304 GB of memory. The main node is in charge of distributing MO-GPs with

different population size to several nodes, each one running the MO-GP approach

with a given population size. In our case, 10 nodes were needed, since 10 differ-

ent MO-GP algorithms were run (see table 4.12). For each node, the MO-GP was

run through the multi-objective evolutionary algorithm provided by the MATLAB

optimization toolbox. This toolbox offers the possibility of using a pool of MAT-

LAB workers connected to a given MATLAB client providing parallel computing.

This feature was used in our MO-GP for fitness evaluation of a population. It is

well known that a fitness function is computationally demanding since it evaluates

each individual on each generation, so, in our case, the MATLAB client of a given

node, creates a pool of MATLAB workers. Each of these workers is in charge of

evaluating a subpopulation so that different subpopulations of the total population

are evaluated by the fitness function in parallel. Fig.4.18 shows the details for node

number 3, but the same is applied to the rest of nodes. Initially, MATLAB allows as

many workers as CPUs available in a node, however, the license used at BIOATC,

allows up to 8 workers.

BIOATC CLUSTER

Hosts: 19

CPUs total: 304

Memory total: 304 GB

Main node

Node 1

16 CPUs @ 2.26 GHz

Memory: 16 GB

Node 3

16 CPUs @ 2.26 GHz

Memory: 16 GB

. . .

Node 18

16 CPUs @ 2.26 GHz

Memory: 16 GB
MATLAB client 3 : MO-GP-250

MATLAB worker 1 MATLAB worker 8. . .

Fitness(subpopulation1) Fitness(subpopulation8)

MO-GP-150 MO-GP-200
MO-GP-250

MO-GP-N

Figure 4.18: High-performance computing for the MO-GP approach



Chapter 4. A MO-GP approach to developing pareto optimal IF-THEN rules 133

This procedure can be seen as a task-parallelism and data-parallelism approach

in the following sense: task-parallelism due to the distribution of different MO-

GP algorithms to different nodes and data-parallelism due to the distribution of

subpopulations to different workers for their evaluation. Nevertheless and, strictly

speaking, data-parallelism refers to the distribution of data across different parallel

computing resources and, in our case, we are referring to a set of individuals as

data.

For the MLP-TM data integration methodology, we also took advantage of the

cluster, distributing MLP-TMs with different number of neurons to several nodes.

However, MATLAB does not offer the possibility of parallelizing the training of

an artificial neural network.

4.5 Conclusion and future work

In this part of the dissertation, we have demonstrated the merit of the integration

of ten evidences or sources to predict functional associations between proteins in

Saccharomyces Cerevisiae organism. Weak evidences from multiple sources can

be combined to provide strong evidences for a relation. To demonstrate this fact,

several data integration approaches have been applied:

• Naı̈ve Bayesian model. It is one of the most widely used strategies for the in-

tegration of evidences to predict functional associations between proteins. It

is a very fast methodology to provide FLNs with different levels of accuracy,

although it does not provide interpretable rules in which the contributions

of the evidences used toward the prediction task can be observed. Its accu-

racy has been demonstrated in the literature and it does not suffer from the

problem of the distribution of the protein pairs (evidence scores) in the input

domain: for each evidence, the majority of GSP protein pairs are in the same

bin where the majority of GSN pairs are as well. For a given bin, Naı̈ve

Bayes measures the probability of observing the values in the evidence data

set given that a pair of proteins are functionally related (GSP) divided by the

probability of observing the values given that the pair is not functionally re-

lated (GSN). Thus, for this methodology, the absolute number of GSP pairs
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in the worst bin is irrelevant: although the absolute number of GSP pairs in

the worst bin are large (see Appendix A), the absolute number of GSN pairs

in the worst bin are much larger.

• Multilayer perceptrons using two different approaches to train neural net-

works with different misclassification costs: Minimization of the Misclas-

sification Costs and Threshold-Moving. It has been demonstrated that the

first approach is not suitable for data integration due to the problem of the

distribution of protein pairs in the input domain previously described: the

evidence score by itself cannot be used as a predictor for functional links be-

tween proteins, since, as previously described, the majority of true positive

cases (GSP) are in the same interval or bin where the majority of true nega-

tive cases (GSN) are. This fact makes the neural network to produce random

predictions of functional relationships, regardless of the different misclassi-

fication costs introduced during learning. Moreover, even if the problem of

the distribution of protein pairs in the input domain does not exist, a differ-

ent network has to be learned for every FP/FN cost ratio to obtain FLNs with

different levels of accuracy. MLPs with threshold-moving as cost-sensitivity

approach has been proved to be effective for data integration, since by ma-

nipulating the outputs of the MLP, the problem of the distribution of protein

pairs in the input domain is overcome. It is a relative fast approach in the

sense that the outputs are modified to obtain several FLNs with different lev-

els of accuracy, although the training can be quite time consuming. On the

other hand, the model built is not interpretable (i.e. in the form of simple

rules) for the decision maker and a reasonable range of FP/FN cost ratios

must be explored explicitly.

• Pareto optimal IF-THEN classification rules obtained by a multi-objective

genetic programming approach. This methodology proposed in the present

dissertation has been proved to be an effective data integration methodology

in terms of: (i) the handling of high unbalanced GSP and GSN sets that re-

flects the ratio of positive to negative examples in the application domain as

closely as possible; (ii) accuracy, improving the results given by the Naı̈ve

Bayesian model, (iii) interpretability, since an FLN is constructed through

simple and understandable rules in which the evidences used for predicting
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functional associations are given and (iv) flexibility, since the decision maker

does not have to specify partial preferences on the desired accuracy of the

FLN, owing to the fact that covering the entire pareto, different FLNs are

obtained, each one with a different level of accuracy. Although the computa-

tional cost of the proposed methodology is higher than other data integration

approaches, such increase in the learning time is not dramatic, since the MO-

GP method simultaneously evolves toward multiple pareto optimal rules or

solutions (i.e. multiple FLNs).

Due to the interpretability of pareto optimal classification rules obtained, it has

been demonstrated the importance of several evidences when predicting functional

associations between proteins. In this sense, co-expression (Co-exp), text mining

(TextM), sharing molecular function and cellular components terms in Gene On-

tology (SSMF and SSCC respectively) evidences have the best predictive power

toward functional associations for any level of recall or precision. Moreover, Gene

Neighbor (GN) plays a key role in predicting associations at high precision. Provid-

ing the decision maker with the role of each evidence when functional associations

are uncovered is a valuable information from the biological point of view.

The MO-GP approach has been demonstrated to be very useful as a search and

optimization algorithm to find a set of classification rules by optimizing at the same

time conflicting objectives such as precision and recall. However, more conflicting

objectives can be added, such as false negative vs. false positive or sensitivity vs.

specificity.

As a future work, we are planning to explore other ways to generate the GSN

set (see section 3.3.1.1) and check how the predicted functional associations are

affected by the generation of such set. Also, we are developing several ways of

assigning a weight or degree to the functional associations predicted so that the

greater the link weight, the greater the tendency of functional association. For

example, for two protein pairs and a rule given, the compound terms in the rule

that cover the protein pairs are taken. For each compound term, one can measure

the euclidean distance between the evidence scores of the pair of proteins and the

threshold values in the compound term. Then, the maximum value of the distance

measures given by all compound terms (they are linked by an OR operator), can
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be taken as a degree of functional association. Another possibility could be to

”fuzzify” the link weight, so that the degree of functional association could be

”low”, ”medium” or ”high”. This way, once a weight is defined for each functional

association predicted, individual protein functions on the basis of linked neighbors

can be inferred by means of decision rules for transferring the function of annotated

proteins to unannotated proteins [Linghu et al., 2008].

Other ways to extract rules can also be explored. For example, rules can be ex-

tracted from trained neural network models, such as the orthogonal search-based

rule extraction, OSRE [Etchells and Lisboa, 2006]. This methodology could be

applied to the MLP-TM approach proposed in this dissertation to extract rules to

be compared with the ones obtained by the MO-GP approach in terms of accuracy

and interpretability.

The methodology proposed in this part of the thesis can easily be applied to other

prediction tasks, such as the prediction of protein-protein interactions [Rhodes

et al., 2005] or even to prioritize new genes that are potentially associated with a

given disease or to explore the inter-relationships between diverse disease revealed

by considering functional associations between genes associated with different dis-

eases [Linghu et al., 2009]. Moreover, other types of data can also been integrated,

such as clinical, environmental and demographic data for the identification of new

cancer biomarkers and targets for therapy [Hackl et al., 2010].



Part II

A2TOOL: Affymetrix
Microarray Analysis TOOL
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Chapter 5

Introduction

A functional linkage network (FLN) constructed by integrating several heteroge-

neous biological data sources, can be used to predict or prioritize new (not previ-

ously recognized) genes that are potentially associated with a given disease; and

to explore the inter-relationships between diverse diseases revealed by considering

functional associations between genes associated with different diseases. This ap-

proach is based on the idea that genes associated with the same or related disease

phenotypes tend to participate in common functional modules.

The procedure is quite straightforward [Linghu et al., 2009]: functional associa-

tions between genes are retrieved from diverse data sources and such functional as-

sociations are then integrated into one single FLN using a data integration method-

ology such as the multiobjective genetic programming approach described in pre-

vious sections. The nodes, in the FLN, represent individual genes and the weighted

edges represent the degree of their overall functional association upon combining

all contributing data sources:

• For candidate disease gene prioritization and given a particular disease, genes

known to be associated with this disease are labelled as seeds and all other

genes are prioritized in terms of their association with the disease based on

the sum of the weights of their network links to the seed genes.
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• For quantifying the disease-disease associations, genes known to be asso-

ciated with different diseases are labelled and quantify the associations be-

tween any two diseases are quantified based on the degree of association

between the two corresponding disease gene sets within the FLN.

Known disease genes can be obtained from the Online Mendelian Inheritance in

Man Database (OMIM) database [Hamosh et al., 2005], however, one also can

extract/discover genes related to a given disease from custom experiments using

microarray data. For example, interesting genes associated to pancreatic adeno-

carcinoma can be extracted through a microarray data analysis [Caba et al., 2010]

and, then, genes identified as being related to such disease, can be labelled in the

FLN for either prioritizing new genes that are potentially associated with pancre-

atic adenocarcinoma or exploring the inter-relationships between such disease and

other cancer-based diseases.

To extract genes related to a given disease from custom microarray data experi-

ments, a proper and organized analysis of such data must be carried out. A typical

microarray data analysis pipeline consists of:

1. Quality data analysis, which analyzes the quality of the microarray data set

with the aim of making the best use of the information produced by the arrays

[Gentleman et al., 2005].

2. Data pre-processing, which consists in removing technical variations which

affects the measured gene expression levels while maintaining the effect due

to the treatment under investigation [Lim et al., 2007].

3. Detection of differentially expressed genes. It allows to identify differen-

tially expressed genes with the purpose of, for example, detecting genes as-

sociated with different disease phenotypes [Gentleman et al., 2005] or allow-

ing researchers to elucidate related biological processes [Xu et al., 2009].

4. High-level analysis, such as cluster analysis, classification, GO-analysis or

Gene Set Enrichment Analysis
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In the last few years, the Bioconductor project [Gentleman et al., 2004] has become

the reference tool for the analysis of microarray data. It is an open development

software project, based on the statistical programming language R, for the analy-

sis and comprehension of genomic data and, currently, hundreds of Bioconductor

packages have been developed, providing comprehensive functionalities for all as-

pects of microarray data analysis

However, for scientists without adequate programming experience, the command

line usage of R and Bioconductor is too awkward and difficult. To overcome

these pitfalls, many analysis tools with graphical user interfaces and powerful

computing servers have been developed, including some well-known tools such

as CARMAweb [Rainer et al., 2006], GEPAS [Vaquerizas et al., 2005], MAGMA

[Rehrauer et al., 2007], EzArray (currently called BxArrays) [Zhu et al., 2008],

dChip [Wong, 2011], RMAexpress [Bolstad, 2011b] or mu-CS [Guzzi and Can-

nataro, 2010].

Quality assessment and pre-processing have an important role in the earlier stage

of microarray data analysis pipeline:

• Quality assessment has the purpose of analyze, using different metrics, the

quality of the microarray data set with the aim of making the best use of

the information produced by the arrays [Gentleman et al., 2005] and remove

those samples with low quality that may affect the rest of the analysis such

as the detection of differentially expressed genes or the high level analysis.

Some of the tools described above provide many metrics for quality assess-

ment, but they leave to the researcher the decision of removing a sample of

the experiment if it seems to be defective given the quality plots used with

no clear guidelines. Thus, if the user has no experience on microarrays, this

task can be cumbersome.

• Pre-processing removes technical variations present in the experiment. The

tools described above provide a set (or subset) of standard pre-processing

methods and some of them also provide custom pre-processing methods,

but, in any case, they leave to the (unexperienced) user to decide which
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pre-processing method(s) to use, which may also have an effect in poste-

rior stages such as the detection of differentially expressed genes [Bolstad

et al., 2003], [Ritchie et al., 2007], phenotype classification [Florido et al.,

2010b],[Wu et al., 2005] or the construction of reverse engineering networks

[Lim et al., 2007]. In the case of Affymetrix microarray technology, pre-

processing consists of four stages: background correction, normalization,

PM correction and summarization and the user has to decide, for custom pre-

processing, which combination for the four stages to be used among tens of

them.

Due to these problems, it is proposed a new tool for the first three steps of mi-

croarray data analysis pipeline: quality assessment, pre-processing and the detec-

tion of differentially expressed genes. The tool, which has been developed for the

commonly used standard Affymetrix 3’ expression arrays, provides the following

original features:

1. Automated detection of low quality microarrays so that the decision maker

is able to decide whether one or more arrays are defective or not based on a

full set of quantitative and qualitative measures.

2. Automated selection of the best pre-processing methods among several ones

for a given data set through objective quality measures. The aim is to free

the researcher from taking a decision about the pre-processing method to be

used.

3. Automated generation of confident and complete lists of differentially ex-

pressed genes.

This automation on both quality assessment and pre-processing, (i) avoids to waste

time for searching the proper quality assessment and pre-processing methods and

(ii) reduces the possible errors in further analysis phases due to the presence of low

quality arrays and/or incorrect choice of pre-processing methods.

This part of the dissertation is structured as follows. Chapter 6 provides an overview

to microarray technology (section 6.1), an explanation of the different steps in-

volved in microarray data analysis pipeline (section 6.2) and the description of



Chapter 5. Introduction 143

some tools available in the literature to analyze microarray experiments (section

6.3). In Chapter 7, the microarray analysis tool proposed in this part of the thesis,

A2TOOL, is presented and applied to the Chronic Lymphocytic Leukemia (CLL)

data set.





Chapter 6

Microarray technology: concepts
and tools

6.1 Introduction to Microarray Technology

The fundamental basis of DNA microarrays is the process of hybridization. Two

DNA strands hybridize if they are complementary to each other. Complementarity

reflects the Watson-Crick rule that adenine (A) binds to thymine (T) and cytosine

(C) binds to guanine (G) (Fig.6.1).

Figure 6.1: Hybridization of two DNA molecules

Hybridization has for decades been used in molecular biology as the basis for such

techniques as Southern blotting and Northern blotting. DNA arrays are a mas-

sively parallel version of Northern and Southern blotting. Instead of distributing

the oligonucleotide probes (small strings of DNA) over a gel containing samples

of RNA or DNA, the oligonucleotide probes are attached to a surface. Different
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probes can be attached within micrometers of each other, so it is possible to place

many of them on a small surface of one square centimeter, forming a DNA array.

The sample is labeled fluorescently and added to the array. After washing away

excess unhybridized material, the hybridized material is excited by a laser and is

detected by a light scanner that scans the surface of the chip. Because it is known

the location of each oligonucleotide probe, it can be quantified the amount of sam-

ple hybridized to it from the image generated by the scan [Knudsen, 2006]. There

is some contention in the literature on the use of the word ”probe” in relation to

microarrays. Throughout this chapter, the word ”probe” will be used to refer to

what is attached to the microarray surface and the word ”target” will be used to

refer to what is hybridized to the probes.

DNA arrays are often used to study all known messengers of an organism. This

has opened the possibility of an entirely new, systematic view of how cells react

in response to certain stimuli. It is also an entirely way to study human disease by

viewing how it affects the expression of all genes inside the cell.

6.1.1 The technology behind DNA microarrays

When DNA microarrays are used for measuring the concentration of messenger

RNA in living cells, a probe of one DNA strand that matches a particular messenger

RNA in cell is used. The concentration of a particular messenger is a result of

expression of its corresponding gene, so this application is often referred to as

expression analysis. When different probes matching all messenger RNAs in a cell

are used, a snapshot of the total messenger RNA pool of a living cell or tissue can

be obtained. This is often referred to as an expression profile, because it reflects

the expression of every single measured gene at that particular moment. Expression

profile is also sometimes used to describe the expression of a single gene over a

number of conditions.

For expression analysis, the field has been dominated in the past by two major

technologies: (1) Spotted arrays or custom-made chips, which use a robot to spot

cDNA, oligonucleotides, or PCR products on a glass slide or membrane and (2) the

Affymetrix GeneChip system, which uses prefabricated oligonucleotide chips and
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In spotted arrays, the probes, which are cDNA, PCR product or oligonucleotides,

are synthesized prior to deposition on the array surface and are then ”spotted” onto

glass. A common approach utilizes an array of fine pins or needles controlled by

a robotic arm that is dipped into wells containing DNA probes and then depositing

each probe at designated locations on the array surface. The resulting ”grid” of

probes represents the nucleic acid profiles of the prepared probes and is ready to

receive complementary cDNA or cRNA ”targets” derived from experimental or

clinical samples (see Fig.6.2). This technique is used by research scientists around

the world to produce in−house printed microarrays from their own labs, which

provides a relatively low-cost microarray that may be customized for each study,

and avoids the costs of purchasing often more expensive commercial arrays that

may represent vast numbers of genes that are not of interest to the investigator

[Knudsen, 2006].

Figure 6.2: The spotted array technology. A robot is used to transfer probes in
solution from a micro titer plate to a glass slide where they are dried. Extracted
mRNA from cells is converted to cDNA and labeled fluorescently. Reference
sample is labeled red and test sample is labeled green. After mixing, they are
hybridized to the probes on the glass slide. After washing away unhybridized
material, the chip is scanned with a confocal laser and the image analyzed by the

computer [Knudsen, 2006]

Standard Affymetrix 3’ expression arrays or classical Affymetrix chips, use a set

of features (often referred to as ”spots”) designed to recognize each molecule of
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interest. Each feature consists of millions of identical single-stranded 25-mer nu-

cleotide probes, each designed to hybridize to a specific transcript. On a gene-level

array, such as the HGU133plus2 chip, each of these Perfect Match (PM) features is

accompanied by an adjacent Mis-Match (MM) feature in which the middle residue

is changed. Hybridization conditions are designed to maximize binding to the PM

features while minimizing binding to the MM ones. The rationale for including

MM probes in a probe set is that their intensities were thought to account for non-

specific signals that affect both PM and MM probes in the same way (see Fig.6.3),

although some authors claim that MM probes are not adequate controls for non-

specific hybridization [Pozhitkov et al., 2007]. Multiple PM/MM pairs are used

for each transcript. On most gene-level arrays, 11 PM/MM pairs are used per tran-

script, and the complete set of 22 features is referred to as a probeset.

Figure 6.3: The Affymetrix Genechip technology
(http://www.weizmann.ac.il/home/ligivol/research interests.html)

6.1.2 Applications of microarrays

The types and numbers of applications for microarray experiments are quite vari-

able and constantly increasing [Knudsen, 2006], for example:

• To monitor the expression level of genes between two conditions. This type

of study, termed gene expression profiling, can be used to determine the
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function of particular genes during a particular state, such as nutrition, tem-

perature, or chemical environment. Such results could be observed as up- or

down-regulation, or unchanged during particular conditions.

• To discern the mechanism of action of therapeutic agents and as a corollary

to develop new drug targets, which is known as pharmacological studies.

The guiding principle in this endeavor is that genes regulated by therapeutic

agents result from the actions of the drug. Identification of the genes that are

regulated by a certain drug could potentially provide insight into the mech-

anism of action of the drug, prediction of toxicological properties, and new

drug targets.

• The diagnosis of clinically relevant diseases. The oncology field has been

especially active and to an extent successful in using microarrays to differ-

entiate between cancer cell types. The ability to identify cancer cells based

on gene expression represents a novel methodology that has real benefits. In

difficult cases where a morphological or an antigen marker is not available

or reliable enough to distinguish cancer cell types, gene expression profiling

using microarrays can be extremely valuable.

• Comparative genomic analysis. Microarrays have been used as a shortcut

to both characterize the genes within an organism (structural genomics) and

also to determine whether those genes are expressed in a similar way to a

reference organism (functional genomics).

• Comparative genomic hybridization (CGH), in which gene copy numbers are

compared between two samples and genomic DNA rather than RNA tran-

scripts are labeled. CGH can detect gene amplification or deletion events

underlying tumor genesis and it can also be used to detect genomic rear-

rangement or abnormality events with serious health consequences in hu-

mans such as trisomies.

6.2 Microarray data analysis pipeline

A typical microarray data analysis pipeline consists of (Fig. 6.4):
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1. Quality data analysis. This step consists of analyzing the quality of the mi-

croarray data set with the aim of making the best use of the information

produced by the arrays [Gentleman et al., 2005].

2. Data pre-processing. It consists of removing technical variations which af-

fects the measured gene expression levels while maintaining the effect due

to the treatment under investigation. In Affymetrix Genechips, this step con-

sists of four stages: background correction, normalization, PM-MM correc-

tion and summarization [Lim et al., 2007].

3. Detection of differentially expressed genes. It allows to identify differen-

tially expressed genes with the purpose of, for example, detecting genes as-

sociated with different disease phenotypes [Gentleman et al., 2005] or allow-

ing researchers to elucidate related biological processes [Xu et al., 2009].

4. High-level analysis, such as:

• Cluster analysis, whose main purpose is to identify and group together

similarly expressed genes and then try to correlate the observations to

biology. Genes and/or samples can be grouped according to their ex-

pression similarity using the hierarchical clustering algorithm (HCL),

the k-means clustering method or self-organizing maps (SOM) [Rainer

et al., 2006].

• Classification, in which given a collection of gene expression profiles

for tissue samples belonging to various disease types, the goal is to

build a classifier to automatically determine the disease type of a new

sample at high precision. The most well known methodologies to per-

form classifications are k-Nearest Neighbor, Support Vector Machines

and backpropagation neural networks [Florido et al., 2010b].

• GO-Analysis. The GO analysis aims to assist in the biological inter-

pretation of the results by finding GO terms that are significantly often

associated to genes in a given gene list.

• Gene Set Enrichment Analysis, which determines whether a given gene

set is significantly enriched in a list of gene markers ranked by their
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correlation with a phenotype of interest. The method has been success-

fully used to discover metabolic pathways altered in human diabetes

and reveal more consistency between independent lung cancer outcome

datasets at the gene set level than at the single gene level, among many

other applications [Subramanian et al., 2007].

Quality assessment

Pre-processing

Differentially expressed 

genes

High-level analysis

Figure 6.4: Microarray data analysis workflow

In the following subsections, the first three steps (quality data analysis, data pre-

processing and the detection of differentially expressed genes) will be explained in

detail. The fourth step (high-level analysis) will be briefly introduced in terms of

Classification.

6.2.1 Quality data analysis

Obtaining gene expression measures for biological samples through the use of

Affymetrix GeneChip microarrays is an elaborate process with many potential

sources of variation. Therefore, it is critical to make the best use of the informa-

tion produced by the arrays, and to ascertain the quality of this information. Thus,

an initial examination of the data is needed to show evidence of possible quality

problems and, in this case, low quality arrays should be removed from the data set.

In this subsection, various graphical tools that can be used to facilitate the decision
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of whether to remove an array from further analysis are presented (Fig.6.5). From

the viewpoint of a user of GeneChip expression values, lower variability data, with

all other things being equal, should be judged to be of higher quality [Gentleman

et al., 2005].

Quality assessment

· Exploratory data analysis: Image plots of the probe-level data 

and multi-array approahces (Boxplots, Histograms and MA 

plots)

· Affymetrix quality assessment metrics: average background, 

scale factor and percent present

· RNA degradation

· Probe-level models: chip pseudo-images, Relative Log 

Expression (RLE) and Normalized Unscaled Standard Error 

(NUSE) plots

Figure 6.5: Microarray quality assessment tools

6.2.1.1 Exploratory data analysis

Exploratory data analysis consists of Image plots of the probe-level data and multi-

array approaches.

Image plots of the (PM and MM) probe-level data A typical first step is to

look at image plots of the log intensities of the raw probe-level data. In general,

one looks for spatial artifacts such rings, shadows, etc (see Fig. 6.6) or other non

homogeneous patterns in the image plots across all arrays (a potentially defec-

tive array may appear lighter or darker than the others) [Gentleman et al., 2005],

[Alvord et al., 2007]. In Fig.6.6, it can be observed a shadow in the first array,

which may indicate a defective sample.

Figure 6.6: A subset of the MLL.B arrays from a large acute lymphoblastic
leukemia (ALL) study [Ross et al., 2003]
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Multi-array approaches Looking at the distribution of probe intensities across

all arrays at once can sometimes demonstrate that one array is not like the others.

These approaches are boxplots, histograms and MAplots [Gentleman et al., 2005],

[Alvord et al., 2007].

Boxplots give a simple summary of the distribution of probes [Gentleman et al.,

2005] and are a convenient way of graphically depicting groups of numerical data

through their five-number summaries: the smallest observation (sample minimum),

lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation

(sample maximum). Low quality arrays have boxplots that stand out from the

others for a given group of replicates, as evidenced for example by distinctly dif-

ferent ranges or displaced boxes (interquartile ranges, IQR) [Alvord et al., 2007].

For example, in Fig.6.7, an array has a boxplot that clearly stands out from the rest.

Histograms or density plots are used to plot density of data. Low quality arrays

have densities that are moved from the others, or that display bimodalities, show

uniquely different shapes or other abnormalities [Alvord et al., 2007]. In Fig. 6.7,

it can be observed an array whose histogram is moved from the rest and another

which has a bimodal shape.

Another exploratory plot for quality assessment is the MA plot for the probe-level

data. When two microarrays are being compared, the difference of their log inten-

sities for each probe on each gene (usually denoted ’M’) are plotted against their

average (usually denoted ’A’). When it is desired to compare more than two arrays,

a synthetic array is created by taking the probe wise medians across all arrays. The

plot, adds a loess curve fitted to the scatter-plot to summarize any non-linear rela-

tionship. Quality problems are most apparent from an MA-plot in cases where the

loess smoother oscillates wildly or if the variability of the M values appears to be

greater in one or more arrays relative to the others [Gentleman et al., 2005],[Alvord

et al., 2007]. For example, in Fig. 6.7, JD-ALD384-v5-U133B.CEL has a lowess

curve whose median (M values) is greater then the other arrays.



Chapter 6. Microarray technology: concepts and tools 154

Figure 6.7: Boxplots (top-left) and Histograms (top-right) for the MLL.B subset.
MAplots (bottom) for some of the samples of MLL.B subset [Ross et al., 2003]

6.2.1.2 Affymetrix quality assessment metrics

Affymetrix software produces a number of quantities for quality assessment of

GeneChip data [Affymetrix, 2001] such as the average background, the scale factor

and Percent present.

The average background This approach is outlined in the Statistical Algorithms

Description Document by Affymetrix [Affymetrix, 2001] and used in the MAS 5.0

software. The chip is divided into a grid of k (default k = 16) rectangular regions.
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For each region, the lowest 2% of probe intensities are used to compute a back-

ground value for that grid. Then each probe intensity is adjusted based upon a

weighted average of each of the background values. According to the guidelines

recommended by Affymetrix, the average background values should be ”compara-

ble” to each other.

Scale factors The second quantity is the ”scale factors”. It is accomplished by

taking a baseline array to which all other arrays are scaled to have the same mean

intensity. The same procedure is followed for each array, so, the scale factor refers

to the constant by which every intensity on the chip is multiplied by in the scaling

normalization [Alvord et al., 2007]. Affymetrix recommends that the scale factors

be within 3-fold of each other.

Percent Present The third quantity is ”percent present”. The Affymetrix detec-

tion algorithm generates Present/Marginal/Absent calls by looking at the differ-

ence between PM and MM values for each probe pair in a probeset. Probesets

are flagged marginal or Absent when the PM values for that probeset are not con-

sidered to be significantly above the MM probes [Affymetrix, 2001]. The percent

present values should be ”similar” among samples with extremely low values being

a possible indication of poor quality.

6.2.1.3 RNA degradation

Through this metric, for every GeneChip probe set, the individual probes are num-

bered sequentially from the 5’ end of the targeted transcript. When RNA degra-

dation is sufficiently advanced, PM probe intensities should be systematically ele-

vated at the 3’ end of a probe set, when compared to the 5’ end.It has been observed

that the 3’/5’ trend is roughly linear for the middle probe positions and lower at the

ends. There are no clear guidelines to know how large the slope is to consider an

array to have too much degradation and it depends on the chip type [Alvord et al.,

2007], although in Fig. 6.8, it can be observed a very different slope for one of the

arrays, which may be indicative of poor quality
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Figure 6.8: RNA degradation plot for the CLL subset [Whalen and Gentleman,
2011]

6.2.1.4 Probe-level models

Probe-level models (PLM) may be useful in determining the quality of Affymetrix

chips [Alvord et al., 2007]. A PLM is a model that is fit to probe-intensity data

[Bolstad, 2011a]. Specifically, a PLM provides parameter estimates for probe sets

and chips (arrays) on a probe-set by probe-set (i.e. gene by gene) basis.

Having performed the convolution background correction and normalization pro-

cedures (see subsections 6.2.2.1 and 6.2.2.2), the following linear PLM for the

background adjusted normalized probe-level data, S gi j, may be stated:

log2(S gi j) = θgi + φg j + εgi j (6.1)

where, θgi represents the log-scale expression level for the g-th gene on the i-th

array, φg j represents the effect of the j-th probe representing gene g-th gene and

εgi j represents the measurement error. Note that, following background correction

and normalization procedures, the signal S gi j, is, in fact, the PM (perfect match)

value for the j-th probe on the g-th gene on the i-th array. The fitted object contains
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information regarding the parameter estimates, standard errors, weights, residuals

and signed residuals [Bolstad, 2011a].

Numerous useful quality assessment tools can be derived from the PLM fitted data

such as chip pseudo-images and Relative Log Expression (RLE) and Normalized

Unscaled Standard Error (NUSE) plots.

Chip pseudo-images Chip pseudo-images show the weights, residual and signed

residuals of the fitted PLM data and may help to discover artifacts in the data set

[Bolstad, 2011a]. Thus, for each array of a data set, one looks for any anomalies,

artifacts or non homogeneous patterns in the following plots [Gentleman et al.,

2005], [Alvord et al., 2007]:

• Gray scale image of the log intensities (the same as the exploratory data

analysis).

• PLM weights plot. They use topographical coloring so that light areas in-

dicate high weights and dark areas (green in color plots) indicate significant

down-weighting of mis-performing probes .

• PLM residual plot. Images based on residuals are ”dark” for negative residu-

als (blue in color plots) and ”light” for positive residuals (red in color plots).

It must be checked that the positive and negative residuals are homoge-

neously spread out across the image, otherwise, it may be indicative of a

defective array.

• PLM signed residuals. The image of the signs of the residuals report ei-

ther +1 or -1 depending on whether the residual is positive (red) or negative

(blue). This can sometimes make visible effects that might not be apparent

in the other plots. This image highlights the power of the PLM procedures

at detecting a subtle artifact that might otherwise be missed completely.

For example Fig. 6.9 displays the resulting chip pseudo-images for a given array

of the AmpAffyExample package [Irizarry, 2011b]. Fig.6.9 (top-left) is an image

of the log intensities with no obvious spatial artifact. However, Fig.6.9 (top-right,
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bottom-left and bottom-right) shows PLMweights and a ”ring” artifact is clearly

visible. This artifact can be seen in all the PLMimages.

Figure 6.9: Chip pseudo-images based on PLM fit make visible subtle artifacts
[Gentleman et al., 2005].

With larger artifacts, an issue of concern is whether data from a particular array

is of poorer quality relative to other arrays in the data set. This question can be

addressed using other procedures provided by the fitted PLM object such as the

Relative Log Expression (RLE) and the Normalized Unscaled Standard Error Plot

(NUSE).

Relative Log Expression (RLE) plot This plot is constructed as follows: first,

start with the log scale estimates of expression θ̂gi for each gene g on each array i

obtained from the PLM fit . Next, compute the median value across arrays for each

gene, m(g), and define the RLE as

RLEgi = θ̂gi − m(g) (6.2)

That is, the median value of the g− th gene is subtracted from each gene g on each

array i. These relative expressions are then displayed with a boxplot for each array.

It is reasonable to assume that the majority of genes are not changing in expression

among conditions. The majority of these non-differential genes are displayed on

the RLE plot by the boxes (IQRs). Ideally, these boxes should have small spread

and be centered at RLE = 0. An array with quality problems may result in a box

that has relatively greater spread or that is not centered near RLE = 0 [Gentleman

et al., 2005].
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For example, using the whole MLL.B example from the ALLMLL data set [Ross

et al., 2003], it can be observed in Fig.6.10 an array that deviates considerably

and has more spread relative to the remaining boxes (number 2, JD-ALD051-v5-

U133B.CEL).

Normalized Unscaled Standard Error (NUSE) plot Another graphical tool is

the NUSE plot. For this plot, one begins with the standard error estimates obtained

for each gene g on each array i from the PLM fit. Call this S E(θ̂gi). Variability

may differ considerably among genes. To correct for this, one may standardize

these standard error estimates such that the median standard error across arrays is

1 for each gene [Bolstad, 2011a]. Specifically:

NUS E(θ̂gi) =
S E(θ̂gi)

medi{S E(θ̂gi)}
(6.3)

A low quality array on this plot might be indicated by a box that is significantly

elevated with respect to NUS E = 1 or shows more spread relative to other arrays

[Bolstad, 2011a].

Using the same example, MLL.B data set, it can be observed in Fig.6.10 an array

that deviates considerably and has more spread relative to other boxes (number 2,

JD-ALD051-v5-U133B.CEL).

6.2.2 Data pre-processing

A typical microarray experiment has many different sources of variation which can

be attributed to biological and technical causes. Biological variation results from

tissue heterogeneity, genetic polymorphism, and changes in mRNA levels within

cells and among individuals due to sex, age, race, genotype-environment interac-

tions and other ”living” factors. Biological variation is then of interest to inves-

tigators. On the other hand, preparation of samples, labeling, hybridization, and

other steps of microarray experiment can contribute to technical variation, which

can significantly impact the quality of array data. To ensure highly reproducible

microarray data, technical variation should be minimized by controlling the quality
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(a) (b)

Figure 6.10: RLE (a) and NUSE (b) plots for the 20 HGU-133B arrays in the
ALLMLL data set

of the RNA samples, and by efficient labeling and hybridization, but in most of the

cases, controlling these tasks are not enough to avoid such type of variation. There-

fore, since those systematic non-biological sources of variation are always present

and can mask real biological variation, significant pre-processing is required [Bol-

stad et al., 2003], although this pre-processing must be handled with caution, due

to the risk of masking the real biological variation.

Pre-processing has an important role in the earlier stage of microarray data analysis

pipeline, because different normalization procedures can lead to different expres-

sion data and, therefore, may have an effect in posterior stages, such as the de-

tection of differentially expressed genes Bolstad et al. [2003][Ritchie et al., 2007],

phenotype classification [Florido et al., 2010b],[Wu et al., 2005] or the construc-

tion of reverse engineering networks [Lim et al., 2007]. Therefore, pre-processing

is a critical initial step in the analysis of a microarray experiment, where the goal

is to balance the individual signal intensity levels across the experimental factors,

while maintaining the effect due to the treatment under investigation, e.g., keep the

biological variation as much as possible.

Since our work is focused on Affymetrix Genechips, we are going to describe

in detail each step involved in the pre-processing task: background correction,

normalization, PM correction and summarization [Lim et al., 2007],[Florido et al.,

2010b],[Florido et al., 2009c] (see Fig.6.11).
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Figure 6.11: Pre-processing workflow for Affymetrix Genechips

6.2.2.1 Background correction

This is the first step of pre-processing and removes unspecific background intensi-

ties of scanner images. There is some amount of background noise in every scanner

image. Sterile water can be labeled and hybridized to a microarray and even though

there is no RNA in the sample, the scanner will detect low levels of fluorescence on

the chip. An estimate of the background signal, which is the signal due to nonspe-

cific binding of cluorescent molecules or the autofluorescence of the chip surface

[Choe et al., 2005], can be estimated using three possible metrics: (1) MAS back-

ground adjustment, which is used in the MAS 5.0 software [Affymetrix, 2001] and

corrects both PM and MM probes; (2) Robust Multichip Average (RMA) convolu-

tion, which is an implementation of the background adjustment carried out as part

of the RMA pre-processing method [Irizarry et al., 2003] which corrects only the
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PM signals and (3) gcrma [Wu et al., 2004], which it is designed to account for

background noise, as well as non-specific binding.

6.2.2.2 Normalization

Even if the exact same sample is used on each of several chips, there will be chip

to chip differences in the overall distribution of probe intensity values. Normaliza-

tion procedures attempt to detect and correct systematic differences between chips

so that data from different chips can be directly compared. Studies show that the

normalizing procedure has a marked impact on the final expression measures [Bol-

stad et al., 2003],[Wu et al., 2005]. A number of normalization procedures for

Affymetrix GeneChips have been proposed:

• Scaling (Constant), which is the method taken by MAS 5.0 Affymetrix soft-

ware [Affymetrix, 2001]. The approach chooses a baseline array (the array

having the median of the median intensities) and all arrays are then normal-

ized to this ”baseline”.

• Quantile. The goal of the quantile method is to make the distribution of

probe intensities for each array in a set of arrays the same [Bolstad et al.,

2003].

• Cyclic Loess. This method is extended from cDNA microarray data nor-

malization method [Bolstad et al., 2003] and works on all distinct pair-wise

combinations of arrays, which is time consuming.

• Invariant set. It is a nonlinear, intensity-dependent normalization approach

based on a subset of probes which have similar ranks (the rank-invariant set)

between two chips [Schadt et al., 2001]. dChip software [Wong, 2011] uses

this ”rank invariant set” for the normalization of the summarized gene-level

intensity. .

• Variance Stabilization Method (VSN). This approach [Huber et al., 2002]

assumes that most of the genes on the arrays are not differentially expressed

in a given experiment and utilizes the arcsine rather than log transformation
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to stabilize the variance so as to remove the dependence of the variance on

the total intensity.

6.2.2.3 PM-MM correction

Mismatch probes are included on Affymetrix GeneChips to quantify non-specific

and cross-hybridization. The aim of this step is to correct for cross-hybridization

or non-specific binding. Theoretically, the intensity measured in the MM-probe

gives us an estimation of the RNA that binds in the PM-probe having just a partial

match. Therefore, the difference between the PM-measure and the MM-measure

may yield a better index to estimate the true expression of the gene. We emphasize

two possible methods: (1) MAS [Affymetrix, 2001], in which the MM probe signal

is substracted and (2) PMonly, in which the MM value is not substracted, using

uncorrected PM probes alone [Gautier et al., 2004].

6.2.2.4 Summarization

In Affymetrix GeneChip arrays each gene is represented by a set of several PM and

MM probe pairs. Thus, probe intensities for each probe set should be summarized

to define a measure of expression representing the amount of the corresponding

mRNA species. Several model-based approaches to this problem have been pro-

posed: (1) Tukey-biweight (MAS), which is followed by Affymetrix [Affymetrix,

2001] and takes into account PM and MM probes; (2) MBEI [Li and Wong, 2001]

used in the dChip software [Wong, 2011], which also takes into account PM and

MM probes; (3) Median polish, which is the summarization used in the RMA ex-

pression summary Irizarry et al. [2003] and only uses information of PM probes;

(4) Avgdiff, used in MAS 4.0 Affymetrix software [Affymetrix, 1999]; (5) Fac-

tor Analysis for Robust Microarray Summarization (FARMS) method [Hochre-

iter et al., 2006] and (6) Distribution Free Weighted (DFW) method [Chen et al.,

2007b].

As mentioned above, a pre-processing method is then a combination of methods of

background correction, normalization, PM correction and summarization. Not all
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combinations of methods are allowed, for example, RMA background correction

method adjusts only PM probe intensities (rma) and so they should only be used

in conjunction with the PM only PM-MM correction [Irizarry et al., 2003]. Some

pre-processing methods are standard in the literature for a specific combination

of background correction, normalization, PM correction and summarization meth-

ods, for example, RMA pre-processing method runs rma as background correction,

quantiles as normalization, PM only as PM correction and medianpolish as sum-

marization (see table B.1 in Appendix B). Non-standard pre-processing methods

are known in the literature as ”custom” [Zhu et al., 2008].

6.2.2.5 Evaluating a pre-processing method

As can be noticed, there are many procedures for each pre-processing step and,

thus, many possible combinations of background correction, normalization, PM

correction and summarization methodologies. Different pre-processing procedures

can lead to different expression data and, therefore, may have an effect in posterior

stages, such as the detection of differentially expressed genes [Ritchie et al., 2007],

phenotype classification [Florido et al., 2010b],[Wu et al., 2005] or the construction

of reverse engineering networks [Lim et al., 2007] as previously stated. Therefore,

pre-processing is a critical initial step in the analysis of a microarray experiment

and, for this reason, an objective way of evaluating a pre-processing method is

needed with the aim of choosing the best ones. For this purpose, there are some

works in the literature that try to deal with this problem, for example, J.P.Florido et

al. [Florido et al., 2009c] evaluate the performance of the pre-processing methods

using three different metrics:

• Replicate variability. This criterion has been used in works such as in

[Xiong et al., 2008] and it is based on the assumption that the expression

level of a gene should ideally remain the same across multiple replicated

slides. For m replicated slides, the variability of m values for each gene can

be used to compare normalization methods. The mean of the standard de-

viation over all genes is a global measure of the normalization methods. A

smaller mean is indicative of better performance of the pre-processing pro-

cedure.
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• Kolmogorov-Smirnov (K-S) test. The K-S test is a goodness-of-fit test

of two continuous distributions and has also been adopted in [Xiong et al.,

2008]. When using this statistic for evaluating the quality of a pre-processing

method, we base on the hypothesis that an effective pre-processing procedure

should result in two similar, ideally identical, distributions with a small, ide-

ally zero-valued K-S statistic between two replicated slides. On the other

hand, two different distributions will generate a large K-S statistic.

• Spearman Rank Correlation Coefficient. It is a nonparametric (distribution-

free) rank statistic which measures the strength of the associations between

two variables. Lim et al. [Lim et al., 2007] have also used this statistic to

evaluate the quality of a pre-processing method. This approach is based on

the assumption that, given an experiment, the correlation coefficient among

replicated slides will be increased after the pre-processing stage.

On the other hand, Lim et al., [Lim et al., 2007] conclude that the choice of a pre-

processing method strongly affects the correlation structure in the data, that is, cor-

relation artifacts can be introduced in it. This seriously undermines the utilization

of pre-processing procedures, at least in their standard form, upstream in microar-

ray data analysis pipeline. More precisely, they found that GCRMA pre-processing

method introduces correlation artifacts for gene pairs that are not expected to be

co-expressed. As a result, this method is not suitable to the reconstruction of cel-

lular networks from expression profile data, including the inference of networks

topological properties and gene functional relationships based on co-expression

measurements. Although GCRMA method has been fixed and does not introduce

correlations any more, it is important not only to evaluate a pre-processing method

in terms of the quality metrics (replicate variability, K-S test and Spearman Corre-

lation Coefficient), but also to check whether a pre-processing method introduces

correlation artifacts by applying the quality metrics to uninformative raw data, in

which raw signal intensities for each probe pairs in the data set experiment are

randomly permuted [Lim et al., 2007].
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6.2.3 Detection of differentially expressed genes

This is the next step in the microarray analysis pipeline. Fundamental to the task

of analyzing gene expression data, is the need to identify genes whose patterns of

expression differ according to phenotype or experimental condition. Gene expres-

sion is a well coordinated system, and hence measurements on different genes are

in general not independent. For this reason, statistical tests to assess differential ex-

pression [Gentleman et al., 2005] are used and one may distinguish between para-

metric tests, such as the t-test, and non-parametric tests, such as the Mann-Whitney

test or permutation tests. However, these approaches have a number of drawbacks:

most important is the fact that a large number of hypothesis tests is carried out,

potentially leading to a large number of falsely significant results. Multiple testing

procedures have been proposed to deal with this problem and allow one to assess

the overall significance of the results of a family of hypothesis tests. They focus

on specificity by controlling type I (false positive) error rates such as the family-

wise error rate or the false discovery rate [Gentleman et al., 2005]. Still, multiple

hypothesis testing remains a problem, because an increase in specificity, as pro-

vided by p-value adjustment methods, is coupled with a loss of sensitivity, that is,

a reduced chance of detecting true positives. Furthermore, the genes with the most

drastic changes in expression are not necessarily the ”key players” in the relevant

biological processes. This problem can only be addressed by incorporating prior

biological knowledge into the analysis of microarray data, which may lead to fo-

cusing the analysis on a specific set of genes. Other approaches such the significant

analysis of microarrays (SAM) statistic [Tusher et al., 2001], have been proposed

for the problem of large number of falsely significant results.

On the other hand, the number of hypotheses to be tested can often be reasonably

reduced by removing control genes and/or performing non-specific filtering pro-

cedures, whose aim is to remove control genes which are not of interest of the

researcher and perform a non-specific filtering, which consists in removing genes

that, e.g., due to their low overall intensity or variability, are unlikely to carry in-

formation about the phenotypes under investigation.

Many microarray experiments involve only few replicates per condition, which

makes it difficult to estimate the gene-specific variances that are used, e.g., in the
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t-test. It is important to notice that, using the t-statistic of t-test, the statistical

significance, evaluates the average difference between the two population values

relative to their variances. Small average differences in the context of large vari-

ances could result in a large, and therefore, non significant P-values. On the other

hand, small average differences with small variances could result in significant P-

values. Large average differences with small variances might result in significant

P-values. And, finally, large average differences with large variances could result in

non significant P-values. In summary, it is possible to have large log-fold changes

that are not statistically significant because the populations exhibit much variabil-

ity. It is also possible to have small log-fold changes that are highly statistically

significant because the populations exhibit little variability [Alvord et al., 2007].

For these reasons some researchers have proposed alternative statistics that borrow

information about variability across all genes to obtain a more stable estimate of

gene specific variance. These procedures attempt to minimize the impact of genes

with very large and very small variances. The resulting statistics are referred to as

modified, penalized, attenuated or regularized t-statistics. An example of such a

modified t-statistic is given by the moderated t-statistic [Smyth, 2004], which is

obtained through an Empirical Bayes approach which employs a global variance

estimator computed on the basis of all genes’ variances.

6.2.4 High-level analysis: Classification

The last level of microarray data analysis pipeline is related to the high-level anal-

ysis, such as Cluster analysis, Classification, GO-Analysis or Gene Set Enrichment

Analysis [Rainer et al., 2006], [Florido et al., 2010b], [Subramanian et al., 2007].

In this subsection, some basic concepts about classification analysis are described,

since one of the major use of microarrays is related to phenotype classification

via expression-based classifiers. Classifying cancer tissues based on their gene

expression profiles has the promise of providing more reliable means to diagnose

and predict various types of a disease [Xiong et al., 2007].

The most well known methodologies to perform microarray-based classification

are k-Nearest Neighbors, backpropagation and probabilistic neural networks, weighted
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voting methods, decision trees and kernel methods such as Support Vector Ma-

chines (SVMs) [Statnikov et al., 2005]. SVM is usually preferred in microarray-

based classification [Chu and Wang, 2005] due to its outperformance compared to

other paradigms and its suitability to two special aspects of microarray data: high

dimensionality and small sample size. Kernel methods represent one way to cope

with the curse of dimensionality [Xiong et al., 2007].

6.2.4.1 Support Vector Machine-based classifiers

Support vector machines (SVMs) are learning kernel-based systems [Ressom et al.,

2008] that use a hypothesis space of linear functions in high dimensional feature

spaces. Unlike artificial neural networks, which try to define complex functions

in the input feature space, the kernel methods such as SVMs perform a nonlinear

mapping of the complex data into high dimensional feature spaces and then use

simple linear function to create linear decision boundaries. Thus, the problem

is related to choose a suitable kernel for the data projection. Parameters of an

SVM model are determined based on structural risk minimization to search for one

target known as the optimal hyperplane. Given a training set of instance label pairs

{(xk, yk); k = 1, ..., n}, where xk ∈ R
p and yk ∈ {1,−1}, SVMs require the solution

of the following optimization problem [Cortes and Vapnik, 1995]:

min
4,b,ξ

1
2
4

T
4 + C

l∑
i=1

ξi

subject to

yi(4Tφ(xi) + b) ≥ 1 − ξi, ξi ≥ 0

where 4 and b are the weight vector and bias of the hyperplane and ξ′i s are non-

negative scalar variables called slack variables that measure the deviation of a data

point from the ideal condition of pattern separability. Here, training vectors xi are

mapped into a higher dimensional space by the function φ, where φ(xi)Tφ(x j) is

called the kernel function, denoted by K(xi, x j). The most commonly used kernels

are:
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• Linear: K(xi, x j) = xT
i x j

• Polynomial: K(xi, x j) = (γxT
i x j + r)d, γ > 0

• RBF: K(xi, x j) = exp(−γ||xi − x j||
2), γ > 0

where γ, r and d are the kernel parameters. For a given set of training samples and

kernel, SVM finds a linear separating hyperplane with the maximal margin in this

higher dimensional space. C > 0 is the penalty parameter of the error term.

During the operation phase, the optimal hyperplane 4· x + b and the correspond-

ing decision function d(x) = 4· x + b are used to determine the class labels for

new samples. Here, 4 and b are the optimal values obtained by solving the above

optimization problem.

The one vs. all (OVA) approach extends the functionality of SVM from binary to

multi-class classification. The OVA constructs a binary classifier for each group.

Thus, for a k-group classification, k binary SVMs are needed. Each binary SVM

classifier creates a decision boundary that separates the group it represents from

all other groups. The k binary SVM classifiers compete to categorize an unknown

spectrum into their corresponding group. The SVM with the highest decision value

(farthest from the decision boundary) ”wins” the competition, assigning the un-

known spectrum to its group [Ressom et al., 2008].

6.2.4.2 Gene selection

Because the sample size is much smaller than the dimensionality, too many genes

may not be helpful, sometimes may even be harmful, for the class discrimination.

Selecting the most discriminatory genes and removing the rest not only reduce

the computational complexity, but also substantially improve the performance of

microarray-based classifies [Xiong et al., 2007]. Several approaches have been

proposed in the literature for gene selection, such as the SVM-based recursive fea-

ture elimination [Guyon et al., 2002], the BW ratio [Ye et al., 2004], the Principal

component analysis (PCA) or the simpler, although commonly used, t-test-based

approach [Chu and Wang, 2005], which is used to measure how large the difference

is between the distribution of two groups of samples.
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6.3 Tools for microarray data analysis

As stated in the introduction, Bioconductor provides hundreds of packages for

all aspects of microarray data analysis. For example, affy [Irizarry, 2011a] is of-

ten used for quality assessment and pre-processing of Affymetrix GeneChip data,

while limma [Smyth, 2011] is useful in detecting differentially expressed genes.

However, for scientists without adequate programming experience, several GUI

tools are available on the world wide web to analyze microarray experiments in a

user-friendly environment. Some of them are:

• EzArray. EzArray [Zhu et al., 2008] is a web-based Affymetrix expression

array data management and analysis system, which includes three highly

automated and seamlessly integrated data analysis programs named:

– PreQ, for quality assessment through Boxplots and MAplots (section

6.2.1.1), quality assessment metrics from Affymetrix (section 6.2.1.2),

RNA degradation (section 6.2.1.3) and plots from Probe-level models

(section 6.2.1.4). PreQ also offers tools for pre-processing, with several

choices for background correction, normalization, PM correction and

summarization for custom or standard pre-processing methods (section

6.2.2)

– ProS, which implements several statistical procedures for detecting dif-

ferentially expressed genes (section 6.2.3).

– RepA, for report generating and gene annotation.

Microarray data can be from users’ experiments (Custom Array Data), pub-

lished raw array data (deposited CEL supplementary files in GEO), or GEO

curated DataSets (GDS records). In addition, a number of standalone tools

have been included in EzArray, including tools for gene annotation, array

probe search, R shell for interactive execution of R scripts, and R batch for

batch execution of R scripts. The last version of EzArray is called BxArrays

(http://bioinforx.com/lims/microarray-gene-expression-data-analysis/bxarrays),

which allows different microarray technologies such as Nimblegen, Affymetrix,

Agilent or Illumina.
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• CARMAweb. It is a web application [Rainer et al., 2006] designed for the

analysis of microarray data. The following features are provided:

1. Support for Affymetrix, two-color and ABI microarrays.

2. Import of raw data from a variety of imaging software tools for two-

color microarrays (Agilent Feature Extraction, ArrayVision, BlueFuse,

GenePix, ImaGene, QuantArray, SPOT or raw data files from the Stan-

ford Microarray Database).

3. A complete analytical pipeline for Affymetrix, two-color and ABI mi-

croarrays including modules for preprocessing (custom or standard pre-

processing methods), detection of differentially expressed genes, clus-

tering and visualization, as well as GO mapping. Microarray quality is

assessed through Boxplots and Histograms (section 6.2.1.1).

4. Generation of comprehensive analysis report files.

• GEPAS. It is a web-based tool [Vaquerizas et al., 2005] for the analysis of

genomic data. This suite of programs include tools for data quality assess-

ment (Raw images of data set, Boxplots, Histograms, RNA degradation plot,

and MA plots), normalization of data for different platforms (Affymetrix,

Agilent, Codelink, etc.) using custom pre-processing methods, class discov-

ery in genes or experiments by diverse clustering methods, differential gene

expression methods for class comparison (including two-class, multiclass,

continuous parameters -such as the level of a metabolite-, and survival anal-

ysis), class prediction (predictors can be built and further applied to class

prediction in new samples), methods for analysing time course and dose re-

sponse experiments and the possibility of different types of genomic analysis

by array CGH. GEPAS provides a direct access to different functional pro-

filing and functional annotation facilities

• MAGMA. The web application MAGMA [Rehrauer et al., 2007] provides

tools for quality assessment (MAplots), pre-processing, analysis for differ-

entially expressed genes using linear models and biological annotation on

two-channel microarray data.
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• dChip. DNA-Chip Analyzer (dChip) (http://www.dchip.org) is a Windows-

based software package for probe-level (e.g. Affymetrix platform) and high-

level analysis of gene expression microarrays and SNP microarrays [Wong,

2011].

• RMAExpress. It is a standalone GUI program for Windows and Linux to

compute gene expression summary values for Affymetrix Genechips data us-

ing the Robust Multichip Average expression summary (RMA pre-processing

method) and to carry out quality assessment using probe-level metrics, box-

plots and histograms [Bolstad, 2011b]

• Microarray Cel file Summarizer (mu-CS). This software [Guzzi and Can-

nataro, 2010] is a cross-platform tool, based on a client-server architecture,

for the automatic normalization, summarization and annotation of Affymetrix

data. It enables users to read, pre-process and analyse microarray data,

avoiding the manual invocation of external tools the manual loading of pre-

processing libraries, and the management of intermediate files.

Let us compare these tools in terms of the first two steps of microarray data analysis

pipeline:

• Experiment quality assessment. MAGMA and CARMAweb provides limited

quality assessment of the experiment. dChip and mu-CS have not quality

assessment and although EzArray, GEPAS and RMAexpress provide many

tools for quality assessment, they leave to the researcher the decision of re-

moving a sample of the experiment if it seems to be defective given the qual-

ity plots used with no clear guidelines. Thus, if the user has no experience

on microarrays, this task can be cumbersome.

• Pre-processing. All the tools described above provide a set (or subset) of

standard pre-processing methods (CARMAweb, EzArray, MAGMA, dChip,

RMAexpress, mu-CS) and some of them (CARMAweb, EzArray, GEPAS)

also provide custom pre-processing methods, but, in any case, they leave

to the (unexperienced) user to decide which pre-processing method to use.



Chapter 7

A2TOOL - Affymetrix
microarray Analysis Tool

7.1 Goals

In this chapter, the tool developed for this dissertation entitled A2TOOL: Affymetrix
microarray Analysis Tool is described. This tool has been designed for the three

first steps described in Section 6.2 for microarray data analysis pipeline: Quality

data analysis (section 6.2.1), Data pre-processing (section 6.2.2) and the detection

of differentially expressed genes (section 6.2.3). Given an Affymetrix raw data set

experiment, this tool is outlined as follows (see Fig.7.1):

1. The quality of the raw data set is analyzed through the quality metrics de-

scribed in section 6.2.1: Image plots of the probe level data, Box plots, His-

tograms, MA plots, Affymetrix quality assessment metrics (Average Back-

ground, Scale factors and Percent Present), RNA degradation and Probe-

level models-based quality tools. A2TOOL performs an automated quality

assessment of the raw data given in the experiment and points defective ar-

rays (if any) according to the criteria described in section 6.2.1. At the end

of this step, a report in PDF format is generated to help the researcher to take
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a decision: either remove or keep defective arrays (if any) and go on with the

next phase of the analysis.

2. The whole raw data set, or a subset of it depending on the decision taken in

the previous step, is pre-processed using all possible and allowed combina-

tions of Background correction, Normalization, PM correction and Summa-

rization methods described in section 6.2.2. Let us denote all possible pre-

processing methods as the set P. The goal is to select the best pre-processing

methods for a given raw data set according to the quality metrics described

in section 6.2.2.5: replicate variability, Kolmogorov-Smirnov test and Spear-

man Rank Correlation Coefficient [Florido et al., 2009c], that is, a subset

P′ ⊆ P of preprocessing methods are obtained, i.e., a set of pre-processed

data (expression sets) P′ is selected.

3. The next step carried out by our tool is to detect differentially expressed

genes on each pre-processed data set (expression set) obtained as a result

of applying the selected pre-processing methods in P’ to raw data. At the

end of this stage, a second report in PDF format is generated with a list of

differentially expressed genes detected in each pre-processed data set and

an intersection and union lists obtained through the intersection and union

respectively of differentially expressed genes detected in all pre-processed

data sets. The goal is to provide the most reliable genes selected as differen-

tially expressed and a complete list of candidate genes that are likely to be

differentially expressed.

A2TOOL is implemented in R and all the packages used are from Bioconductor

[Gentleman et al., 2004] repository.

This chapter is structured as follows: the tool proposed is presented and explained

in detail in section 7.2.1 in terms of quality data analysis, data pre-processing and

the detection of differentially expressed genes. In section 7.3 the results of applying

A2TOOL to the Chronic Lymphocytic Leukemia (CLL) data set are shown (section

7.3.1). Furthermore, the results of studying the effect of pre-processing methods

on microarray-based cancer classifiers are also presented in section 7.3.2.



Chapter 7. A2TOOL - Affymetrix microarray Analysis Tool 175

Raw 

Data

Quality assessment
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Differential Expression 

(DE) report

Figure 7.1: A2TOOL workflow

7.2 A2TOOL

7.2.1 A2TOOL: Quality data analysis

The first step carried out by A2TOOL is to analyze according to the criteria given

in section 6.2.1 the quality of the experiment data set A = {a1, a2, ..., an} where n is

the number of arrays or samples in the experiment.
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7.2.1.1 Exploratory data analysis: image plots and multi-array approaches

Image plots of the probe-level data The user has to examine the image plots of

the log intensities for each microarray contained in the experiment to look for spa-

tial artifacts or other non homogeneous patterns in the image plots across all arrays

such as lighter or darker arrays and/or spatial artifacts such as rings or shadows

[Gentleman et al., 2005]. For plotting images of a raw data set, the affy R package

[Irizarry, 2011a],[Gautier et al., 2004] has been used.

Boxplots As stated in subsection 6.2.1.1, we look for boxplots that stand out from

the others for a given group of replicates, as evidenced by distinctly different range

or displaced boxes (interquartile ranges, IQR) [Alvord et al., 2007]. For plotting

the boxplots of a raw data set, affy R package [Irizarry, 2011a] is used. If the experi-

ment data set (raw data) has k group of replicates, G = {group1, group2, ..., groupk},

then for each group j ∈ G, the procedure used by A2TOOL, to detect defective ar-

rays is:

1. Get the set of arrays belonging to group j, that is, A j = {a1, a2, ..., am} ∈

group j.

2. Get the interquartile range (IQR) of A j = {a1, a2, ..., am} ∈ group j, that is,

IQR j = {iqr1, iqr2, ..., iqrm}.

3. Get the mean value of the lower quartile (Q1), µQ1, and the mean value of

the upper quartile (Q3), µQ3, of IQR j.

4. For each iqri ∈ IQR j, get its lower boxplot quartile (Q1), Q1i, and its upper

boxplot quartile (Q3), Q3i. Check whether Q1i > µQ3 or Q3i < µQ1. If so,

the array i is detected as defective.

Histograms According to the criterion described in [Alvord et al., 2007], we

look for densities that display bimodalities, are moved excessive from the others,

show uniquely different shapes or other abnormalities. For this purpose, the ”bi-

modality index” from ClassDiscovery R package [Wang et al., 2009a],[Coombes,
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2010] is used. This index is a continuous measure of the extent to which a set of

data fits a two-component mixture model, that is, it restricts to trying to decide if

the data is better described by a one-component (unimodal) or two-component (bi-

modal) distribution through the parameter bi. Larger values of bi represent ”more

strongly” bimodal distributions. The rule-of-thumb is that with at least 200 sam-

ples, then bi > 1.1 represents believable bimodality. Thus A2TOOL computes the

bimodal index for each array ai ∈ A, obtaining BI = {bi1, bi2, ..., bin}. Since raw

microarray data have more than 200 samples per microarray, when bi > 1.1 for

a given array ai, A2TOOL detects a bimodal distribution on that sample. Some

experiments run using this quality metric reveals that smooth bimodalities are not

detected, but strong do. So, we suggest the user to inspect the histogram plot to

detect small bimodalities, different shapes or other bimodalities. Therefore, the

histogram plot is a more manual criterion rather than automatic.

MA plots A2TOOL runs a different MA plot for each condition, treatment or

group of replicates group j, in which each array ai ∈ group j is compared to a

synthetic array built from the samples that belong to group j. Quality problems

are most apparent from an MA-plot in cases where the loess smoother oscillates

wildly or if the variability of the M values appears to be greater in one or more

arrays relative to the others [Alvord et al., 2007]. To automate the detection of

defective arrays, A2TOOL proceeds the same as in the array quality metrics pack-

age [Kauffmann and Huber, 2011],[Kauffmann et al., 2009], in which a boxplot

of the mean values of M for each sample is calculated and those arrays clas-

sified as outliers using this nonparametric statistic will be marked as defective

samples. Thus, if the experiment data set has k group of replicates, that is G =

{group1, group2, ..., groupk}, then for each group j ∈ G:

1. Get the set of arrays belonging to group j, that is, A j = {a1, a2, ..., am} ∈

group j. The synthetic array is created taking the probe wise medians across

all arrays ai ∈ A j. This is the reference array, re f j.

2. The difference between each array ai ∈ A j and the reference array re f j

for each probe on each gene, denoted as mi, is computed, that is, M =

{m1,m2, ...,mm} where mi = ai − re f j.
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3. The mean of the absolute values of mi, µmi for each array is computed, that

is, µM = {µm1, µm2, ..., µmm} where µmi = mean(|mi|),mi ∈ M.

4. A boxplot of the µM set is built to detect outliers and those arrays whose

µmi ∈ M value is lower or greater than the smallest and largest observation

respectively in the boxplot are pointed as defective, that is, an array ai ∈ A j

is considered of low quality if µmi < Q1−1.5 · IQR or µmi > Q3 + 1.5 · IQR,

where Q1 and Q3 are the lower and upper quartile respectively of the boxplot

and IQR is the inter-quartile range IQR = Q3 − Q1.

7.2.1.2 Affymetrix quality assessment metrics

Affymetrix quality assessment metrics are implemented in the simpleaffy R pack-

age [Wilson and Miller, 2005], [Wilson and Miller, 2011]:

The average background According to the guidelines recommended by Affymetrix

[Affymetrix, 2001], the average background values should be ”comparable” to each

other. Assuming normality for the average background values, all must fall within

two standard deviation of the mean [Alvord et al., 2007], thus, A2TOOL detects

any microarray whose average background value is outside of two standard devia-

tion of the mean, that is, given the average background values of all arrays in the

experiment AB = {ab1, ab2, ..., abn}, our tool checks whether:

abi > µAB + 2σAB

or

abi < µAB − 2σAB

(7.1)

∀abi ∈ AB, where µAB and σAB are the mean and standard deviation respectively

of AB set and i is the i − th array of the experiment data set A = {a1, a2, ..., an}.

Scale factor Affymetrix [Affymetrix, 2001] recommends that the scale factors be

within 3-fold of each other. The procedure taken by A2TOOL to detect defective

arrays using this quality metric is the same as the one followed in the simpleaffy R

package:
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1. Get scale factor values for each array in the experiment in log2 scale, that

is, log(S C) = {log2(sc1), log2(sc2), ..., log2(scn)} where n is the number of

arrays in the experiment.

2. Get the mean of all scale factor values, µS C , from log(S C).

3. Get the upper,Usc, and lower, Lsc, bound values used to decide whether an

array is defective or not: Usc = (3/2 + µS C) and Lsc = (−3/2 + µS C)

4. If log2(sci) > Usc or log2(sci) < Lsc,∀log2(sci) ∈ log(S C), then, the array

ai ∈ A is detected as defective.

Percent present As stated in subsection 6.2.1.2, the percent present values should

be ”similar” among samples with extremely low values being a possible indication

of poor quality. An array ai ∈ A is detected as defective by A2TOOL if it has more

than 10% of difference with respect to the maximum value of percent present,

which is considered as the best quality [Alvord et al., 2007] [Wilson and Miller,

2011]. The procedure is as follows:

1. Get the percent present values for all arrays of the experiment A in %: PP =

{pp1, pp2, ..., ppn}.

2. Get the maximum value of percent present, that is, maxPP = max(PP)

3. An array ai ∈ A is considered of low quality if |ppi−maxPP| > 10,∀ppi ∈ PP

7.2.1.3 RNA degradation

As stated in subsection 6.2.1.3 when there is RNA degradation, PM (perfect match)

probe intensities are elevated at the 3’ end of a probe set, when compared to the 5’

end [Gentleman et al., 2005][Alvord et al., 2007].

Since there are no clear guidelines to know how large the slope is to consider an

array to have too much degradation and, also, the result depends on the chip type

[Alvord et al., 2007], A2TOOL adopted the difference in slopes among chips to

detect RNA degradation: if the arrays have similar slopes, then comparisons within
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genes across arrays may still be valid. On the other hand, a plot with one or more

arrays with very different slope is indicative of a possible problem [Gentleman

et al., 2005]. The procedure that A2TOOL follows to detect defective arrays is the

following:

1. Get the set of slopes for every chip ai ∈ A in the experiment, S L = {sl1, sl2, ..., sln}

2. Build a boxplot using the set of slopes S L.

3. Identify those arrays ai ∈ A identified as outliers, that is, if sli > Q3 + 1.5 ·

IQR,∀sli ∈ S L, where Q3 is the upper quartile of the boxplot and IQR is

the inter-quartile range IQR = Q3 − Q1, the array ai ∈ A is considered as

defective. Higher slope is indicative of larger RNA degradation [Gentleman

et al., 2005].

7.2.1.4 Probe-level models

The Bioconductor R package affyPLM [Bolstad, 2011a] provides functions to build

Probe-level models from probe-intensity data. As described in subsection 6.2.1.4,

three useful quality assessment tools can be obtained from the output of the PLM

fitting procedure (eq.6.2.1.4): Chip pseudo-images, Relative Log Expression (RLE)

and Normalized Unscaled Standard Error plot (NUSE), which are used by A2TOOL.

Chip pseudo-images For each array of a data set ai ∈ A, A2TOOL builds the

following plots for each array of the experiment: Gray scale image of the log inten-

sities and PLM weights, PLM residual and PLM signed residual plots. This quality

metric needs the inspection of the user, who has to look the plots for any anoma-

lies, artifacts or non homogeneous patterns in them, for example, small blemishes,

rings or circles [Gentleman et al., 2005].

Relative Log Expression (RLE) plot A2TOOL plots the RLE figure and as-

suming that, ideally, the boxes in the RLE plot should have small spread and be

centered near RLE = 0 (see section 6.2.1.4), it detects automatically the existence

of defective arrays according to the following procedure:
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1. Get the numerical summaries based on the RLE plot for all the samples in

the data set A: BRLE = {bRLE−1, bRLE−2, ..., bRLE−n} and VRLE = {vRLE−1,

vRLE−2, ..., vRLE−n}, where bRLE−i ∈ BRLE and vRLE−i ∈ VRLE are the median

(bias measure) and the IQR (variability measure) respectively of the RLE

value for the i-th array.

2. Build a boxplot, BoxplotBRLE , through the set of absolute median values

|BRLE |. Those arrays whose |bRLE−i| ∈ |BRLE | value is identified as outlier

by the boxplot, BoxplotBRLE , are considered defective samples. Absolute

values are used because it does not matter the sign of the bRLE−i values, that

is, bRLE−i must be centered at RLE = 0.

3. Build a boxplot, BoxplotVRLE , through the set of the variability values VRLE .

Our tool points as defective those samples whose vRLE−i ∈ VRLE value is

identified as outlier in the largest observation side of the boxplot, BoxplotVRLE ,

that is, if vRLE−i > Q3 + 1.5 · IQR,∀vRLE−i ∈ VRLE where Q3 is the upper

quartile of BoxplotVRLE and IQR is the inter-quartile range IQR = Q3 − Q1

of BoxplotVRLE , then the array ai ∈ A is considered as defective. Notice that

we are looking for arrays with big spread.

Normalized Unscaled Standard Error (NUSE) plot A2TOOL plots the NUSE

figure and assuming that, ideally, the boxes in the NUSE plot should have small

spread and be centered near NUS E = 1 (see section 6.2.1.4), it detects automati-

cally the existence of defective arrays according to the following procedure:

1. Get the numerical summaries based on the NUSE plot for all samples in the

data set: BNUS E = {bNUS E−1, bNUS E−2, ..., bNUS E−n} and VNUS E = {vNUS E−1

,vNUS E−2, ..., vNUS E−n} where bNUS E−i ∈ BNUS E and vNUS E−i ∈ VNUS E are

the median (bias measure) and the IQR (variability measure) respectively of

the NUSE values for the i-th array.

2. Build a boxplot, BoxplotBNUS E , through the set of absolute median values

BNUS E . Notice that for BNUS E we would like to have the values centered at

one. Those arrays whose |bNUS E−i| ∈ |BNUS E | value is identified as outlier

by the boxplot ,BoxplotBNUS E , are considered defective samples. Although
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in [Gentleman et al., 2005] the authors consider lower quality arrays those

whose bNUS E−i ∈ BNUS E values are significantly elevated, we consider also

defective arrays those samples whose median value is significantly displaced

under the value of NUS E = 1, therefore, absolute values are considered.

3. Build a boxplot, BoxplotVNUS E , through the set of variability values VNUS E .

Our tool points as defective those samples whose vNUS E−i ∈ VNUS E value is

identified as outlier in the largest observation side of the boxplot, BoxplotVNUS E

, that is, if vNUS E−i > Q3+1.5·IQR, vNUS E−i ∈ VNUS E where Q3 is the upper

quartile of BoxplotVNUS E and IQR is the inter-quartile range IQR = Q3−Q1

of BoxplotVNUS E , then the array ai ∈ A is considered as defective. Notice

that, again, we are looking for arrays with big spread.

At the end of this stage, A2TOOL generates a report in PDF format, from which

the researcher can check the results of applying all quality metrics described in this

section to the experiment being analyzed. Besides the results given for each quality

metric, a summary is presented where, for each array in the experiment ai ∈ A, it

is informed whether the array has been detected as defective or not in each quality

metric.

But, what should the researcher do if abnormalities are found through the quality

metrics? The researcher has the final decision, but we recommend to remove a chip

from the analysis if it was detected as defective in two or more quality metrics.

7.2.2 A2TOOL: Data pre-processing

The second step carried out by A2TOOL is to pre-process the whole raw data set,

or a subset of it if some arrays have been removed due to their low quality, using

all possible and allowed combinations of Background correction, Normalization,

PM correction and Summarization methods described in section 6.2.2. From the

set of all possible pre-processing methods, P, the goal is to select the best of them

for a given raw data set according to the quality metrics described in [Florido et al.,
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2009c]: replicate variability, Kolmogorov-Smirnov test and Spearman Rank Cor-

relation Coefficient, that is, a subset P′ ⊆ P of preprocessing methods is obtained.

Since A2TOOL works on Affymetrix Genechips, pre-processing is split into four

steps: background correction (subsection 6.2.2.1), normalization (subsection 6.2.2.2),

PM correction (subsection 6.2.2.3) and summarization (subsection 6.2.2.4) [Lim

et al., 2007],[Florido et al., 2010b],[Florido et al., 2009c].

For each step, our tool is able to execute the following procedures:

1. Background correction: mas [Affymetrix, 2001], (rma) [Irizarry et al.,

2003], and gcrma [Wu et al., 2004].

2. Normalization: scaling (constant) [Affymetrix, 2001], quantile [Bolstad

et al., 2003], cyclic loess [Bolstad et al., 2003], invariant set [Schadt et al.,

2001],[Wong, 2011] and variance stabilization method (VSN) [Huber et al.,

2002].

3. PM-MM correction: MAS [Affymetrix, 2001] and PMonly [Gautier et al.,

2004].

4. Summarization: Tukey-biweight (mas) [Affymetrix, 2001], MBEI [Li and

Wong, 2001],[Wong, 2011], Median polish [Irizarry et al., 2003], Avgdiff

[Affymetrix, 1999], Factor Analysis for Robust Microarray Summarization

(FARMS) [Hochreiter et al., 2006] and Distribution Free Weighted (DFW)

[Chen et al., 2007b].

A2TOOL will execute all possible and allowed combinations of Background cor-

rection, Normalization, PM correction and Summarization methods using the Bio-

conductor [Gentleman et al., 2004] R packages available. Notice that, as stated in

section 6.2.2, not all possible combinations are allowed. In Appendix B, table B.1

shows the pre-processing methods used by A2TOOL.
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7.2.2.1 On selecting the best pre-processing methods through A2TOOL

As mentioned at the beginning of section 7.2.2, A2TOOL executes all pre-processing

methods contained in table B.1 for a given raw data set obtaining a set of pre-

processed data (expression set). Since the expression data may have an effect

in posterior stages of microarray data analysis pipeline (see section 6.2.3), each

expression set must be analyzed in terms of the metrics proposed in subsection

6.2.2.5: Replicate variability, K-S test and Spearman Rank Correlation Coefficient

to evaluate its quality.

As stated in section 6.2.2.5, it is important to check whether a pre-processing

method introduces correlation artifacts in the pre-processed data set. For this pur-

pose, A2TOOL proceeds the same as in [Lim et al., 2007]: each pre-processing

procedure is run not only on the original raw data, but also on uninformative raw

data, that is, raw signal intensities for each probe pairs in the data set experiment

were randomly permuted to create uninformative CEL files. The relative position

between PM and MM for every probe pairs are retained, in order to ensure fair com-

parison between normalization procedures that utilize MM information to correct

for non-specific binding and those that rely entirely on PM intensities. Shuffling

the probe pairs has been sufficient to destroy real signal of the probe sets as they

now consist of random probes values. Then, the quality metrics (Replicate vari-

ability, K-S test and Spearman Rank Correlation Coefficient) are also applied to

the pre-processed uninformative data set.

Therefore, for each pre-processed informative (original) and uninformative data

set, A2TOOL computes three different quality metrics according to [Florido et al.,

2009c]:

• Replicate variability. It is based on the assumption that expression level of a

gene should ideally remain the same across multiple replicated slides. Vari-

ability is measured by the mean of the standard deviation over all genes.

Smaller mean is indicative of better pre-processing [Xiong et al., 2008].

Thus, if the experiment data set has k group of replicates, that is G = {group1, group2, ..., groupk},

then for each group j ∈ G:
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1. Get the set of arrays belonging to group j, that is, A j = {a1, a2, ..., am} ∈

group j.

2. Compute the standard deviation for gene σ̂g across A j ∈ group j:

σ̂g =

√√
1

m − 1

m∑
i=1

(exprgi − µ j)2 (7.2)

where m is the number of arrays in group j, exprgi is the value for gene

g in slide ai ∈ A j, while µ j is the average expression value over A j

for gene g. A smaller σ̂g is indicative of a more effective normalization

procedure. The mean of such estimates over all genes for a given group

of replicates group j, µ̂ j, is obtained.

Thus, Gsd = {µ̂1, µ̂2, ..., µ̂k} is the set of means of each group of replicates and

µGsd = 1
k
∑k

j=1µ̂ j is a global measure of the performance of the pre-processing

method, with smaller mean indicative of better performance.

• Kolmogorov-Smirnov (K-S) test. It is based on the hypothesis that an ef-

fective pre-processing method should result in two similar, ideally identical,

distributions with a small, ideally zero-valued K-S statistic [Xiong et al.,

2008]. On the other hand, two different distributions will generate a large

K-S statistic. If the experiment data set has k group of replicates, that is

G = {group1, group2, ..., groupk}, then for each group j ∈ G:

1. Get the set of arrays belonging to group j, that is, A j = {a1, a2, ..., am} ∈

group j.

2. Compute KS-test on every pairwise of arrays KS (ap, aq), ap and aq ∈

A j and p , q. A total of m(m−1)
2 tests are run for A j.

3. The mean of such tests, µ̂ j, for the given group of replicates A j is com-

puted

Thus, GKS = {µ̂1, µ̂2, ..., µ̂k} is the set of means of each group of replicates

and µGKS = 1
k
∑k

j=1µ̂ j is a global measure of the performance of the pre-

processing method, with smaller mean indicative of better performance.
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• Spearman Rank Correlation Coefficient. It is based on the comparison of

the correlation coefficient between replicated slides assuming that, given an

experiment, the correlation coefficient among replicated slides will be in-

creased after the pre-processing stage [Lim et al., 2007]. If the experiment

data set has k group of replicates, that is G = {group1, group2, ..., groupk},

then for each group j ∈ G:

1. Get the set of arrays belonging to group j, that is, A j = {a1, a2, ..., am} ∈

group j.

2. Compute Spearman Rank Correlation Coefficient on every pairwise of

arrays corr(ap, aq), ap and aq ∈ A j and p , q. A total of m(m−1)
2 tests

are run for A j.

3. The mean of such tests, µ̂ j, for the given group of replicates A j is com-

puted

Thus, Gcorr = {µ̂1, µ̂2, ..., µ̂k} is the set of means of each group of replicates

and µGcorr = 1
k
∑k

j=1µ̂ j is a global measure of the performance of the pre-

processing method, with bigger mean indicative of better performance.

To select the best pre-processing methods for a given raw data set rawDataO,

A2TOOL the procedure proposed by J.P.Florido et al. [Florido et al., 2010a] is

adopted (see Fig.7.2):

1. Set the best pre-processing methods set to empty: P′ = ∅

2. Get pre-processed raw expression data using RAW preprocessing method1:

esetRawO=RAW(rawDataO)

esetRawC=RAW(rawDataC)

where rawDataO is the original raw data set and rawDataC is the control

raw data set (uninformative raw data set).
1RAW pre-processing method (first entry in table B.1) corresponds to raw expression data (which

is different from raw data): a summarization method is needed because in Affymetrix Genechips,
each gene is represented by a set of several PM and MM probe pairs and the probe intensities for
each probe set (gene) should be summarized to define a measure of expression value. Medianpolish
has been chosen as summarization method for raw expression data due to its outperforming to other
summarization methodologies [Florido et al., 2009c]
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3. Compute quality metrics on the expression sets obtained:

• Replicate variability: µGsd (esetRawC) and µGsd (esetRawO)

• KS-test: µGKS (esetRawC) and µGKS (esetRawO)

• Spearman Rank Correlation Coefficient: µGcorr (esetRawC) and µGcorr (esetRawO)

4. For each pre-processing method pi ∈ P, with pi , RAW:

(a) Get pre-processed expression data using pi preprocessing method:

esetOi = pi(rawDataO)

esetCi = pi(rawDataC)

where rawDataO is the original raw data set and rawDataC is the con-

trol raw data set.

(b) Compute quality metrics on the expression sets obtained:

• Replicate variability: µGsd (esetCi) and µGsd (esetOi)

• KS-test: µGKS (esetCi) and µGKS (esetOi)

• Spearman Rank Correlation Coefficient: µGcorr (esetCi) and µGcorr (esetOi)

(c) Check whether the pre-processed expression data given by pi improves

quality metrics with respect to raw expression data. If so, the method

pi is selected if it does not introduce correlation artifacts or, at most,

introduces a number of correlation artifacts which is below a threshold,

that is:

if (µGsd (esetOi) < µGsd (esetRawO) && µGKS (esetOi) < µGKS (esetRawO)

&& µGcorr (esetOi) > µGcorr (esetRawO))

{ # the pre-processed expression data improves raw data (esetRawO)

if (µGsd (esetCi) > µGsd (esetRawC) &&

µGcorr (esetCi) < µGcorr (esetRawC))

P′ = {P′ ∪ pi} # pi does not introduce correlation artifacts

else

{

µGsd (O) = µGsd (esetOi) − µGsd (esetRawO)

µGsd (C) = µGsd (esetCi) − µGsd (esetRawC)

µGcorr (O) = µGcorr (esetOi) − µGcorr (esetRawO)
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µGcorr (C) = µGcorr (esetCi) − µGcorr (esetRawC)

if(
µGsd (C)
µGsd (O) < threshold &&

µGcorr (C)
µGcorr (O) < threshold)

P′ = {P′ ∪ pi}# pi introduces correlation artifacts

#below a threshold

}

}

5. Once the set of best pre-processing methods have been selected in P′, sort

this list according to the values of the quality metrics in the following way:

• Sort P′ in ascending order according to the variability value µGsd (esetOi),

∀pi ∈ P′, obtaining P′sd. Assign 1 to P′sd(1), 2 to P′sd(2) and so on.

• Sort P′ in ascending order according to the KS-statistic value µGKS (esetOi),

∀pi ∈ P′, obtaining P′KS . Assign 1 to P′KS (1), 2 to P′KS (2) and so on.

• Sort P′ in descending order according to the Spearman coefficient value

µGcorr (esetOi), ∀pi ∈ P′, obtaining P′corr. Assign 1 to P′corr(1), 2 to

P′corr(2) and so on.

Sort P′ in ascending order according to P′sd + P′corr + P′KS scores. Thus,

the pre-processing methods selected are sorted according to its quality: the

lower the total score value, the higher the quality of a pre-processing method.

Notice that the use of the uninformative raw data set (esetCi) is very important

to detect whether a pre-processing method has introduced correlation artifacts. Its

used is based on the following hypothesis: the replicate variability and Spearman

Correlation Coefficient are expected to have low quality values in uninformative

raw expression data (esetRawC), that is, high replicate variability and low Spear-

man Correlation. For a pre-processed uninformative raw data (esetCi), it is ex-

pected to have even worst values for these quality metrics than the ones related

to the uninformative raw expression data (esetRawC), because uninformative raw

data has no sense and has destroyed the original information of microarray (second

if of step 4.c of the procedure). However, one can also expect an improvement and,

if so, it must be measured whether this improvement is significant or not (else in
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step 4.c). If it is significant, A2TOOL considers that the pre-processing method

has introduced many correlation artifacts. If not, the method would be accepted

(last if ). This procedure is outlined as follows:

1. Quantify, through the quality metrics, the improvement in the pre-processed

data set with respect to the raw expression data set for both informative (orig-

inal) and uninformative data sets: µGsd (O), µGsd (C) ,µGcorr (O), µGcorr (C) (see

else of step 4.c).

2. If for both quality metrics the improvement in the uninformative data with re-

spect to the improvement in the original data is below a threshold, the method

is accepted. Otherwise, the method is rejected, i.e., the pre-processing method

introduces several correlation artifacts.

Notice that when quantifying the number of correlation artifacts introduced, the

K-S statistic is not taken into account. This is because K-S statistic is a measure

based on the comparison of two empirical distribution functions and we consider

that there are not many differences between distributions based on informative data

and distributions based on uninformative data.

In Fig.7.2, steps from 1 to 4 are schematized.

7.2.3 A2TOOL: Detection of differentially expressed genes

The third and the last step carried out by A2TOOL is to detect differentially ex-

pressed genes using each pre-processed data (expression data) given by all pre-

processing methods contained in P′. Moreover, our tool also builds a list of inter-

section and a list of union genes detected in all pre-processed data sets with the

aim of providing confident and complete lists of differentially expressed genes. It

is possible to build such lists only when more than a pre-processing method has

been selected.
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Get pre-processed raw expression data:

esetRawO=RAW(rawDataO)

esetRawC=RAW(rawDataC)

Return P’

P’ = {}

Compute quality metrics on esetRawO and esetRawC raw 

expression sets

Raw 

Data

Get next pre-processing method pi contained in P

Compute pre-processed expression data using pi:

 esetOi=pi(rawDataO)

esetCi=pi(rawDataC)

Compute quality metrics on esetOi and esetCi expression sets

Does esetOi improve quality metrics 

with respect to esetRawO?

Does pi introduce false 

correlations in esetCi?

Are the quantity of correlations 

introduced less than a threshold?

P’=P’ U {pi}

is P empty?

NO

YES

YES

NO

YES

YES

NO

P=P-{pi}

NO

Figure 7.2: On selecting the best pre-processing methods for a given raw data
set
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7.2.3.1 Differential expression

For each pre-processing method pi ∈ P′, the following two-step procedure to ob-

tain differentially expressed genes is applied by A2TOOL to the expression set ob-

tained when pre-processing with pi, that is, esetOi ← pi(rawData) where rawData

is the original raw data set.

• Apply nonspecific filtering to esetOi using the geneFilter package [Gentle-

man et al., 2011], obtaining a reduced expression set esetO′i .

• Apply a moderated t-test analysis to esetO′i through the limma package [Smyth,

2004].

Nonspecific filtering To alleviate the loss of power from the formidable multi-

plicity of gene-by-gene hypothesis testing, it is important to carry out nonspecific

filtering (see subsection 6.2.3). By nonspecific we mean that it is done without

reference to the parameters or conditions of the tested RNA samples. Its aim is

to remove from consideration that set of probes whose genes are not differentially

expressed under any comparison [Gentleman et al., 2011].

For this purpose, A2TOOL uses genefilter package and a gene is removed by

A2TOOL from the experiment if:

• it is an Affymetrix control gene (starts with AFFX)

• it has a variability across samples below a predefined user threshold. The

IQR per-feature filtering statistic is used and the default value for this filter

is 0.5, which is a strong filter, i.e. the majority of the unchanged probe sets

are removed (the top 50% of genes are selected on the basis of variability).

• it has the same EntrezID as other gene. Is this case, the gene with the greatest

variability is retained.

A reduced expression set esetO′i is obtained once this filter is applied.
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Statistics for Differential Expression The moderated t-statistic is computed for

each gene and for each contrast through the limma package [Smyth, 2004] (see

section 6.2.3).

A2TOOL applies limma to the reduced expression set, esetO′i , and each gene of

this expression set is ranked according to the adjusted p-value. Only those genes

whose logFC and adjusted p-values are above and below a threshold respectively,

are listed as differentially expressed.

For each gene listed as differentially expressed, A2TOOL shows the following

statistics:

• ID: Affymetrix gene ID.

• EntrezID.

• logFC: log2-fold change for the contrast being processed (the default thresh-

old for the test is 0.585, which corresponds to a fold-change of 1.5)

• AveExpr: average log2-expression level for that gene across all the arrays

and channels in the experiment.

• t: moderated t-statistic.

• adj.P.Val: p-value adjusted for multiple testing. It is the probability that

an expression change is due to chance. The default value for the test is

pthreshold = 0.05. A2TOOL uses two different correction methods: Ben-

jamini and Hochberg False Discovery Rate (FDR) correction and Bonferroni

Step-down (Holm) correction. Thus, for a given gene, its adjusted p-value

(ad j.P.val) corresponding to the FDR correction is shown and if ad j.P.val of

Bonferroni correction is called significant, the gene is also marked.

• B: it is the log-odds that the gene is differentially expressed. For example,

a B-statistic of zero corresponds to a 50-50 chance that the gene is differen-

tially expressed. The bigger this value, the bigger the probability of being

differentially expressed.
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It must be noticed, that a list of differentially expressed genes is shown for each

contrast or each pair of conditions in the experiment. For example, if an experiment

has three conditions: Control, Pre and Pos, three lists will be shown: Control vs

Pre, Control vs Pos and Pre vs Pos, corresponding to three contrasts.

Thus, for a given reduced pre-processed data esetO′i and a set of conditions in

the experiment C = {condition1, condition2, ..., conditionk}, a set of differentially

expressed genes Genesi = {{genesi1}, {genesi2}, ..., {genesinumContrasts}} are obtained,

where numContrasts =
k(k−1)

2 and {genesi j} represents the set of differentially ex-

pressed genes detected in the reduced expression set esetO′i related to the pre-

processing method pi and a contrast j ∈ { j = 1, ..., numContrasts}.

7.2.3.2 Merging results: intersection and union lists

A2TOOL has computed the list of differentially expressed genes detected in each

reduced expression set esetO′i ,∀pi ∈ P′. If the number of pre-processing meth-

ods in P′ is low, say, 4, one can have a look to each list of genes to have an idea

about the genes that have been selected, but, if the length of P′ is large and our

experiment has more than two conditions, to get conclusions from the results can

be cumbersome and difficult. If P′ has 15 methods and our experiment has 3 con-

ditions, up to 45 lists of differentially expressed genes can be obtained, which is

not useful.

To overcome this problem and if the number of methods in P′ is greater than 1, for

each contrast j ∈ {1, ..., numContrasts}, A2TOOL generates two lists:

• The intersection list. It is obtained through the intersection of differentially

expressed genes detected in all reduced expression sets esetO′i ,∀pi ∈ P′. For

an initial value of Igenes j
= ∅, this list is obtained as:

Igenes j
= Igenes j

∩ {genesi j} for i = {1, ..., |P′|}

where |P′| is the number of pre-processing methods (or the number of pre-

processed data) in P′. Through this list, it is expected to obtain the most

reliable genes as differentially expressed, since they are expressed regardless

of the pre-processing method used.
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• The union list. It is obtained through the union of differentially expressed

genes detected in all reduced expression sets esetO′i ,∀pi ∈ P′. For an initial

value of Ugenes j
= ∅ this list is obtained as follows:

Ugenes j
= Ugenes j

∪ {genesi j} for i = {1, ..., |P′|}

where |P′| is the number of pre-processing methods in P′. In this case, it is

expected to obtain a long list of genes. This list may contain differentially ex-

pressed genes detected only in an expression set, but also may contain genes

that have been detected in all expression sets but one. Thus, it is an inter-

esting and complete list of candidate genes that are likely to be differentially

expressed.

7.3 Experimental results

In this section the results of applying A2TOOL to the Chronic Lymphocytic Leukemia

(CLL) data set are presented. Since different pre-processing methods can lead to

different expression data and, therefore, may have an effect in posterior stages such

as phenotype classification [Florido et al., 2010b],[Wu et al., 2005] the results of

studying the effect of the pre-processing methods commonly used in the literature

on microarray-based cancer classifiers are also presented in section 7.3.2.

7.3.1 Results given by A2TOOL on CLL data set

In this section, A2TOOL is applied to the Chronic Lymphocytic Leukemia (CLL)

data set [Whalen and Gentleman, 2011]. This data set has 23 samples that were

either classified as progressive or stable in regards to disease progression. Thus,

there are two conditions or group of replicates. Some useful information about this

data set is given below:

• Size of arrays: 640 x 640

• Number of genes: 12625
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• Number of samples: 23

• Array platform: hgu95av2

The experimental design of CLL experiment is shown in table 7.1.

Table 7.1: Experimental design of CLL experiment

id FileName Condition
1 CLL11.CEL progressive
2 CLL12.CEL stable
3 CLL13.CEL progressive
4 CLL14.CEL progressive
5 CLL15.CEL progressive
6 CLL16.CEL progressive
7 CLL17.CEL stable
8 CLL18.CEL stable
9 CLL19.CEL progressive
10 CLL1.CEL stable
11 CLL20.CEL stable
12 CLL21.CEL progressive
13 CLL22.CEL stable
14 CLL23.CEL progressive
15 CLL24.CEL stable
16 CLL2.CEL stable
17 CLL3.CEL progressive
18 CLL4.CEL progressive
19 CLL5.CEL progressive
20 CLL6.CEL progressive
21 CLL7.CEL progressive
22 CLL8.CEL progressive
23 CLL9.CEL stable

According to the guidelines given in section 7.2, A2TOOL will analyze this data

set in terms of (i) its quality (section 7.2.1), (ii) data pre-processing (section 7.2.2)

and (iii) the detection of differentially expressed genes (section 7.2.3).

7.3.1.1 Quality data analysis

This is the first step carried out by A2TOOL and consists in analyzing the quality of

the experiment data set A = {a1, a2, ..., a23} = {CLL1.CEL,CLL2.CEL, ...,CLL24.CEL}.
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Image plots For the CLL experiment data set, images of probe-level intensities

using intensities in logarithmic scale are created by A2TOOL. For brevity pur-

poses, only image plots of 6 arrays are shown (Fig. 7.3). The remaining image plots

are quite similar and there are no clear spatial artifacts or other non-homogeneous

patterns on these plots.

Figure 7.3: Image of probe-level intensities using logarithmically transformed
intensities for the CLL experiment. A subset of CEL files is shown

Multi-array approaches Boxplots, histograms and MAplots approaches are shown

to look at the distribution of probe intensities across all arrays of the CLL experi-

ment.

1. Boxplots. In Fig. 7.4, boxplots of CLL data set are shown. Red color corre-

sponds to the progressive condition and green color to the stable condition.

It can be observed that there are no boxplots that stand out from the others

for a given group of replicates.
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Figure 7.4: Boxplots of unprocessed log scale probe intensities for the CLL
experiment. Replicates have the same color

In table 7.2, the lower quartile (Q1), the upper quartile (Q3) and the mean

value of the lower and upper quartile for each group of replicates, µQ1 and

µQ3, are shown.

According to the guidelines given in section 7.2.1.1, for a given group of

replicates (progressive or stable), Q1i < µQ3 and Q3i > µQ1,∀i. Therefore,

there are no defective arrays according to the boxplot quality metric.

2. Histograms. In fig.7.5 the smooth histograms for the CLL experiment are

shown.

A2TOOL uses the bimodal index to check whether a set of data fits a two-

component mixture model. If the bimodal index bi > 1.1 for a given array,

it would be considered as defective. In table 7.3, the bimodal index of each

sample is shown and, as can be observed, none of the arrays has a bimodal

index greater than 1.1. However, the bi-modal index of Class Discovery

package, detects only big bi-modalities. So, visual inspection on Fig. 7.5 is

also needed to detect small bimodalities. It can be observed that none of the

arrays has a little bimodality or a different shape.
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Table 7.2: Lower and upper quartiles for each sample and mean lower and upper
quartiles for each condition of the CLL experiment

id Sample Name Condition Q1i Q3i µQ1 µQ3

1 CLL11.CEL progressive 6.409 8.015
3 CLL13.CEL progressive 6.559 8.079
4 CLL14.CEL progressive 6.321 7.936
5 CLL15.CEL progressive 6.139 7.442
6 CLL16.CEL progressive 6.426 7.546
9 CLL19.CEL progressive 6.189 7.268

12 CLL21.CEL progressive 6.599 8.413 6.416 7.874
14 CLL23.CEL progressive 6.357 7.679
17 CLL3.CEL progressive 6.584 8.276
18 CLL4.CEL progressive 6.409 7.995
19 CLL5.CEL progressive 6.554 8.049
20 CLL6.CEL progressive 6.475 7.857
21 CLL7.CEL progressive 6.409 7.857
22 CLL8.CEL progressive 6.392 7.826

2 CLL12.CEL stable 6.375 7.820
7 CLL17.CEL stable 6.185 7.242
8 CLL18.CEL stable 6.044 7.367

10 CLL1.CEL stable 6.149 7.114
11 CLL20.CEL stable 6.622 8.060 6.320 7.651
13 CLL22.CEL stable 6.472 8.010
15 CLL24.CEL stable 6.285 7.390
16 CLL2.CEL stable 6.169 7.658
23 CLL9.CEL stable 6.577 8.194

3. MA plots. The MA plot is used for each condition or treatment (progressive

or stable), in which each array a belonging to that condition is compared to

a synthetic array built from the samples that belong to the same condition of

a. In Fig. 7.6, the MA plots for the chips of progressive level (CLL11.CEL,

CLL13.CEL and CLL14.CEL) versus the synthetic (median) array of the

same level are shown. For brevity purposes, only the MAplots for these

chips are provided. Neither these MAplots nor the rest of them, present

quality problems that occur when the loess smoother oscillates wildly or the

variability of the M values appears to be greater in one or more arrays relative

to the others.

Remember from section 7.2.1.1, that, for a given group of replicates, a box-

plot is built from the mean of the absolute values of mi, µmi . The outliers

detected in that boxplot are considered as defective by A2TOOL. As can

be observed from table 7.4 and, for each group of replicates or condition,
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Figure 7.5: Smoothed histograms for the CLL experiment. Replicates have the
same color

Figure 7.6: MA plot for the chips of progressive level (CLL11.CEL,
CLL13.CEL and CLL14.CEL) versus the synthetic (median) array of the same

level. A loess regression line is added to the plot
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Table 7.3: Bi-modal indexes for the histograms in the CLL experiment

Sample Bi-modal index
(bii)

CLL11.CEL 0.066
CLL12.CEL 0.064
CLL13.CEL 0.069
CLL14.CEL 0.066
CLL15.CEL 0.051
CLL16.CEL 0.055
CLL17.CEL 0.049
CLL18.CEL 0.056
CLL19.CEL 0.053
CLL1.CEL 0.051
CLL20.CEL 0.065
CLL21.CEL 0.073
CLL22.CEL 0.067
CLL23.CEL 0.067
CLL24.CEL 0.052
CLL2.CEL 0.062
CLL3.CEL 0.068
CLL4.CEL 0.067
CLL5.CEL 0.066
CLL6.CEL 0.063
CLL7.CEL 0.064
CLL8.CEL 0.061
CLL9.CEL 0.066

µmi > Q1 − 1.5 · IQR and µmi < Q3 + 1.5 · IQR,∀i, that is, there are no

defective arrays.

Affymetrix quality assessment metrics

• The average background. According to the guidelines given in section 7.2.1.2,

the average background values must fall within two standard deviation of the

mean. Table 7.5 shows the average background values for the CLL experi-

ment. As can be observed, CLL18.CEL is detected by A2TOOL as defective

array, since abCLL18.CEL < µAB − 2 · σAB where µAB and σAB are the mean

and standard deviation respectively of AB = {ab1, . . . , abn}. In this case,

µAB − 2 · σAB = 64.83 − 2 · 6.62 = 51.59.
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Table 7.4: Statistics for the MA plots for two group of replicates: progressive
and stable (CLL data set)

id Sample Name Condition µmi Q1 − 1.5 · IQR Q3 + 1.5 · IQR
1 CLL11.CEL progressive 0.139
3 CLL13.CEL progressive 0.207
4 CLL14.CEL progressive 0.143
5 CLL15.CEL progressive 0.362
6 CLL16.CEL progressive 0.226
9 CLL19.CEL progressive 0.416

12 CLL21.CEL progressive 0.380 -0.083 0.519
14 CLL23.CEL progressive 0.215
17 CLL3.CEL progressive 0.293
18 CLL4.CEL progressive 0.134
19 CLL5.CEL progressive 0.189
20 CLL6.CEL progressive 0.150
21 CLL7.CEL progressive 0.142
22 CLL8.CEL progressive 0.133

2 CLL12.CEL stable 0.145
7 CLL17.CEL stable 0.296
8 CLL18.CEL stable 0.306

10 CLL1.CEL stable 0.395
11 CLL20.CEL stable 0.352 -0.033 0.583
13 CLL22.CEL stable 0.261
15 CLL24.CEL stable 0.197
16 CLL2.CEL stable 0.179
23 CLL9.CEL stable 0.397

• Scale factors. According to section 7.2.1.2, it is recommended that the

scale factors be within 3-fold of each other (see section 7.2.1.2). As can

be observed from Table 7.5, CLL1.CEL is detected as defective array since

log2(scCLL1.CEL) = 2.398 > Usc, where µS C os the mean of all scale factor

values. In this case, Usc = (3/2 + µS C) = (3/2 + 0.81) = 2.31.

• Percent present. According to section 7.2.1.2, an array ai ∈ A is detected as

defective by A2TOOL if it has more than 10% of difference with respect to

the maximum value of percent present, which is considered as the best qual-

ity. From table 7.5, column percent present, CLL1.CEL is detected as defec-

tive array since |ppCLL1.CEL − maxPP| > 10, where PP = {pp1, . . . , ppn}. In

this case, |25.04 − 43.93| = 18.89 > 10.
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Table 7.5: Average background values, scale factors and percent present values
for the CLL experiment

Chip Average Scale factor log2(scale f actor) Percent
Background (sci) (log2(sci)) present

(abi) (ppi)
CLL11.CEL 63.26 1.306 0.386 41.30
CLL12.CEL 63.59 1.516 0.601 40.60
CLL13.CEL 72.59 1.250 0.322 41.49
CLL14.CEL 61.70 1.260 0.333 43.93
CLL15.CEL 56.09 2.088 1.062 38.89
CLL16.CEL 69.77 2.550 1.350 34.23
CLL17.CEL 58.85 2.944 1.558 36.51
CLL18.CEL 51.12 2.240 1.164 39.56
CLL19.CEL 59.31 3.192 1.674 34.00
CLL1.CEL 56.11 5.271 2.398 25.04

CLL20.CEL 75.41 1.422 0.508 39.03
CLL21.CEL 71.42 0.845 -0.244 43.35
CLL22.CEL 68.19 1.236 0.306 42.40
CLL23.CEL 64.87 1.988 0.991 39.32
CLL24.CEL 62.13 2.869 1.520 34.39
CLL2.CEL 54.59 1.839 0.879 39.59
CLL3.CEL 72.55 1.217 0.283 38.24
CLL4.CEL 64.88 1.302 0.381 41.99
CLL5.CEL 71.80 1.590 0.669 37.31
CLL6.CEL 69.82 1.881 0.911 36.65
CLL7.CEL 65.99 1.456 0.542 40.93
CLL8.CEL 65.51 1.489 0.575 41.28
CLL9.CEL 71.59 1.275 0.350 40.57

RNA degradation As stated in section 7.2.1.3, A2TOOL adopted the difference

in slopes among chips to detect RNA degradation. At can be observed in Fig.7.7,

there is an array with a very different slope to the rest of samples and its probe

intensities are strongly elevated at the 3’end of a probe set when compared to the

5’end.

Table 7.6 shows the slope values for RNA degradation for the CLL experiment. As

can be observed, CLL1.CEL is detected as defective by A2TOOL, since slCLL1.CEL >

Q3 + 1.5 · IQR, where Q3 is the upper quartile of the boxplot built using S L =

{sl1, . . . , sln} and IQR os the interquartile range of the boxplot. In this case, slCLL1.CEL =

1.728 > 1.335 and this slope is not similar to others in the experiment, so, this array

is detected by A2TOOL as defective.
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Figure 7.7: RNA degradation plot. Each line represents one of the chip from the
CLL experiment. Red line corresponds to progressive condition and the green

line is related to stable condition

Probe-level models

• Chip pseudo-images. Fig. 7.8, shows the gray scale image of the log inten-

sities (the same as the exploratory data analysis) and weights, residual and

signed residuals of the fitted PLM object. For brevity purposes, only chip

pseudo-images of two arrays are shown: CLL14.CEL and CLL1.CEL. The

rest of pseudo-images are very similar to the ones related to CLL14.CEL,

with no circles, rings or small blemishes. However, CLL1.CEL shows a

weight plot with a color pattern quite different to the rest of arrays. Thus, in

this case, it can be considered as defective.

• Relative Log Expression (RLE) plot. The RLE plot is shown in Fig. 7.9a)

and it can be observed that CLL1.CEL array is not centered at RLE=0 and

has greater spread than the other arrays, which indicates that the array has

quality problems. According to the guidelines given in section 7.2.1.4, this

fact is confirmed in table 7.7 where CLL1.CEL is detected as defective array
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Table 7.6: Slope values for RNA degradation for the CLL experiment

Chip slope of RNA degradation
sli

CLL11.CEL 0.485
CLL12.CEL 0.424
CLL13.CEL 0.056
CLL14.CEL 0.317
CLL15.CEL 0.544
CLL16.CEL 0.719
CLL17.CEL 0.843
CLL18.CEL 0.586
CLL19.CEL 0.843
CLL1.CEL 1.728

CLL20.CEL 0.392
CLL21.CEL 0.138
CLL22.CEL 0.214
CLL23.CEL 0.336
CLL24.CEL 0.882
CLL2.CEL -0.056
CLL3.CEL 0.200
CLL4.CEL 0.365
CLL5.CEL 0.175
CLL6.CEL 0.154
CLL7.CEL 0.809
CLL8.CEL 0.388
CLL9.CEL 0.195

by A2TOOL, since |bCLL1.CEL−RLE | > Q3BRLE + 1.5 · IQRBRLE , where Q3BRLE

and IQRBRLE are the upper quartile and the interquartile range respectively

of BoxplotBRLE . In this case, |bCLL1.CEL−RLE | = 0.163 > 0.070. On the other

hand vCLL1.CEL−RLE > Q3VRLE + 1.5 · IQRVRLE where Q3VRLE and IQRVRLE are

the upper quartile and the interquartile range respectively of BoxplotVRLE . In

this case, |vCLL1.CEL−RLE | = 0.566 > 0.352.

• Normalized Unscaled Standard Error (NUSE) plot. The NUSE plot is shown

in Fig. 7.9b) and it can be observed that CLL1.CEL array has a box which is

significantly elevated with respect to NUS E = 1. The box also shows more

spread relative to other arrays, so it might indicate a quality problem. This

fact is confirmed in table 7.7 where CLL1.CEL is detected as defective ar-

ray by A2TOOL, since |bCLL1.CEL−NUS E | > Q3BNUS E +1.5 · IQRBNUS E , where
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(a)

(b)

Figure 7.8: Chip pseudo-images based on PLM fit on arrays CLL1.CEL (a) and
CLL14.CEL (b). For each array, there are four plots: log transformed gray scale
image (top left), PLM weights plot (top right); PLM residual plot (bottom left);

PLM signed residuals (bottom right) signed residuals

Q3BNUS E and IQRBNUS E are the upper quartile and the interquartile range re-

spectively of BoxplotBNUS E . In this case, |bCLL1.CEL−NUS E | = 1.090 > 1.028.

On the other hand, vCLL1.CEL > Q3VNUS E +1.5·IQRVNUS E , where Q3VNUS E and

IQRVNUS E are the upper quartile and the interquartile range respectively of

BoxplotVNUS E . In the case of CLL1.CEL sample, that is, |vCLL1.CEL−NUS E | =

0.095 > 0.048.
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(a)

(b)

Figure 7.9: Relative Log Expression (RLE) plot (a) and Normalized Unscaled
Standard Error (NUSE) plot (b) for the CLL experiment

Quality metrics Summary The following table shows whether a sample from

the CLL experiment has been detected as defective taking into account all the qual-

ity metrics described above.
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Table 7.7: Relative Log Expression (RLE) and Normalized Unscaled Standard
Error (NUSE) values for the CLL experiment

Chip bi−RLE vi−RLE bi−NUS E vi−NUS E

CLL11.CEL -0.006 0.185 0.989 0.020
CLL12.CEL -0.005 0.255 0.995 0.023
CLL13.CEL -0.001 0.217 0.994 0.022
CLL14.CEL -0.045 0.259 0.988 0.021
CLL15.CEL -0.006 0.238 1 0.025
CLL16.CEL 0.044 0.280 1.014 0.035
CLL17.CEL 0.011 0.258 1.013 0.034
CLL18.CEL -0.029 0.285 1.007 0.031
CLL19.CEL 0.031 0.289 1.018 0.038
CLL1.CEL 0.163 0.566 1.090 0.095

CLL20.CEL 0 0.256 1 0.027
CLL21.CEL -0.045 0.272 0.992 0.023
CLL22.CEL -0.011 0.224 0.993 0.023
CLL23.CEL -0.018 0.212 1.002 0.032
CLL24.CEL 0.034 0.294 1.018 0.039
CLL2.CEL 0.009 0.346 1.002 0.031
CLL3.CEL 0.015 0.227 0.990 0.022
CLL4.CEL -0.031 0.213 0.989 0.020
CLL5.CEL 0.029 0.240 1 0.027
CLL6.CEL 0.052 0.252 1.007 0.033
CLL7.CEL -0.018 0.239 0.999 0.025
CLL8.CEL -0.016 0.226 0.994 0.022
CLL9.CEL 0 0.180 0.991 0.021
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As can be observed from table 7.8, CLL18.CEL has been detected as defective in

the Average Background quality metric and CLL1 has been detected as defective

in Scale Factors, Percent Present, RNA degradation, Chip Pseudo-images, RLE

plot and NUSE plot. A2TOOL ( see section 7.2.1) recommends to remove a chip

from the experiment if it was detected as defective in two or more quality met-

rics and since CLL1.CEL has been detected defective in six metrics (five of them

automatically by A2TOOL), it is recommended to remove such sample from the

experiment. This results are similar to the ones given in [Gentleman et al., 2005],

in which a quality analysis was run on the same experiment. The authors rec-

ommended to remove CLL1.CEL sample from the experiment, since this sample

could be a problem for further analysis (detection of differentially expressed genes,

classification, clustering, etc).

7.3.1.2 Data pre-processing

According to the results given in the previous section, we decided to remove CLL1.CEL

sample from the experiment due to its low quality. Thus, our experiment has now

22 samples.

The second step carried out by A2TOOL is to pre-process the reduced raw data

set using all possible and allowed combinations of Background correction, Nor-

malization, PM correction and Summarization methods described in section 6.2.2

(see table B.1). From the set of all possible pre-processing methods, P, the goal is

to select the best of them for the given reduced CLL raw data set according to the

procedure described in section 7.2.2.1.

Best pre-processing methods selected Among the 79 different pre-processing

methods run (table B.1), a total of 7 (table 7.9) have fulfilled the quality require-

ments described in section 7.2.2.1.

The score column in table7.9 is a quality measure of the pre-processing method,

which is the sum of the ranks obtained when ordering the selected methods ac-

cording to the replicate variability, K-S statistic and Spearman Rank Correlation
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Table 7.9: Best pre-processing methods, P′, selected for the CLL experiment

Method known as R function Bioc. package Score
rma, quantiles, pmonly, medianpolish RMA rma AFFY 6

none, invariantset, pmonly, medianpolish Custom 54 expresso AFFY 8
-,vsn,pmonly,medianpolish VSN vsnrma VSN 10

mas, quantile, pmonly, medianpolish CP threestep AFFYPLM 12
rma, scaling, pmonly, medianpolish Custom 13 threestep AFFYPLM 14

rma, invariantset, pmonly, medianpolish Custom 17 expresso AFFY 15
mas, scaling, pmonly, medianpolish Custom 24 threestep AFFYPLM 19

Coefficient values. The lower value, the better the method (see section 7.2.2.1, step

5 of the procedure).

It must be noticed that A2TOOL selects pre-processing methods that not only im-

prove the quality metrics with respect to raw expression data, but also do not intro-

duce correlation artifacts on the uninformative data sets or if it does, the quantity

of artifacts must be below a threshold. Thus, first of all, let us have a look to

the pre-processing methods that improve raw expression data and do not introduce

correlation artifacts (table 7.10).

Table 7.10: Preprocessing methods (a total of 6) that improve raw expression
data and do not introduce correlations artifacts (CLL experiment)

known as Replicate variability Spearman Corr. K-S test
Coefficient

RAW 0.297±0.038 0.9690±0.0031 0.179±0.044
VSN 0.201±0.012 0.9717±0.0031 0.0188±0.0008

Custom 13 0.280±0.019 0.9755±0.0025 0.0416±0.0096
Custom 17 0.285±0.004 0.9753±0.0025 0.0393±0.0055

RMA 0.255±0.012 0.9759±0.0026 0.0136±0.0002
Custom 24 0.266±0.017 0.9691±0.0032 0.0422±0.0089

CP 0.240±0.011 0.9694±0.0031 0.0159±0.0004

It can be observed from table 7.10 that all methods selected in table 7.9 do not

introduce correlation artifacts except Custom 54 method. In table 7.11, it can be

observed the quality metrics for this pre-processing method with regard to raw

expression data.

Let us reproduce for Custom 54 method the step 4.c of the procedure described in

section 7.2.2.1. The quality metrics related to both the uninformative pre-processed
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Table 7.11: Preprocessing methods (a total of 1) that improve raw expression
data and introduce false correlations below the threshold (CLL experiment)

known as Replicate variability Spearman Corr. Coefficient K-S test
RAW 0.297±0.038 0.9690±0.0031 0.179±0.044

Custom 54 0.153±0.009 0.9714±0.0032 0.0159±0.0005

data using this pre-processing method and the uninformative raw expression data

are:

• Replicate variability: µGsd (esetCCustom54) = 0.43, µGsd (esetRawC) = 0.42

• Spearman Rank Correlation Coefficient: µGcorr (esetCCustom54) = 0.029 and

µGcorr (esetRawC) = 0.028

It is clear from table 7.11 that the quality metrics given by custom 54 on infor-

mative pre-processed data are improved with respect to informative pre-processed

raw expression data. Now, let us check whether the method introduces correlation

artifacts. It can be observed (second if of the procedure) that:

µGsd (esetCCustom54) > µGsd (esetRawC), that is, 0.43 > 0.42

µGcorr (esetCCustom54) > µGcorr (esetRawC), that is, 0.029 > 0.028

which means that this pre-processing method does not introduce artifacts when the

variability metric is used (the pre-processed uninformative data set is worst than the

pre-processed uninformative raw expression data) but it does when the Spearman

Coefficient is taken into account: the coefficient is improved for the pre-processed

uninformative data set with regard to the pre-processed uninformative raw expres-

sion data. Then, we have to measure whether this improvement is significant or not

(else part of the procedure):

µGsd (O) = µGsd (esetOCustom54) − µGsd (esetRawO)=0.153-0.297=-0.144

µGsd (C) = µGsd (esetCCustom54) − µGsd (esetRawC)=0.43-0.42=0.01

µGcorr (O) = µGcorr (esetOCustom54) − µGcorr (esetRawO)=0.9714-0.9690=0.0024

µGcorr (C) = µGcorr (esetCCustom54) − µGcorr (esetRawC)=0.029-0.028=0.001
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This means that:

µGsd (C)
µGsd (O) < threshold, that is, 0.01

−0.144 = −0.07 < 0.5
µGcorr (C)
µGcorr (O) < threshold, that is, 0.0010

0.0024 = 0.4 < 0.5

As previously stated, there are no artifacts introduced when variability metric is

used, but, for the Spearman Correlation Coefficient, the improvement made by

the pre-processing method on the uninformative data set, µGcorr (C), with regard to

the improvement made on the informative data set, µGcorr (O), is not significant (it

is below the default threshold which is equal to 0.5) . Thus, this pre-processing

method is accepted.

In table 7.12, it can be observed the list of pre-processing methods that, although

improve in terms of the qualty metrics with respect to raw data, they introduce

many artifacts on the pre-processed data set, that is, the improvement made by

the pre-processing method on the uninformative data set with regard to the im-

provement made on the informative data set is significant (it is above the default

threshold). Therefore, they are not accepted.

Table 7.12: Preprocessing methods (a total of 9) that improve raw data and in-
troduce correlation artifacts above the threshold (CLL experiment)

known as Replicate variability Spearman Corr. K-S test
Coefficient

RAW 0.297±0.038 0.9690±0.0031 0.179±0.044
justPlier 0±0 1±0 0±0

DFW 0.0013±0.0001 1±0 0.0009±0.0001
custom 8 0.1629±0.0082 0.9691±0.0028 0.0121±0.0081

Custom 19 0.1236±0.0073 0.9725±0.0022 0.0114±0.0007
Custom 22 0.1241±0.0071 0.9718±0.0021 0.0113±0.0005
Custom 26 0.1206±0.0066 0.9712±0.0025 0.017±0.002
Custom 33 0.1121±0.0069 0.9772±0.0019 0.0110±0.0005
Custom 40 0.1112±0.0066 0.9730±0.0021 0.0114±0.0004
Custom 61 0.1281±0.0073 0.9712±0.0031 0.0173±0.0004

Among the methods accepted, (table 7.9), let us compare them in terms of the

quality metrics:

• Replicate variability. Through this metric, the lowest variability is achieved

by the Custom 54 method. This result is expected because its normalization
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step is Invariant set, which uses a ”rank invariant set” for the normalization,

keeping the expression ratio values between chips under consideration un-

changed by forcing the selected non-differentially expressed genes to have

equal values. Thus, it is expected low variability, since the majority of genes

in an experiment are expected to be non-expressed. On the other hand, VSN

method achieves the second lowest value, which is not unexpected, because

this normalization aims to stabilize the variance across the replicated arrays

[Florido et al., 2009c] (see section 6.2.2.2).

• Kolmogorov-Smirnov test. The lowest K-S statistic is achieved by the

RMA method. This is due to the use of the Quantile normalization pro-

cedure (see section 6.2.2.2), which forces the empirical distributions in dif-

ferent slides to be identical. Similar results are achieved in [Florido et al.,

2009c]. Notice that the second lowest value corresponds to CP and Custom

54 methods. The former also uses the Quantile normalization method and

the latter uses Invariant set, in which forcing the selected non-differentially

expressed genes to have equal values would produce similar empirical dis-

tributions.

• Rank Spearman Correlation Coefficient. RMA achieves the best value

for this metric, although the differences among all pre-processing methods

in terms of this quality metric do not seem to be significant, similar to the

results given in [Florido et al., 2009c].

According to these quality metrics, the best method selected by A2TOOL is RMA

(see table 7.9), which achieves the best results in two quality metrics (Spearman

coefficient and K-S statistic) as in [Florido et al., 2009c]. This method is one of

the most well known in the literature [Bolstad et al., 2003]. The second method

is a custom one (Custom 54), which achieves the best results in terms of replicate

variability and a very good value in terms of the K-S statistic.

On the other hand, it can be observed in terms of the overall score (table 7.9) the

strong influence of changing a single step in the pre-processing method as stated

in [Harr and Schlötterer, 2006]. In table 7.13, the differences between pairs of pre-

processing methods are shown in terms of the overall score when a single step in
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the pre-processing method is changed. For example, RMA and Custom 17 methods

differ only in the normalization step and the difference in the overall score is quite

high.

Table 7.13: Differences between the selected pre-processing methods in terms
of their overall score when a single step in the pre-processing method is changed

Methods Differences in Score difference
RMA - Custom 17 Normalization -9

Custom 54 - Custom 17 Background correction -7
CP - Custom 24 Normalization -7

RMA - CP Background Correction -6
Custom 13 - Custom 24 Background correction -5

Some other important conclusions can be extracted from the pre-processing meth-

ods selected for the CLL experiment (table 7.9). For example, the PM-MM cor-

rection and summarization methods used by the selected pre-processing methods

are pmonly and median polish respectively, which only use information of the PM

probes. Although the MM probe is supposed to distinguish noise caused by non-

specific hybridization from the specific hybridization signal, these results might

suggest that the MM probes are useless in these pre-processing steps, which are

in tune with the suggestions of some researchers that recommend avoiding the

use of MM probes [Gautier et al., 2004]. This might also suggest that the most

critical steps when pre-processing are background correction and normalization.

On the other hand, it can also be concluded that it is important not only to use the

standard pre-processing methods, such as RMA, VSN and CP, but also custom pre-

processing methods that may provide good pre-processing to a given experiment.

Remember that each experiment is completely different and has many sources of

variations. Thus, it is important to search for the best pre-processing method for a

given experiment through objective quality metrics.

7.3.1.3 Detection of differentially expressed genes

Given the best pre-processing methods selected in the previous section P′ = {RMA,

Custom 54, VSN, CP, Custom 13, Custom 17, Custom 24}, the next step carried out

by A2TOOL is to detect differentially expressed genes through each pre-processed

data or expression set esetOi where esetOi ← pi(rawData),∀pi ∈ P′. According
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to the guidelines given in section 7.2.3, for each esetOi, the following two-step

procedure to obtain differentially expressed genes is applied by A2TOOL:

• Apply nonspecific filtering to esetOi using the geneFilter package, obtaining

a reduced expression set esetO′i (see section 7.2.3.1). Affymetrix control

genes are removed, the IQR filtering statistic is applied with a default value

of 0.5 and genes with the same EntrezID are removed, keeping the one with

the greatest variability. The number of genes that remain after nonspecific

filtering is applied is 4399 for esetO′i ,∀i

• Apply a moderated t-test analysis to esetO′i through the limma package.

For each gene listed as differentially expressed, the following statistics are

presented: ID, EntrezID, logFC, AveExpr, t, adj.P.Val and B (see section

7.2.3.1 for further details) with default values for the following thresholds:

logFC = 0.585 and pthreshold = 0.05 with FDR correction.

Thus, in table 7.14, the genes detected as differentially expressed on each reduced

pre-processed data, esetO′i , are shown:

Merging results: intersection and union lists Two more lists of differentially

expressed genes are constructed by A2TOOL. The first one is the set of genes that

are very likely to be differentially expressed (a reliable list). This list is constructed

through the intersection of differentially expressed genes detected in the different

expression sets (table 7.15).

The second list is the set of genes that are likely to be differentially expressed. It

is constructed through the union of differentially expressed genes detected in the

different expression sets (table 7.16). This list is a complete list of genes and it

is useful in cases where a gene is detected as differentially expressed in all the

expression sets but one. For example, the gene whose Entrez ID is 1303 is detected

in all expression sets but the one generated by Custom 54 pre-processing method.

Moreover, the significance of that gene is very high (very low p-value) and, without

the use of this union list, it would be lost.
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Table 7.14: Differentially expressed genes for the selected pre-processing meth-
ods P′ and progressive-stable contrast in the CLL experiment. Genes marked

with * are also selected by the Bonferroni Multiple Testing Correction

ID EntrezID logFC AveExpr t adj.P.Val B
RMA

1303 at * 6452 -1.07 5.57 -6.22 0.0081 4.71
33791 at * 10301 1.44 6.3 5.61 0.015 3.43
36939 at 2823 2.08 6.29 5.42 0.015 3.02
37636 at 9767 1.13 5.91 5.4 0.015 2.98
36131 at 1192 0.77 9.48 5.33 0.015 2.83
41776 at 475 0.79 7.74 4.82 0.039 1.72

Custom 54
36131 at 1192 0.7 10.4 5.54 0.021 3.21
36939 at 2823 1.15 7.94 5.21 0.021 2.51
37636 at 9767 0.59 7.64 5.18 0.021 2.44
33791 at 10301 0.81 7.89 4.87 0.039 1.77
37676 at 5151 -0.62 8.78 -4.65 0.046 1.29
39967 at 23641 0.68 7.64 4.55 0.046 1.08

VSN
1303 at * 6452 -0.66 6.33 -6.21 0.0087 4.65
36939 at 2823 1.41 6.87 5.42 0.030 2.99
36131 at 1192 0.78 9.49 5.27 0.030 2.66
37636 at 9767 0.73 6.56 5.09 0.031 2.28
33791 at 10301 0.94 6.84 5.06 0.031 2.21

CP
1303 at * 6452 -0.87 5.99 -6.07 0.011 4.49
33791 at * 10301 1.17 6.62 5.53 0.015 3.32
37636 at * 9767 0.98 6.27 5.48 0.015 3.22
36131 at 1192 0.77 9.51 5.39 0.015 3.01
36939 at 2823 1.8 6.61 5.28 0.016 2.78
39967 at 23641 1.04 6.26 4.69 0.039 1.48
41776 at 475 0.67 7.85 4.69 0.039 1.46

Custom 13
1303 at * 6452 -1.08 5.54 -6.41 0.0045 5.07
33791 at * 10301 1.42 6.28 5.49 0.017 3.16
36939 at * 2823 2.07 6.29 5.46 0.017 3.1
36131 at 1192 0.79 9.48 5.19 0.019 2.53
37636 at 9767 1.1 5.91 5.19 0.019 2.52
41776 at 475 0.78 7.73 4.82 0.044 1.7

Custom 17
1303 at * 6452 -1.1 6.35 -6.24 0.0062 4.89
33791 at * 10301 1.46 7.1 5.74 0.011 3.81
36939 at * 2823 2.12 7.09 5.52 0.013 3.33
37636 at 9767 1.12 6.72 5.4 0.014 3.07
36131 at 1192 0.76 10.3 5.15 0.021 2.51
41776 at 475 0.80 8.54 4.78 0.045 1.71
39967 at 23641 1.29 6.6 4.72 0.045 1.57

Custom 24
1303 at * 6452 -0.9 6.01 -6.36 0.0042 5.14
33791 at * 10301 1.13 6.64 5.46 0.019 3.23
36939 at 2823 1.77 6.61 5.33 0.019 2.93
36131 at 1192 0.78 9.51 5.25 0.019 2.75
37636 at 9767 0.92 6.28 5.06 0.025 2.33
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Table 7.15: Intersection of differentially expressed genes detected in the different
expression sets for the CLL experiment. The average log2 expression level of

each gene is shown

ID EntrezID Average log2 expression level
RMA Cust.54 VSN CP Cust.13 Cust.17 Cust.24

33791 at 10301 6.3 7.89 6.84 6.62 6.28 7.1 6.64
36939 at 2823 6.29 7.94 6.87 6.61 6.29 7.09 6.61
37636 at 9767 5.91 7.64 6.56 6.27 5.91 6.72 6.28
36131 at 1192 9.48 10.4 9.49 9.51 9.48 10.3 9.51

Table 7.16: Union of differentially expressed genes detected in the different ex-
pression sets for the CLL experiment. The average log2 expression level of each

gene is shown

ID EntrezID Average log2 expression level
RMA Cust.54 VSN CP Cust.13 Cust.17 Cust.24

33791 at 10301 6.3 7.89 6.84 6.62 6.28 7.1 6.64
36939 at 2823 6.29 7.94 6.87 6.61 6.29 7.09 6.61
37636 at 9767 5.91 7.64 6.56 6.27 5.91 6.72 6.28
36131 at 1192 9.48 10.4 9.49 9.51 9.48 10.3 9.51
1303 at 6452 5.57 - 6.33 5.99 5.54 6.35 6.01

41776 at 475 7.74 - - 7.85 6.28 8.54 -
37676 at 5151 - 8.78 - - - -
39967 at 23641 - 7.64 - 6.26 - 6.6 -

Also, through the intersection and union tables, the average expression value in

log2 scale of genes are shown. It can be observed differences in the expression

values, which means that the expression sets generated by different pre-processing

methods have some differences among them. Thus, through this example, it is

demonstrated that the selection of a pre-processing method affects the detection of

differentially expressed genes as also stated in [Bolstad, 2004] and [Ritchie et al.,

2007]. However, A2TOOL alleviates this problem, providing two lists of differen-

tially expressed genes constructed from several expression sets given by the best

pre-processing methods according to objective quality metrics.

7.3.1.4 Discussion

According to these results, it has been demonstrated the uselfulness of A2TOOL
in terms of:
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1. Quality data analysis. Through this analysis, the tool detected CLL1.CEL

sample as defective. Removing this array from the experiment will guarantee

to make the best use of the information produced by the rest of arrays.

2. Data pre-processing. Seven pre-processing methods (RMA, Custom 54,

VSN, CP, Custom 13, Custom 17 and Custom 24) were selected according

to three objective quality metrics. This guarantees that the pre-processing

methods used have the best quality.

3. Detection of differentially expressed genes. A set of genes detected as dif-

ferentially expressed on each pre-processed data selected is presented. To get

a reliable and a complete list of differentially expressed genes, intersection

and union lists were built.

A2TOOL has the following advantages:

• Automated quality assessment of the experiment to detect defective arrays

according to quantitative and qualitative measures.

• Automated selection of the best pre-processing methods among several ones

for a given data set through objective quality measures. This way, the re-

searcher does not take the decision about the pre-processing method(s) to be

used.

• Two lists of differentially expressed genes are obtained: a reliable list and a

complete one.

However, A2TOOL has the following deficiencies:

• It does not support other microarray technologies, such as Agilent or Genepix

or new Affymetrix-based technologies, such Gene or Exon arrays.

• It does not support other methodologies for detecting differentially expressed

genes, such as SAM or ANOVA.

• It does not support high level analysis, such as clustering or classification.

• It is not a user-friendly GUI.
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7.3.2 Effect of pre-processing methods on Microarray-based SVM clas-
sifiers

According to the results given in previous section, the selection of a pre-processing

method affects the detection of differentially expressed genes. However, such se-

lection may affect other posterior stages of the microarray data analysis pipeline,

such as phenotype classification, since different pre-processing methods can lead

to different expression data. In this section, the influence of five different pre-

processing methods commonly used in the literature (RMA, GCRMA, VSN, dChip

and MAS5, see table B.1) are assessed in Support Vector Machine-based classifi-

cation methodologies with different kernels (linear, Radial Basis Functions and

polynomial) on several cancer microarray data sets. The results presented in this

section are obtained from the work developed by Florido et al. [Florido et al.,

2010b].

7.3.2.1 Data sets

Seven publicly available microarray data sets are chosen for the study. The basic

information about these data sets are summarized in table 7.17 and all of them are

available as raw data.

1. ALL-MLL-AML Leukemia Data. This leukemia microarray data set [Arm-

strong et al., 2002] includes 72 human leukemia samples, 24 of them be-

longing to acute lymphoblastic leukemia (ALL), 20 of them to mixed lin-

eage leukemia (MLL), a subset of human acute leukemia with a chromoso-

mal translocation, and 28 of the samples are acute myelogenous leukemia

(AML).

2. Bladder cancer data. Bladder cancer is a common malignant disease char-

acterized by frequent recurrences. The stage of disease at diagnosis and the

presence of surrounding carcinoma in situ are important in determining the

disease course of an affected individual. In this context, the authors [Dyrskjot

et al., 2003] report the identification of clinically relevant subclasses of blad-

der carcinoma using expression microarray analysis: Ta, T1 and T2+.
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3. Colon cancer data. This data set [Laiho et al., 2006] is composed of 37 mi-

croarrays, 8 of them belong to serrated colorectal carcinomas (CRCs) and 29

conventional CRCs. Serrated colorectal carcinomas are morphologically dif-

ferent from conventional CRCs and have been proposed to follow a distinct

pathway of CRC formation.

4. Brain Cancer data sets. In the first data set [Nutt et al., 2003] microar-

ray analysis was used to determine the expression of approximately 12,000

genes in a set of 50 gliomas: 28 glioblastomas (G) and 22 anaplastic oligo-

dendrogliomas (O), which were classified as classic (C) or non-classic (N).

Thus, there are 14 Classic Glioblastomas (CG), 7 Classic Oligodendrogliomas

(CO), 14 Non-classic Glioblastomas (NG) and 15 Non-classic OligoDen-

drogliomas (NO). In the second dataset [Pomeroy et al., 2002], embryonal

tumors of the central nervous system represent a heterogeneous group of

tumors whose diagnosis, on the basis of morphologic appearance alone, is

controversial. Medulloblastomas (MD), for example, are the most common

malignant brain tumor of childhood, but their pathogenesis is unknown and

patients’ response to therapy is difficult to predict. The authors demonstrate

that medulloblastomas (MD, 10 samples) are molecularly distinct from other

brain tumors including primitive neuroectodermal tumors (PNETs, 8 sam-

ples), atypical teratoid/rhabdoid tumors (Rhab, 10 samples) and malignant

gliomas (Mglio, 10 samples). Also, 4 normal tissues were considered (Ncer).

5. Blood Cancer data set. In this data set [Shipp et al., 2002], the authors in-

vestigated whether a supervised learning algorithm could generate a classi-

fier able to discriminate tumors within a single (B-cell) lineage. Specifically,

they asked weather the classifier could distinguish diffuse large B-cell lym-

phoma (DLBCL, 58 samples) from a related GC B-cell lymphoma, follicular

(FL, 19 samples). Although these two malignancies have very different clin-

ical presentation, natural histories and responses to therapy, FLs often evolve

over time and acquire the morphologic and clinical features of DLBCLs.

6. Prostate Cancer data set. In this data set [Singh et al., 2002], the authors

studied gene expression patterns from 52 prostate tumors (PR) and 50 nor-

mal prostate specimens (N) in order to ask whether such patterns could be
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used to predict common clinical and pathological phenotypes relevant to the

treatment of men diagnosed with this disease.

Table 7.17: Number of samples, number of classes, distribution of samples
within classes and number of original genes in cancer data sets

Data set #samples #C Dist.Classes #Genes
Leukemia 72 3 24,20,28 12626

Bladder cancer 40 3 20,11,9 7129
Colon cancer 37 2 8,29 22283

Brain cancer-CG 50 4 14,7,14,15 12625
Brain cancer-MD 42 5 10,10,4,8,10 7129

Boold cancer 77 2 58,19 7129
Prostate cancer 102 2 52,50 12625

7.3.2.2 Experimental settings and results

The pre-processing methods selected are those commonly used in the literature:

RMA, GCRMA, VSN, dChip and MAS5 2. The CMA package [Slawski et al.,

2008] was used for the SVM classifier. We applied 10-fold cross-validation [Ko-

havi, 1995] to estimate the performance of the classification algorithm. In or-

der to optimize SVM parameters, we adopted another ”nested” loop of cross-

validation by further splitting each of the 10 original learning sets into smaller

training and validation sets. For each combination of the classifier parameters, the

cross-validation performance is obtained and we selected the best performing pa-

rameters inside this inner loop of cross-validation. Then, a classification model

is built with the best parameters on the learning set and applied this model to the

testing set. Three kernels are used for the SVM classifier: linear, radial (RBFs)

and polynomial. The parameters (see section 6.2.4.1) to be optimized by nested

cross-validation are:

• Linear: C values {0.1, 1, 5, 10, 50, 100, 500}

• Polynomial: C values {0.1, 1, 5, 10, 50, 100, 500} and d values {2,3,4}. γ

and r values are fixed (γ = 1 and r = 1).

2It must be noticed that, in this study, the introduction of correlation artifacts by any of the pre-
processing methods has not been assessed



Chapter 7. A2TOOL - Affymetrix microarray Analysis Tool 222

• Radial: C values {0.1, 1, 5, 10, 50, 100, 500} and γ values {0.25, 0.5, 1, 2, 4}

For multi-category data, the ”one vs all” (OVA) works better in SVMs for multi-

class data [Statnikov et al., 2008], so we adopted this method for the analysis of

multi-category data sets. The performance measure used for SVM is the misclas-

sificaton rate.

Since the sample size is much smaller than the dimensionality of the data sets, too

many genes may not be helpful for the class discrimination. In this experiment

and because this comparison is not intended to compare different gene selection

methodologies, the t-test-based gene selection approach is used because its sim-

plicity. To find the genes that contribute most to the classification, a score based

on t-test (named t-score or TS) is calculated for each gene. Then, all the genes are

rearranged according to their TSs and only some top genes in the list are used for

classification. The number of genes selected in this list is also varied according

to the following values {0, 5, 10, 25, 50, 100, 200, 400, 600, 800, 1000, 2000}. Raw

data is also used in the comparison, that is, the data sets were pre-processed with no

background correction, no normalization and no PM correction. Just the summa-

rization step is needed to obtain gene expression values and, according to [Florido

et al., 2009c], median-polish summarization is used.

Thus, for each data set, pre-processing method, number of genes selected and ker-

nel function, the SVM classifier is applied, using 10 different partitions of the

10-fold cross-validation procedure. The results are analyzed through a four-way

ANalysis Of VAriance (ANOVA) test [Box et al., 1978], which evaluates whether

the observed difference in classification performance is statistically significant or

simply due to chance. The factors for this test are the data set, the pre-processing

method, the number of genes selected and the type of kernel used in the SVM-based

classifier, the dependent or response variable is the misclassification rate. The sta-

tistical parameter considered is the significant level and if its lower than 0.05, then

the corresponding levels of the factor are statistically significant with a confidence

level of 95%. The normality, independence of populations and homocedasticity

assumptions for ANOVA test are accomplished.
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It can be observed from table 7.18, that all the factors (pre-processing method,

number of genes selected, kernel function and data set), present the greatest statis-

tical relevance, which means that the misclassification rate statistically depends on

these factors.

Table 7.18: ANOVA table for the analysis of the main factors for misclassifica-
tion rate response variable

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Prep. method 0.16 5 0.03 9.68 0
Num. genes 0.14 11 0.01 3.68 0
Kernel 4.48 2 2.24 666.67 0
Data set 59.09 6 9.85 2934.33 0

Figure 7.10 shows that there are no statistical differences (P > 0.05) among dChip,

RMA, VSN and MAS5 methods but there are statistical differences between them

and the GCRMA and Raw data (P < 0.05). This suggests that a pre-processing

method is important not only in terms of differentially expressed genes, but also

in terms of classification performance. Also, the GCRMA gives a misclassifica-

tion rate very similar to raw data. Thus, GCRMA method is not recommended

as pre-processing method for higher-order tasks such as classification, because its

performance is similar to perform no pre-procesing step, that is, to use the raw

data directly as input to the classifier. It is obvious that the under-performance

of GCRMA is due to its background correction step (see Table B.1), since it is

the only step where GCRMA and RMA differ: the background correction used

in GCRMA is designed to account for background noise, as well as non-specific

binding [Wu et al., 2004]. It seems that these differences with respect to RMA

make the misclassification rate achieves worse results.

Although this comparison was intended to study the effect of pre-processing meth-

ods in terms of classification rate, it would be also interesting to study whether the

number of genes selected in the feature selection step and the kernel method used

in the SVM classifier affect the results.

From Fig.7.11, it can be observed that the accuracy of SVM is affected by the

number of genes selected by t-test. There are no statistical differences (P > 0.05)

when the number of genes selected varies from 10 to 400. On the other hand,
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Figure 7.10: Means and 95% Least Significant Differences (LSD) intervals of
the different pre-processing methods through the misclassification rate response

variable

when very few genes (5) are selected or the number is large (600-2000 and the

whole chip) SVM’s performance gets worse. In the first case, the data does not

contain enough discriminative information and, in the second case, a large number

of irrelevant genes may be harmful for the class discrimination, acting as ”noise”

and affecting SVM’s accuracy [Xiong et al., 2007].

Figure 7.11: Means and 95% Least Significant Differences (LSD) intervals of
the different number of genes selected in the feature selection step through the

misclassification rate response variable

According to the kernel used (Fig.7.12), polynomial kernel performs statistically

worse (P < 0.05) than linear and radial kernels, whereas there are no statistical

differences (P > 0.05) between the latter. These results suggest that the problems

are intrinsically linear and, therefore, the radial kernel chooses parameters gamma

that make the learned decision boundary almost linear. This conclusion is also
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consistent with the one given in a benchmark study [Pochet et al., 2004] in which

well-tuned RBF kernels achieve results as good as their linear counterparts.

Figure 7.12: Means and 95% Least Significant Differences (LSD) intervals of
the different kernels through the misclassification rate response variable

These results are also compared to the accuracy of pre-processing methods in

terms of the quality metrics described in [Florido et al., 2009c] and also used

by A2TOOL: data variability, similarity in data distributions and correlation co-

efficient among replicates. As stated in section 6.2.2.5 smaller variability, similar

distributions (measured as Kolmogorov-Smirnov statistic) and higher Spearman

correlation coefficient among replicates should be expected after pre-processing

step. A two-way ANOVA is run in this case where the factors are the data set and

the pre-processing method and the dependent or response variables are the different

quality metrics. It can be observed from Fig. 7.13a) that, in terms of data variabil-

ity, VSN and dChip perform statistically better (P < 0.05) than the others. The

VSN performance was not unexpected because it specifically aims to stabilize the

variance across the replicated arrays [Huber et al., 2002].

With respect to Kolmogorov-Smirnov statistic (Fig.7.13b), RMA performs statis-

tically better (P < 0.05) than the others. The performance of RMA and is jus-

tified because the use of Quantile normalization algorithm (see table B.1) which

forces the empirical distributions in different slides to be identical. According to

the Spearman Coefficient (Fig.7.13c), RMA performs statistically better (P < 0.05)

than the others.

So, according to these quality metrics, RMA, VSN and dChip methods are the best

ones and, this fact, is consistent with the results given in terms of misclassification
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(a)

(b)

(c)

Figure 7.13: Means and 95% Least Significant Differences (LSD) intervals of
the different pre-processing methods through the mean variability (a), the mean

of K-S statistic (b) and the Spearman Coefficient (c) response variables

rate (Fig.7.13). However, MAS shows very poor performance in terms of quality

metrics, contrary to its behavior in terms of misclassification.

7.4 Conclusions and future work

It has been demonstrated that A2TOOL is a useful approach for the first three steps

of microarray data analysis workflow. Some important conclusions are outlined

below:
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1. It is important to make the best use of the information produced by the mi-

croarray experiments by removing defective arrays if they are detected. This

way, the results will have more statistical significance and biological mean-

ing.

2. Some pre-processing methods introduce correlation artifacts on the data set

even if they improve raw data. Thus, it is important to detect such pre-

processing methods and avoid their use.

3. The performance of a pre-processing method is highly dependent on the se-

lection of each pre-processing step. Moreover, the most critical steps are

Background Correction and Normalization.

4. The selection of a pre-processing method has an influence on the list of dif-

ferentially expressed genes.

5. It is justified the use of two lists of differentially expressed genes: the inter-

section list provides a reliable list of differentially expressed genes regardless

of the pre-processing method selected and the union list shows a complete

list of candidate genes that are likely to be differentially expressed. This

way, the set of candidate genes does not rely on a single expression data

and the effect that the selection of a pre-processing method may have on the

detection of differentially expressed genes is alleviated.

As a future work, we can propose the following improvements for A2TOOL tool:

• To develop either a web-based application or a desktop application to avoid

the use of R console.

• The use of Aroma.Affymetrix package [Bengtsson et al., 2011], which pre-

processes Affymetrix microarray data with less computational cost.

• To compare with more experiments. This way, a list of the best pre-processing

methods selected in several experiments could be obtained.

• The design of a more complex system, such as supervised learning mod-

els, with the aim of recognize data patterns to decide the best-preprocessing

method for a given data set.
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• The development of an approach that combines the three quality metrics used

to evaluate a given pre-processing method.

• Support for the new arrays for Affymetrix: Gene and Exon arrays.

Furthermore, it would be interesting to extract genes related to a given disease from

a custom microarray data experiment by means of this tool. Once extracted, they

can be labelled in a FLN obtained using the approach described in section 4.3 to

predict new genes that are potentially associated with the disease under study.

With respect to the effect of pre-processing methods on microarray-based SVM

classifiers, it has been demonstrated that there are no statistical differences among

RMA, VSN, dChip and MAS5 pre-processing methods in terms of misclassifi-

cation rate, but the GCRMA method shows the same performance, statistically

speaking, as raw data. It has also been shown that the SVM classifier is sensi-

tive to both feature selection and kernel function: when very few/large number of

genes are selected or the polynomial kernel is chosen, SVM’s accuracy goes down.

On the other hand, well-tuned RBF kernels give similar results to the linear ones.

More investigation is needed as a future work to understand the interplay between

pre-processing (which improves data quality), feature selection (which improves

the classifier by throwing away non-informative data), kernel function (linear vs

nonlinear) and their optimized parameters to ascertain pre-processing strategies to

produce an optimal classifier.
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Chapter 8

Introduction

At present, many engineering problems are based on the processing of input/out-

put data sets, namely, feature selection [Patrinos et al., 2010], classification [Chen

et al., 2007a] and function approximation tasks [Gonzalez et al., 2003],[Paul and

Kumar, 2002],[Huang et al., 2005] such as time series prediction [Sorjamaa et al.,

2007] or system identification problems [Ghaffari et al., 2007].

Most of the learning algorithms or techniques proposed in the literature to build

a model for feature selection, classification or function approximation problems,

split the original input/output data set into two groups: learning and test. The learn-

ing set, which can be in turn divided into training and validation sets, is used for

building models that capture the relationships between inputs and outputs. On the

other hand, the test set is used for checking models’ generalization ability with data

not used in the learning process [Chen et al., 2007a], [Gonzalez et al., 2003],[Sor-

jamaa et al., 2007] and [Ghaffari et al., 2007].

When the partition into learning and test sets does not take into account the variabil-

ity and geometry of the original data, it might lead to non-balanced and unrepre-

sentative learning and test sets (known as the dataset shift problem [Moreno-Torres

et al., 2011]) and, thus, to wrong conclusions in the accuracy of the learning algo-

rithm. How the partitioning is made is therefore a key issue and becomes more

important when the data set is small due to the need of reducing the pessimistic

effects caused by the removal of instances from the original data set.
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Thus, in this part of the dissertation, we propose a deterministic data mining ap-

proach for a distribution of a data set (input/output data) into two representative

and balanced sets of roughly equal size to be used in function approximation prob-

lems [Florido et al., 2011a]. The distribution takes into account the variability of

the data set with the purpose of allowing both a fair evaluation of learning’s ac-

curacy and to make reproducible machine learning experiments usually based on

random distributions. The sets are generated using a combination of a clustering

procedure, especially suited for function approximation problems, and a distribu-

tion algorithm which distributes the data set into two sets within each cluster based

on a nearest-neighbor approach.

This methodology is not only useful for the evaluation of learning’s accuracy and to

make reproducible machine learning experiments, but also in the context of the se-

lection of the best model structure (for example of different complexities, different

number of neurons in the hidden layer of multi-layer perceptrons, etc.) for a given

problem, which is known as model selection. The evaluation of a given model

structure is usually carried out through the splitting of the learning set into two

sets: training, used for parameter estimation for a given model structure, and val-

idation, used for evaluating the trained model, obtaining a validation error. Model

selection is, therefore, related to the task of comparing several model structures

based on estimations of their validation errors in order to select the most suitable

model structure for a given problem.

One of most widely used model selection approaches in the literature are those

based on the K-fold cross-validation [Lendasse et al., 2003], [Aran et al., 2009],

[Constantinopoulos and Likas, 2006] model evaluation strategy. However, such

model selection approaches have some drawbacks: its random nature (it does not

take the variability and geometry of the learning data into consideration when

building the training and validation sets) and the subjective decision for a proper

value of K, resulting in large bias for low values and high variance and computa-

tional cost for high values.

In this sense, we also demonstrate the usefulness of balanced and representative

training and validation sets in the context of a new deterministic model selection

methodology for incremental Radial Basis Function Neural Network (RBFNN)
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construction in time series prediction problems [Florido et al., 2011b]. The devel-

opment of such special designed methodology is motivated by the problems that

arise when using a K-fold cross-validation-based model selection methodology de-

scribed above.

This part of the thesis is structured as follows. Chapter 9 presents the data mining

approach for a distribution of a data set (input/output data) into two representa-

tive and balanced sets of roughly equal size to be used in function approximation

problems. The new deterministic model selection methodology for incremental

RBFNN construction in time series prediction problems is presented in Chapter

10.





Chapter 9

Methodologies for generating
balanced learning and test sets for
function approximation problems

9.1 Motivation and goals

Nowadays, many engineering problems are based on the processing of input/output

data sets, for example, function approximation tasks [Gonzalez et al., 2003],[Paul

and Kumar, 2002],[Huang et al., 2005] such as time series prediction [Sorjamaa

et al., 2007] or system identification problems [Ghaffari et al., 2007].

Time series prediction [Weigend and Gershenfeld, 1994] consists in the prediction

of future values of a sequence of past values. The general equation model for time

series prediction is:

yt+h = F(yt, yt−1, . . . , yt−p) (9.1)

where yt, yt−1, . . . , yt−p are the current and past values of the series and h is the

prediction horizon. Thus, the time series prediction problem can be regarded as a

problem of estimating F given the input data yt, yt−1, . . . , yt−p and the output data

yt+h or, in other words, a function approximation problem.
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System identification is one of the most important aspects in control, communi-

cation, pattern recognition and fault analysis fields. In general, when modeling

discrete nonlinear systems, the current output of a dynamic system is a function of

both its previous outputs and inputs, which makes the identification problem more

complex than for static systems [Ghaffari et al., 2007]. The general equation model

for system identification is:

yt+h = F(yt, yt−1, . . . , yt−p, x1, x2, . . . , x′p) (9.2)

where yt, yt−1, . . . , yt−p are the current and past values of the system, h is the iden-

tification horizon and x1, x2, . . . , x′p are exogenous or external values which can

influence the plant output. Thus, system identification can be regarded as a prob-

lem of estimating an unknown model F given the input data yt, yt−1, . . . , yt−p, the

external data x1, x2, . . . , x′p and the output data yt+h. Therefore, it can also be con-

sidered as a function approximation problem.

Formally, a function approximation problem can be formulated as follows: given

a set of observations or input/output vectors S total = {xk, yk; k = 1, . . . , n} sampled

from an unknown function or system F with xk ∈ R
d and yk ∈ R, it is desired to

obtain a model F∗ so that y∗k = F∗(xk) ∈ R, providing accurate outputs from input

data specified in the original data set, and with good predictive performance for

new input vectors.

To build a model for function approximation problems, many techniques exist in

the literature: there are classical models that try to build a linear model of the pro-

cess such as the Auto-Regressive Integrated Moving Average (ARIMA), the Auto-

Regressive with eXogenous input (ARX) or the Auto-Regressive Moving Average

with eXogenous input (ARMAX) models [Ljung, 1986] and non linear models

such as Fuzzy Systems [Pomares et al., 2004], Neuro-Fuzzy Systems [Theodoridis

et al., 2010], Least-Squares Support Vector Machines (LS-SVM)[Suykens et al.,

2002], Nearest Neighbor(NN)-based models [Sorjamaa et al., 2007], Radial Basis

Function Neural Networks (RBFNNs) [Park and Sandberg, 1991], Multilayer Per-

ceptrons (MLPs) [Balaguer et al., 2008] or Recurrent Neural Networks [Puscasu

et al., 2009].
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Most of these techniques usually split the original input/output data S total into two

groups: learning, S learn, and test S test. In the literature, the variability and the

geometry of S total is usually not taken into account in the partition. This fact might

lead to non-balanced and unrepresentative learning and test sets (known as the

dataset shift problem [Moreno-Torres et al., 2011]) and, thus, wrong conclusions

in the accuracy of the technique chosen.

Thus, our goal is to distribute homogeneously n input/output data into two mutu-

ally exclusive, balanced and representative sets by sampling all instances from the

original data, S total, without replacement. Let us call these sets, without loss of

generalization, learning, S learn, and test,S test, sets.

The following assumptions must be fulfilled:

• S learn ⊆ S total and S test ⊆ S total

• S learn ∩ S test = ∅ and S learn ∪ S test = S total

The learning set, S learn, is used for building a model that captures the relationships

between inputs and outputs and the S test set is used for checking the generalization

ability of the model built. Both sets should be representative from S total so that they

could be interchangeable, that is, S test could be used as a learning set and S learn

could be used as a testing set. The sets are generated using a combination of a

clustering procedure, especially suited for function approximation problems, and a

distribution algorithm which distributes the data set into two sets within each clus-

ter based on a nearest-neighbor approach. The sets obtained result in a reduction of

the pessimistic effects caused by the removal of instances from the original data set

whose importance is evident when evaluating function approximation models, spe-

cially in small data sets. It is expected therefore to allow both a fair evaluation of

learning’s accuracy and to make reproducible machine learning experiments usu-

ally based on random distributions.

This chapter is structured as follows, section 9.2 reviews different ways in the liter-

ature for distributing the original data set into two groups or sets. The architecture

of the proposed approach is presented and explained in detail in section 9.3. Sec-

tion 9.4 describes different ways of assessing the quality of the distribution of the
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original data set into two sets and, in section 9.5, an experimental comparison of

the new algorithm with respect to others present in the literature is reported through

a statistical analysis of its performance. Finally, some conclusions and future work

are presented in section 9.6.

9.2 State-of-the art

The distribution of the original data set into two groups or sets, namely learning

and test sets, can be carried out in several ways and, in the literature, there are

different approaches. First of all, the most common approaches are described and

then, some attempts to build balanced and representative learning and test sets will

be explained.

9.2.1 Common approaches

The most common methodology to partitioning the original data set into learning

and test sets is randomly [Paul and Kumar, 2002],[Huang et al., 2005],[Kohavi,

1995], [Dreyfus, 2005]. For example, in [Dreyfus, 2005], the author proposed a

methodology in which several random partitions of the original data set are run and

the partition for which the Kullback-Leibler (KL) divergence between the learning

and test sets is smallest is retained.

Another methodology is to build the sets by sampling uniformly in some domain

[Wen and Ma, 2008],[Gonzalez et al., 2003],[Yu and Li, 2004]. This approach is

normally not feasible when a set of input/output data is given, due to the difficult

task of setting a sampling rate in a multidimensional space. Another approach is

to set a division point in the original data set. The data contained before and after

the division point are selected as the learning and the test sets respectively [Paul

and Kumar, 2002], [Gonzalez et al., 2003], [Sorjamaa et al., 2007], [Ghaffari et al.,

2007]. One of the drawbacks is given by the decision of setting the division point,

which is based on the subjective judgment of the researcher.

All these approaches have some common problems:
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• The behavior of the estimation method can be affected, leading to gross un-

derestimation of the variance of the estimator and to the wrong conclusion

that a learning algorithm is significantly better when it is not, as described in

[Nadeau and Bengio, 2003].

• The variability and geometry of the data set is not taken into account, i.e.

they are unsupervised procedures, and may produce unrepresentative sets,

biasing the estimator [Diamantidis et al., 2000].

• There is no guarantee to obtain a representative and balanced distribution.

Furthermore, when the random approach is followed, an additional problem arises:

comparisons between performances of several learning algorithms in different ex-

periments are difficult when randomness is present in the distribution due to the

need of using several random splits to get a reliable estimate of the quality of the

learning algorithms, which is computationally expensive.

9.2.2 Attempts to build representative and balanced learning and test
sets

Due to the problems described above, there is a need to develop new algorithms that

take into account the features of the data set with the aim of building representative

and balanced groups, reducing the pessimistic effects caused by the removal of

instances from the data set, which becomes more important in small data sets,

and making reproducible machine learning experiments usually based on random

distributions.

In this sense, the majority of works have been developed for classification and little

work has been done for function approximation problems.

9.2.2.1 Approaches for classification problems

Zeng et al. [Zeng and Martinez, 2000], proposed a method that provides a balanced

intra-class distribution when partitioning a data set into multiple sets using a nearest
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neighbor approach but, when the sets are being built, the algorithm only takes into

account the last instances introduced in the sets to distribute new ones and ignores

all the instances that are already in the sets.

Dupret et al. [Dupret and Koda, 2001], developed an approach based on the well-

known bootstrap analysis technique and on the Bayesian optimal classifier method-

ology, but it is suitable only to binary classification.

Diamantidis et al. [Diamantidis et al., 2000] developed methods that exploit the

distribution of instances in the instance space in an unsupervised manner, ignoring

the class. They refer to this methods as unsupervised stratification approaches and

they were developed to get a distribution of the original set into several subsets.

Nevertheless, they can be applied to the problem of distributing an original set

into two sets: learning and test. Due to both its originality and its importance in

the state-of-the-art, the details of the methodologies are described in the following

subsections.

Unsupervised stratification methods In [Diamantidis et al., 2000], the authors

mainly developed two methods to partitioning an original set into several subsets

taking into account the variability and the geometry of the original data set.

In order to discover regions having similar instances in the instance space, the

authors define a similarity measure between two input instances (xi, x j) with d

attributes. This similarity measure is defined as:

S im(xi, x j) = −

√√√ d∑
l=1

dist(xil, xkl) (9.3)

where dist(xil, xkl) is the Euclidean distance for continuous attributes. For discrete

attributes is defined as:

dist(xil, xkl) =


0, if xil = x jl

1, otherwise
(9.4)
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A first approach to the deterministic ordering of instances is to order them accord-

ing to their similarity to the center of the instance space. In this approach the au-

thors assume that instances close to the center of the instance space are themselves

close. For discrete attributes, the value with maximum frequency is considered the

attribute value of the center. For continuous attributes the center attribute value is

the mean of the known attribute values of all instances. This method (Fig. 9.1) is

named by the authors as 1C-CV (single center method).

Find the Center of the instance space

Sort instances according to their similarity to the center

For each instance x_i (in order)

p=i mod numSets

if p=0 then p=numSets

Assign instance x_i to set p

End For

Figure 9.1: The 1C-CV method [Diamantidis et al., 2000]. numSets is the num-
ber of sets in which the original data set is partitioned

The implicit assumption of the 1C-CV approach is that instances having identical

similarities to the center are themselves close. Obviously this assumption does

not hold in general, especially for datasets with continuous attributes. Thus, the

authors developed a method based on clustering analysis that tries to overcome

this problem. This clustering-based method, which is called CL-CV by the authors,

is combination of a modified version of K-means clustering and a distribution of

instances using the clusters obtained.

K-means [Duda et al., 2001] clustering partitions the data into a specified number

of clusters in an iterative manner. The method is performed in three steps:

1. Select the K initial centers.

2. Assign each instance xi to the cluster with the closest center.

3. Refine clusters centers. If there are significant changes to the cluster centers,

repeat from 2
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For the K-means clustering method, the authors selected the initial centers (Step

1), according to the procedure shown in Fig.9.2. The aim is the selection of distant

instances for the initial centers.

/*C_r,C_f,C_h denote cluster centers */

For f=1 to K

C_f=x_f

End For

For i=K+1 to n

C_r= the closest center to x_i

S1=Sim(x_i,C_r)

/*compute the similarity S2 between the two closest centers */

S2=max{Sim(C_f,C_h),f=1,...,K,h=1,...,K, with f not equal to h}

/*find the largest similarity between the center C_r and all

other centers*/

S3=max{Sim(C_r,C_f),f=1,...,K, with f not equal to r}

if (S1<S2) or (S1<S3) then

C_r=x_i

End if

End For

Figure 9.2: Selection of initial centers for K-means clustering in CL-CV method
[Diamantidis et al., 2000]. K is the number of clusters and n is the number of

input instances ({xi}
n
i=1)

In Step 3 the cluster centers are refined after the end of each repetition. The authors

finish the clustering procedure when the largest change in the similarity of cluster

centers is lower than 2% of the largest similarity between the cluster centers of the

previous iteration.

After the application of the clustering procedure described above, the instance

space is partitioned into clusters. The next step performed by the authors is to

order the clusters according to the similarity between cluster centers and the cen-

ter of the first cluster. After the clusters have been ordered, the instances within

each cluster are sorted according to their similarity to the cluster center and are

distributed in different sets iteratively (see Fig.9.3).

As can be observed, both 1C-CV and CL-CV methods are deterministic approaches.
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Sort clusters according to their similarity to the first cluster

For each cluster

Sort the instances of the cluster according to their

similarity to the cluster center

For each instance x_i in current cluster

p=i mod numSets

if p=0 then p=numSets

Assign instance x_i to set p

End For

End For

Figure 9.3: Ordering instances with clustering in the CL-CV method [Diaman-
tidis et al., 2000]. numSets is the number of sets in which the original data set is

partitioned and n is the number of input instances ({xi}
n
i=1)

9.2.2.2 Approaches for function approximation problems

As previously said, there are few attemps to the distribution of the original data set

into two representative and balanced sets for function approximation tasks. In this

sense, the work described by Vasquez et al. [Vasquez and Janaqi, 2001] is empha-

sized. In that paper, a tabu search algorithm is developed to obtain a homogeneous

partition, but this approach has some disadvantages, namely, the tabu list length

should be tuned properly for each target problem and thesearch strongly relies on

the initial solution.

9.3 A new methodology for generating balanced learning
an test sets

As described in the previous section, most of the approaches developed for gener-

ating balanced and representative sets from the original data set have been applied

to classification problems. However, these methodologies, in principle, are not

suitable for function approximation tasks due to the following reasons [Gonzalez

et al., 2002]:
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1. In classification problems, the output variable takes values in a finite label

set which is defined a priori, while in function approximation problems the

output variable can take any of the infinite values within an interval of real

numbers. In other words, the output variable is discrete for classification and

continuous for function approximation problems.

2. In a function approximation problem, output values different from the opti-

mum ones may be accepted if they are ”sufficiently close” to them. These

variations might only produce a worthless approximation error. This be-

havior is not desirable for a classifier. In classification problems an output

response different from the correct one may be unacceptable.

3. Clustering techniques, such as the K-means used in section 9.2.2.1, do not

take into account the interpolation properties of the approximator system,

since it is not necessary in a classification problem.

Due to both these reasons and the little work made for function approximation

problems, it is presented a contribution to the problem of distributing the original

data set S total = {(xk, yk), k = 1, . . . , n} into two representative and balanced sets for

function approximation tasks, such as system identification or time series predic-

tion, to allow both a fair evaluation of learning algorithm’s accuracy and to make

reproducible machine learning experiments usually based on random distributions.

The proposed method, described in [Florido et al., 2011a], takes into account the

variability and the geometry of the data set and is based on a combination of a

clustering procedure, especially suited for function approximation problems, and a

distribution algorithm which distributes the data set into two sets within each clus-

ter based on a nearest-neighbor approach. Furthermore, the proposed approach is

deterministic, avoiding the problems described in section 9.2.1 when randomness

is present. The main idea of the proposed method is:

1. To split the input/output data pairs into m groups using the Clustering for

Function Approximation (CFA) approach [Gonzalez et al., 2002] (Section

9.3.1).

2. To apply a distribution algorithm to the input/output data pairs contained

in each group obtained in the previous step in order to distribute them into
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two subsets per group: learning and test (Section 9.3.2). This algorithm is

named Nearest Neighbor Out (NNO) since it is based on a nearest neighbor

approach.

3. Once the distribution algorithm has been applied to each group, to merge all

learning and test subsets obtained for each group into a unique learning set

and a unique test set (Section 9.3.3).

Steps (1) to (3), see Fig. 9.4, are repeated varying the number of clusters from

m = 1 until the stopping criterion is met (Sec.9.3.4). The proposed method is

named NNO-CFA, since it is a combination of the CFA clustering approach and

the NNO distribution algorithm.

9.3.1 The clustering approach: the CFA algorithm

The first step of the proposed method is to organize the input/output data pairs

into groups using a clustering approach. The clustering procedure used in this

work is named Clustering for Function Approximation (CFA) algorithm [Gonzalez

et al., 2002] and is specially designed for function approximation problems. This

approach is more adequate for these kind of problems compared to other input-

output clustering techniques and traditional input clustering algorithms (unsuper-

vised clustering) that are oriented toward classification problems owning to the fact

that they do not take into account the interpolation properties of the approximator

system, since interpolation has no sense in classification problems.

CFA uses the information provided by the target function output in such way that,

during the clustering process, the algorithm increases the density of cluster centers

in the input areas where the target function presents a more variable response,

rather than just in zones where there are more input examples. To carry out this

task and being m the number of centers or clusters, the CFA algorithm incorporates

a set O = {oi}
m
i=1 that represents an estimation of the output that can be associated

to each cluster Ci. The latter is defined as

Ci = {x ∈ Xtotal/||x − ci|| < ||x − c j||,∀ j = 1, . . . ,m, j , i} (9.5)
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1i   

1. Generate m clusters using the clustering approach for all input/output data 
values contained in

totalS (CFA algorithm) 

2. Make a distribution of input/output data pairs related to cluster 
iC into 

two subsets: learning, learn

iS , and test, test

iS (NNO algorithm) 

1i i   

?i m  

3. Merge all learning and test subsets obtained in previous steps into a 
unique learning set, 

learnS , and a unique test set, 
testS  

yes 

no 

1m   

4. Return the best distribution 

Is the stopping criterion 
met?  

1m m   

no yes 

Figure 9.4: General description of the proposed NNO-CFA method

where ci is the center of cluster Ci and Xtotal is the set of all input values of the

original data set S total. The value of each oi is calculated as a weighted average of

the output responses of the input data belonging to cluster Ci.

CFA defines a distortion function that has to be minimized in order to converge to

a solution:

d =

∑m
i=1
∑

x j∈Ci ||x j − ci||
2ω ji∑m

i=1
∑

x j∈Ciω ji
(9.6)

where ω ji weights the influence of each input vector in the final position of the ith

center. This distortion gives us an idea about the existing controversy between the

expected output for the cluster center ci and the output of the input vector x j. The
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greater the distance between the output of x j and the estimated output of the cluster

Ci it belongs to, the greater the influence of x j in the final result. Mathematically,

ω ji is defined as:

ω ji =
|F(x j) − oi|

maxn
k=1{F(xk)} − minn

k=1{F(xk)}
+ ϑmin, ϑ > 0 (9.7)

The first addend in this expression calculates a normalized distance (in the interval

[0, 1]) between F(x j) and oi, the second addend is a minimum contribution thresh-

old. As ϑmin decreases, CFA forces the cluster centers to concentrate on input zones

where the output variability is greater.

The basic organization of the CFA algorithm consists in the iteration of three main

steps: partition of the data, the updating of the cluster centers and their estimated

outputs and the migration of centers.

The partition is performed as it is done in K-means [Duda et al., 2001] thus, a

Voronoi partition of the data is obtained. Once the input vectors are partitioned,

the cluster centers and their estimated outputs are updated. This process is done

iteratively using the equations shown below:

ci =

∑
x j∈Ci x jω ji∑

x j∈Ciω ji

oi =

∑
x j∈Ci F(x j)ω ji∑

x j∈Ciω ji

(9.8)

To update the cluster centers and their estimated outputs, the algorithm has an

internal loop that iterates until the total distortion of the partition is not decreased

significantly.

The migration step is introduced in the algorithm to avoid local minima. This

step moves cluster centers allocated in input zones where the target function is

stable, to zones where the output variability is higher. CFA tries to find an optimal

vector quantization where each cluster center makes an equal contribution to the

total distortion. This means that the migration step will iterate, moving centers

that make a small contribution to the total distortion to areas where centers make a

bigger contribution.
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Once CFA is applied, a set of disjoint clusters {Ci}
m
i=1 are obtained. Taking into

account the corresponding output of each input value, the original input/output

data set (S total) is then structured into groups.

9.3.2 The Nearest Neighbor Out (NNO) distribution algorithm

Once the CFA clustering process has finished, all the input/output data pairs con-

tained in S total are split into groups, that is, all data values contained in each group

are related to each other making it easier to local distribute them into two subsets,

namely learning and test. The distribution algorithm proposed in this dissertation,

named Nearest Neighbor Out (NNO) method, is designed for distributing a set of

input/output data values into two mutually exclusive subsets according to the Eu-

clidean Distance. It is important to remind that the distribution of a data set into

two sets is not trivial, especially for multidimensional data, due to the reasons al-

ready mentioned in section 9.2.1, such as setting a sampling rate or a division point

in a multidimensional space.

The NNO algorithm (Fig. 9.5) is performed for each group obtained in the pre-

vious clustering step (Sec. 9.3.1) and, iteratively, distributes a pair of data values

contained in the group into two subsets. The key idea is to distribute into different

subsets, namely learning and test, the data values that are themselves close with the

aim of building representative subsets. For every cluster Ci obtained by the CFA

algorithm, the steps of the NNO algorithm are described as follows.

Stage 1 The first stage consists in selecting the first two input data values con-

tained in the current cluster Ci to start from, according to the following steps (step

1 in Fig.9.5):
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1.Initialize the learning and test subsets with a single value each. 

 
2. Define NN as the set of first and second nearest neighbors in 

iC  to each point 

in the input learning subset learn
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Figure 9.5: General description of the proposed NNO distribution algorithm

1. Select the first and the second closest input data values to the cluster center,

ci, and contained in Ci :

xa = arg min
x∈Ci

{||ci − x||}

xb = arg min
x∈Ci
x,xa

{||ci − x||}
(9.9)

2. The first and second closest input data values to the cluster center, and their

corresponding outputs, are assigned to the learning S learn
i and test S test

i sub-

sets respectively. Such input data values are removed from Ci:

S learn
i = (xa, ya), S test

i = (xb, yb)

Ci = Ci−{xa, xb}
(9.10)

At the end of this step, the learning and test subsets each contain a single

input/output data value.
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Stage 2 For each iteration of the NNO algorithm, two new input data values are

selected from the current cluster Ci for distributing them into the learning and the

test subsets (steps 2 to 5 in Fig.9.5) until all data values contained in Ci have been

distributed. The aim is to keep the closest points of Ci in different subsets and,

for this purpose, the distribution algorithm must take into account all input data

values present in the learning subset. In order to do so, let us define Xlearn
i as the

set of input values of S learn
i , Xtest

i as the set of input values of S test
i and the functions

that, for a given data x j ∈ Xlearn
i , search its first (9.11) and second (9.12) nearest

neighbor in cluster Ci:

NN1(x j,Ci) = arg min
x∈Ci

{||x j − x||} with x j ∈ Xlearn
i (9.11)

NN2(x j,Ci) = arg min
x∈Ci

x,NN1(x j,Ci)

{||x j − x||} with x j ∈ Xlearn
i (9.12)

For each point in the input learning subset Xlearn
i , its first and second nearest neigh-

bors in Ci are calculated (step 2 in Fig.9.5):

NN = {NN1(x j,Ci) ∪ NN2(x j,Ci)}, ∀x j ∈ Xlearn
i (9.13)

Thus, NN is a subset of values of the cluster set Ci. Notice that there might be

elements in NN that are the first and/or the second nearest neighbor to several

data values contained in the input learning subset Xlearn
i . Taking into account this

premise, for each point x ∈ NN, the average distance from x to the points x j ∈

Xlearn
i with NN1(x j,Ci)) = x or NN2(x j,Ci)) = x is measured. The point x ∈ NN

with the lowest average distance will be selected (step 3 in Fig.9.5):

x1−NN = arg min
x∈NN

AvgDist(Xlearn
i , x) (9.14)

where

AvgDist(Xlearn
i , x) =

1
nlearn

∑
x j∈Xlearn

i

||x j − NNk(x j,Ci)|| (9.15)

subject to

NNk(x j,Ci) = x, with k = {1, 2} (9.16)
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From Eq.9.15, calculations are only made on those points in the input learning

subset Xlearn
i whose first (k = 1) or second (k = 2) nearest neighbor in Ci is x

(Eq.9.16). Let us call such points as ”neighborhood learning points” of x. Their

number is defined as nlearn and the average distance from them to x is measured

(9.15).

Then, for each point x ∈ NN and x , x1−NN , the average distance from x to the

points x j ∈ Xlearn
i with NN1(x j,Ci) = x or NN2(x j,Ci)) = x is measured. The

point x ∈ NN\{x1−NN} with the lowest average distance will be selected (step 4 in

Fig.9.5) :

x2−NN = arg min
x∈NN

x,x1−NN

AvgDist(Xlearn
i , x) (9.17)

where AvgDist is defined in eq.(9.15) and is subject to Eq. 9.16.

This way and according to the equations (9.14) and (9.17), two new points of Ci

and that are the closest ones, in average, to a set of points in the input learning

subset Xlearn
i have been selected. Then, the point selected in (9.14) is assigned to

Xtest
i and the point selected in (9.17) is assigned to Xlearn

i (step 5 in Fig.9.5):

Xlearn
i = Xlearn

i ∪ {(x2−NN)}

Xtest
i = Xtest

i ∪ {(x1−NN)}
(9.18)

where {x1−NN , x2−NN} ∈ Ci. These input points are removed from the cluster set

Ci:

Ci = Ci − {x1−NN , x2−NN} (9.19)

The key idea of this procedure is to keep close points in the space away from

each other and, therefore, build representative learning and test subsets. For this

reason, from the set NN of first and second nearest neighbors in Ci (9.13), the

point x1−NN = x ∈ NN with the lowest average distance to a given set of points

in the input learning subset Xlearn
i will be assigned to the input test subset Xtest

i

(9.18). Since this point is placed in an space area which is enough represented by

such set of learning points (it is the closest one in average distance), it must be

assigned to the input test subset due to the fact that the goal is to build balanced

and representative learning and test subsets from Ci. The point x2−NN = x ∈ NN
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and x , x1−NN with the lowest average distance to a given set of points in the input

learning subset will be assigned to the input learning subset (9.18). Equations 9.13-

9.19 are repeated until there are no data values to be distributed in Ci. Finally, the

learning subset S learn
i is formed by Xlearn

i and its corresponding outputs and the test

subset S test
i is formed by Xtest

i and its corresponding outputs (step 6 in Fig.9.5). As

can be noticed, the subsets are of, approximately,equal size.

Notice that the distribution algorithm is repeated for each cluster Ci obtained in the

clustering approach (Sec.9.3.1). The main advantage of distributing the input/out-

put data values within each cluster is that data set’s variability is studied locally,

which improves the accuracy of the distribution due to the reduction of the input

space.

Thus, once the distribution algorithm has been performed for each group, a set of

learning and test subsets is arranged:

{S learn
i , S test

i }, i = 1, . . . ,m (9.20)

where m is the number of clusters obtained in the clustering approach.

9.3.3 Merging all learning and test subsets

At this step of the algorithm, a set of learning and test subsets has been built.

Each pair of subsets reflects a local representative and balanced distribution of

input/output data values. The goal is to get a global balanced distribution and for

this purpose, all the learning and test subsets obtained for each group are merged

into a unique learning set and a unique test set of, approximately, equal size:

S learn =

m⋃
i=1

S learn
i ; S test =

m⋃
i=1

S test
i (9.21)

where m is the number of clusters.
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9.3.4 Stopping criterion: determining the number of clusters

The NNO-CFA method is a clustering approach, thus, the number of clusters to

be used must be chosen. The approach described in [Mojena, 1977] has been

followed and it is based on examining the distribution of the cross-validation error

coefficients (section 9.4.1). This coefficient is one of the quality metrics used in our

dissertation to evaluate the partition of the original data set into two sets. A critical

value is given by the first stage m in which the obtained coefficient is greater than

a value derived from the distribution of coefficients, that is:

αm > ᾱ + 2σα (9.22)

where αm is the coefficient (the cross-validation error) given when the number

of clusters used by the NNO-CFA method is m; ᾱ and σα are the mean and the

standard deviation of the m − 1 coefficients. The value of the coefficient at stage

m indicates that the last number of clusters gives a coefficient, αm, that lies in the

upper tail of the distribution and, therefore, it is considered a worse partition of the

original data set into two sets with respect to the partitions obtained so far. Thus,

when Eq. 9.22 is fulfilled, the best distribution of the original data set into two sets

is the one given by the lowest αk value, that is, the lowest cross-validation error in

the range 1 ≤ k ≤ m − 1. Therefore, the number of clusters selected is k.

At the end of the proposed NNO-CFA method, there are two balanced and repre-

sentative sets from S total, the learning set S learn, which is used for building models

that capture the relationships between inputs and outputs, and the test set S test,

which is used for checking models’ generalization ability with data not used in the

learning process. The sets are of, approximately, equal size and are interchange-

able, that is, S test can be used as a learning set and S learn can be used as a test

set.
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9.4 Assessing the quality of the distribution

Assessing the quality of the distribution of the original data set into learning and

test sets means to check if the sets are representative and balanced. For this pur-

pose three different criteria have been followed: the cross-validation error (section

9.4.1), the J-divergence (section 9.4.2) and the average of generalization errors

(section 9.4.3).

9.4.1 The cross-validation error

As stated above, the original data set S total = {(xk, yk); k = 1, . . . , n} has been

distributed into two sets of roughly equal size. For checking the quality of the

distribution, the cross-validation error is used and it is obtained in a 2-fold cross-

validation [Kohavi, 1995] procedure according to the following steps:

1. The input/output data values of the first set form the learning set, S learn, and

the other set forms the test set, S test.

2. The training of the model F∗ is done using S learn and the Mean Square Error,

MSEtest1(F∗), is calculated:

MSEtest1(F∗) =
1
n1

∑
(xtest

i ,ytest
i )∈S test

(F∗(xtest
i ) − ytest

i )2 (9.23)

where (xtest
i , ytest

i ) ∈ S test, F∗(xtest
i ) is the approximation of ytest

i by model

F∗ and n1 is the number of input/output data values contained in the test set

S test.

3. The input/output data values of the second set become now the learning set

S learn and the first set becomes the test set S test. The step 2 is repeated,

obtaining another Mean Square Error, MSEtest2(F∗).

4. The mean square cross-validation error (MSEC−V ) is computed according

to:

MSEC−V =
1
2

(MSEtest1(F∗) + MSEtest2(F∗)) (9.24)
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MSEC−V has the drawback that it is sensitive to changes in the range of data.

A more suitable index is the Normalized Root Mean Square cross-validation

Error, NRMSEC−V , which is defined as:

NRMSEC−V =

√
MSEC−V

σ2
y

(9.25)

where σ2
y is the variance of the output data of the original data set S total.

In the experiments section, NRMSEC−V will be the index selected to measure the

cross-validation error.

9.4.2 The J-divergence

The J-divergence is a symmetrized version of the Kullback-Leibler (K-L) diver-

gence [Lefebvre et al., 2010] and reflects the divergence between two probability

distributions. In our case, the J-divergence between the histograms of the learn-

ing and test sets is used for checking the quality of the distribution of the original

input/output data set into two sets.

A fixed hypercube space histogram is defined by dividing the region of interest

into a set of equisized hypercubes. Therefore, given a distribution of the original

input/output data set into two sets, the main interest is about checking if the number

of observations is equally distributed in the same hypercube in the learning and test

sets for all hypercubes using histograms. For this purpose, the histograms from the

learning and test sets are obtained and the J-divergence between them is calculated

as the sum of the K-L in both directions:

J-divergence =

p∑
j=1

Hlearn( j) log2
Hlearn( j)
Htest( j)

+

p∑
j=1

Htest( j) log2
Htest( j)
Hlearn( j)

(9.26)

where p is the number of hypercubes and Hlearn( j) and Htest( j) are the fraction of

observations falling in the jth hypercube in the learning and test sets respectively.

From Eq.9.26, when J-divergence=0, the number of observations is equally dis-

tributed between the sets in the same hypercube for all hyper cubes, that is, the
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learning and test sets are balanced in terms of the number of observations, which

means that the histograms are equal. The bigger the J-divergence, the worse the

distribution of the number of observations between the sets is.

It is important to notice that histograms are a valuable tool for measuring the num-

ber of observations between the same hypercube in the learning and test sets for

all hyper cubes throughout the input domain. However, they are not suitable for

building two sets from the original input/output data set in function approximation

problems, since they do not take into account, in the distribution process, either the

output data or the possible presence of noise in the data, contrary to the NNO-CFA

algorithm.

9.4.3 The average of generalization errors

It is also interesting to observe how the models trained with the learning and test

sets perform with data not used in the distribution procedure. For this purpose, the

generalization ability of the learning and test sets through a huge generalization

data set, S gen is measured:

1. Two models F∗learn and F∗test are trained using S learn and S test sets respec-

tively. The Mean Square Errors, MSEgen1(F∗learn) and MSEgen2(F∗test) , are

calculated:

MSEgen1(F∗learn) =
1

ngen

∑
(xgen

i ,ygen
i )∈S gen

(F∗learn(xgen
i ) − ygen

i )2

MSEgen2(F∗test) =
1

ngen

∑
(xgen

i ,ygen
i )∈S gen

(F∗test(xgen
i ) − ygen

i )2
(9.27)

where (xgen
i , ygen

i ) ∈ S gen, F∗learn(xgen
i ) and F∗test(xgen

i ) are the approximation

of ygen
i by models F∗learn and F∗test respectively and ngen is the number of

input/output data values contained in the generalization set S gen.
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2. A normalized version of the errors obtained in the previous step are obtained

(Normalized Root Mean Square Errors, NRMSEgen1 and NRMSEgen2):

NRMSEgen1 =

√
MSEgen1

σ2
y

NRMSEgen2 =

√
MSEgen2

σ2
y

(9.28)

3. The average of NRMSEgen1 and NRMSEgen2 is defined as:

NRMSEgen =
1
2

(NRMSEgen1 + NRMSEgen2) (9.29)

NRMSEgen is the index selected for measuring the average of generalization errors

in the experiments section.

It is important to notice the differences between the NRMSE values, in the form

of 2-fold cross-validation error (NRMSEC−V ), the average of generalization errors

(NRMSEgen) and the J-divergence. The latter only measures how the number of ob-

servations has been distributed between the same hypercube in the sets for all hyper

cubes throughout the input domain, whereas the NRMSEC−V and NRMSEgen values

reflect a learning/ testing procedure and takes into account the output value. Thus,

for a given hypercube, it is more important how representative the observations are

than their number, although the latter is also important. In any case, both ways for

checking the quality of the data set distribution are useful and complementary.

9.5 Experimental results

In order to show the performance of the proposed method, several different data sets

have been used (subsection 9.5.1). The results of the proposed method compared to

other present in the literature are reported in subsection 9.5.2 through a statistical

analysis of variance.
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9.5.1 Data sets

In order to make a thorough comparative study, several different examples have

been selected to cover many possible practical function approximation situations.

9.5.1.1 Nonlinear chaotic time series

These time series present some chaotic behaviour in order to be a non trivial ap-

proximation problem.

The Hénon map The Hénon map [Hènon, 1976] runs through the plane follow-

ing equation 9.30. When the parameters are set to the values a = 1.4 and b = 0.3,

the result is called the Canonical Hénon map and exhibits chaotic behaviour. The

values {yi}
n
1 of the Canonical Hénon map were taken as the time series data (see

Fig. 9.6a).

xt+1 = yt − ax2
t

yt+1 = bxt

(9.30)

The Logistic map The logistic map was a demographic model, that has been

popularized by May [May, 1976] as an example of simple nonlinear system that

exhibits complex, chaotic behaviour (Fig. 9.6b). It is drawn from the following

equation:

yt = 4yt−1(1 − yt−1) (9.31)

Mackey-Glass time series The Mackey-Glass time series [Mackey and Glass,

1977] is approximated from the differential equation 9.32 and models the dynamics

of white blood cell production in the human body. It is a widely used benchmark

for generalization abilities of time series prediction methods. When a = 0.25,

b = 0.1 and τ > 17 the series is chaotic (Fig.9.6c). The series is continuous and it

is obtained by integrating 9.32 with a numerical integration method such as fourth



Chapter 9. Methodologies for generating balanced learning and test sets 259

order Runge-Kutta method.

dx(t)
dt

=
ax(t − τ)

1 + x10(t − τ)
− bx(t) (9.32)

For Mackey-Glass, the public accessible data given in MATLABTMsoftware [MAT-

LAB, 2010c] has been used (mgdata.dat). This time series consists of 1200 sam-

ples from which the first 200 are discarded due to their random nature, as it is usual

in the literature.

9.5.1.2 Real time series prediction

These problems are difficult to model since they are normally noisy, non-linear

and stochastic. The one chosen for this work is dailysap which is the Daily Stan-

dard & Poor’s index (S&P) of stocks from January 1st, 1980 to October 8th, 1992

(Fig.9.6d) [Korsan, 1993].

9.5.1.3 Artificial function approximation problems

There have been created two artificial functions with different sizes and number of

inputs. In function f1 [Cherkassky et al., 1996] x1 and x2 are uniformly generated

in the range ]-2,2[ (Fig.9.7a) and in function f2 [Pomares, 2000] x is uniformly

sampled in the range ]0,1[ (Fig.9.7b):

f1(x1, x2) = sin(x1 · x2)

f2(x) = exp(−5x) · sin(2πx)
(9.33)

9.5.1.4 Nonlinear dynamic systems

The problem selected as dynamic system is the one described in [Narendra and

Parthasarathy, 1990]. It is given by Eq.9.34 where the output y non-linearly de-

pends on both its two previous values and the control variable u, which is uni-

formly selected in the range [−2, 2] and represents the actuator’s output (Fig.9.7c).
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Figure 9.6: Nonlinear chaotic and real time series used in the experiments. (a)
Hénon map; (b) Logistic Map; (c) Mackey-Glass; (d) Daily Standard & Poor’s

index (S & P)

The equilibrium state of the unforced system is reached when y = 0 and u = 0.

y(n) =
y(n − 1) · y(n − 2) · (y(n − 1) + 2.5)

1 + y2(n − 1) + y2(n − 2)
+ u(n − 1) (9.34)

For each example, the model that describes the input-output relationship is shown

in Table 9.1 as well as the size of the original data set S total and the size of the

generalization set S gen. Notice that a generalization set has only been generated

for those data sets whose function is available to generate as many data as de-

sired. Standard & Poor’s time series is limited from 1980 to 1992. With regard to

Mackey-Glass time series, a set of generalization data can not be generated since

the time series used is the one given in MATLAB software.
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Figure 9.7: Artificial function approximation problems and nonlinear dynamic
systems used in the experiments. (a) f1; (b) f2; (c) Nonlinear dynamic system

For the Hénon map, Logistic map and Mackey-Glass time series, the inputs se-

lected are the ones commonly used in the literature [Jayawardena et al., 2006],

[Yao and Liu, 1997], [Chen et al., 2005]. For f1 and f2 artificial functions and for

the nonlinear dynamic system, the inputs chosen were the ones used in [Cherkassky

et al., 1996], [Pomares, 2000] and [Narendra and Parthasarathy, 1990] respectively.

For S&P time series, the inputs chosen are those that minimize the statistical inde-

pendence among variables and they were selected using the approach proposed in

[Herrera et al., 2006].
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Table 9.1: Data set models and their size

Data set Model |S total| |S gen|

Hénon map yt = F(yt−1, yt−2) 200 4000
Logistic map yt = F(yt−1) 150 10000
Mackey Glass yt = F(yt−6, yt−12, yt−18, yt−24) 976 −a

S&P yt = F(tt−2, yt−36, yt−65, yt−79) 500 −a

f1 yt = F(x1t, x2t) 400 4000
f2 yt = F(xt) 198 10000
Dynamic system yt = F(yt−1, yt−2, ut−1) 1000 1500

a The number of data is limited

9.5.2 Results

In this section, we are going to evaluate the quality of the distribution of the original

data set into two sets given by the proposed method (NNO-CFA), the random ap-

proach and the deterministic single center and k-means clustering methods which

have been described in section 9.2.2.1. They are referred by the authors as 1C-CV

and CL-CV respectively and have been implemented for function approximation

tasks for comparison purposes in our work. The quality will be measured through

the quality metrics described in Sec.9.4. Least-squares-support vector machines

(LS-SVMs), which are widely used in time series prediction problems [Herrera

et al., 2006], are chosen as a paradigm for building the validation models. We

have made use of the LS-SVM implementation in MATLAB, LS-SVMLab [Pelck-

mans et al., 2002] to evaluate the performance of the application of the LS-SVM

model to the examples present in this section. The values of the hyperparameters,

σ (the width of the kernel) and γ (the regularization parameter) are set according

to [Cherkassky and Ma, 2004].

The single center method 1C-CV is not a clustering procedure. To make a com-

parison when no clustering is considered, the NNO distribution algorithm was run

alone with a small variation: the starting point from which the data is distributed is

changed to the input space center of the data set (see stage 1, Sec.9.3.2) since the

CFA algorithm is not applied and, therefore, there is no cluster center. This varia-

tion is referred in the results as the NNO method. Therefore, five algorithms will be

compared: the random algorithm, which has been executed over 20 runs, the NNO
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and 1C-CV non-clustering algorithms and the NNO-CFA and CL-CV clustering

algorithms. For the CL-CV method, the same approach described in Sec.9.3.4 for

selecting the number of clusters has been followed.

For the evaluation of our proposed methodologies, it would be interesting to test

them through different fractions of the original size of the examples. For this pur-

pose, the sample size of every data set will be classified into three groups: small,

medium and big:

group←


small if size ≤ 60

medium if 60 > size ≤ 100

big if size > 100

(9.35)

where

size =
f raction · |S total|

d
(9.36)

|S total| is the original size (table 9.1), d is the number of inputs for each example

(column Model in table 9.1) and f raction = 0.3, 0.6, 0.9 is the sample size fraction

of |S total|.

Therefore, it will be checked whether the results (the response of the system) are

affected by the algorithm (NNO, NNO-CFA, 1C-CV, CL-CV and RANDOM), the

example (Hénon map, Logistic map, Mackey-Glass, S&P, f1, f2, and Dynamic

System) and the sample size factors (small, medium and big). For this purpose,

the ANalysis Of VAriance (ANOVA) test [Box et al., 1978] is used, since it is one

of the most widely statistical techniques. The statistical parameter considered in

this test is the significant level and if it is lower than 0.05, then the corresponding

levels of the factor are statistically significant with a confidence level of 95%. For

each example and each different fraction value, each algorithm has been executed

10 times. It must be noticed that each run is based on a different random selection

of a fraction of the original samples for a given example. This way, the results

obtained will be representative in terms of the samples selected for each example

and fraction. For instance, for the Mackey-Glass time series and a fraction of 90%,

each run takes randomly 976 · 0.9 = 878 samples from the original set. The same
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selection of samples is then used by all the algorithms with the aim of providing a

fair comparison among them.

The response variables to be used in the ANOVA test are the cross-validation error

(NRMSEC−V ), which measures the quality of the distribution of the data set into

two sets using the 2-fold cross-validation procedure (Sec.9.4.1), the J-divergence,

which measures how the number of observations has been distributed between

the same hypercube in the sets for all hyper cubes throughout the input domain

(Sec.9.4.2) and the average of generalization errors (NRMSEgen) which measures

the generalization ability of the learning and test sets through a huge generalization

data set S gen (Sec.9.4.3). The normality, independence of populations and homo-

cedasticity assumptions for ANOVA test are accomplished and the values of the

dependent variables were normalized to [0, 1] to allow a fair comparison among

the values of the different factors.

According to the NRMSEC−V response variable (Table 9.2), the algorithm and the

example factors present the greatest statistical relevance, which means that the re-

sult statistically depends on the algorithm chosen (NNO-CFA, NNO, CL-CV, 1C-

CV and RANDOM) and the example (data set), which is obvious due to the dif-

ferent coverage of examples. The sample size factor is not statistically significant,

which means that the results do not statistically depend on the sample size chosen.

Figure 9.8 shows that the methods proposed here, NNO and NNO-CFA, outper-

forms statistically better (P < 0.05) than the others. Among the former, NNO-CFA

gets statistically the best results (P < 0.05) and the random algorithm throws the

worst NRMS EC−V value.

Table 9.2: ANOVA table for the analysis of the main factors for the cross-
validation error, NRMS EC−V response variable

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Algorithm 19.22 4 4.80 107.55 0
Example 3.35 6 0.56 12.49 0
Sample size 0.09 2 0.04 1.00 0.37

According to the J-divergence response variable (Table 9.3), the same conclusions
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Figure 9.8: Means and 95% Least Significant Differences (LSD) intervals of the
different algorithms through the cross-validation error, NRMS EC−V response

variable

are obtained: the algorithm and the example factors present the greatest statisti-

cal relevance and the sample size factor is not statistically significant. NNO-CFA

method shows statistically the best results (P < 0.05) than the remaining ones

as can be observed in Fig.9.9. NNO method also outperforms statistically better

(P < 0.05) than the other methodologies but NNO-CFA.

Table 9.3: ANOVA table for the analysis of the main factors for the J-divergence
response variable

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Algorithm 25.37 4 6.34 130.25 0
Example 1.96 6 0.33 6.71 0
Sample size 0.09 2 0.05 1.01 0.36

Related to the average of generalization errors (NRMS Egen), the algorithm has the

greatest statistical relevance and the example and sample size factors are not sta-

tistically significant (Table 9.4). On the other hand there is no statistical difference

(P > 0.05) among NNO-CFA, NNO and CL-CV methods, although our proposed

methodologies (NNO-CFA and NNO) perform better on average (Fig.9.10 ) and

thus improve the generalization ability of the models. It must be noticed, that both

NNO and NNO-CFA outperforms statistically better (P < 0.05) than 1C-CV and

Random approaches.
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Figure 9.9: Means and 95% Least Significant Differences (LSD) intervals of the
different algorithms through the J-divergence response variable

Table 9.4: ANOVA table for the analysis of the main variables for the
NRMS Egen response variable

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Algorithm 1.61 4 0.4 4.81 0
Example 0.39 4 0.09 1.19 0.32
Sample size 0.17 2 0.09 1.06 0.35

Figure 9.10: Means and 95% Least Significant Differences (LSD) intervals of the
different algorithms through the Average of Generalization Errors, NRMS Egen

response variable
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On the other hand, it is also useful to check the number of clusters selected by

NNO-CFA and CL-CV methods. It can be observed from Fig. 9.11 that, in most of

the cases, the number of clusters used by the NNO-CFA method is lower than the

ones used by CL-CV. This means that NNO-CFA methodology needs less number

of clusters to achieve better results, which decreases the complexity of the model.
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Figure 9.11: Mean and standard deviation number of clusters for the clustering
methods CL-CV and NNO-CFA for the fraction of the original size of a) 90%,

b) 60%, c) 30%

With respect to the time complexity of the methodologies described in this work,

Table 9.5 shows the time in seconds for each algorithm and each fraction of the

original size: 30%, 60% and 90%. Random method is not shown because the dis-

tribution into two sets is negligible in time. From Table 9.5, it can be observed that

although our methods, NNO and NNO-CFA, are more computationally expensive,

the time employed is not so high (around 75 seconds for NNO and 24 seconds for

NNO-CFA in the Dynamic System Example when the fraction of the original size
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is 90%), and it is worth executing them because they produce more representative

and balanced sets according to the results given before.

Table 9.5: Mean and standard deviation time in seconds for the NNO, 1C-CV,
CL-CV and NNO-CFA methods depending on the fraction of the original size:

30%, 60% and 90%

Data set Algorithm Fraction of the original size
30% 60% 90%

Hénon map NNO 0.08 ± 0.01 0.25 ± 0.02 0.48 ± 0.03
1C-CV 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.01
NNO-CFA 0.12 ± 0.06 0.24 ± 0.03 0.56 ± 0.15
CL-CV 0.05 ± 0.05 0.19 ± 0.20 0.18 ± 0.25

Logistic map NNO 0.04 ± 0.01 0.09 ± 0.01 0.16 ± 0.01
1C-CV 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.01
NNO-CFA 0.07 ± 0.04 0.20 ± 0.22 0.25 ± 0.13
CL-CV 0.02 ± 0.02 0.04 ± 0.01 0.04 ± 0.01

Mackey-Glass NNO 1.86 ± 0.17 11.31 ± 0.65 36.35 ± 3.39
1C-CV 0.13 ± 0.01 0.55 ± 0.01 1.40 ± 0.01
NNO-CFA 1.80 ± 0.74 10.83 ± 1.30 17.02 ± 9.14
CL-CV 0.56 ± 0.39 1.73 ± 2.43 1.97 ± 0.74

S&P NNO 0.49 ± 0.03 1.81 ± 0.09 5.25 ± 0.39
1C-CV 0.04 ± 0.01 0.13 ± 0.01 0.30 ± 0.01
NNO-CFA 0.92 ± 0.58 2.09 ± 0.90 5.55 ± 2.09
CL-CV 0.11 ± 0.14 0.17 ± 0.07 0.55 ± 0.31

f1 NNO 0.39 ± 0.03 1.62 ± 0.04 4.63 ± 0.42
1C-CV 0.03 ± 0.01 0.08 ± 0.01 0.20 ± 0.01
NNO-CFA 0.58 ± 0.44 1.84 ± 0.49 3.72 ± 1.40
CL-CV 0.14 ± 0.15 0.11 ± 0.05 0.25 ± 0.05

f2 NNO 0.06 ± 0.01 0.12 ± 0.02 0.23 ± 0.01
1C-CV 0.01 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
NNO-CFA 0.10 ± 0.06 0.19 ± 0.09 0.40 ± 0.34
CL-CV 0.02 ± 0.01 0.03 ± 0.02 0.04 ± 0.01

Dynamic system NNO 4.42 ± 0.13 27.27 ± 1.94 74.78 ± 2.56
1C-CV 0.11 ± 0.01 0.47 ± 0.01 1.18 ± 0.01
NNO-CFA 3.99 ± 1.02 14.80 ± 8.44 23.47 ± 10.37
CL-CV 0.47 ± 0.70 0.56 ± 0.16 10.10 ± 19.32

Finally, it must be emphasized that, although the ANOVA test evaluates the results

in terms of the different factors involved in the experiments (algorithms, exam-

ples and sample size), for brevity purposes, only figures related to the algorithm

factor are shown, because they reflect the differences between the methodologies

compared.
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9.6 Conclusions and future work

In this chapter, we have proposed a deterministic approach for a distribution of the

original input/output data set into two representative and balanced sets of roughly

equal size, namely learning and test sets, based on a combination of a clustering

approach and a nearest-neighbor-based distribution procedure. The sets obtained

result in a reduction of the pessimistic effects caused by the removal of instances

from the original data set whose importance is evident when evaluating function

approximation models, especially in small data sets. The goal is to allow both a

fair evaluation of learning’s accuracy and to make reproducible machine learning

experiments usually based on random distributions.

The Analysis of Variance (ANOVA) statistical test has examined the effects of sev-

eral factors on three quantitative responses, the cross-validation error (NRMSEC−V ),

the J-divergence and the average of generalization errors (NRMSEgen), and showed

the superiority of the NNO-CFA algorithm over the other methodologies (NNO,

1C-CV, CL-CV and RANDOM) regardless of the examples and sample size used

due to the following reasons:

• It is based on a clustering procedure, the CFA, which is specially suited

and adequate for function approximation problems due to the analysis of

the output variability of the target function and, thus, its adaptation to the

instance space with singularities during the clustering process.

• The distribution of the data values is made within clusters using the NNO

approach, taking into account all data values contained in a cluster. This

fact allows the study of the variability and the geometry of the data set lo-

cally,which produces a reduction of the input space and, therefore, an im-

provement of the distribution’s quality.

The results have also demonstrated that the most common approach used in the lit-

erature for distributing the original data set into two groups, the random algorithm,

should not be recommended for this kind of problems due to the following reasons:
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• It may lead to wrong conclusions about a learning algorithm due to both its

random nature and the distribution itself, since the variability of the data set

is not taken into account and may produce unrepresentative sets.

• Comparisons between performances of several learning algorithms in differ-

ent experiments are difficult due to the need of using several random splits to

get a reliable estimate of the quality of the learning algorithms. This is com-

putationally expensive because it involves several repetitions of the random

splitting and learning process.

The method proposed in this chapter is not only useful for the distribution of the

original data set into learning and test sets, but also for the distribution of the learn-

ing set into training and validation sets in the context of the selection of the best

model structure for a given problem, which is known as model selection. Such

model selection approaches could be a valid alternative to those based on k-fold

cross-validation strategies, which are random-based and can be computationally

expensive when the complexity of the learning algorithm is high.

The NNO-CFA method is freely available, together with the examples used in this

dissertation, at the website http://atc.ugr.es/˜hector/NNO-CFA/index.html.



Chapter 10

Model selection for RBFNNs in
time series forecasting

10.1 Motivation and goals

As previously stated, most of the learning algorithms proposed in the literature split

the original input/output data set into two groups: learning and test. The learning

set is used for building models that capture the relationships between inputs and

outputs and the test set is used for checking model’s generalization ability.

The learning set can be, in turn, split into two sets: training, used for parameter es-

timation for a given model structure, and validation, used for evaluating the trained

model, obtaining a validation error. Model selection is, therefore, related to the

task of comparing several model structures (for example, different number of neu-

rons in the hidden layer of multilayer perceptrons) based on estimations of their

validation errors in order to select the most suitable model structure for a given

problem.

One of the most widely used model selection approaches in the literature are those

based on the K-fold cross-validation [Lendasse et al., 2003],[Kohavi, 1995] model

evaluation strategy. However, such model selection approaches have some draw-

backs, such as its random nature (it does not take into account the variability and

271
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geometry of the learning data when building the training and validation sets) and

the subjective decision for a proper value of K, resulting in large bias for low val-

ues and high variance and computational cost for high values [Kohavi, 1995]. So,

it is desirable that a model selection approach is based on a model evaluation strat-

egy with the following features: (1) low variance and bias, (2) no randomness,

(3) low computational cost and (4) use of balanced and representative training and

validation sets.

Thus, it is expected that the use of two balanced training and validation sets ob-

tained by the data distribution methodology proposed in section 9.3.2 and inte-

grated in a new model selection approach will prevent the problems appeared when

model selection methodologies based on K-fold cross-validation are used.

In this sense, the balanced and representative training and validation sets will be

applied in the context of a new deterministic model selection methodology for in-

cremental Radial Basis Function Neural Network (RBFNN) construction in time

series prediction problems. Such model selection approach is a combined algo-

rithm which takes advantage of such balanced and representative training and vali-

dation sets for their use in RBFNN initialization, optimization and network model

evaluation. This way, the model prediction accuracy is improved, getting small

variance and bias, reducing the computation time spent in selecting the model and

avoiding random and computationally expensive model selection methodologies

based on K-fold cross-validation procedures.

This chapter is structured as follows. Section 10.2 briefly introduces RBFNNs.

Section 10.3 reviews the common approaches that search for the most suitable

RBFNN structure as well as the model evaluation methodologies existing in the

literature. Section 10.4 presents the model selection proposed in this chapter. In

section 10.5, an experimental comparison of the new algorithm with respect to

K-fold cross-validation-based model selection methods in three well-known time

series prediction benchmarks is reported. An ANOVA-based statistical study of the

results and a comparison of the RBFNN model selected to other series prediction

methodologies are also presented. Finally, some conclusions and future work are

drawn in section 10.6.
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10.2 Radial Basis Function Neural Networks, RBFNNs

RBFNNs [Park and Sandberg, 1991] are one of the most widely applied ANNs in

time series forecasting tasks in recent years [Qi and Zhang, 2001], [Du and Zhang,

2008], due to their simple architecture and learning scheme and the possibility of

incorporating the qualitative aspects of human experience in the model selection

and training [Du and Zhang, 2008].

RBFNNs are Neural Networks composed of two layers: the hidden layer, which is

at the same time composed of m radial functions, and an output layer, which per-

forms a weighted addition of neuron’s activation in the previous layer. An RBFNN

F can approximate an unknown function F with n inputs and one output from a

set of input/output data values S total = {(xk, yk); k = 1, ..., n} with xk ∈ R
d and

yk = F(xk) ∈ R. RBFNNs are universal approximators, functionally equivalent to

a nonlinear regression model and have a set of numerous parameters that have to be

optimized: the centers, the radii and the weights of the RBFs Guillén et al. [2008].

They are defined as:

F (xk; C,R,Ω) =

m∑
i=1

φ(xk; ci, ri) ·Ωi (10.1)

where C = {ci}
m
i=1, ci ∈ R

d, is the set of RBF centers, R = {ri}
m
i=1, ri ∈ R, is

the set of values for each RBF radius, Ω = {Ωi}
m
i=1, Ωi ∈ R, is the set of weights

and φ(xk; ci, ri) represents an RBF. The most commonly used RBF is the Gaussian

function because it is continuous, differentiable, it provides a smoother output and

improves the interpolation capabilities:

φ(xk; ci, ri) = exp
 ||xk − ci||

2

r2
i

 (10.2)

One of the most common procedures to design an RBFNN for functional approxi-

mation problems, such as time series prediction, is shown below:

1. Initialize RBF centers C

2. Initialize the radius R for each RBF
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3. Calculate the optimum value for the weights Ω

4. Apply local search algorithm to adjust centers and radii

10.2.1 Centers initialization

The initialization of the centers is very important because, if an incorrect initializa-

tion of the centers is performed, the approximation error could be increased. The

centers can be initialized using several approaches specially designed for func-

tion approximation problems such as the clustering for function approximation

(CFA) [Gonzalez et al., 2002] or the improved clustering for function approxima-

tion (ICFA) [Guillén et al., 2007]. The latter introduces a fuzzy partition of the

data and analyzes the output variability of the target function during the clustering

process and augments the number of centers in those input zones where the target

function is more variable, increasing the variance explained by the approximator.

Therefore, the ICFA uses the information provided by the function output in order

to make a better placement of the centers of the RBFs. This change in the behavior

of the clustering algorithm improves the performance of the RBFNN, compared to

other models derived from traditional classification oriented clustering algorithms

[Guillén et al., 2008].

10.2.2 Radii initialization

When initializing the radii, two choices are possible. One is that all radii have

the same value. In [Park and Sandberg, 1991], the authors demonstrated that if all

the radii have the same value, the network can still be a universal approximator,

reducing the number of non-linear parameters of the model and, thus, simplifying

the network training. The other choice is that each center can define its own value

for the radius. This way, the performance of the network can be increased [Be-

noudjit and Verleysen, 2003] but at the expense of increasing the complexity of the

training.
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10.2.3 Weights initialization

Since the output of the RBFNN is linear with respect to the weights (see Eq. 10.1),

it is possible to optimally obtain these parameters through a linear equation system

that can be robustly solved using the Singular Value Decomposition (SVD), the

Cholesky decomposition or the orthogonal least squares (OLS) method [Gonzalez

et al., 2003].

10.2.4 Apply local search algorithm to adjust centers and radii

A local search training algorithm can be used to set the parameters concerning each

RBF (its center and radius) in order to minimize an error criterion. In the litera-

ture, several training methods to identify these parameters have been published.

The most popularly used training method is the backpropagation algorithm which

is essentially a gradient steepest descent method. However, it suffers the problems

of slow convergence, inefficiency, and lack of robustness and can be very sensitive

to the choice of the learning rate [Zou et al., 2007]. In light of the weakness of

the conventional backpropagation algorithm, a number of variations or modifica-

tions of backpropagation, such as the adaptive method [Jacobs, 1987], quickprop

[Fahlman, 1988] and second-order methods [Parker, 1987] have been proposed.

Among them, the second-order methods (such as BFGS and Levenberg−Marquardt

methods) are more efficient nonlinear optimization methods and are used in most

optimization packages. Their faster convergence, robustness, and the ability to find

good local minima make them attractive in ANN training.

10.3 Searching for the most suitable RBFNN structure:
model selection

In spite of the advantages of RBFNNs previously described, one of the critical

issues of RBFNNs is the selection of the best network structure for a forecasting

task, due to the numerous parameters to be estimated and optimized. A network

smaller than the optimal architecture underfits and fails to learn the data well (bias
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is high and variance is low) and a large network suffers the overfitting problem,

resulting in poor generalization (bias is low and variance is high). Thus, the optimal

architecture is the one with low bias and low variance so that the network learns

the function underlying the data and not the existing noise [Aran et al., 2009].

Common approaches that search for the RBFNN structure are the well known

greedy techniques (growing/constructive/incremental and pruning/destructive/ decre-

mental) and genetic-algorithm-based evolutionary algorithms. Incremental tech-

niques start with a small network, adding additional hidden units and weights until

a satisfactory solution is found [Kaminski and Strumillo, 1997], [Gomm and Yu,

2000]. On the other hand, pruning approaches use a larger network at the beginning

which shrinks during learning [Paetz, 2004]. There are also a combination of the

two greedy strategies: incremental and pruning [Alpaydin, 1994]. The incremen-

tal approach is generally preferred over the pruning approach [Kwok and Yeung,

1997]: it is straightforward to specify an initial network and it is less computation-

ally expensive since small network solutions are searched first. Nevertheless, one

of their drawbacks is to determine when to stop the addition of hidden units.

Genetic-algorithm-based evolutionary algorithms [Leung et al., 2002] consider the

process of selecting the RBFNN structure as a search problem within all possible

network architectures. However, such methods are usually quite demanding both in

time and memory requirements and a good representation of the network structure

and good design of the genetic operators are required [Kwok and Yeung, 1997].

Regardless of the approach chosen, when the network structure changes, an evalu-

ation is needed to check the suitability of the new network structure/model [Aran

et al., 2009]. For this purpose, there are information theory-based model evaluation

methodologies such as the Akaike’s Information Criterion (AIC) [Akaike, 1973],

the Bayesian Information Criterion (BIC) [Schwarz, 1978] and the Minimum de-

scription length (MDL) [Rissanen, 1978]. These approaches are not quite useful

in neural network time series forecasting because they are originally derived for

traditional statistical models where the number of parameters is usually small [Qi

and Zhang, 2001].

On the other hand, there are other methodologies to evaluate a given network

model, such as those that split the available data into two groups: learning, used for
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ANN model building, and test, for out-of-sample evaluation. The learning set is in

turn split into two sets: training, used for parameter estimation for a given struc-

ture, and validation, used for evaluating the trained network, obtaining a validation

error.

ANN model selection is, therefore, related to the task of comparing several network

structures/models based on estimations of their validation errors in order to select

the most suitable network structure for a given problem. The estimation of the

validation error can be obtained using the following well-known model evaluation

methods:

• K-fold cross-validation: it is widely used in the literature [Lendasse et al.,

2003],[Aran et al., 2009],[Constantinopoulos and Likas, 2006], but the value

of K is based on a subjective judgment: a low value results in small variance

and large bias and a high value makes the evaluation computationally expen-

sive [Kohavi, 1995].

• Leave-One-Out (LOO): it is less biased, but its variance [Lendasse et al.,

2003] and computational cost are unacceptable.

• Bootstrap: it is downward biased and has a very low variance [Lendasse

et al., 2003] but its computational load is high. The .632 bootstrap [Efron

and Tibshirani, 1997], is almost unbiased and has a low variance, but it fa-

vors overfitting classifiers, which makes it not suitable for model evaluation

[Kohavi, 1995].

All these model evaluation strategies are computationally expensive, which be-

comes a problem in ANN model selection since several optimizations and evalua-

tions of different structure networks are required. In other words, a model evalua-

tion method is run several times because one wants to select the best ANN model or

structure among several ones, i.e., ANN model selection. Moreover, these model

evaluation strategies are random approaches, since none of them takes the variabil-

ity and geometry of the learning data into consideration when building the training

and validation sets [Lendasse et al., 2003],[Constantinopoulos and Likas, 2006].

For example, one can use the functions such as divideind, dividerand, divideblock
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and divideint from the MATLAB’s Neural Networks toolboxTM[MATLAB, 2010c]

for building training and validation sets to be used in K-fold cross-validation model

evaluation, but none of these functions take the variability of the data set into ac-

count to build such sets.

So, from the point of view of bias and variance, reproducibility and computational

complexity, it is desirable that a model selection approach for ANNs is based on a

model evaluation strategy with the following features: (1) low variance and bias,

(2) no randomness, (3) low computational cost and (4) use of balanced and repre-

sentative training and validation sets. Moreover, the use of such sets must play an

essential role in all the steps related to the design of an RBFNN for time series pre-

diction: initialization, optimization and network model evaluation. Such desirable

model selection approach is proposed in the following chapter.

10.4 The Model Selection algorithm for incremental RBFNN
construction (MoSe)

According to the problems described in the previous section when using a K-fold

cross-validation-based model selection methodology, it is presented a fast and new

model selection methodology for incremental RBFNN construction, which is gen-

erally preferred over other strategies [Kwok and Yeung, 1997], in time series pre-

diction tasks. The proposed method, described in [Florido et al., 2011b], is based

on a network model evaluation strategy that is not random, uses balanced and rep-

resentative training and validation sets from the learning set and has low variance,

bias and computational cost.

First of all, the original data set S total = {(xk, yk); k = 1, ..., n} with xk ∈ R
d and yk =

F(xk) ∈ R is split into two parts: the first one forms the learning set S learn which is

used for the RBFNN model selection approach, and the second part forms the test

set, S test, for genuine out-of-sample evaluation in which the validity and usefulness

of the model selected is checked. Assuming that the inputs of the network have

been previously selected, the proposed Model Selection (MoSe) algorithm consists

of the proper combination of three main parts (see Fig.10.1):
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Figure 10.1: General description of the MoSe model selection algorithm

1. A deterministic generation of representative and balanced training, S train,

and validation, S val sets from the learning set, S learn, using the NNO algo-

rithm proposed in section 9.3.2. The aim of generating the sets this way is

three-fold: (1) create and initialize an RBFNN through a representative train-

ing set, (2) reduce the overfitting problem in the RBFNN training/optimiza-

tion process and (3) avoid a cross-validation-based procedure for network

model evaluation (section 10.4.1).

2. The creation of the RBFNN F using the representative training set S train

with centers, weights and radii with initial values. The RBF centers are

initialized using the ICFA algorithm [Guillén et al., 2007] (section 10.4.2).
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3. A training/optimization procedure for the RBFNNF , based on the Levenberg-

Marquardt local search algorithm. This optimization procedure has been de-

signed for using the representative validation set S val created in step 1 to stop

the optimization when overfitting appears. At the end of the optimization

process, a validation error is given as a result of evaluating the optimized

network F ∗ using the validation set S val. The validation error is unique,

since the validation set is enough representative from the learning set S learn.

This serves as a non-cross-validation model evaluation for the network F ∗

(section 10.4.3).

The model selection algorithm runs steps 2 and 3 varying the number of nodes or

RBFs starting at 1 until the validation error is not improved or a maximum number

of RBFs is reached. The final RBFNN forecasting model selected is the one related

to the lowest validation error found (section 10.4.4).

Thus, the novelty of this work is the whole model selection procedure. It is a

methodology that combines, in a suitable way, the use of different parts and, among

them, a deterministic distribution of the learning set into training and validation sets

is used. This distribution is then integrated in the remaining parts of the combined

algorithm to get a fast model selection methodology for RBFNN.

10.4.1 A deterministic generation of representative and balanced train-
ing and validation sets

The first step of the proposed method consists in distributing the learning set, S learn,

into two mutually exclusive sets: the training set, S train, and the validation set,

S val, according to the euclidean distance. This distribution is not random and takes

into account the variability and the geometry of the learning set when building the

training and validation sets. The distribution algorithm used is a slight variation

of the Nearest Neighbor out (NNO) methodology described in section 9.3.2. Two

important issues must be emphasized:

• Although the original distribution algorithm described in section 9.3 (the

NNO-CFA algorithm) is a combination of a clustering procedure (CFA) and
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a distribution algorithm (NNO), in the context of RBFNN model selection,

it is preferable to use only the NNO algorithm as the distribution algorithm

with the aim of avoiding higher computational costs when selecting the best

RBFNN model. In section 9.5.2, it has been demonstrated that although the

best results are achieved for the NNO-CFA algorithm, the NNO algorithm

itself is a valid alternative to NNO-CFA when generating balanced and rep-

resentative sets in terms of computational cost without sacrifying the quality

of the distribution in high degree.

• The original NNO method described in section 9.3.2, departs from a cluster

Ci and, iteratively, distributes a pair of data values contained in the cluster

into two subsets: learning and test. In the context of the MoSe algorithm,

a slight variation is introduced in the following way: the NNO approach

departs from the set of input values of S learn, which is referred as Xlearn. For

the stage 1, the training and validation inputs sets are initialized with a single

value each: the starting point from which the data is distributed is changed to

the space center of the input learning set Xlearn. Then, the stage 2 iteratively

distributes a pair of data values contained in that set into the input training

set, Xtrain, and the input validation set, Xval. At the end of the procedure, the

training set S train is formed by Xtrain and its corresponding outputs and the

validation set S val is formed by Xval and its corresponding outputs. Thus,

S train is the set of input/output values used as training and S val is the set of

input/output values used as validation (see Fig.10.2).

The purpose of using the distribution algorithm is three-fold: (1) create and ini-

tialize the RBFNN using a representative training set, (2) reduce the overfitting

problem in the RBFNN training/optimization process and, therefore, improve the

network forecasting accuracy and (3) avoid a cross-validation-based model eval-

uation procedure for a given network structure, which means a reduction in the

computation time employed in selecting the RBFNN model.
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Figure 10.2: The Nearest Neighbor Out (NNO) distribution algorithm in the
context of MoSe methodology

10.4.2 Create the RBFNN F

Given a number of nodes or RBFs and the training set S train, the next step of the

proposed method consists in creating the RBFNN, F , with initial values for the

model parameters: centers (C), radii (R) and weights (Ω). The RBFNN initial-

ization is an important task since the network optimization strongly depends on

the initial values of the model parameters [Guillén et al., 2007]. Due to this im-

portance, it is important to take advantage of a representative training set for such

initial values.
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10.4.2.1 Centers initialization

The centers are initialized using the deterministic ICFA algorithm [Guillén et al.,

2007] described in section 10.2.1. This method has proved to outperform other ap-

proaches for the initialization of the RBFNN centers [Guillén et al., 2007]. More-

over, the ICFA algorithm effectiveness is expected to improve, since it is run in a

representative training set.

10.4.2.2 Radii initialization

In this dissertation, the radii are the same for each radial basis function (RBF)

with the aim of reducing the nonlinear parameters. The initial value of the radii is

based on the nearest neighbor heuristic described in [Karayiannis and Mi, 1997]:

the width of each RBF is set to the euclidean distance of its nearest neighbor func-

tion. Since in our work the radii are the same for all RBFs, the width taken is the

maximum value of all RBF widths calculated this way.

10.4.2.3 Weights initialization

Since the output of the RBFNN is linear with respect to the weights (Eq.10.1), it

is possible to optimally obtain these parameters through a linear equation system

that can be robustly solved. In our case the Singular Value Decomposition (SVD)

method [Gonzalez et al., 2003] is used.

10.4.3 RBFNN training/optimization and model evaluation

Once the RBFNN F has been created with initial model parameters for a given

number of RBFs, the model parameters must be optimized. The optimization pro-

cedure has been designed for using, within the well-known Levenberg-Marquardt

local search algorithm [Parker, 1987], the representative training set to train/opti-

mize the network F and the validation set to evaluate the trained network during

the optimization process, stopping the latter when overfitting appears. This way,

it is expected to improve the forecasting accuracy of the model. At the end of
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the optimization process, a validation error is given as a result of evaluating the

optimized network F ∗ using the representative validation set (network/model eval-

uation). This serves as a non-cross-validation model evaluation for the network.

The use of balanced and representative training and validation sets (section 10.4.1)

in this context has several advantages. First, both the network optimization and the

evaluation are done on these sets which might reduce the overfitting problem in the

RBFNN training process and improve the forecasting accuracy. Secondly, a given

network structure is optimized once and the validation error is both unique and a

representative estimation of the network forecasting accuracy. On the contrary, in

a K-fold cross-validation model evaluation strategy, a given network structure is

optimized K times using K different training sets, obtaining an average validation

error. In other words, our methodology runs just one optimization process whereas

a K-fold cross-validation model evaluation strategy executes K optimization pro-

cesses where K is the number of different training sets. This way, the computation

time employed in evaluating a model is reduced and, consequently, the running

time of the model selection process.

10.4.4 RBFNN model selection

According to Fig. 10.1, a different RBFNNF is built each time varying the number

of RBFs in a greedy incremental approach, obtaining a different validation error for

each optimized RBFNN F ∗. Since the validation error obtained for each RBFNN

architecture is a representative estimation of the network forecasting accuracy, the

iterative procedure is stopped once the validation error is not improved with respect

to the previous number of RBFs used or the maximum number of RBFs is reached.

This means that, if the validation error is worse when increasing the number of

RBFs, this number of nodes used in the network does not improve its accuracy on

the validation set. Thus, the RBFNN used as the final forecasting model has the

number of RBFs given in the previous iteration.
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10.5 Experiments and results

In this section, and for comparison purposes, other strategies will be explained

as alternative model selection for the incremental RBFNNs construction (section

10.5.1). The quality of all these methodologies will be evaluated through three

well known time series prediction benchmarks (section 10.5.2). The results of the

RBFNN model performances are reported in section 10.5.3.1 and statistically ana-

lyzed in section 10.5.3.2. The RBFNN forecasting model selected by the proposed

method, MoSe, is compared, in terms of forecasting accuracy, to other traditional

methods for time series prediction in section 10.5.3.3. Finally, the results obtained

in the time series competition MINCODA’09 using a slight variation of the RBFNN

model selection proposed are briefly explained in section 10.5.3.4.

10.5.1 Other RBFNN model selection strategies

As described above, other model selection strategies for incremental RBFNN con-

struction will be used for comparison purposes. They can be classified into two

categories: variations of the MoSe algorithm and strategies based on a K-fold cross-

validation model evaluation methodology.

10.5.1.1 Variations of the MoSe algorithm

Two variations of the MoSe algorithm in terms of the generation of the training and

validation sets from the learning set (step 1 of MoSe algorithm, section 10.4.1) are

proposed:

• MoSe-R: the learning set is randomly split into training and validation sets.

• MoSe-D: the first and the second half of the learning set are used as training

and validation sets respectively. Since there is an order in time series data,

this partition makes sense.
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This way, we will evaluate which methodology used when building the training

and validation sets from the learning set is better: the one used by MoSe (section

10.4.1), Mose-R or MoSe-D.

10.5.1.2 Strategies based on a K-fold cross-validation methodology

Two model selection approaches based on a K-fold cross-validation (K-CV) model

evaluation methodology, which is commonly used in the literature [Aran et al.,

2009],[Lendasse et al., 2003],[Constantinopoulos and Likas, 2006], are also ap-

plied for comparison purposes. The main differences with respect to MoSe, MoSe-

R and MoSe-D model selection methodologies are in terms of the generation of the

training and validation sets, the RBFNN optimization process and the iterative pro-

cedure typical of a cross-validation approach to evaluate a given model/structure

network (Fig.10.3):

• K-CV-R. The learning set is randomly split into K roughly equal parts, each

one being used successively as a validation set. With regard to the RBFNN

optimization process, the validation set is not used during the optimization

process and once the network is optimized, it is evaluated using the valida-

tion set. The model evaluation for a given number of RBFs consists, there-

fore, in optimizing K networks using a different training set each time, ob-

taining K different validation errors. The final validation error corresponds

to the mean of these errors.

• K-CV. This approach differs from K-CV-R only in the partition of the learn-

ing set into K parts. In this case, the learning set is split in a non-random

way, that is, the first set corresponds to the first part of the learning set, the

second set to the second part, etc. The Kth set is related to the Kth part of the

learning set.

It is important to emphasize that the distribution strategy used by the MoSe algo-

rithm (section 10.4.1) is the only one that takes into account the variability and the

geometry of the learning set when building the training and validation sets.
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Figure 10.3: General description of the K-CV-R and K-CV model selection pro-
cedures based on K-fold cross-validation

10.5.2 Time series prediction benchmarks

Each model selection methodology has been applied on three small nonlinear chaotic

time series predictions benchmarks with different size of samples and number of

inputs. The required goal is to check the prediction accuracy of the RBFNN se-

lected by each model selection strategy. The time series are the Logistic map, the

Hénon map and the Mackey-Glass time series, which have been already described
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in section 9.5.1.1. The inputs, which are the same as the ones described in that

section, and the size of each time series are shown in Table 10.1.

Table 10.1: Size and models of the time series benchmarks

Data set Model Size
Hénon map yt = F(yt−1, yt−2) 200
Logistic map yt = F(yt−1) 150
Mackey Glass yt = F(yt−6, yt−12, yt−18, yt−24) 250

The small size of the time series have been chosen deliberately, with the aim of

demonstrating the suitability and the importance of the distribution algorithm (sec-

tion 10.4.1) when small data sets are used. Since our main interest is focused on the

model selection strategy proposed in time series prediction problems, each time se-

ries will be split into two parts: the first 70% corresponds to the learning set S learn,

which is used by the MoSe algorithm and the other model selection strategies to

select the best RBFNN model, and the remaining 30% corresponds to the test set,

S test, to evaluate the forecasting accuracy of the model selected.

10.5.3 Results

10.5.3.1 Results for the RBFNN model selection algorithms

A total of 21 model selection algorithms have been suggested in previous sections:

the one proposed in this chapter, MoSe, its variations, MoSe-R and MoSe-D, and

the ones based on a K-fold cross-validation methodologies,K-CV-R and K-CV for

K = [2, 10]. For each time series benchmark described in section 10.5.2, the 21

algorithms will be run with the aim of checking their quality in terms of the pre-

diction accuracy in the test set S test, given by the Mean Square Error (MS Etest):

MS Etest(F ∗) =
1

ntest

∑
(xtest

i ,ytest
i )∈S test

((F ∗(xtest
i ) − ytest

i )2 (10.3)
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where (xtest
i , ytest

i ) ∈ S test, F ∗(xtest
i ) is the approximation of ytest

i by the RBFNN F ∗

chosen by a model selection algorithm and ntest is the number of input/output data

values contained in the test set S test.

The 21 algorithms will be also evaluated in terms of the computation time t, which

is the time needed by a methodology to find the best RBFNN model.

The results of applying the methodologies to the time series benchmarks, will be

shown in three different tables, one for each time series, where it can be compared

the quality of the RBFNN models selected for each algorithm. This way, it is easy

to see the individual behavior of each algorithm when comparing to the rest in the

context of time series benchmarks with different size and number of inputs. Due to

the random nature of MoSe-R, and K-CV-R methods, they have been run 20 times

in each time series and their results have been averaged and the standard deviations

have also been computed.

Table 10.2 shows that the best prediction accuracy, lowest MS Etest value, for the

Logistic Map time series is achieved by the MoSe method when the number of

RBFs is 8. The time needed to find the RBFNN model is approximately, in av-

erage, 14.8 seconds. Although other model selection methods (MoSe-R, MoSe-D,

2-CV-R and 2-CV) find their best RBFNN model quicker, their prediction accu-

racy on the test set is not better than the one given by the MoSe method. Other

two methodologies (5-CV and 6-CV) achieve the same MS Etest, but the number of

folds used in this case increases the computation time up to 39.6 and 52 seconds

respectively.

From table 10.3 (Hénon map time series), the RBFNN model selected by the 5-CV

algorithm achieves the best prediction accuracy, but its computation time is much

greater (4.7 times) than the one given by the MoSe method, which provides the

second lowest MS Etest value. This fact shows that the MoSe algorithm, with lower

computation time, produces a prediction error very similar to the one given by the

5-CV method and, therefore, can be selected as a fast and reliable RBFNN model

selection method. Other algorithms, 8-CV and 9-CV, also provide the second best

prediction accuracy but their computation time is 5.59 and 6.49 times respectively

greater than the one given by the MoSe algorithm.
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Table 10.2: Results for logistic map time series by different RBFNN model se-
lection strategies

Algorithm #RBFs MS Etest t(sec)
MoSe 8 1.4E-4 14.8 ± 0.1
MoSe-R 5.3 ± 1.9 0.94E-3 ± 1.41E-3 6.9 ± 3.5
MoSe-D 7 3.8E-4 11.3 ± 0.1
2-CV-R 6.1 ± 1.1 4.4E-4 ± 1.4E-4 12.7 ± 4.4
2-CV 6 3.9E-4 10.7 ± 0.1
3-CV-R 6.4 ± 1.1 4.2E-4 ± 1.3E-4 18.7 ± 7.1
3-CV 7 2.7E-3 48.9 ± 0.1
4-CV-R 7.2 ± 1.2 4.4E-4 ± 5.6E-4 31.2 ± 10.7
4-CV 7 3.8E-4 29.2 ± 0.1
5-CV-R 7.2 ± 1.4 4.6E-4 ± 5.5E-4 38.2 ± 15.3
5-CV 8 1.4E-4 39.6 ± 0.1
6-CV-R 7.2 ± 1.2 3.3E-4 ± 1.4E-4 43.3 ± 13.9
6-CV 8 1.4E-4 52.0 ± 0.1
7-CV-R 7.6 ± 1.0 2.8E-4 ± 1.1E-4 56.2 ± 15.3
7-CV 7 3.8E-4 48.3 ± 0.1
8-CV-R 7.3 ± 0.8 3.2E-4 ± 1.0E-04 58.0 ± 12.6
8-CV 7 3.8E-4 52.7 ± 0.1
9-CV-R 7.4 ± 0.7 4.5E-4 ± 5.5E-4 66.2 ± 15.7
9-CV 7 3.8E-4 58.3 ± 0.1
10-CV-R 7.1 ± 1.1 4.5E-4 ± 5.5E-4 69.1 ± 20.9
10-CV 7 3.8E-4 68.1 ± 0.1

Table 10.4 shows that the best prediction accuracy for the Mackey-Glass time series

is given by the MoSe method and no other methodology can achieve the same

accuracy. Moreover, the MoSe computation time is very satisfactory compared to

the rest of algorithms.

These results confirm the superiority of the MoSe algorithm in terms of prediction

accuracy and computation time over the rest of RBFNN model selection method-

ologies. From tables 10.2 to 10.4, it can also be observed how those model selec-

tion methodologies based on random distributions of the learning set into training

and validation sets (MoSe-R and K-CV-R for K = [2, 10]), estimate a variable num-

ber of RBFs. Moreover, these algorithms show a high variability in terms of both

the MS Etest value and computation time, due to this heterogeneous number of esti-

mated RBFs. On the other hand, MoSe-R and MoSe-D are, in general, not suitable

methods for RBFNN model selection, since their MS Etest values are not as good

as the ones achieved with K-CV-R or K-CV for low values of K. This fact suggests
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Table 10.3: Results for Hénon map time series by different RBFNN model se-
lection strategies

Algorithm #RBFs MS Etest t (sec)
MoSe 6 9.2E-5 8.1 ± 0.1
MoSe-R 4.4 ± 1.6 2.3E-3 ± 1.5E-3 4.7 ± 3.5
MoSe-D 3 3.5E-3 2.4 ± 0.1
2-CV-R 3.7 ± 1.2 2.9E-3 ± 1.3E-3 5.6 ± 3.7
2-CV 3 3.5E-3 4.1 ± 0.1
3-CV-R 4.4 ± 1.4 2.1E-3 ± 1.5E-3 10.9 ± 6.2
3-CV 4 2.8E-3 10.6 ± 0.1
4-CV-R 4.2 ± 1.2 2.1E-3 ± 1.5E-3 14.2 ± 7.1
4-CV 3 3.5E-3 8.3 ± 0.1
5-CV-R 3.9 ± 1.1 2.7E-3 ± 1.2E-3 14.9 ± 7.9
5-CV 7 5.2E-05 38.3 ± 0.1
6-CV-R 4.3 ± 1.4 2.1E-3 ± 1.5E-3 21.9 ± 12.6
6-CV 3 3.5E-3 12.8 ± 0.1
7-CV-R 4.2 ± 1.5 2.1E-3 ± 1.7E-3 23.9 ± 13.6
7-CV 5 1.7E-4 28.5 ± 0.1
8-CV-R 4.8 ± 1.6 1.4E-3 ± 1.7E-3 33.9 ± 17.3
8-CV 6 9.2E-5 45.3 ± 0.1
9-CV-R 4.3 ± 1.5 2.1E-3 ± 1.7E-3 33.2 ± 19.1
9-CV 6 9.2E-5 52.6 ± 0.1
10-CV-R 4.3 ± 1.7 2.3E-3 ± 1.6E-3 37.3 ± 26.1
10-CV 3 3.5E-3 19.3 ± 0.1

that the deterministic distribution of data proposed in section 10.4.1 is essential for

RBFNN model selection since it distributes the learning set into two balanced and

representative sets, training and validation, taking into account the variability and

the geometry of the learning data.

10.5.3.2 Statistical tests: the Analysis of Variance (ANOVA)

When applying different algorithms to several examples, it is interesting to examine

the effects of the algorithms and the examples on the results, either in terms of

the prediction accuracy, MS Etest or the computation time. More important, it is

essential to check whether the differences of the results among the RBFNN model

selection methods described in section 10.5.3.1 are due to chance or not. For this

purpose, the analysis of variance (ANOVA) test Box et al. [1978] is useful when

it is suspected that one or more factors affect a response. The statistical parameter
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Table 10.4: Results for Mackey-Glass time series by different RBFNN model
selection strategies

Algorithm #RBFs MS Etest t (sec)
MoSe 5 6.6E-5 10.2 ± 0.1
MoSe-R 4.1 ± 0.8 4.2E-4 ± 8.4E-4 6.7 ± 1.9
MoSe-D 2 2.4E-3 2.8 ± 0.1
2-CV-R 3.6 ± 1 0.78E-3 ± 1.11E-3 9.1 ± 3.3
2-CV 4 8.2E-5 12.3 ± 0.1
3-CV-R 3.9 ± 1.2 6.8E-4 ± 1.0E-3 15.3 ± 6.8
3-CV 2 2.4E-3 4.4 ± 0.1
4-CV-R 4.2 ± 1.3 5.8E-4 ± 9.6E-4 23.2 ± 10.2
4-CV 2 2.4E-3 7.2 ± 0.1
5-CV-R 3.6 ± 0.9 6.7E-4 ± 1.0E-3 22.6 ± 8
5-CV 4 8.2E-5 27.9 ± 0.1
6-CV-R 3.2 ± 1.1 1.1E-3 ± 1.2E-3 23.2 ± 11.4
6-CV 2 2.4E-3 12.3 ± 0.1
7-CV-R 3.3 ± 1.1 1.0E-3 ± 1.2E-3 28.7 ± 12.9
7-CV 2 2.4E-3 16.0 ± 0.1
8-CV-R 3.6 ± 1.3 0.96E-3 ± 1.11E-3 36.6 ± 18.3
8-CV 4 8.2E-5 44.0 ± 0.1
9-CV-R 3.1 ± 1.3 1.4E-3 ± 1.2E-3 35 ± 21
9-CV 2 2.4E-3 16.6 ± 0.1
10-CV-R 3.9 ± 1.2 0.67E-3 ± 1.12E-3 52.7 ± 21.4
10-CV 4 8.2E-5 54.9 ± 0.1

considered in this test is the significant level and if it is lower than 0.05, then

the corresponding levels of the factor are statistically significant with a confidence

level of 95%. In the case that a response is affected by one or more factors, a

more profound study must be carried out to classify the levels of the significant

factors through the multiple range test Rojas et al. [2000]. The levels of a factor

that are not statistically different form a homogeneous group, and therefore the

selection between the various levels belonging to a given homogeneous group has

no significant repercussion on the response.

Therefore, in the statistical study performed in this section, the factors considered

are the RBFNN model selection algorithm and the time series benchmark (exam-

ple). The levels of the algorithm factor are MoSe, MoSe-R, MoSe-D and K-CV-R

and K-CV for K = [2, 10] and the levels for the example factor are Logistic map,

Hénon map and Mackey-Glass. It is suspected that these factors affect the response

variables, which are the forecasting accuracy of the RBFNN model selected in the
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test set MS Etest and the computation time t which is the time needed by a method to

find the best RBFNN model. Thus, two different statistical studies are performed,

one for each response variable and, for this purpose, for each time series benchmark

(example), each model selection algorithm has been run 10 times. The normality,

independence of populations and homoscedasticity assumptions for ANOVA test

[Box et al., 1978] are accomplished and for each example, the results have been

normalized to the interval [0, 1] to allow a fair comparison among the values of

the different factors. For brevity purposes, only the hypothesis or the levels of the

algorithm and example factors will be analyzed.

When the response variable in the ANOVA test is the MS Etest value, it can be

observed from table 10.5 that the significante level of both factors, algorithm and

example, is lower than 0.05, which means that at least one of the levels of the

analyzed factors affects the MS Etest value (the null hypothesis is rejected).

Table 10.5: ANOVA table for the analysis of the main factors for the MS Etest

response

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Algorithm 40.26 20 2.01 21.33 0
Example 40.20 2 20.10 212.93 0

Table 10.6 classifies the levels of the significant algorithm factor through the multi-

ple range test. It can be observed five different homogeneous groups (A,B,C,D and

E) and the algorithms present within each group are not statistically different. The

best prediction results are achieved for the 5-CV, MoSe and 8-CV model selection

methodologies (homogeneous group A), although from tables 10.2 to 10.4 it has

been demonstrated that the computation load of MoSe is very low when compared

to 5-CV and 8-CV. From table 10.6, it can also be observed that the two variation

of MoSe algorithm, MoSe-D and MoSe-R (section 10.5.1.1), get high mean when

compared to MoSE. This fact demonstrates the improvement of the prediction ac-

curacy when the deterministic distribution of data proposed in section 10.4.1 is

used in the model selection procedure. Clearly, the prediction accuracy gets worse

when applying a random (MoSe-R) or a classic distribution (MoSe-D) before the

RBFNN is built and optimized.
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Table 10.6: Multiple range test for the factor algorithm when using MS Etest as
response

Factor levels Mean squares Homogeneous groups
5-CV 0.0022 A
MoSe 0.0024 A
8-CV 0.0179 A
8-CV-R 0.2289 B
4-CV-R 0.2385 BC
3-CV-R 0.2464 BCD
MoSe-R 0.2534 BCD
10-CV-R 0.2625 BCD
10-CV 0.2648 BCD
2-CV 0.2655 BCD
5-CV-R 0.2908 BCD
7-CV-R 0.2911 BCD
6-CV-R 0.3118 BCD
2-CV-R 0.3202 BCD
9-CV-R 0.3463 CD
9-CV 0.3490 D
7-CV 0.3543 D
6-CV 0.5832 E
4-CV 0.5959 E
MoSe-D 0.5959 E
3-CV 0.6673 E

Table 10.7 classifies the levels of the significant example factor for the MS Etest

response. Two different homogeneous groups are found: the one given by logistic

map time series and the other given by both the Hénon map and Mackey-Glass

time series. The best accuracy prediction result (lower mean value) is achieved for

the logistic map time series. It seems that, in terms of accuracy prediction, better

results are achieved for small time series with less inputs (Logistic map is the one

with the smallest number of samples and inputs), but further analysis is needed for

this assumption.

When the response variable in the ANOVA test is the computation time value t,

it can be observed from table 10.8 that the significance level of both factors, algo-

rithm and example, is lower than 0.05, which means that at least one of the levels of

the analyzed factors affects the computation time t (the null hypothesis is rejected).

Table 10.9 classifies the levels of the significant algorithm factor. It can be observed
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Table 10.7: Multiple range test for the factor example when using MS Etest as
response

Factor levels Mean squares Homogeneous groups
Logistic map 0.0564 A
Hénon map 0.4313 B
Mackey-Glass 0.4392 B

Table 10.8: ANOVA table for the analysis of the main factors for the computa-
tion time t response

Main factors Sum of squares D.F. Mean square F-Ratio Sig.level
Algorithm 26.02 20 1.30 90.80 0
Example 2.54 2 1.27 88.59 0

eleven different homogeneous groups (each letter represents a homogeneous group)

and the algorithms present within each group are not statistically different. The best

computation time results are achieved for the MoSe-D, MoSe-R and 2-CV-R model

selection algorithms. This is obvious because these algorithms require less compu-

tation time than others with higher number of folds (K > 2),but please remind from

table 10.6 that these methodologies do not achieve the best prediction accuracy val-

ues MS Etest and none of them take into account the variability and the geometry of

the learning set when building the training and validation sets. The MoSe method,

which belongs to the group of the best model selection methodologies as shown

in table 10.6, is present in two homogeneous groups: one given by the 2-CV-R,

2-CV and 4-CV algorithms (group C) and the other given by 4-CV and 3-CV-R

algorithms (group D), which means that the proposed MoSe algorithm is equiva-

lent in terms of computation time to these methodologies with low number of folds

(K <= 4). Moreover, from table 10.9, it can also be noticed how the computation

time increases as the number of folds, K, becomes larger. This fact proves how the

K-fold cross-validation-based model selection methodology for high values of K

is computationally expensive.

Finally, table 10.10 classifies the levels of the significant example factor for the time

t response. Each time series (example) forms a group, that is, there are statistical

differences among these time series in terms of computation time, which is obvious,
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Table 10.9: Multiple range test for the factor algorithm when using the compu-
tation time t as response

Factor levels Mean squares Homogeneous groups
MoSe-D 0.0350 A
MoSe-R 0.0480 AB
2-CV-R 0.0753 ABC
2-CV 0.0798 BC
MoSe 0.0934 CD
4-CV 0.1168 CD
3-CV-R 0.1342 DE
3-CV 0.1610 E
6-CV 0.2098 F
4-CV-R 0.2099 F
5-CV-R 0.2269 FG
6-CV-R 0.2643 G
7-CV 0.2697 G
7-CV-R 0.3262 H
5-CV 0.3272 H
9-CV 0.3702 I
8-CV-R 0.3966 I
9-CV-R 0.4076 I
8-CV 0.4516 J
10-CV 0.4542 J
10-CV-R 0.5043 K

since each one has both different number of samples and number of input values

(see table 10.1).

Table 10.10: Multiple range test for the factor example when using the compu-
tation time t as response

Factor levels Mean squares Homogeneous groups
Hénon map 0.1859 A
Mackey-Glass 0.2576 B
Logistic map 0.2939 C

Thus, the statistical analysis performed in this section guides to the following con-

clusions:

• The superiority of the proposed MoSe model selection methodology when

considering both the prediction accuracy (table 10.6) and the computation
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time (table 10.9) regardless of the time series benchmark chosen.

• The drawbacks when using model selection procedures based on K-fold

cross-validation. A researcher has two subjective choices: first, to decide

a priori the value of K with the risk of choosing an inappropriate RBFNN

model or second, execute K-fold cross-validation for a range of values for

K, which is computationally expensive.

• The usefulness of the deterministic generation of representative and balanced

training and validation sets (section 10.4.1) for the RBFNN model selection

problem.

• The suitability of the ANOVA test for analyzing the effect of one or more

factors on a response and to classify the levels of significant factors.

10.5.3.3 MoSe RBFNN versus other time series prediction methodologies

It is also interesting to check the forecasting accuracy of the RBFNN model se-

lected by the proposed methodology, MoSe, when compared to other traditional

methods for time series prediction. For this purpose, we have chosen classical

linear models such as Auto- Regressive Moving Average (ARMA) models [Bal-

aguer et al., 2008] and non linear models such as Multilayer Perceptron Neural

Networks (MLP) [Shiblee et al., 2009], Adaptive Network-based Fuzzy Inference

Systems (ANFIS) [Boyacioglu and Avci, 2010] and Weighted K-Nearest Neighbors

(WKNN), which are a variant of the K-Nearest Neighbors technique [Sorjamaa

et al., 2005].

Thus, for each time series benchmark described in section 10.5.2, the ARMA,

MLP, ANFIS and WKNN models, with different parameters and/or structures, will

be trained on the learning set S learn and the forecasting model built will be eval-

uated using the test set S test, obtaining the corresponding MS Etest error, which

is the forecasting accuracy. This error will be compared to the one given by the

final RBFNN forecasting model selected by the MoSe method, referred to as M-

RBFNN. This error has already been estimated in section 10.5.3 (tables 10.2 to

10.4).
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Table 10.11 shows the comparison between the M-RBFNN model and ARMA

models of order (m, n). For each time series benchmark, ARMA models of or-

der (m, n) with m = [1, 10] and n = [1, 10], have been run. Since the number of

possible ARMA models is 100, the one with lowest Akaike’s Information Criterion

(AIC) value [Akaike, 1973] on the learning set S learn is shown. The AIC criterion

is commonly used in traditional statistical models where the number of parameters

is small [Qi and Zhang, 2001]. It can be observed from table 10.11 that, for any

time series benchmark, the M-RBFNN forecasting model is superior to the ARMA

models in terms of prediction accuracy. Not surprisingly, linear ARMA models are

not proper for modeling highly non linear time series, such as the Logistic and the

Hénon maps. The forecasting accuracy obtained by ARMA(1,1) on Mackey-Glass

time series is nevertheless quite good.

Table 10.11: Comparison between M-RBFNN and ARMA models

Example TSP method MS Etest

Logistic map M-RBFNN 1.4E-4
ARMA(1,1) 0.2

Hénon map M-RBFNN 9.2E-5
ARMA(9,7) 4.9E-2

Mackey-Glass M-RBFNN 6.6E-5
ARMA(1,1) 5.2E-4

Table 10.12 shows the comparison between the M-RBFNN model and Multilayer

Perceptron Neural Network (MLP) models. In this case, several MLP architectures

with different number of hidden layers, nl = [1, 3], and different number of neurons

per layer, nn = [1, 20], have been run. Since MLP models are not deterministic,

the prediction accuracy has been averaged from 10 different executions for a given

number of layers and neurons. It can be observed from table 10.12 that, for any ex-

ample, the M-RBFNN model achieves the best prediction accuracy when compared

to MLPs. Also, the time needed to learn the network, tlearn, for a given architecture

(number of hidden layers/neurons per layer for MLPs and number of neurons for a

single hidden layer for M-RBFNN), is lower for M-RBFNN. Although MLPs are

considered universal approximators [Park and Sandberg, 1991], it is well known

that any lack of success in applications of MLPs to time series prediction/function

approximation, arises from inadequate learning or insufficient numbers of hidden

units [Hornik et al., 1989]. This might be the reason of the bad MLP’s performance
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compared to M-RBFNN, specially for the Hénon map and Mackey-Glass time se-

ries. An increase in the number of hidden units might provide better results, but at

the expense of high computational time.

Table 10.12: Comparison between M-RBFNN and MLP models. nl is the num-
ber of hidden layers and nn is the number of neurons per layer

Example TSP method nl-nn MS Etest tlearn (sec)
Logistic map M-RBFNN 1-8 1.4E-4 3.9 ± 0.1

MLP 1-2 0.5 ± 1.3 3.2 ± 0.7
1-5 5.2E-4 ± 4.2E-4 3.7 ± 0.1
1-10 5.9E-3 ± 2.0E-3 4.0 ± 0.1
1-15 1.5E-2 ± 6.1E-3 4.0 ± 0.1
1-20 4.3E-3 ± 1.0E-3 4.3 ± 0.1
2-2 0.6E-3 ± 1.1E-3 3.6 ± 0.1
2-5 5.9E-3 ± 4.2E-3 3.9 ± 0.1
2-10 1.5E-2 ± 0.6E-2 5.3 ± 0.2
2-15 4.5E-3 ± 1.4E-3 8.6 ± 0.2
2-20 1.3E-2 ± 0.6E-2 21.1 ± 1.5
3-2 0.3 ± 0.7 3.9 ± 0.2
3-5 4.6E-3 ± 6.6E-3 4.3 ± 0.1
3-10 7.4E-3 ± 4.9E-3 8.0 ± 0.3
3-15 3.9E-3 ± 1.7E-3 23.3 ± 0.1
3-20 1.8E-2 ± 1.5E-2 80.7 ± 0.3

Hénon map M-RBFNN 1-6 9.2E-5 2.9 ± 0.1
MLP 1-2 3.2E-1 ± 8.9E-1 4.2 ± 0.9

1-5 1.1E-2 ± 1.4E-2 3.8 ± 0.1
1-10 1.6E-3 ± 1.1E-3 3.9 ± 0.1
1-15 1.9E-3 ± 0.8E-3 4.6 ± 0.3
1-20 2.7E-3 ± 1.3E-3 4.6 ± 0.1
2-2 4.1E-2 ± 5.1E-1 4.0 ± 0.1
2-5 4.6E-3 ± 2.8E-3 4.3 ± 0.1
2-10 2.8E-3 ± 1.7E-3 5.6 ± 0.2
2-15 2.8E-3 ± 1.9E-3 8.3 ± 0.3
2-20 1.6E-3 ± 1.1E-3 19.9 ± 0.2
3-2 3.2E-1 ± 4.8E-1 3.9 ± 0.1
3-5 3.9E-2 ± 9.8E-2 4.2 ± 0.1
3-10 2.8E-3 ± 1.8E-3 7.2 ± 0.2
3-15 2.8E-3 ± 1.9E-3 32.3 ± 0.2
3-20 6.4E-3 ± 3.6E-3 80.6 ± 0.2

Mackey-Glass M-RBFNN 1-5 6.6E-5 2.1 ±0.1
MLP 1-2 0.6E-1 ± 1.4E-1 3.6 ± 0.1

1-5 7.3E-3 ± 2.3E-3 3.7 ± 0.1
1-10 7.3E-3 ± 2.9E-3 3.9 ± 0.1
1-15 5.6E-3 ± 1.9E-3 4.1 ± 0.1
1-20 4.1E-3 ± 2.2E-3 4.6 ± 0.1
2-2 1.9E-1 ± 1.9E-1 3.9 ± 0.2
2-5 1.1E-2 ± 0.4E-2 4.0 ± 0.1
2-10 4.7E-3 ± 2.1E-3 5.3 ± 0.1
2-15 4.9E-3 ± 1.1E-3 9.5 ± 0.2
2-20 5.4E-3 ± 2.2E-3 23.6 ± 0.4
3-2 3.7E-2 ± 2.9E-2 4.0 ± 0.1
3-5 9.4E-3 ± 6.2E-3 4.4 ± 0.1
3-10 6.1E-3 ± 3.2E-3 7.8 ± 0.1
3-15 5.5E-3 ± 2.5E-3 26.7 ± 0.4
3-20 7.9E-3 ± 3.4E-3 80.8 ± 0.3
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In table 10.13, it is shown the comparison between the M-RBFNN model and

WKNN models with different neighborhood size (K = [1, 10]). It can be ob-

served that the best results are achieved for medium neighborhood size (K = 4, 5).

Again, for all time series, the prediction accuracy of M-RBFNN model is superior

to WKNN for any value of K. The key idea behind the WKNN is that similar input

data values have similar output values [Sorjamaa et al., 2005] and, for the case of

function approximation problems with a single input (logistic time series, see table

10.1), this idea works well. Since there is no ”real” learning of data in WKNN

models, the learning time is not shown.

Table 10.13: Comparison between M-RBFNN and WKNN models

TSP method K MS Etest

Logistic map Hénon map Mackey-Glass
M-RBFNN - 1.4E-4 9.2E-5 6.6E-5
WKNN 1 6.3E-4 3.5E-4 3.8E-4

2 5.3E-4 2.6E-4 1.9E-4
3 2.6E-4 2.3E-4 1.7E-4
4 2.6E-4 2.0E-4 1.4E-4
5 2.7E-4 1.8E-4 1.6E-4
6 3.3E-4 1.9E-4 1.5E-4
7 3.8E-4 2.0E-4 1.8E-4
8 4.5E-4 2.0E-4 2.0E-4
9 5.8E-4 2.2E-4 2.7E-4
10 6.5E-4 2.6E-4 2.4E-4

Finally, table 10.14 shows the comparison between the M-RBFNN model and AN-

FIS models with different number of membership functions, nm f = [2, 7], per input

variable. This way, the number of rules in the Sugeno-type fuzzy inference sys-

tem is given by nr = nd
m f where d is the number of inputs for a given benchmark

(see table 10.1). According to the results given, the superiority of the proposed M-

RBFNN method in terms of prediction accuracy is proved in all the cases, except

for Hénon time series when the number of membership functions 7. Only in this

case, the prediction accuracy is slightly better than the one given by M-RBFNN.

Although ANFIS models have been successfully applied to time series forecast-

ing [Boyacioglu and Avci, 2010], one of their main drawbacks is their learning

computational load, tlearn, when applied to function approximation problems with



Chapter 10. Model selection for RBFNNs in time series forecasting 301

medium-high number of inputs, such as the Mackey-Glass example. On the con-

trary, ANFIS models are quite fast when the number of inputs is low (Logistic and

Hénon maps).

Table 10.14: Comparison between M-RBFNN and WKNN models

Example TSP method nm f − nr MS Etest tlearn (sec)
Logistic map M-RBFNN - 1.4E-4 3.9 ± 0.1

ANFIS 2-2 1.1E-1 1.4E-2 ± 0.1E-2
3-3 1.1E-2 7.9E-3 ± 0.1E-3
4-4 4.0E-3 1.5E-2 ± 0.1E-2
5-5 1.3E-3 1.2E-2 ± 0.1E-2
6-6 6.0E-4 1.3E-2 ± 0.1E-2
7-7 7.4E-4 1.6E-2 ± 0.1E-2

Hénon map M-RBFNN - 9.2E-5 2.9 ± 0.1
ANFIS 2-4 3.7E-2 1.3E-2 ± 0.1E-2

3-9 1.8E-3 2.4E-2 ± 0.1E-2
4-16 8.2E-4 3.7E-2 ± 0.1E-2
5-25 2.5E-4 5.7E-2 ± 0.1E-2
6-36 1.7E-4 8.7E-2 ± 0.1E-2
7-49 7.6E-5 1.3E-1 ± 0.1E-1

Mackey-Glass M-RBFNN - 6.6E-5 2.1 ± 0.1
ANFIS 2-16 2.0E-3 4.8E-2 ± 0.1E-2

3-81 3.8E-4 3.5E-1 ± 0.1E-1
4-256 2.1E-3 3.0 ± 0.1
5-625 1.7E-3 25.1 ± 0.1
6-1296 1.3E-2 121.9 ± 0.1
7-2401 9.4E-3 495.5 ± 0.1

According to the results given in this section, the effectiveness of the RBFNN

model selected by the MoSe algorithm (M-RBFNN) has been demonstrated in

terms of prediction accuracy when compared to other traditional methods for time

series forecasting in the recent literatures such as ARMA, MLP, ANFIS and WKNN

methodologies.

10.5.3.4 RBFNNs in time series competitions: MINCODA’09 and SICO’10

In [Florido et al., 2009b] and [Florido et al., 2009a], RBFNNs models are applied

to time series competitions held at the First International Workshop on Mining

and Non-Conventional Data (MINCODA’09) and the III Simposio de Inteligen-

cia Computacional (SICO’10) respectively. The work described in [Florido et al.,
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2009b] is emphasized in which a global methodology for the prediction of time

series is proposed. This methodology is composed of an input variable selection

criteria and the selection of the best RBFNN model for a forecasting task. The

input variable selection is carried out through the concept of Mutual Information

[Herrera et al., 2006] and the selection of the best RBFNN network is based on

a slight variation of the MoSe method proposed in section 10.4. This variation is

related to the deterministic generation of representative and balanced training and

validation sets (section 10.4.1). Instead of using the NNO algorithm proposed, the

training and validation sets are generated by means of a Minimum Spanning Tree

(MST). MSTs have two important properties that make them suitable for the dis-

tribution of data into two sets: (1) they connect all the nodes with n − 1 edges and

(2) the node pairs defining the edges represent points that tend to be close together.

This methodology was applied to the Time Series Contest carried out at MIN-

CODA’09, obtaining the best average forecasting for three time series: tempera-

ture, electricity prices and ozone levels (see Fig.10.4).

10.6 Conclusions and future work

Model selection approaches for incremental RBFNN construction based on K-fold

cross-validation have some drawbacks: its random nature and the subjective deci-

sion for a proper value of K, resulting in large bias for low values and high variance

and computational cost for high values. In order to prevent these problems, a deter-

ministic model selection approach for incremental RBFNN construction applied to

time series prediction problems has been proposed as a valid alternative from the

point of view of bias and variance, reproducibility and computational complexity

to those model selection approaches based on K-fold cross-validation. Given the

inputs, the method selects the network structure (number of nodes in the hidden

layers) and the model parameters (centers, radii and weights) for a given forecast-

ing task.

The results of applying the proposed algorithm (MoSe) in different examples con-

firms that its performance, considering the prediction accuracy and the computa-

tional load, is better than other model selection approaches commonly used such
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Figure 10.4: Time series at MINCODA’09 contest. Predictions made by the
methodology proposed (left) and real predictions (right) (a) Prediction for tem-
perature; (b) Real prediction for temperature; (c)Prediction for ozone levels ;
(d)Real prediction for ozone levels ; (e) Prediction for electricity prices; (f) Real

prediction for electricity prices
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as those based on K-fold cross-validation due to the following reasons: (1) it is

deterministic; (2) the distribution of the learning set into two sets, training and val-

idation, is accomplished taking into account the variability and the geometry of

the learning set. This fact reduces the pessimistic effects caused by the removal

of data from the original learning set since the distribution of the observations is

representative and balanced. This distribution is used in all the steps related to the

design of an RBFNN and it can be easily integrated in the Neural Network tool-

box of MATLABTMsoftware as an alternative to the functions that split randomly

the data into training and validation sets and whose drawbacks were described in

the introduction; (3) the computation time is reduced due to the use of only a val-

idation set in the RBFNN optimization and model evaluation, instead of using a

cross-validation procedure for evaluating a given RBFNN; (4) it is not necessary

to choose a value for K, such as in K-fold cross-validation procedure, which is

unknown a priori for RBFNN model selection. Moreover, the RBFNN model se-

lected by the proposed methodology can be considered a valid alternative for time

series forecasting to other linear and non-linear traditional prediction methods such

ARMA, MLP, WKNN and ANFIS.

It must be emphasized that, since the proposed methodology is a combined al-

gorithm, its main parts may be changed. For example, the RBFNN centers can

be initialized using other methodologies such as Fuzzy C-means or the distribu-

tion of the learning set into training and validation sets may take into account not

only the inputs, but also the output value. On the other hand, some of the parts

may be integrated in other forecasting methodologies. For example, in ANFIS

training, learning algorithms of neural networks are used and it might be expected

an improvement in the prediction accuracy and a reduction of time when training

through representative and balanced training and validation sets obtained from the

deterministic distribution approach.



Chapter 11

Conclusions of the dissertation
and list of publications

11.1 Conclusions

This section presents the general and most relevant conclusions of the dissertation,

despite the specific conclusions of each contribution were previously given at the

end of each corresponding chapter.

11.1.1 Part I. Intelligent Systems for Bioinformatics

This part has been devoted to the problem of predicting functional associations

between proteins by means of the integration of evidences from heterogeneous

biological data sources. After introducing the problem of predicting functional re-

lationships between proteins (chapter 2) and some of the existing methodologies in

the literature for such prediction task using data sources in isolation or by means of

a proper integration of them (chapter 3), it was proposed a multi-objective genetic

programming (MO-GP) approach to developing pareto optimal IF-THEN classifi-

cation rules for the problem at hand (chapter 4).

305
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To demonstrate the usefulness of our methodology, ten different evidences or sources

to predict functional associations between proteins in Saccharomyces Cerevisiae

organism were used. The results demonstrated that pareto optimal IF-THEN rules

obtained by a MO-GP approach is an effective data integration methodology in

terms of: (i) the handling of high unbalanced GSP and GSN sets that reflects the

ratio of positive to negative examples in the application domain as closely as pos-

sible; (ii) accuracy, improving statistically the results given by the Naı̈ve Bayesian

model, (iii) interpretability, since an FLN is constructed through simple and under-

standable rules in which the evidences used for predicting functional associations

are given and (iv) flexibility, since the decision maker does not have to specify par-

tial preferences on the desired accuracy of the FLN, owing to the fact that covering

the entire pareto, different FLNs are obtained, each one with a different level of

accuracy. Although the computational cost of the proposed methodology is higher

than other data integration approaches, such increase in the learning time is not

dramatic, since the MO-GP method simultaneously evolves toward multiple pareto

optimal rules or solutions (i.e. multiple FLNs). It must be also emphasized, that

the MO-GP has been run in parallel architectures (computer cluster): several MO-

GPs with different population size are run in different nodes of the cluster and for

each MO-GP, different subpopulations of the total population are evaluated by the

fitness function in parallel through several processors.

Due to the use of simple rules for predicting functional associations between pro-

teins, the importance of the evidences used in the integration process can be ex-

tracted at any level of accuracy. Thus, we may conclude that co-expression (Co-

exp) and co-ocurrence in PubMed abstracts (TextM) evidences and the ones related

to the molecular function and cellular componentes in Gene Ontology (SSMF and

SSCC respectively), have the best predictive power toward functional associations

for any level of accuracy. Moreover, other evidences such as Gene Neighbor plays

a key role in predicting associations for sparse and relative high confident FLNs.

Providing the decision maker with the role of each evidence when functional asso-

ciations are uncovered is a valuable information from the biological point of view.

Other important conclusions are related to the other methodologies applied to the

integration of biological data for the prediction task. For example, multilayer per-

ceptrons are very sensitive to the methodology used to introduce cost-sensitivity.
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When the minimization of the misclassification costs is used, the neural network

produces random predictions of functional relationships due to the presence of the

majority of true positive and negative cases (GSP and GSN respectively) in the

same interval of the input domain: the evidence score by itself cannot be used as a

predictor for functional links between proteins. When threshold-moving is used as

a cost-sensitivity approach, a multilayer perceptron has been proved to be effective

for data integration, since by manipulating the outputs of the MLP, the problem of

the distribution of protein pairs in the input domain is overcome. In the case of

Naı̈ve Bayes, it is a very fast methodology and does not suffer from the problem of

the distribution of the protein pairs in the input domain previously described, since

it measures the probability of observing the values in the evidence data set given

that a pair of proteins are functionally related (GSP) divided by the probability of

observing the values given that the pair is not functionally related (GSN). All of

these alternative methodologies do not provide interpretable rules.

11.1.2 Part II. A2TOOL - Affymetrix microarray Analysis Tool

This part of the dissertation was related to microarray data analysis pipeline. Af-

ter introducing the different steps involved in microarray data analysis (chapter 5)

and the existing tools and metrics for such pipeline (chapter 6), the proposed tool

for analyzing standard Affymetrix 3’ expression arrays was explained in chapter 7.

This tool has been developed for the first three steps of the pipeline: (1) automated

quality assessment of the experiment to detect defective arrays according to quanti-

tative and qualitative measures, (2) automated selection of the best pre-processing

methods among tens of them for a given data set through objective quality metrics

(replicate variability, Kolmogorov-Smirnov test and rank Spearman correlation co-

efficient) and (3) automated generation of confident and complete lists of differen-

tially expressed genes according to the set of best pre-processing methods selected

before.

The usefulness of the tool has been proved when applied to the Chronic Lympho-

cytic Leukemia (CLL) data set. Through this data set, a low quality array was

automatically detected as defective in six quality metrics. Seven pre-processing

methods (most of them standard in the literature and some of them custom) were



Chapter 11. Conclusions and list of publications 308

selected as the more suitable for the data set, discarding the pre-processing meth-

ods that did not fulfill the quality metrics or that introduced correlation artifacts

in the pre-processed data. Confident and complete lists of differentially expressed

genes were built according to this set of pre-processing methods, proving that the

selection of a pre-processing method has an influence on the list of differentially

expressed genes. As can be noticed, the whole process is automatic, so that the

(non-expert) decision maker is aided. This automation (i) avoids to waste time

for searching the proper quality assessment and pre-processing methods and (ii)

reduces the possible errors in further analysis phases due to the presence of low

quality arrays and/or incorrect choice of pre-processing methods.

According to these results, some other important conclusions can be drawn:

1. It is important to make the best use of the information produced by the mi-

croarray experiments by removing defective or low quality arrays if they are

detected. This way, the results will have more statistical significance and

biological meaning.

2. Some pre-processing methods introduce correlation artifacts on the data set

even if they improve raw data. Thus, it is important to detect such pre-

processing methods and avoid their use.

3. The performance of a pre-processing method is highly dependent on the se-

lection of each pre-processing step. Moreover, the most critical steps are

Background Correction and Normalization.

4. It is justified the use of two lists of differentially expressed genes: the inter-

section list provides a reliable list of differentially expressed genes regardless

of the pre-processing method selected and the union list shows a complete

list of candidate genes that are likely to be differentially expressed. This

way, the set of candidate genes does not rely on a single expression data

and the effect that the selection of a pre-processing method may have on the

detection of differentially expressed genes is alleviated.

As demonstrated, the selection of a pre-processing method affects the detection of

differentially expressed genes. We also assessed whether such selection may affect
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other posterior stages of the microarray data analysis pipeline, such as phenotype

classification. So, we studied the effect of a subset of standard pre-processing meth-

ods (RMA, VSN, dChip, MAS5 and GCRMA) on microarray-based SVM classi-

fiers, demonstrating that there are no statistical differences among RMA, VSN,

dChip and MAS5 pre-processing methods in terms of misclassification rate, but

the GCRMA method shows the same performance, statistically speaking, as raw

data. Through these results, we also demonstrated that SVM classifiers are sensi-

tive to both feature selection and kernel function: when very few/large number of

genes are selected or the polynomial kernel is chosen, SVM’s accuracy goes down.

On the other hand, well-tuned RBF kernels gave similar results to the linear ones.

11.1.3 Part III. Intelligent systems for function approximation

This part of the dissertation was devoted to the problem of distributing the original

data set (input/output data) into two representative and balanced sets for function

approximation tasks and the problem of model selection. An introduction to these

problems were briefly described in chapter 8.

Chapter 9 presented a new data mining approach, NNO-CFA, for a distribution of

a data set (input/output data) into two representative and balanced sets of roughly

equal size to be used in function approximation problems with the aim of (i) al-

lowing both a fair evaluation of learning’s accuracy and (ii) making reproducible

machine learning experiments usually based on random distributions. The main

features of the NNO-CFA methodology are:

• It is based on a clustering procedure, the CFA, which is specially suited

and adequate for function approximation problems due to the analysis of

the output variability of the target function and, thus, its adaptation to the

instance space with singularities during the clustering process.

• The distribution of the data values is made within clusters using the NNO

approach, taking into account all data values contained in a cluster. This

fact allows the study of the variability and the geometry of the data set lo-

cally,which produces a reduction of the input space and, therefore, an im-

provement of the distribution’s quality.
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The proposed methodology was assessed through several function approximation

problems, such as nonlinear chaotic time series, real time series problems, artificial

function approximation problems and nonlinear dynamic systems and compared

to other existing methodologies in the literature. The results analyzed through

an ANOVA test demonstrated the superiority of our approach according to three

quality metrics: the cross-validation error, the J-divergence and the average of

generalization errors.

We also demonstrated through the results that the random approach, which is com-

monly used in the literature for distributing the original data set into two groups,

should not be recommended for this kind of problems due to the following reasons:

• It may lead to wrong conclusions about a learning algorithm due to both its

random nature and the distribution itself, since the variability of the data set

is not taken into account and may produce unrepresentative sets.

• Comparisons between performances of several learning algorithms in differ-

ent experiments are difficult due to the need of using several random splits to

get a reliable estimate of the quality of the learning algorithms. This is com-

putationally expensive because it involves several repetitions of the random

splitting and learning process.

The NNO-CFA method is freely available, together with the examples used in this

dissertation, at the website http://atc.ugr.es/˜hector/NNO-CFA/index.html.

Finally, chapter 10 presented a new deterministic model selection methodology

for incremental RBFNN construction in time series prediction problems (MoSe).

Such model selection approach is a combined algorithm which takes advantage of

balanced and representative training and validation sets for their use in RBFNN

initialization, optimization and network model evaluation.

The results of applying the proposed algorithm in different examples confirms that

its performance, considering the prediction accuracy and the computational load, is

better than other model selection approaches commonly used such as those based

on K-fold cross-validation due to the following reasons: (1) it is deterministic;

(2) the distribution of the learning set into two sets, training and validation, is
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accomplished taking into account the variability and the geometry of the learn-

ing set. This fact reduces the pessimistic effects caused by the removal of data

from the original learning set since the distribution of the observations is repre-

sentative and balanced. This distribution is used in all the steps related to the

design of an RBFNN and it can be easily integrated in the Neural Network tool-

box of MATLABTMsoftware as an alternative to the functions that split randomly

the data into training and validation sets and whose drawbacks were described in

the introduction; (3) the computation time is reduced due to the use of only a val-

idation set in the RBFNN optimization and model evaluation, instead of using a

cross-validation procedure for evaluating a given RBFNN; (4) it is not necessary

to choose a value for K, such as in K-fold cross-validation procedure, which is

unknown a priori for RBFNN model selection. Moreover, the RBFNN model se-

lected by the proposed methodology can be considered a valid alternative for time

series forecasting to other linear and non-linear traditional prediction methods such

ARMA, MLP, WKNN and ANFIS.
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Mãlaga, España, pp.66-70.



Chapter 11. Conclusions and list of publications 316

4. Pomares, H., Rojas, I., Guillén, A., Herrera, L.J., Rubio, G., Florido, J.P.,

Urquiza, J.M, Cara, A.B. Lopez-Mansilla, L., Egea-Serrano, S. (2009). Im-

plementation of a didactic interpreter for CODE-2. In V Internacional Con-

ference on Multimedia and Information and Communication Technologies in

Education Research, Lisbon, Portugal. Reflections and Innovations in Inte-

grating ICT in Education, Vol.2. pp.960-964.

5. Pomares, H., Garcia-Garcia, C., Rojas, I., Damas, M., González, J., Florido,
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Estas conclusiones contienen una versión en español del Capı́tulo 11 y han sido

incluı́das para cumplir con los requerimientos necesarios para poder optar a la

mención de Doctorado Europeo.

Conclusiones

Esta sección presenta las conclusiones generales y más relevantes de la Tesis Doc-

toral.

Parte I. Sistemas Inteligentes para Bioinformática

Este bloque de la tesis ha sido dedicado al problema de la predicción de rela-

ciones funcionales entre proteı́nas mediante la integración de fuentes biológicas

heterogéneas. Después de introducir el problema de la predicción de relaciones

funcionales entre proteı́nas (capı́tulo 2) y algunas de las metodologı́as existentes

en la literatura para dicha tarea de predicción utilizando fuentes de datos de forma

aislada o por medio de una integración de ellas (capı́tulo 3), se ha propuesto

una metodologı́a basada en programación genética multi-objetivo (MO-GP) para

obtener reglas pareto-óptimas de clasificación del tipo SI-ENTONCES para el

problema de predicción (capı́tulo 4). Para demostrar la utilidad de la metodologı́a
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propuesta, diez fuentes de datos han sido utilizadas para prededir relaciones fun-

cionales entre proteı́nas en el organismo de la levadura Saccharomyces Cerevisiae.

Los resultados han demostrado que las reglas pareto-óptimas del tipo SI-ENTONCES

obtenidas mediante una metodologı́a MO-GP conforman una propuesta de inte-

gración de datos efectiva en términos de: (i) uso de conjuntos GSP y GSN no bal-

anceados que reflejan la proporción de ejemplos positivos y negativos existentes

en el dominio de aplicación; (ii) precisión, mejorando estadı́sticamente los resul-

tados dados por el modelo Naı̈ve Bayes; (iii) interpretabilidad, ya que la FLN es

construı́da por medio de reglas sencillas e interpretables en las que las diferentes

fuentes utilizadas en la tarea de predicción son proporcionadas y (iv) flexibilidad,

ya que el investigador no tiene que especificar preferencias en el nivel de precisión

de la FLN, debido a que, cubriendo el pareto completo, se obtienen diferentes

FLNs, cada una con un nivel de precisión determinado. Aunque el coste computa-

cional de la metodologı́a propuesta es mayor que el de otras metodologı́as de inte-

gración, dicho incremento en el proceso de aprendizaje no es dramático, debido a

que el método MO-GP evoluciona simultáneamente diferentes reglas o soluciones

(es decir, múltiples FLNs). También hay que destacar que la metodologı́a MO-GP

ha sido ejecutada en arquitecturas paralelas (cluster de computadores) donde diver-

sos MO-GPs con diferentes tamaños de la población son ejecutados en diferentes

nodos del cluster y, para cada MO-GP, diferentes subpoblaciones de invididuos son

evaluados por la función fitness en paralelo en diferentes procesadores.

Debido al uso de reglas sencillas para la predicción de relaciones funcionales en-

tre proteı́nas, queda reflejada la importancia de las diversas fuentes utilizadas en

el proceso de integración para cualquier nivel de precisión. Ası́, podemos con-

cluir que las fuentes de datos relacionadas con la co-expresión (Co-exp), la co-

ocurrencia de resúmenes en PubMed (TexM) y las relacionadas con las funciones

moleculares y los componentes celulares en Gene Ontology (SSMF y SSCC re-

spectivamente), tienen la mayor capacidad de predicción de relaciones funcionales

para cualquier nivel de precisión. Es más, otras fuentes como Gene neighbor (GN),

juegan un papel importante en la predicción de relaciones funcionales en FLNs

pequeñas y precisas. Ası́, proporcionar este tipo de información al investigador es

de un valor incalculable desde el punto de vista biológico.
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Otras conclusiones importantes están relacionadas con otras metodologı́as apli-

cadas a la integración de fuentes biológicas heterogéneas para la tarea de predicción.

Por ejemplo, los perceptrones multicapa son muy sensibles a la metodologı́a uti-

lizada para introducir costes de clasificación errónea. Cuando se utiliza la mini-

mización del coste de clasificación errónea (minimization of the misclassification

cost en inglés), la red neuronal produce predicciones de relaciones funcionales de

forma aleatoria, debido a la presencia en el mismo intervalo del dominio de entrada

de la mayorı́a de los casos de verdaderos positivos y verdaderos negativos (GSP y

GSN respectivamente) de forma que el valor de la fuente por sı́ mismo no puede

ser utilizado como evidencia para predecir relaciones funcionales entre proteı́nas.

Cuando se utiliza threshold-moving como técnica para introducir costes de clasi-

ficación errónea, el perceptrón multicapa es efectivo en la integración de datos,

debido a que se manipulan las salidas de la red neuronal, de forma que se evita el

problema de la distribución de los pares de proteı́nas en el dominio de entrada. En

el caso de Naı̈ve Bayes, es una metodologı́a muy rápida y no sufre del poblema de

la distribución de los pares de proteı́nas en el dominio de entrada anteriormente co-

mentado, ya que mide la probabilidad de observar los valores de una fuente de datos

determinada dado que el par de proteı́nas está relacionado funcionalmente (GSP)

dividido por la probabilidad de observar los valores dado que el par de proteı́nas

no está relacionado funcionalmente (GSN). Todas estas metodologı́as alternativas

no proporcionan reglas interpretables.

Parte II. A2TOOL - Herramienta de análisis de microarrays de Affymetrix

Este bloque de la tesis está relacionado con el análisis de datos de microarrays.

Después de introducir las diferentes etapas involucradas en el análisis de datos

de microarrays (capı́tulo 5) y las diferentes herramientas y métricas para dicho

análisis (capı́tulo 6), la herramienta propuesta para analizar microarrays del tipo

Affymetrix 3’ es descrita con detalle en el capı́tulo 7. Esta herramienta ha sido de-

sarrollada para las primeras tres etapas del análisis: (1) evaluación automática de la

calidad del experimento para detectar microarrays de baja calidad de acuerdo a di-

versas métricas cuantitativas y cualitativas, (2) selección automática de los mejores

métodos de pre-procesamiento para un conjunto de datos determinado haciendo
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uso de métricas de calidad objetivas (variabilidad de réplicas, test de Kolmogorov-

Smirnov y coeficiente de correlación de Spearman) y (3) generación automática de

listas fiables y completas de genes expresados diferencialmente de acuerdo a los

mejores métodos de pre-procesamiento seleccionados anteriormente. La utilidad

de la herramienta ha sido demostrada mediante su aplicación a los datos Chronic

Lymphocytic Leukemia, CLL. A través de este conjunto de datos, un microarray

de baja calidad fue detectado automáticamente en seis métricas de calidad. Si-

ete métodos de pre-procesamiento (la mayorı́a de ellos estándar en la literatura y

algunos de ellos personalizados) fueron seleccionados como los más apropiados

para el conjunto de datos, descartando los métodos de pre-procesamiento que no

cumplı́an con las métricas de calidad o que introducı́an efectos artificiales de cor-

relación en los datos pre-procesados. Por otro lado, la herramienta proporcionó

listas fiables y completas de genes expresados diferencialmente de acuerdo a los

métodos de pre-procesamiento seleccionados anteriormente, demostrando que los

métodos de pre-procesamiento tienen influencia en la lista de genes expresados

diferencialmente. Como se ha podido comprobar, el proceso completo es au-

tomático, de forma que el usuario, probablemente no experto, es ayudado en todo

momento. Esta automatización (i) evita la pérdida de tiempo en la búsqueda de los

métodos más apropiados para el análisis de calidad y el pre-procesamiento y (ii)

reduce los posibles errores presentes en etapas posteriores del análisis de microar-

rays, como la clasificación, debidos a la presencia de microarrays de baja calidad

y/o una selección incorrecta de los métodos de pre-procesamiento.

De acuerdo a estos resultados, podemos extraer algunas conclusiones interesantes:

• Es importante hacer el mejor uso posible de la información producida por

los experimentos de microarrays, eliminando microarrays de baja calidad si

éstos son detectados. De esta forma, los resultados tendrán más significado

desde el punto de vista biológico.

• Algunos métodos de pre-procesamiento introducen efectos artificiales de

correlación en el conjunto de datos, incluso mejorando a los datos crudos.

Por tanto, es esencial detectar dichos métodos de pre-procesamiento y evitar

su uso.



Conclusiones y lista de publicaciones 321

• El rendimiento de un método de pre-procesamiento es altamente dependiente

de la selección de cada etapa de pre-procesamiento. Es más, las etapas más

crı́ticas corresponden a la normalización y a la correción del ruido de fondo.

• Está justificado el uso de dos listas de genes expresados diferencialmente:

la lista intersección que proporciona una lista fiable de genes expresados

diferencialmente independientemente del método de pre-procesamiento se-

leccionado y la lista unión, que muestra una lista completa de genes can-

didatos que, con mucha probabilidad, están expresados diferencialmente. De

esta forma, el conjunto de genes candidatos no se basa en un sólo conjunto

de expresión y el efecto que los métodos de pre-procesamiento tienen en la

detección de genes expresados diferencialmente es reducido.

Como se ha podido demostrar, la selección de un método de pre-procesamiento

afecta a la detección de los genes expresados diferencialmente. También se ha

estudiado si dicha selección tiene un efecto en etapas posteriores del análisis de

microarrays, como la clasificación. Ası́, hemos estudiado el efecto de un sub-

conjunto de métodos de pre-procesamiento estándar (RMA, VSN, dChip, MAS5 y

GCRMA) en clasificadores de microarrays basados en Máquinas de Vector Soporte

(Support Vector Machine, SVM, en inglés), demostrando que no existen diferen-

cias significativas entre RMA, VSN, dChip y MAS5 en términos de errores cometi-

dos en la clasificación. Sin embargo, se pudo demostrar que el método GCRMA

muestra el mismo rendimiento, estadı́sticamente hablando, que los datos crudos. A

través de estos resultados, demostramos también que los clasificadores SVM son

sensibles a la selección de genes y a la función kernel: cuando son seleccionados

muy pocos o muchos genes o se escoge un kernel de tipo polimonial, la precisión

de SVM desciende. Por otro lado, kernels basados en funciones de base radial

proporcionan resultados similares a los kernels de tipo lineal.

Parte III. Sistemas inteligentes para aproximación funcional

Este bloque de la tesis ha sido dedicado al problema de la distribución de un con-

junto original de datos de entrada/salida en dos conjuntos representativos y bal-

anceados para aproximación funcional y al problema de la selección del modelo.
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Una introducción a estos problemas se proporcionó en el capı́tulo 8.

El capı́tulo 9 presentó una nueva metodologı́a denominada NNO-CFA para la dis-

tribución de un conjunto de datos de entrada/salida en dos conjuntos representa-

tivos y balanceados de, aproximadamente, el mismo tamaño para ser utilizados en

problemas de aproximación funcional con el objetivo de (i) permitir una evaluación

justa de la precisión de un algoritmo de aprendizaje y (ii) realizar experimentos re-

producibles de aprendizaje normalmente basados en distribuciones aleatorias. Las

principales caracterı́sticas de la metodologı́a NNO-CFA son:

• Está basada en un procedimiento de clustering, el CFA, que está especial-

mente diseñado para problemas de aproximación funcional debido al análisis

de la variabilidad de la salida de la función y, por tanto, su adaptación al es-

pacio con singularidades durante el proceso de clustering.

• La distribución de los datos se realiza para cada cluster por medio del al-

goritmo NNO, teniendo en cuenta todos los datos contenidos en un cluster.

Este hecho permite el estudio de la variabilidad y la geometrı́a de los datos

de forma local, proporcionando una reducción del espacio de entrada y, por

lo tanto, una mejora en la calidad de la distribución.

La metodologı́a propuesta ha sido evaluada mediante numerosos problemas de

aproximación funcional, como series temporales caóticas no lineales, series tempo-

rales reales, problemas de aproximación funcional artificiales o sistemas dinámicos

no lineales. Además, la metodologı́a ha sido comparada con otras propuestas en

la literatura. Los resultados fueron analizados a través de un test ANOVA de-

mostrando la superioridad de la metodologı́a propuesta de acuerdo a tres métricas

de calidad: el error de validación cruzada, la J-divergencia y el error medio de

generalización.

También demostramos que la metodologı́a de distribución aleatoria comúnmente

utilizada en la literatura para distribuir el conjunto de datos original en dos conjun-

tos, no es recomendable para este tipo de problemas debido a la siguientes razones:
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• Puede dar lugar a conclusiones erróneas sobre el algoritmo de aprendizaje,

debido a su naturaleza aleatoria y a la propia distribución, ya que la vari-

abilidad del conjunto de datos no es tenida en cuenta y puede, por lo tanto,

producir conjuntos no representativos.

• Las comparaciones entre el rendimiento obtenido por diferentes algoritmos

de aprendizaje en diferentes experimentos son difiı́ciles debido a la necesi-

dad de utilizar numerosas particiones aleatorias para obtener una estimación

representativa de la calidad de los algoritmos de aprendizaje. Esto es com-

putacionalmente costoso ya que implica numerosas repeticiones del parti-

cionamiento o distribución aleatoria y del proceso de aprendizaje.

El método NNO-CFA está disponible de forma libre junto con los ejemplos utiliza-

dos en esta tesis, en el sitio web http://atc.ugr.es/˜hector/NNO-CFA/index.html.

Finalmente, el capı́tulo 10 presentó una nueva metodologı́a de selección del modelo

para la construcción de RBFNNs incremental en problemas de predicción de series

temporales denominado MoSe. Dicha metodologı́a de selección del modelo es

un algoritmo combinado que aprovecha conjuntos de entrenamiento y validación

balanceados y representativos para su uso en la inicialización de la RBFNN, su

optimización y en la evaluación del modelo de red.

Los resultados de aplicar el algoritmo propuesto en diferentes ejemplos confirman

que su rendimiento, considerando la capacidad de predicción y el coste computa-

cional, es mejor que otras metodologı́as de selección del modelo comúnmente uti-

lizadas en la literatura, como las basadas en la validación cruzada K-veces, debido

a los siguientes motivos: (1) es determinista; (2) la distribución del conjunto de

aprendizaje en dos conjuntos, entrenamiento y validación, se lleva a cabo teniendo

en cuenta la variabilidad y la geometrı́a del conjunto de aprendizaje. Este hecho

reduce los efectos pesimistas causados por la eliminación de datos del conjunto de

aprendizaje debido a que la distribución de los datos es representativa y balanceada.

Esta distribución es utilizada en todas las etapas relacionadas con el diseño de la

RBFNN y puede ser fácilmente integrada en la toolbox de Redes Neuronales del

software de MATLABTMcomo una alternativa a las funciones que dividen aleato-

riamente el conjunto de datos en entrenamiento y validación y cuyas desventajas
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ya fueron descritas en la introducción; (3) el tiempo de cómputo es reducido de-

bido al uso de un solo conjunto de validación en la optimización y en la evaluación

de la RBFNN; (4) no es necesario elegir un valor para K, como en los proced-

imientos basados en la validación cruzada K-veces. El valor de K es desconocido

a priori para la selección del mejor modelo de RBFNN. Es más, el modelo de

RBFNN seleccionado por la metodologı́a propuesta puede ser considerado una al-

ternativa válida para predicción de series temporales comparada con otros métodos

de predicción, como ARMA, MLP, WKNN y ANFIS.
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Appendix A

Supplementary material for
Naı̈ve Bayes data integration

A.1 Contingency tables for Naı̈ve Bayes

In this appendix, the LLR value for each bin over all evidences assembled (a total

of 10) by the Naı̈ve Bayes data integration methodology is calculated. LLR values

for discrete evidences (PPI and GI) were calculated according to equation 4.4 and

LLR values for continuous evidences (Co-exp, GF, PP, GN, SS, TextM, SSMF and

SSCC) were calculated according to equation 4.5. Contingency tables for these

evidences are in tables A.1 - A.10.

Table A.1: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the Co-exp evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0.1, 0.2[ 1624 4673 22545 0.034822884 0.0047023095 2.002221
[0.2, 0.4[ 3452 5142 25074 0.074020070 0.0051742511 2.660641
[0.4, 0.6[ 1390 1038 5957 0.029805301 0.0010445104 3.35113
[0.6, 0.7[ 460 197 1332 0.009863624 0.0001982356 3.907152
[0.7, 0.8[ 440 132 887 0.009434771 0.0001328279 4.263102
[0.8, 0.9[ 323 42 457 0.006925979 4.2263428e-005 5.099112
[0.9, 1] 891 30 1093 0.019105412 3.0188163e-005 6.450277
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Table A.2: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the PPI evidence

Interaction GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
Yes 4756 3804 49531 0.1019 0.0038 3.2824
No 41880 989963 12840972 0.8980 0.9961 -0.1037

Table A.3: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the GI evidence

Interaction GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
Yes 2954 8683 104344 0.0633 0.00873 1.9809
No 43682 985084 12786159 0.9366 0.99126 -0.0566

Table A.4: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the GF evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 0.2[ 46559 993743 12895237 0.99834892 0.99997585 -0.001628
[0.2, 0.4[ 21 14 110 0.00045029 1.40878e-005 3.4645951
[0.4, 0.6[ 19 4 71 0.00040741 4.02509e-006 4.6172746
[0.6, 1[ 37 6 163 0.00079337 6.03763e-006 4.8782884

Table A.5: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the PP evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 0.1[ 46377 993566 12893883 0.99444635 0.99979774 -0.005367
[0.1, 0.3[ 156 174 1419 0.00334505 0.00017509 2.9499307
[0.3, 0.4[ 44 23 170 0.00094347 2.31443e-005 3.7078254
[0.4, 0.45[ 17 2 44 0.00036452 2.01254e-006 5.1991962
[0.45, 1] 42 2 65 0.00090059 2.01254e-006 6.1036524
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Table A.6: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the GN evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 0.1[ 44878 988784 12882766 0.9623038 0.99498575 -0.033398
[0.1, 0.3[ 711 3343 8098 0.0152457 0.00336396 1.5111785
[0.3, 0.4[ 165 732 1725 0.0035380 0.00073659 1.569295
[0.4, 0.5[ 122 400 979 0.0026160 0.00040250 1.8716865
[0.5, 0.6[ 129 234 620 0.0027661 0.00023546 2.4636213
[0.6, 0.7[ 207 149 546 0.0044386 0.00014993 3.3879025
[0.7, 0.8[ 352 120 708 0.0075478 0.00012075 4.1352694
[0.8, 1] 72 5 139 0.0015438 5.03136e-006 5.7263582

Table A.7: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the SS evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0,1e-250[ 137 6 274 0.0029 6.037e-006 6.187
[1e-250,1e-150[ 52 3 110 0.0011 3.018e-006 5.911
[1e-150,1e-50[ 210 14 825 0.0045 1.408e-005 5.767
[1e-50,1e-1[ 244 147 2175 0.0052 0.00015 3.565
[1e-1,1] 45993 993597 12887119 0.9862 0.9998 -0.014

Table A.8: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the TextM evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 0.1[ 39533 984436 12833065 0.84769277 0.99061048 -0.155803
[0.1, 0.3[ 2477 5257 22859 0.05311347 0.00528997 2.3066176
[0.3, 0.4[ 742 1341 8818 0.01591045 0.00134941 2.4673084
[0.4, 0.5[ 818 1247 9806 0.01754009 0.00125482 2.6374964
[0.5, 0.6[ 715 653 7620 0.01533150 0.00065709 3.1498354
[0.6, 0.7[ 547 356 4746 0.01172913 0.00035823 3.4886481
[0.7, 0.8[ 438 210 2477 0.00939188 0.00021131 3.7942414
[0.8, 0.9[ 397 174 2859 0.00851273 0.00017509 3.884011
[0.9, 1] 969 93 3331 0.02077794 9.35833e-005 5.4027951
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Table A.9: Contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the SSMF evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 10[ 586 340 3310 0.0125654 0.0003421 3.6035042
[10, 50[ 2587 3187 33423 0.0554721 0.0032069 2.8505489
[50, 100[ 1869 6475 38291 0.0400763 0.0065156 1.8165849
[100, 500[ 7951 37228 293664 0.1704906 0.0374614 1.5153665
[500, 1000[ 2667 66533 474884 0.0571875 0.0669503 -0.157613
[1000, 5079[ 30976 880004 12052009 0.6642079 0.8855234 -0.287583

Table A.10: contingency table detailing the intersection of predicted functional
linkages with the GSP and GSN sets and the resultant log-likelihood ratios for

the SSCC evidence

Bin GSP GSN TOTAL P(bin|GS P) P(bin|GS N) LLR
[0, 10[ 417 18 2222 0.0089415 1.81129e-005 6.201844
[10, 50[ 2860 1060 24243 0.0613260 0.0010666 4.051682
[50, 100[ 3704 2949 61429 0.0794236 0.0029674 3.287077
[100, 500[ 7955 40232 508104 0.1705763 0.0404843 1.438268
[500, 1000[ 5910 100254 969801 0.1267261 0.1008828 0.228068
[1000, 5079[ 25790 849254 11329782 0.5530062 0.8545806 -0.435241
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B.1 Preprocessing methods used by the A2TOOL

In this appendix, pre-processing methods used by A2TOOL are presented. Table

B.1 shows such pre-processing methods in terms of:

• The method used in each step of pre-processing: Background correction,

Normalization, PM correction and Summarization.

• The name of the pre-processing method known in the literature. Some pre-

processing methods are standard in the literature for a specific combination

of background correction, normalization, PM correction and summarization

methods (l.farms, justPlier, mmgmos, MBEI(PM-MM model), MBEI(PM

only model), AD, DFW, VSN, GCRMA, RMA, MAS5 and CP). The non-

standard pre-processing methods are pointed out as ”custom”.

• The name of the function by which the pre-processing method is called

within R.

• The Bioconductor package that implements such pre-processing method.

335



Appendix B. Supplementary material for A2TOOL 336
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Time (sec.)

Figure B.1: Average and standard deviation running time of R functions run-
ning the same pre-processing method in several Bioconductor packages. Five
different data sets are used and y axes show the standard name of the preprocess-
ing method, followed by the R function that implements such method and the

Bioconductor package[Florido et al., 2009c].

In some cases, one can run the same pre-processing method (that is, the same com-

bination of background correction, normalization, PM correction and summariza-

tion procedures) using different R functions in different Bioconductor packages.

For example, expresso, rma (affy package) and threestep (affyPLM package) R

functions may run the same standard pre-processing method (RMA). When such

situation arises, the function with the lowest computational cost is chosen. For ex-

ample, in Fig. B.1, VSN, MAS5 and GCRMA standard pre-processing methods

can be run using two different R functions each and RMA standard pre-processing

method can be run using three different R functions in different Bioconductor pack-

ages [Florido et al., 2009c].
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