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Jaramillo, José Santiago, Carlos Delgado, Blanca Biel, Ana Belén Jódar y Marisa
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Chapter 1

Introduction

The beauty of Physics underlies on the striking simplicity of its fundamental
laws. Maxwell equations, Hamiltonian mechanics, Einstein and Schrödinger
equations, can each be expressed in a few lines. Not only the laws of Physics,
but also the philosophic ideas behind these laws are simple. Everything is sim-
ple, except the world these laws intend to describe.[1] Nature is complex at all
levels. Think for instance about a living organism (say yourself). You are ulti-
mately made of many elementary particles, whose behavior can be accurately
described within the framework of the Standard Model. However, we do not
understand at all how the collective dynamics of such a large set of (quantum)
particles can give rise to the amazing phenomenon of life. The whole does not
behave as a simple superposition of its parts.

Complexity arises due to the non-trivial underlying structure of all natural
systems, and the non-linear interactions among their constituents. The obvi-
ous question now is: how the complex world emerges from the simple laws of
Physics?. The search for an answer to this question was the seed that gave rise
to the development of Statistical Mechanics during the second half of XIX cen-
tury and the beginning of XX century. In a general sense, Statistical Mechanics
is a branch of Physics aimed to describe the macroscopic (complex) proper-
ties of matter from the interactions between its microscopic constituents. The
most successful achievement of Statistical Mechanics is Ensemble Theory[2],
which yields the connection between the microscopic fundamental physics and
the macroscopic behavior of equilibrium systems. An isolated system which
shows no hysteresis and reaches a steady state is said to stay at equilibrium.[3]
Starting from a few basic postulates, Ensemble Theory provides us with a well-
defined “canonical” formalism in order to obtain the stable equilibrium prop-
erties of macroscopic matter.[82] In particular, it allows us to understand how
complex situations, as for instance phase transitions, arise in many-body inter-
acting systems.

However, most of the systems we find in Nature are out of equilibrium:
they are open, hysteretic systems, subject to thermal or energetic gradients,
mass and/or energy fluxes, which suffer the action of external agents, or are



2 Introduction

Figure 1.1: Complexity in Nature: pattern formation in vertically vibrated granular ma-
terials. In particular, here we observe localized wave structures called oscillons.[4]

subject to several sources of non-thermal noise. Think again about yourself:
can you feel your breath?. This is a pure non-equilibrium process, where a
flux of air from the external medium towards your lungs appears due to a
pressure gradient. Nonequilibrium processes are also essential for cell func-
tioning, brain processing, etc. What is more intriguing, all living organisms are
nonequilibrium structures: nonequilibrium conditions are essential for life. On
the other hand, nonequilibrium structures appear at all scales. For instance,
the Sun exhibits temperature gradients, mass and energy transport, convec-
tion, etc. On the opposite limit one finds for example magnetic nanoparti-
cles, where quantum tunneling acts as a non-thermal noise source inducing
nonequilibrium conditions, or turbulent fluids. Nature abounds in such ex-
amples. In fact, non-equilibrium phenomena are the rule, being equilibrium
systems a rather unlikely exception. It seems that nonequilibrium is a fun-
damental ingredient for the observed structure in Nature. As in equilibrium
systems, those systems out of equilibrium also show instabilities which give
rise to spatio-temporal patterns, dissipative structures, self-organization, time
oscillations, spontaneous symmetry-breaking, etc., all of them commonly ob-
served in Nature. All these instabilities are generally known as nonequilibrium
phase transitions, and their properties are much richer than in equilibrium sys-
tems.

However, we are still lacking a general theory, equivalent to Statistical Me-
chanics for equilibrium systems, which allows us to classify and understand
systems far from equilibrium, connecting their macroscopic phenomenology
with their microscopic properties. In general, we only have at our disposal
a set of ad hoc theoretical approximations which describe in a partial and in-
complete manner the physics governing these systems. Hence nonequilibrium
systems constitute a challenge for theoretical physicists, besides being very in-
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teresting from the practical point of view due to their ubiquity in Nature. The
simplest situation in a nonequilibrium system is that of a steady state. In this
case, the properties of the system do not depend on time, thus simplifying
the analysis. Nonequilibrium steady states (NESS) have been studied in depth
during the last 20 years,[34] finding that their properties are much richer than
those for equilibrium steady states. In general NESS do not obey the Boltz-
mann distribution. Moreover, they are not unique for a given system and fixed
parameters, depending on the specific dynamics and the previous history of
the system. On the other hand, the dynamics of nonequilibrium systems has
been poorly studied.

The study of the dynamical properties of some nonequilibrium systems is
the aim of this thesis.

Many of the most interesting dynamic phenomena in complex systems are
usually related to the transformation of one phase into another. Think for in-
stance on the evolution from a uniform mixture of chemical constituents to
a phase-separated pattern of precipitates. Other examples are the evolution
from a disordered phase to an ordered one, or the exit from a metastable phase
towards the truly stable one, etc. These transformations are not abrupt, but
they involve a temporal (and usually inhomogeneous) evolution. The mech-
anisms behind these dynamical processes often involve the minimization of
certain privileged fundamental observables -as the free energy in equilibrium
systems- which contain the information about the system state at any time,
and shed light on the relevant ingredients we must take into account to build
up a theoretical description of the process. These dynamic transformations
involve many features commonly observed in Nature: pattern formation and
morphogenesis[5, 6], avalanche-like dynamics and self-organization[102], etc.

The dynamic evolution between two different phases is a nonequilibrium
process since the system is not in a steady state. If the system under study is
isolated and shows no hysteresis, we know that the steady state it will finally
reach is an equilibrium state.[3] In this case the evolution between different
phases, in spite of being a nonequilibrium process, can be understood and de-
scribed using (equilibrium) Statistical Mechanics. This is the case of metasta-
bility and phase separation in equilibrium systems, which are described using
appropriate extensions of the equilibrium free energy. We are interested in this
thesis in dynamic processes in systems which asymptotically converge towards
a NESS. These systems are essentially far from equilibrium (even in the steady
state) and hence cannot be described by (equilibrium) Statistical Mechanics.

In addition to the phase-transformation dynamic processes described above,
there are some dynamic phenomena in nonequilibrium systems which have no
equilibrium counterparts. For instance, this is the case of systems suffering a
dynamic phase transition between an active phase, characterized by the exis-
tence of non-trivial dynamics, and an absorbing phase, where the system is
frozen, without any dynamics and hence no chance of escape. Another exam-
ple is that of heat conduction, where a temperature gradient induces a steady
energy flow from the hot reservoir to the cold one.
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The study of dynamic phenomena in nonequilibrium systems and the un-
derlying mechanisms driving these processes yields much information about
the relevant observables which define the system evolution. Such observation,
together with the comparison to similar results in equilibrium systems, help
us in the search of a general theory for nonequilibrium systems (which should
describe equilibrium systems as a limiting case).

In general, the study of the dynamic and/or static properties of real systems
with many degrees of freedom is a formidably complicated task. Hence, ap-
proaching the study of these systems from first principles is not usually feasi-
ble in practice. For this reason we must study simplified models of reality that,
while capturing the fundamental ingredients of real systems, are much more
easily tractable. Usually these models are defined on a lattice, instead of being
defined on the continuous space, and the interactions among their constituents
are modeled in a very simple way. The obvious question now is: what do these
models have to do with real systems?. In order to answer this question we
must introduce the concept of universality, which is one of the most important
philosophic ideas of modern physics. This concept is based on the observation
that disparate systems often display strikingly similar features and behavior.
It is observed in Nature that the large scale structure and behavior of a system
do not depend on its microscopic details, but only on the fundamental features
defining the system, as for instance dimensionality, symmetries, conservation
laws, range of forces, kind of order parameter, etc. In this way all systems
sharing the same essential features exhibit the same kind of behavior, in spite
of being apparently very different (say a lattice gas and a saturated real vapor).
Therefore these systems exhibit universal behavior1. This universal behavior
allows us to design minimal models of reality that capture all the relevant ingre-
dients of real systems, while they maximally simplify the microscopic irrelevant
details. The universality property guarantees that the behavior of the system
is not sensitive to the microscopic details, and hence that our results for the
oversimplified model will also describe the behavior of the real system, pro-
vided that both systems share the same fundamental features. As an example,
think for a while on the Navier-Stokes equation, which describes the macro-
scopic behavior of a incredibly large set of different fluids.[8] This equation is a
simplified model of real fluids, based on several symmetries and conservation
laws, which describes the macroscopic behavior of fluids with different com-
positions, interatomic forces, molecular weights, etc., but which share some
fundamental features as mass and energy conservation, dimensionality, etc.

In spite of being oversimplified versions of real systems, the models we
are going to study in this thesis exhibit a highly non-trivial and complicated

1In particular, universality appears in second order phase transitions. There the correlation
length diverges, so that all scales are equally relevant and the microscopic details are no longer
important. All systems sharing the same values for the critical exponents associated to a critical
point belong to the same universality class. In a similar way, dynamic universality classes can be
defined which include systems sharing the same dynamic exponents.[7] However, in this chapter
we are presenting the concept of universality from a wider point of view, not only restricted to
critical phenomena.
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Figure 1.2: Physics research: The three ways of doing physics research nowadays. All
three are complementary.[9]

behavior. For this reason we must use computer simulations in order to in-
vestigate such systems in detail, in addition to approximate theoretical tools.
Computers allow us to simulate systems which would be intractable in other
way. In addition, simulations help us to obtain the intuition we need in order
to solve and understand the behavior of complex many-body systems. Histor-
ically, Physics has been called natural philosophy, since the research was only
done via purely theoretical (i.e. philosophical) investigations. Eventually the
experimental method was accepted as a second way of doing physics research,
although it is limited by the scientists ability to design the appropriate exper-
iments, prepare the system and accurately measure the desired magnitudes.
Nowadays computer simulations have become a third way of doing physics
research, yielding a new perspective. Sometimes computer simulations pro-
vide the theoretical basis we need in order to understand some experimental
results, and other times simulations serve as experiments to which compare a
theory. In any case, simulations complement the classical theoretical and ex-
perimental approaches to Nature.

The most used simulation method in this thesis will be the Monte Carlo
method, although we will also implement other methods, as the Molecular
Dynamics one. Monte Carlo method is very useful when studying the tempo-
ral evolution of models which have no deterministic dynamics (in the sense of
Newton equations) but are subject to stochastic dynamics. In practice it is usu-
ally not possible to make a �#��� % atomistic description of the system we want
to model. Roughly speaking, we do not need (and we are not able) to take into
account the individual quark behavior when modeling a macroscopic material.
On the contrary, one builds up a coarse-grained description of the system, tak-
ing into account only the relevant variables for the problem under study (say
spins in a magnetic material), and letting the fast degrees of freedom that we
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forget about in our coarse-grained description to act as a heat bath, thus in-
ducing stochastic transitions on the relevant degrees of freedom. This method
makes use of a sequence of pseudo-random numbers (this is the reason why it
is called Monte Carlo).[9] On the other hand, the Molecular Dynamics method
is based on the numerical integration of Newton equations of motion.

As we said before, the objective of this thesis is to study the dynamics of
some nonequilibrium systems. In particular, we will pay attention to metasta-
bility and avalanches in a nonequilibrium ferromagnetic spin system, phase seg-
regation in a driven (anisotropic) lattice gas, phase transitions in a system with
(super)absorbing states, and heat conduction in a one-dimensional particle system.
In this way we want to cover a wide variety of dynamic phenomena appearing
in nonequilibrium systems. Of course, the list is not complete, lacking some
fundamental phenomena, as for instance hydrodynamics. However, and in
spite of the heterogeneity of this thesis, we think that the studied systems and
processes yield a comprehensive overview of the effects that nonequilibrium
conditions induce on dynamic phenomena in complex systems. The thesis is
divided into two parts. The first part, which comprises chapters 2, 3, 4, 5 and
6, is devoted to the study of metastability (chapters 3, 4 and 5) and avalanches
(chapter 6) in a nonequilibrium ferromagnetic spin model. The second part
of this work is devoted to the study of anisotropic phase separation (chapter
7), systems with superabsorbing states (chapter 8), and heat conduction and
Fourier’s law (chapter 9).

Metastability is a crucial concept in many branches of Science. It has been
observed in fluids, plasmas, quantum field theory, superconductors and su-
perfluids, magnetic systems, atmospheric dynamics, cosmology, etc. It usually
determines the system behavior. In particular, we are interested in metastabil-
ity in nonequilibrium systems with short range interactions. In this way we
study here metastability in a nonequilibrium ferromagnetic spin model, which
is relevant for the problem posed by magnetic storage of information. On the
other hand, from the theoretical point of view, studying metastability in this
impure ferromagnet will allow us to investigate the existence of a nonequilib-
rium potential, equivalent to the equilibrium free energy, which controls the
exit from the metastable state.

In this way, in chapter 2 we motivate the study of metastability in nonequi-
librium systems, presenting the ferromagnetic model we will investigate in the
first part of this work. We also discuss some of the properties that character-
ize this model, paying special attention to the way in which nonequilibrium
conditions enter the model definition.

In chapter 3 we perform a mean field study of the metastability phenomenon.
In particular we apply the Pair Approximation[51] to our model in order to ob-
tain its static and dynamic properties. This study uncovers very interesting
properties related to the non-linear interplay between the thermal noise and
the non-thermal fluctuations induced by the nonequilibrium conditions.

Chapter 4 is devoted to the study of the properties of the interface in the
nonequilibrium model. The inhomogeneous character of the metastable-stable
transition implies that the interface between the metastable and stable phases
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plays a determining role in this process. In this chapter we generalize the Solid-
On-Solid approximation of Burton, Cabrera and Frank[59] for an equilibrium
discrete interface in order to take into account the effect induced by nonequi-
librium conditions. This generalization is based on the concept of effective
temperature. We find very interesting results at low temperatures showing,
for instance, that the nonequilibrium surface tension converges to zero in this
limit. We also study in this chapter the shape of a spin droplet using the Wulff
construction[68].

In chapter 5 we extend the equilibrium nucleation theory[26] to the nonequi-
librium system, hypothesizing the existence of a nonequilibrium potential, sim-
ilar in form to the equilibrium free energy, which controls the exit from the
metastable state. Applying the results obtained in chapters 3 and 4 for the
bulk and interfacial properties, we find surprising results for the metastable-
state mean lifetime, the critical droplet size, the domain wall velocity and the
metastable-stable transition morphology in the nonequilibrium case, which are
fully confirmed via Monte Carlo simulations. In addition to its theoretical im-
portance, these results may be technologically relevant.

In chapter 6 we observe that under the combined action of both free bound-
aries and nonequilibrium conditions, the evolution from the metastable phase
towards the stable one proceeds through well-defined avalanches. These avalan-
ches are shown to follow power-law, i.e. scale free distributions. However, a
detailed study reveals that this scale free behavior is a consequence of a finite
superposition of well-defined, gap-separated typical scales, instead of being a
consequence of any underlying critical point. The excellent comparison of our
results with some Barkhausen experiments led us to suspect that Barkhausen
Noise in particular, and �#5�6 noise in general, might also come from a superpo-
sition of elementary events.

Chaper 7 is devoted to the study of phase separation in nonequilibrium
anisotropic lattice gases. Phase separation appears in system with conserved
number of particles. It is a dynamic process which has been largely studied
in equilibrium systems. In addition to theoretically challenging, the details
are of great practical importance. However, as we previously discussed, most
systems in Nature are out of equilibrium. Therefore, extending the concepts
involved in the phase separation process to more realistic situations is very in-
teresting. This is the case, for example, for mixtures under a shear flow, whose
study has attracted considerable attention.[128]-[132] Hence in this chapter we
study anisotropic phase separation in a driven lattice gas. We propose a clus-
ter effective diffusion theory in order to explain the late stage coarsening in this
system. This theory describes correctly the grain growth process and the differ-
ent growth regimes found during the evolution. In addition, we also demon-
strate dynamical scaling of the structure factor, and generalize Porod’s law to
anisotropic systems. Finally we also study the dynamics of a continuous field
equation, showing qualitatively its validity to describe the dynamics of the mi-
croscopic model.

In chapter 8 we study a system showing a phase transition between an
active phase, characterized by a nontrivial dynamics, and an absorbing phase,
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which is completely frozen. In this sense this is a dynamic phase transition. There
are many examples in Nature of systems with absorbing states and absorbing
phase transitions: chemical reactions in autocatalytic reaction-diffusion sys-
tems and heterogeneous catalysis models, problems related with directed per-
colation, fire and epidemic spreading, etc. Absorbing states appear in situa-
tions where certain observable can proliferate or die, but never generate spon-
taneously. In this way the essential physics comes from the competition be-
tween the growth and dead of the relevant observable. There are two main
universality classes in systems with absorbing states: the directed percolation
(DP) universality class, and the multiplicative noise universality class. In this
chapter we study how a new, hidden symmetry in a system with absorbing
states (known as Lipowski model[176, 179]), namely the presence of the so-
called superabsorbing states, is relevant at the critical point, thus defining a new
scaling behavior.

In chapter 9 we study heat conduction and Fourier’s law in a one-dimensional
particle model. Heat conduction is just one particular aspect of transport phe-
nomena, which are dynamic processes that appear ubiquitously in Nature.
Some classical examples are heat and mass transport in fluids, diffusion, elec-
tric conduction, stellar convection, etc. In spite of being very important, their
microscopic understanding is far from clear. In particular, in this chapter we
want to investigate the microscopic basis of heat conduction. Therefore we
present computer simulation results for a chain of hard-point particles with
alternating masses subject to a temperature gradient. We find, performing dif-
ferent, complementary numerical analysis, that the system obeys Fourier’s law
at the Thermodynamic Limit. This result is against the actual belief that one-
dimensional systems with momentum conservative dynamics and non-zero
pressure have an infinite thermal conductivity.[196] It seems that thermal re-
sistivity occurs in our system due to a cooperative behavior in which light par-
ticles tend to absorb much more energy than heavier ones.

Finally, in chapter 10 we present our conclusions, summing up the results
obtained along this work and pointing out the possible research lines to follow
in order to continue these investigations.

In what follows we summarize the original contributions contained in this
thesis:7 In chapter 3 we calculate in mean field approximation and using com-

puter simulations the intrinsic coercive field, �98 , associated to the nonequi-
librium spin model. We show that the behavior of �:8 for strong nonequi-
librium conditions signals the existence of a non-linear cooperative effect
between the thermal noise and the nonequilibrium fluctuations, which
involve the disappearance of metastable states at low temperatures, as
opposed to what happens in equilibrium systems.7 In chapter 3 we also present a natural way to introduce fluctuations in a
dynamic mean field theory. This method allows us to study the dynamics
of the metastable-stable transition in mean field approximation.
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7 In chapter 4 we generalize the Solid-On-Solid approximation[59] in order
to investigate the effects that nonequilibrium conditions induce on the
system interface. This generalization, based on the concept of effective
temperature, accurately describes the properties of the nonequilibrium
model interface.7 In chapter 5 we introduce a hypothesis about the existence of a nonequi-
librium potential, equivalent to the equilibrium free energy, which con-
trols the exit from the metastable state. This hypothesis allows us to prop-
erly describe the nonequilibrium metastable-stable transition.7 In chapter 6 we measure scale free avalanches, and identify their ori-
gin, which is based on a finite superposition of avalanches with well-
defined typical scales. Comparing our results with some Barkhausen
experiments, we are able to propose a new explanation for Barkhausen
Noise in particular and the ubiquitous �#5�6 Noise in general.7 We propose in chapter 7 a cluster effective diffusion theory in order to
explain coarsening in the driven lattice gas, based on two different types
of monomer events. In the same way, we demonstrate dynamical scaling
of the structure factor, and generalize Porod’s law to anisotropic systems.
We also study the dynamics of a field theoretical equation whose dynam-
ical properties have never been studied.7 In chapter 8 we identify the presence of superabsorbing sites as a new
relevant symmetry in systems suffering absorbing phase transitions. In
this way we define a novel scaling behavior.7 Finally, in chapter 9 we propose a new cooperative mechanism which
gives rise to normal thermal conductivity in one-dimensional particle
systems.
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Part I

Metastability and Avalanches
in Ferromagnetic Systems

under Nonequilibrium
Conditions





Chapter 2

Motivation and Model
Definition

2.1 Introduction

The concept of metaestability is a cornerstone in many different branches of
Science. In spite of its importance, it is very difficult to obtain a precise and
general definition for it. The British Encyclopedia defines a metastable state
in the following way: in Physics and Chemestry, a metastable state is a particular
excited state of an atom, nucleus or other system, such that its lifetime is larger than
that of usual excited states, but generally lower than that of the ground state, which
is often stable. A metastable state can be then considered as a temporal energetic trap
or an intermediate stable state. This definition, in spite of its ambiguity, captures
the essence of what a metastable state is: it is a local, non-global stable state
since the system finally evolves towards the ground state1, but it is also a state
very similar to the stable one, due to the long time the system spends wan-
dering around it. There are many other different definitions of metastability
in literature, some of them much more precise from the mathematical point of
view, although they are always restricted to particular systems. For instance,
we should say that a metastable state in Equilibrium Thermodynamics corre-
sponds to a local, not global free energy minimum.

Metastability is observed in fluids, solids, plasmas and many other sys-
tems, and it usually determines their behavior. The metastability phenomenon
is often related to the existence of an underlying first order phase transition.
A prototypical example is that of supercooled water: if we slowly cool down
a glass of water, in such a way that the final temperature is slightly below the
solidification point, water will remain liquid. This supercooled liquid is in a
metastable state: although the true stable state for this temperature is the crys-

1This is not strictly true. There are metastable states with infinite lifetime in systems subject
to long range interactions. This problem points out, once more, the difficulties found in order to
establish a precise definition of metastability.
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tallized one, an energy barrier exists that prevents water crystallization (the
system is confined in an energetic trap). If we add to the system a sufficient
amount of energy from the outside in order to overcome the energy barrier (for
instance, hitting softly the glass), the system will evolve from the metastable
state to the stable one through the nucleation of crystals of the stable phase
inside the metastable bulk.[10] The processes of energetic activation and nucle-
ation here illustrated are crucial in order to understand how a generic system
is able to exit the metastable state and to evolve to the true stable state.

There are many other systems which show metastability. In fact, metasta-
bility is observed from the smallest scales in the Universe to the largest ones.
For instance, if the Higgs boson mass is as small as suggested by the latest ex-
periments, this should point out that the Standar Model ground state, called
vacuum in Quantum Field Theory, is metastable, instead of being a true stable
state. This observation allows us to give a lower bound for the Higgs boson
mass, since the metastable vacuum must have a long lifetime compared to the
age of the Universe.[11] Moreover, some works have recently appear that spec-
ulate with the possibility that heavy ion collisions at the Relativistic Heavy
Ion Collider in the Brookhaven National Laboratory (U.S.A.) should trigger a
transition towards the true Standar Model vacuum.[12] Such transition would
imply an apocalyptic disaster2. Metastability is also observed in quark/gluon
plasma[13], systems showing superconductivity and superfluidity[14], elec-
tronic circuits[15], globular proteins[16], magnetic systems[17], climatic mod-
els [18], black holes and protoneutronic stars[19], cosmology[20], etc. A bet-
ter microscopic understanding of this ubiquitous phenomenon is then of great
theoretical and technological interest, besides a formidable mathematical chal-
lenge.

A problem of particular importance is that posed by magnetic storage of in-
formation, which is intimately related with metastability. A magnetic material
is usually divided into magnetic monodomains. In order to store information
on this material, we magnetize each individual domain using a strong mag-
netic field. In this way, each domain exhibits a well defined magnetization
in the direction of the local applied field, thus defining a bit of information.
A main concern is to retain the individual domain orientations for as long as
possible in the presence of weak arbitrarily-oriented external magnetic fields,
in order to keep unaltered the stored information. The interaction with these
weak external fields often produces metastable states in the domains. The re-
sistance of stored information depends on the properties of these metastable
states, including the details of their decay.

In general, complex systems have many degrees of freedom which make
very complicated any first-principles theoretical approach to their behavior.
In particular, this is the case for the aforementioned magnetic systems, where
there is a macroscopic number of magnetic moments or spins which interact
among them and with an external magnetic field. Therefore, we are forced to

2Fortunately, the probability of such catastrophic scenario is estimated to be negligible, al-
though non vanishing . . .
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study simplified models of real systems that, while capturing their relevant
ingredients, are much more easily tractable. There has been in last decades a
huge amount of works studying the problem of metastability in lattice mod-
els of classical spins. The most studied model has been the Ising model in
one, two and three dimensions.[21, 81] The general interest in this model is
two-fold. On one hand, it captures many of the fundamental features of a
wide class of real systems. On the other hand, many of its equilibrium prop-
erties are analytically known in one and two dimensions[22]. This fact makes
much more easy any theoretical approach to the properties of this model. In
this way, continuous theories based on nucleation mechanisms have been pro-
posed which successfully describe the evolution from the metastable state to
the stable one.[23] Also the problem of metastability in the low temperature
limit has been exactly resolved.[24] This theoretical results have been checked
many times via computer simulations.[25, 26] Very interesting analytical and
computational results have been obtained, showing the existence of different
parameter space regions in finite systems, each one characterized by a typi-
cal metastable-stable transition morphology.[26] Likewise, the effects that open
borders[27, 28], quenched impurities[29] and demagnetizing fields[30] have on
the properties of metastable states in these systems have also been investigated.

With some exceptions[31], most works on metastability in magnetic sys-
tems have been limited to equilibrium models. For these models, the equilib-
rium Statistical Mechanics of Boltzmann, Gibbs, Einstein, etc. yields a clear-cut
connection between microscopic and macroscopic Physics in terms of the par-
tition function.[2] In this way, steady states in equilibrium systems are charac-
terized by the Boltzmann distribution, ;�<0= exp

� �?>3@ 
 , where > is the inverse
temperature, @ is the state energy and the normalization constant ; is the sys-
tem’s partition function. Although metastability is a dynamic phenomenon
not included in the Gibbs formalism,[27] so successful on the other hand when
describing equilibrium states, it is possible to understand such phenomenon
extending dynamically the Gibbs theory using the thermodynamic potentials
defined in this equilibrium theory and its connection with the microscopic pa-
rameters that characterize the system. In this way, nucleation theory, which
correctly describes metastability in systems near a first order phase transition,
is based on the concept of free energy of a droplet of the stable phase. This
magnitude is an heterogeneous extension of the thermodynamic potential as-
sociated to the canonical partition function in an equilibrium system.

However, most of the systems we find in Nature are out of equilibrium:
they are open systems, subject to thermal or energetic gradients, mass and/or
energy currents, which suffer the action of external agents, or are subject to
several sources of non-thermal noise. As an example, it has been observed that
some properties of metastable states in certain mesoscopic magnetic particles
are highly affected by quantum tunneling of individual spins, which is a pure
nonequilibrium process since it breaks detailed balance.[32] Furthermore, there
are nonequilibrium lattice spin models which reproduce these results.[31] For
nonequilibrium systems there is no theory equivalent to equilibrium Statistical
Mechanics that connects their microscopic properties with their macroscopic
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phenomenology. If we want to understand metastability in real (i.e., nonequi-
librium) systems we must study simplified nonequilibrium models. On the
other hand, and from a theoretical point of view, the study of metastability
in nonequilibrium systems will allow us, comparing with the well-established
equilibrium results, to understand how nonequilibrium conditions affect a dy-
namic process like metastability. This comparison will also allow us to study
the changes that the nucleation process suffers under nonequilibrium condi-
tions, as well as the possible existence of some functional, similar to the equi-
librium free energy, which controls the relaxation from the metastable state.

In the following chapters we are going to study metastability in magnetic
thin films under nonequilibrium conditions. On the analogy of equilibrium
systems, it seems sensible to model these magnetic systems using a bidimen-
sional kinetic Ising lattice with nearest neighbor interactions and periodic bound-
ary conditions. In addition, we will consider a (very) weak random dynamic
perturbation competing with the usual thermal spin flip process. It has been
shown that the presence of this weak perturbation could explain some intrigu-
ing properties, as for instance the non-vanishing value of magnetic viscosity in
the low temperature limit, of some real magnetic materials.[31, 32] The impu-
rity makes the system to reach asymptotically a nonequilibrium steady state.
That is, we assume that a principal role of the microscopic disorder which is
generally present in actual specimens consists in modifying the dynamics -in a
way similar to that of an external non-Hamiltonian agent.[51]

It is observed that, under the action of the dynamic perturbation and a weak
magnetic field oriented opposite to the initial magnetization, the system’s de-
magnetization process from the initial metastable state to the true stable one
proceeds through the nucleation of one or several critical droplets of the stable
phase in the metastable bulk, as observed in equilibrium systems. Although,
oppositely to what happens in equilibrium, we cannot properly define here
any free energy functional that controls the demagnetization process, we can
however hypothesize the existence of some nonequilibrium potential, similar
to the equilibrium free energy, where two terms compete. On one hand, there
is a surface term, which hinders the growth of the stable phase droplet. On the
other hand, there is a bulk term, which favours its growth. If this hypothesis
is correct (as we will see later on) we should expect a good description of the
metastable-stable transition in terms of this nonequilibrium potential once we
understand the bulk and interfacial properties of our model under the action
of the nonequilibrium random perturbation. With this aim we will propose
in the following chapters approximate theories to study the effect of the dy-
namic random perturbation on the system’s bulk and interface. As a result, we
will conclude that while bulk exhibits a very interesting non-linear cooperative
phenomenon between the thermal noise and the non-thermal (nonequilibrium)
fluctuations when subject to strong nonequilibrium conditions, although bulk
properties are qualitatively similar in both the equilibrium and weak nonequi-
librium cases. On the other hand, the interfacial properties in the nonequi-
librium system change in a fundamental way. In particular, we will observe
that while the surface tension in the equilibrium system monotonically grows
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as temperature decreases, the surface tension in the nonequilibrium case ex-
hibits a maximum for a given temperature, decreasing for smaller tempera-
tures. Using this result, and the hypothesis of existence of a nonequilibrium
potential that controls the metastable-stable transition, we are able to develop
a nonequilibrium nucleation theory analogous to the equilibrium one. How-
ever, the results obtained from this nonequilibrium theory are surprising, since
the nonequilibrium conditions imply a completely different behavior of the
system at low temperatures, as compared with the equilibrium one. We ob-
serve that metastability tends to disappear at low temperatures. Even existing,
the metastable lifetime reaches a maximum for a given temperature, decreas-
ing if we further decrease the temperature. These results point out that the
general belief which states that in order to prolong the lifetime of a metastable
state we must cool the system is not true if the system is subject to any random
perturbation as the one we implement (perturbation which, on the other hand,
is usually present in real systems -quantum tunneling, external noises, etc.-).
Moreover, our theory predicts the existence of a low temperature phase where
the system demagnetizes through the nucleation of multiple stable phase crit-
ical droplets, as opposed to equilibrium systems, which demagnetize through
the nucleation of a single critical droplet at low temperatures.[26] All our theo-
retical results are compared with extensive Monte Carlo simulations, showing
very good agreement.

This and the following chapters are organized as follows. In section 2.2 of
the present chapter we describe the model in detail, summarizing some of its
properties. We also briefly explain in this section the computational scheme
used in our simulations. Chapter 3 is devoted to a first order dynamic mean
field approximation. This approximation, also called Pair Approximation or
Bethe-Peierls Dynamic Approximation, will allow us for a first theoretical ap-
proach to the problem of metastability. In Chapter 4 we study the properties
of the interface in the nonequilibrium model. In order to do so we generalize
the Solid-on-Solid Approximation for discrete interfaces to take into account
the effects that nonequilibrium conditions induce on the interfacial properties.
Finally, in Chapter 5 we propose a nonequilibrium Nucleation Theory for the
nonequilibrium model, formally similar to that of equilibrium systems, but
where we introduce the results obtained for the bulk and interfacial properties
affected by nonequilibrium conditions. In this chapter we also present our con-
clusions about the problem of metastability in nonequilibrium systems, paying
some attention to practical applications of our results and possible experimen-
tal implications.

2.2 The Model

In the following chapters we are going to study a bidimensional kinetic Ising
model with periodic boundary conditions and subject to a dynamic random
perturbation. The two-dimensional Ising model[33] is defined on a square lat-
tice of side

-
. On each lattice node a spin variable is defined, ACB , with D�EGFH� �1IKJ ,
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(down spin). The system is characterized by the Hamiltonian,OP�

s

 ��RQTSU B1V WYX AZB1AZWT�[�]\SB_^ = AZB (2.1)

where Qa`b� is the (ferromagnetic) coupling constant, s cedfA B � Dag� � �Z�h� �.INi
is the system’s configuration, and � is an external magnetic field. The first
sum runs over all nearest neighbor pairs, jkD �_lfm , while the second sum runs over
all spins. We endow this kinetic model with a dynamics determined by the
stochastic master equation,[37]

d $ � s nfo 

d o  S

s p q�r � s s�t s

 $ � s s�nuo 
 � r � s t s s 
 $ � s nfo 
kv (2.2)

where s and s s are system’s configurations, $ � s nfo 
 is the probability of finding
the system in a configuration s at time o , and

r �
s t s s 
 is the probability

per unit time (or transition rate) for a transition from configuration s to s s . In
order to complete the definition of the model, we must precise the transition
rate

r �
s t s s 
 . In our case we assume that the system evolves due to the

superposition of two “canonical” dynamics. That is, we choose the transition
rate to be, r �

s t s B 
  � L � �9� ��
 e <9w�xzy�{�9L e <:w�xzy { (2.3)

(Glauber dynamics). Here s B stands for the configuration s after flipping the spin
at node D , >a|�Z5~}�� � is the inverse temperature, }�� is the Boltzmann constant,
and

%�O BNc O[� s B 
 � O[� s 
 . We only allow single spin flip transitions between
configurations. In what follows we fix Boltzmann constant to unity, }��*�� .

One can interprete the above dynamical rule as describing a spin flip pro-
cess under the action of two competing heat baths: with probability

�
the spin

flip is performed completely at random, independently of any energetic con-
sideration (we can interpret in this case that s is in contact with a heat bath at
infinite temperature), while the spin flip is performed at temperature

�
with

probability
� �9� ��
 .

The dynamics we have chosen is a particular case of the general group of
competitive dynamics.[34] Let’s suppose we have two different dynamics

r =
and

r �
which independently satisfy detailed balance,r W � s t s s 
r W � s s t s


  e <:w�xzy (2.4)

where
l �� �f� and in this case

%�O  O[� s s 
 � O[� s 
 . The detailed balance condi-
tion ensures that the stationary state under the action of one of these dynamics
will be described by a Boltzmann distribution. That is, in the stationary state
the probability of finding the system in a configuration s, $�� ' � s 
 , will be pro-
portional to exp F � O[� s 
 5 �:J (remember we fixed }����� ). Hence, the detailed



2.2 The Model 19

balance condition for the transition rate is sufficient, although not necessary,
in order to make the system converge asymptotically to an equilibrium sta-
tionary state. This is the case for dynamics

r = and
r �

independently. How-
ever, if the stationary state to which dynamics

r = drives the system is different
from the stationary state associated to dynamics

r �
(for instance, if both dy-

namics work at different temperature), any competitive dynamics of the form� r = L � ��� ��
 r � with ��� � ��� will produce in the system what is called
in literature dynamical frustration, and the competition between both dynamics
generically drives the system towards a nonequilibrium steady state3.

As can be deduced from (2.3), in our case we have chosen
r =  � r � > = %�O�


and
r �  r � > �~%�O�
 , where

r � > %�O�
  exp
� ��> %�O�
 5zFH��L exp

� ��> %�O�
&J is the
Glauber transition rate, with > = |� and > � �>[c��Z5 � , and where only tran-
sitions between configurations which differ in a single spin are allowed. This
is only one of infinite possibilities when constructing a competing dynamics
from two canonical dynamics driving independently the system towards equi-
librium. In principle, any of these infinite possibilities should be equally valid
in order to investigate how nonequilibrium conditions affect the properties of
metastable states in Ising-like systems. However, if we want to predict proper-
ties of real magnetic systems, we then have to choose carefully the dynamics.
Thus, Glauber dynamics, used here in our definition of

r
, can be derived from

first principles for a system of =� -spin fermionic quantum particles, each one
subject to its own thermal bath.[38] On the other hand, the weak dynamic per-
turbation parameterized by

�
emulates in some sense the effect of quantum

tunneling of individual spins in real magnetic systems. The existence of this
small

���M� allows the spins to flip independently of any energetic constraint
imposed by their surroundings with a (very) low probability. This is roughly
what quantum tunneling produces in real spins: the spin is able to flip by tun-
neling through the energy barrier which impedes its classical flipping, i.e., in-
dependently of this energy barrier. We also can interpret in a more general
way the dynamic random perturbation parameterized by

�
as a generic source

of disorder and randomness, i.e. as a simplified representation of the impure
dynamic behavior typical of real systems.[31]

For
� �� , the dynamics (2.3) corresponds to the canonical Ising case which

converges asymptotically towards a Gibbs equilibrium state at temperature�
and energy

O
. In this case the model for ���� exhibits a second order

phase transition at a critical temperature
�  ���*�b� � ���~� �4Q*c ���h� � .[22] The

critical exponents associated to this phase transition define the Ising univer-
sality class. This universality class is one of the most robust, and all phase
transitions in monocomponent systems with up-down symmetry and without
any extra symmetry or conservation law (model A in the Hohenberg-Halperin
classification[39]) belong to this universality class. For

����� the conflict in (2.3)
impedes canonical equilibrium, and as we mentioned above the system then

3This is true except for some (in principle) nonequilibrium systems which can be mapped,
under specific circumstances, to equilibrium systems with effective parameters. For these spe-
cial systems we can write an effective Hamiltonian in such a way that the competing dynamics�z�¡ z¢a£Y¤�¥¡��¦&�¨§ verify detailed balance with respect to this effective Hamiltonian.[35, 36]
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evolves towards a nonequilibrium steady state whose nature essentially differs
from a Gibbs state at temperature

�
. The system now, and always for ���� , ex-

hibits a second order phase transition at a critical temperature
���4�©��
 � ���h� � for

small enough values of
�

. This critical point disappears for values of
�

above
certain critical value

� �
defined by the condition

� � �©� � 
 |� (for more details,
see next chapter). In general, critical phenomena in models with competition
of dynamics have been studied as a paradigm of nonequilibrium phase tran-
sitions. In particular, it has been proved for Ising-like models with dynamics
of the type

� r ��� = 
 L � ��� ��
 r ���3�4
 where two different temperatures
� = and� �

compete, and where
r ���ª


is an equilibrium dynamics at temperature
�

,
that the critical point observed at

� = V �4�©���f� � 
 belongs to the Ising universality
class.[40, 41] Notice that our model is just a particular realization of a system
under competition of temperatures.

In order to study metastability in our model, we initialize the system in
a state with all spins up, i.e. A B gL?�R«zD�E¬FH� �1IKJ , under a weak magnetic
field which favours the opposite orientation, �|�ª����� (we will keep constant
this magnetic field during our study). In what follows we will study several
different values of temperature

�
and dynamic perturbation

�
, such that the

system is always in the ordered phase (i.e. below the critical point). Under
these conditions the initial state is metastable, and it eventually will decay
towards the truly stable state, which in this case is a negative magnetization
state, +®c I <:=�¯ B AZB°�]� . In principle we could use a classic Monte Carlo
scheme[42] in order to simulate such system. However, as a consequence of
the strong local stability that characterizes metastable states, the time the sys-
tem needs to exit the metastable state and to evolve towards the stable one
can be as long as ±G²M�#�~³C´ Monte Carlo Steps per spin at low temperatures.
A Monte Carlo Step per spin corresponds to a spin flip trial of all the spins
in the lattice on the average (from now on we will denote this temporal unit
as MCSS). In general, for Ising spins interacting with a phonon bath, a MCSS
corresponds roughly with a physical time of the order of the inverse phonon
frequency, which is approximately �#� <0=_µ seconds.[43] If we suppose for a while
that the classic Monte Carlo algorithm is able to execute a spin flip trial after
every tic of the CPU clock (which has an approximate period of �#�¶<�· seconds),
we should wait for low temperatures a time of order

I�¸ �Z� µ�= seconds in or-
der to observe the metastable-stable transition (

I
is the number of spins in

the lattice). This time is fairly larger than the age of the Universe. Hence, we
need to use advanced, faster-than-real-time algorithms in order to simulate the
behavior of these systems. This is the case for the Monte Carlo with Absorbing
Markov Chains algorithms, generically known as MCAMC algorithms.[43] They
are rejection-free algorithms, based on the n-fold way algorithm[44], that without
changing the system dynamics (they only rewrite in an efficient way the clas-
sic Monte Carlo algorithm) are many order of magnitude faster than standard
algorithms. However, for low temperatures and weak magnetic fields, even
MCAMC algorithms are not efficient for the metastability problem. Hence we
have to implement, together with MCAMC algorithms, the so-called slow forc-
ing approximation.[45] In this approximation the system is forced to evolve to-
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wards the stable state using a moving magnetization wall. That is, we define
an upper bound for magnetization, which depends on time, +[¹ B )a� o 
 |����º:o ,
and we force the system magnetization to stay at any time below this magne-
tization threshold. Although this constraint clearly modifies the dynamics, it
has been proved that a slow forcing limit exists for º [45], in such a way that in
this limit all observables are independent of the forcing, while the simulation
is still significatively accelerated as compared to the system without forcing. In
Appendix A we explain in detail the MCAMC algorithms and the slow forcing
approximation.
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Chapter 3

Mean Field Approximation to
the Problem of Metastability

3.1 Introduction

In this chapter we study the problem of metastability in the nonequilibrium
magnetic system taking as starting point a first order dynamic mean field ap-
proximation. This approach is a generalization for the study of dynamic prob-
lems of Kikuchi’s method[49] known as Cluster Variation Method. This method
has been reformulated for the study of some nonequilibrium systems by Dick-
man and other authors[50, 51], with the name of Pair Approximation. In this
chapter we will formulate in a first step the pair approximation applied to our
model. Later on we will use this approximation to obtain information about
the static properties that characterize the system. Finally, we will study the
dynamics of the system using the mean field theory.

3.2 Formulation of the Pair Approximation

The approximation we describe here, following reference [34], is a mean field
approximation as far as it neglects correlations actually present in the system,
and it builds, using this assumption, a set of equations for averaged observ-
ables which describe the dynamical and statical behavior of the system.

As we saw in section 2.2, our system is defined on a square lattice »¼d½� � �h�Z� �.-¶i ��¾À¿(� . A state in the system is described by a configuration vector
s Ád_A#B � DNb� � �h�Z� �1I?i , where AZB is the spin variable associated to lattice site D ,
and

I  - � is the number of spins in the system. The dynamics is given by the
master equation,

d $ � s nuo 

d o  SB_Â�Ã Ä r � s B t s


 $ � s B nuo 
 � r � s t s B 
 $ � s nfo 
kÅ (3.1)
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(a) (b)

Figure 3.1: Different examples of spin domains, each one characterized by a different
kind of partition Æ9Ç&ÈÊÉ . External spins are coloured in black, surface spins are gray, and
internal spins are white.

where $ � s nuo 
 is the probability of finding the system in a state s for time o ,r �
s t s B 
 is the transition rate between states s and s B , and s B is a configuration

exactly equal to s but with the spin at position D overturned. Our dynamics only
allows transitions between configurations which differ in the state of a single
spin. Let’s assume now that we perform a partition Ë of the lattice » , in such
a way that domains Ì�W resulting from this partition will verify the following
restrictions: Ì�W�EÍË � » 
 such that Ì�W�ÎÏÌ�W p ÑÐ if

l(� l s and Ò W Ì�W0» . Subindexl
indicates the domain lattice position. Given a domain Ì�W , its surface Ó�W is

formed by all spins in the domain which have some nearest neighbor outside
the domain. Equivalently, the domain’s interior, Ô�W , is formed by all spins in
the domain whose nearest neighbor spins are also inside the domain.1 ThusÌ W PÔ W�Õ Ó W . Fig. 3.1 shows an example. Let’s assume now that we have a local
observable Ö � s ×4Ø.n l½
 which exclusively depends on spins belonging to domainÌ W (we denote these spins as s ×4Ø ). The average of this observable at time o is,jÙÖ ��l½
	m '  S

s

Ö � s × Ø.n l½
 $ � s nuo 
 (3.2)

If we derive with respect to time this expression, and make use of eq. (3.1), we
obtain a temporal evolution equation for the average,

d jYÖ ��l½
	m '
d o  S

s

SB_Â�Ã Ä r � s B t s

 $ � s B nfo 
 Ö � s ×CØ.n l½
 � r � s t s B 
 $ � s nfo 
 Ö � s ×CØ1n l½
 Å

(3.3)
Now if we make a variable change in the first term of right hand side in this
equation, s B t s

�
(which implies s t s B � ) and we notice that the index in the

sum over configurations is a dumb index (that is, it does not matter whether to
sum over configurations s B � or sum over configurations s

�
, since we go over all

1A more general definition of the domain’s interior and surface can be written using the tran-
sition rates. The domain spins whose flipping probability depends on spins outside the domain
define the domain’s surface. The interior is defined via Ú¶Û3ÜÏÝ4Û ¥NÞ Û . However, for our particular
system, where the spin flipping probability depends on the value of the spin and its four nearest
neighbors (see eq. (2.3)), this general definition reduces to the one expressed in the main text.
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configurations), we can write in a compact way,

d jÙÖ �&lß
àm_'
d o  S

s

SB_Â ×4Ø % Ö � s × Ø.n l nuD 
 r � s t s B 
 $ � s nuo 
 (3.4)

where we define, % Ö � s ×CØ n l nuD 
 �Ö � s B ×4Ø n lß
 �PÖ � s ×4Ø n lß
 (3.5)

and where the sum over D�E�» is now a sum over D�E�Ì W since
% Ö � s ×CØßn l nfD 
 á�

if the spin at position D is outside the domain Ì W . We can rewrite eq. (3.4) taking
into account the definition of surface and interior of domain Ì W ,

d jYÖ �&lß
àm_'
d o  S

s â Ø SB_Â4ã Ø % Ö � s × Ø.n l nuD 
 r � s × Ø�t s B ×4Ø 
_ä°� s × Ø1nfo 

L S

s

SB_Â~å Ø % Ö � s × Ø1n l nfD 
 r � s t s B 
 $ � s nfo 
 (3.6)

where we have defined the projected probability,ä*�
s ×4Ø.nuo 
  S

s < s â Ø $ � s nuo 
 (3.7)

which is the probability of finding domain Ì W in a configuration s ×4Ø at time o .
When we write

r �
s ×CØ�t s B ×CØ 
 in the first term of right hand side in eq. (3.6)

we want to stress the fact that the probability of flipping a spin in the domain’s
interior depends exclusively on the spins belonging to this domain.

The steps performed up to now do not involve approximations. As a first
approximation, we assume from now on that our system is homogeneous, i.e. its
properties do not depend on the selected point in the system. Hence jÙÖ ��l½
	m cjÙÖ m , Ì�WÊcbÌ , Ô3WÊc�Ô and Ó�WÊcæÓ . Equivalently, we suppose that the partition
is regular, so all domains are topologically identical. On the other hand, eq.
(3.6) shows two well-differentiated terms. The first one only depends on what
happens in the domain interior, while the second one involves the domain’s
surface, couples the domain dynamics with its surroundings, and makes the
problem unapproachable in practice. Our second approximation consists in
neglecting the surface term in this equation. This approximation involves[34]
that the domain is kinetically isolated from the exterior: the domain’s exterior
part does not induce any net variation on the local observables defined inside
the domain.2 Thus we are neglecting in practice correlations longer than the
domain size. Under both homogeneity and kinetic isolation approximations, the
equation we must study reduces to,

d jYÖ m_'
d o  S

s â S B_Â4ã % Ö � s ×¶nuD 
 r � s ×Nt s B × 
fä*� s ×CØ.nuo 
 (3.8)

2Notice that this approximation is exact for equilibrium systems due to the detailed balance
condition.
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In order to go on, we must know the expression for the projected probabilityä*�
s ×�nuo 
 . It is known that this probability can be written as[34],ä*�

s ×�nuo 
 M�9L�j	A m_' S B_Â × A B L SB1V WàÂ × j	A B A W m_' A B A W Lá�Z�Z�hL�jàçBèÂ × A B mè' çB_Â × A B (3.9)

This formula involves é -body correlation functions. In order to be coherent
with the kinetic isolation approximation, which neglects long range correla-
tions, we express the probability

ä*�
s × nuo 
 as a function of a reduced number

of correlation functions. In particular, our third approximation consists in
expressing all correlations as functions of magnetization j	A m and the nearest
neighbors correlation function, jàA B A W m , with D and

l
nearest neighbors sites in-

side the domain. This is equivalent to writing
ä*�

s ×�nfo 
 as a function of ê � L � L 
 ,ê � � � � 
 and ê � L � � 
 , where ê � A � A s 
 is the density of
� A � A s 
 nearest neighbors

pairs, and as a function of the density of up spins, ê � L 
 . We only have to de-
fine now the domain Ì that we are going to use in our study. Since we only
take into account nearest neighbors correlations, we must choose a domain
with only one spin in its interior, and

��ë
spins (the nearest neighbors of the

interior spin) on the surface, being
ë

the system dimension (in our particular
case,

ë  � ). Fig. 3.1.b shows an example of this domain type.
The probability of finding this domain in a configuration defined by a cen-

tral spin A and é up nearest neighbors can be easily written,ä*�
s × nfo 
 c ä*� A � é 
 �ì*í�î � é 
 ê � A 
 ê � LN� A 
 � ê � �K� A 
 �~ï < � (3.10)

where ì*í�î � é 
 , which is the number of domain configurations that are compat-
ible with a central spin A and é up nearest neighbors, is given by the combi-
natoric number ð �~ï�¡ñ . ê � A 
 is the probability of finding a central spin in state A ,
and ê �	ò � A 
 is the conditional probability of finding a neighboring spin in stateò

given that the central spin is in state A . Since,

ê �	ò � A 
  ê �	ò�� A 
ê � A 
 (3.11)

where ê �	ò�� A 
 is the probability of finding a nearest neighbor pair in a state�Ùò�� A 
 , we can write,ä*� A � é 
 bó ��ëéÍô ê � A 
 =.< �~ï ê � L � A 
 � ê � � � A 
 �~ï < � (3.12)

In order to simplify the equations, we use the following notation,ê � L 
 c õê � � 
 c �9��õê � L � L 
 c ö (3.13)ê � L � � 
 c ÷°øê � � � L 
ê � � � � 
 c ù
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Taking into account that ÷úGõR�Pö and ùû|�9L[ö�� � õ , we finally write,ä*� L � é 
  ó ��ëé ô õ =.< �~ï ö � � õN�[ö 
 �~ï < �ä*� � � é 
  ó ��ëé ô � �9��õ 
 =1< �~ï � õN�[ö 
 � � �9L[ö�� � õ 
 �~ï < � (3.14)

Inserting these formulas into eq. (3.8) we arrive to the basic equation in Pair
Approximation,

d jÙÖ mè'
do  �~ïS� ^ ´ ó

��ëé ô Ä % Ö � L � é 
 õ =1< �~ï ö � � õK�Pö 
 �~ï < � r � L � é 
� % Ö � � � é 
.� ����õ 
 =1< ��ï � õK�[ö 
 � � �9LPö�� � õ 
 �~ï < � r � � � é 
kÅ (3.15)

We must notice that, since the domain state s × is defined by the pair
� A � é 
 ,

we have modified our notation in such a way that
% Ö � s ×�nfD 
 c % Ö � A � é 
 andr �

s × t s B × 
 c r � A � é 
 . Here we also assume that the transition rate depends
only on the value of the central spin, A , and the number of up nearest neighbors
of this spin, é . This is true in our particular model, where transitions rates are
local.

From eq. (3.15) we can study the dynamics of any local observable in the
system at a first order mean field approximation level. However, in order to do
so we must know the temporal dependence of both õ*cMê � L 
 and öRcÁê � L � L 
 .
With this aim in mind we apply eq. (3.15) to both õ and ö . Thus we must write
down two local microscopic observables, Ö = � A � é 
 and Ö � � A � é 
 , such that their
configurational averages correspond to õ and ö , respectively. We can check that
these observables are, Ö = � A � é 
  �:LGA�Ö � � A � é 
  é��ë ¸ �9L�A� (3.16)

Hence, jYÖ = � A � é 
	m �õ and jÙÖ ��� A � é 
àm �ö . From these expressions we can see
that

% Ö = � A � é 
 ]�¡A and
% Ö � � A � é 
 ]�¡A#é�5 ��ë . Applying eq. (3.15) to both

observables we find,

d õ
do  � �~ïS� ^ ´ ó

��ëé ô Ä õ =.< �~ï ö � � õR��ö 
 �~ï < � r � L � é 
� � �9��õ 
 =1< �~ï � õN�[ö 
 � � �9L[ö�� � õ 
 �~ï < � r � � � é 
 Å (3.17)

d ö
d o  � ���ë �~ïS� ^ ´ ó

��ëé ô é Ä õ =1< �~ï ö � � õK�[ö 
 �~ï < � r � L � é 
� � �9��õ 
 =1< �~ï � õN�[ö 
 � � �9L[ö�� � õ 
 �~ï < � r � � � é 
 Å (3.18)
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These two equations are the basic equations in Pair Approximation. Hence,
once defined the transition rate

r � A � é 
 (see eq. (2.3)), the general working
method thus consists in calculating both õ � o 
 and ö � o 
 using the above equa-
tions, and using eq. (3.15) and the results for õ � o 
 and ö � o 
 calculate any other
local magnitude.

3.3 Static Properties

In a first step we want to study the stationary solutions of eqs. (3.17) and (3.18)
as well as their stability for the nonequilibrium ferromagnetic system. We have
two non-linear coupled differential equations,

d õ
d o �ü = � õ � ö 

d ö
d o �ü � � õ � ö 
 (3.19)

where ü = � õ � ö 
 and ü � � õ � ö 
 are defined by eqs. (3.17) and (3.18), respectively,
once we include in these equations the explicit form of the transition rate, eq.
(2.3). This dynamics only depends on the energy increment

%�O
due to a spin

change. Since the energy of the system is defined via the Ising Hamiltonian,
eq. (2.1), if we flip a spin A with é up nearest neighbors, then

%�O[� A � é 
 � A¶F � Q � é�� ë�
 L[� J , so the transition rate can be written as,r � A � é 
  � L � �9� ��
 e < � �Zý �ÿþ�� � < ï���������9L e < � �hý �ÿþ�� � < ï����	�
� (3.20)

Once we specify the dynamics, the stationary solutions of the previous coupled
set of equations, õ � ' and ö � ' , are the solutions of the system,ü = � õ � 'ÿ� ö � '~
 �� � ü � � õ � '~� ö � 'ÿ
 �� (3.21)

Both stable and metastable states in a generic system are locally stable under
small perturbations. Hence we are interested in locally stable stationary solu-
tions of this set of equations. We must give a local stability criterion. In order to
build such criterion, let’s study what happens if we slightly perturb the steady
solutions, that is, õ°Gõ � ' L��� and öÊ�ö � ' L��
� , where �� and �
� are very small.
From eqs. (3.19), taking into account the stationarity condition, eq. (3.21), a
expanding to first order as a function of �� and ��� , we find,

d ��
do  ��� ü =� õ�� � ' �
ªL ��� ü =� ö�� � ' �
��L�� � � � � � �� � ������ 


d � �
d o  � � ü �� õ�� � ' �  L � � ü �� ö�� � ' � � L�� � � � � � �� � �  � � 
 (3.22)

We can write this set of equation in matrix form,

d
d o ó ����� ô ����� � � ü =� õ 
 � ' � � ü =� ö 
 � '� � ü �� õ 
 � ' � � ü �� ö 
 � '

��� ó ���
� ô (3.23)
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This system can be solved in a standard way, getting,�� � � ´ e ! ' � �
� � � ´� e ! ' (3.24)

where ��´ and �¶´� are constants determined by initial conditions, and " is deter-
mined by the solutions of the equation,#######

� � ü =� õ 
 � ' �$" � � ü =� ö 
 � '� � ü �� õ 
 � ' � � ü �� ö 
 � ' �$"
####### �� (3.25)

This equation for the determinant is reduced to a second order polynomial
equation for " , with two solutions " � and " < . From eq. (3.24) it is obvious that
the steady solutions õ � ' and ö � ' will be locally stable if the real parts of both" � and " < are negative, since in this way we ensure that the perturbation will
disappear in the limit o(t&% . The real parts of both " � and " < will be negative
if the following condition is fulfilled,

ó � ü =� õÍô � ' L�ó � ü �� ö ô � ' ���ó � ü =� õ ô � ' ó � ü �� ö ô � ' ��ó � ü =� ö ô � ' ó � ü �� õ ô � ' `� (3.26)

This criterion, known as Hurwitz criterion[52], states the necessary and suffi-
cient conditions that a steady solution of our set of non-linear differential equa-
tions must fulfill in order to be locally stable under small perturbations.

3.3.1 Phase Diagram

We are also interested in simple necessary (although not sufficient) conditions
that locally stable steady states must fulfill. For instance, if we perturb the
stationary state by only varying õ and keeping untouched ö , that is, õú�õ � ' L'�

and ö�ûö � ' , we arrive to the following solution once we apply the previous
stability analysis, �  � � ´ e ' �)(+*),(.- �0/01 (3.27)

so the steady state defined by
� õ � 'ÿ� ö � '~
 can be locally stable only if

�32 ! ,2  
 � ' �Ñ� .
It will be unstable if this derivative is larger than zero. The condition��� ü = � õ � ö 
� õ � � ' �� (3.28)

defines a point
� õ �� ' � ö �� ' 
 of incipient instability or marginal stability which sig-

nals the presence of an underlying critical point or second order phase transi-
tion for ���� between a disordered phase and an ordered phase.[34] Just at
this critical point we have õ �� '  =� , since it separates an ordered phase with
non vanishing spontaneous magnetization from a disordered phase with zero
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Figure 3.2: Critical temperature for the nonequilibrium ferromagnetic system as a
function of 4 in Pair Approximation

spontaneous magnetization. This observation trivially implies ö*cbê � L � L 
 ê � � � � 
 c � ��LPö�� � õ 
 at the critical point. We also have ö �� '  =µ at the critical
point.[53] Using these values for õ �� ' y ö �� ' in eq. (3.28) once we substitute there
the explicit form of ü = � õ � ö 
 , eq. (3.17), and solving for temperatures, we find,���C�H��
Q  �65

ln
q � =� L µ³�7 =1< ³�8=1< 8 v (3.29)

This equation yields the critical temperature for the nonequilibrium model in
first order mean field approximation as a function of parameter

�
, which char-

acterizes the dynamic nonequilibrium perturbation present in the system. We
can also arrive to this expression from eqs. (3.26), which define the general
stability criterion, applying the marginal stability condition. Fig. 3.2 shows� � �©��


as a function of
�

. For
� e� the critical temperature

� � �H��

is just the

Bethe temperature,
� �:9 ' � 9_5�Q �û� � ;�;=<35 , to be compared with the exact critical

value for
� |� , which is the Onsager temperature,

� �Z� �f5�Q �ø� � ���~� � . For each
value of

�
, temperature

���h�H��

signals the border, always in mean field approx-

imation, between the ordered phase at low temperatures (
� � ���C�©��
 ) and the

disordered phase at higher temperatures (
� ` ���C�©��
 ). There is a critical value of�

,
�:�

, such that for larger values of
�

there is no ordered phase for any temper-
ature. This value

�:�
can be obtained from the condition

���4�©�:��
 æ� , yielding�:� ?>µ � ������@< �4� < . On the other hand, the phase transition we obtain in mean
field approximation belongs to the mean field universality class, as expected,
on the contrary to the real nonequilibrium system, which as we said in Chapter
2 belongs to the Ising universality class. Such discrepancy is due to the absence
of fluctuations in our mean field approximation.
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Figure 3.3: Locally stable steady state magnetization as a function of temperature (in
units of Onsager temperature) for different values of 4 and for ACBED . In particular,
from top to bottom, 4FBGD , D
H DID�J , D�H DID)K and D�H D�J . Points are results obtained from
Monte Carlo simulations for a system with LMB�K=N . Continuous lines are the solutions
in Pair Approximation. Error bars in computational results are much smaller than the
symbol sizes.

3.3.2 Stable and Metastable States

After this brief parenthesis about the model critical behavior, we turn back to
study its locally stable steady states in the ordered phase. These stationary
states

� õ � 'ÿ� ö � '�
 will be given by solutions of the set of non-linear differential
equations (3.21), subject to the Hurwitz local stability condition, eqs. (3.26).
Unfortunately, the non-linearity of the set of eqs. (3.21) impedes any analytical
solution, so we have to turn to numerical solutions.

In a first step we center our attention on the study of stationarity for zero
magnetic field, �Àb� . In this case, the system exhibits up-down symmetry,
so we will have two symmetrical branches of solutions in the ordered phase,
one of positive magnetization and another one with negative magnetization.
Moreover, we can prove for ���� that if the pair

� õT� ' � ö�� ' 
 is a locally stable
steady solution of the set of eqs. (3.21), then the pair

� �9��õ � 'ÿ� �9L[ö � ' � � õ � 'ÿ
 is
also a locally stable steady solution. If we solve the set of eqs. (3.21) using stan-
dard numerical techniques[54] and we keep only those solutions which fulfill
Hurwitz criterion, we finally obtain the results shown in Fig. 3.3. There we
compare the theoretical predictions for the positive magnetization branch with
results obtained from Monte Carlo simulations for different values of the dy-
namic random perturbation

�
. The agreement between theory and computa-

tional results is excellent for low and intermediate temperatures for all studied
values of

�
, failing gradually as we approach the critical temperature. Further-

more, the differences between theory and simulations begin to be relevant for
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Figure 3.4: Magnetization of the locally stable steady state of positive magnetization
as a function of temperature (in units of Onsager temperature) for different values of 4
and AOBCPQD�HRJ . From top to bottom, 4SBCD , 4�BTD
H DID�J , 4SBTD�H DUD�K and 4SBTD
H D
J . Points
are results obtained from Monte Carlo simulations for a system of size L$BFKIN . The
continuous lines are Pair Approximation solutions. Error bars associated to computa-
tional results are much smaller than symbol sizes. In the inset we show the results for
the negative magnetization branch.

temperatures higher than a VI< % of the critical temperature for each case. Such
inaccuracy of Pair Approximation for temperatures close enough to the critical
one was expected a priori, since mean field theory neglects long range corre-
lations, which on the other hand gradually arise as we approach the critical
region. Fig. 3.3 shows also that, as we increase

�
for a fixed temperature, the

system’s magnetization decrease in absolute value. Therefore, an increase of
�

is equivalent to an increase of disorder in the system. On the other hand, the
qualitative form of the curve + �W�X�� ' �����à��
 does not change for

����� as compared
to the equilibrium system (

� �� ).
The Monte Carlo simulations whose results are shown in Fig. 3.3 have been

performed for a system with size
- Y<
Z , subject to periodic boundary con-

ditions (we use the same boundary conditions in all simulations within this
chapter), with ��Á� and different values of

�
and

�
. In order to measure the

magnetization of the positive magnetization steady state, we put the system
in an initial state with all spins up. We let evolve this state with the dynam-
ics (2.3) for certain values of

�
and

�
. After some relaxation time, the systems

starts fluctuating around the steady state. We then measure magnetization at
temporal intervals

% o larger than the correlation time, and we average over
different measurements. The error associated to this average is the standard
statistical error. A second method to measure the stationary state magnetiza-
tion is based on the stable phase growth and shrinkage rates, which we will
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define later on in this chapter. Both methods yield equivalent results.
We also can study the steady states for �G�|� . In particular, here we study

the case �M �ª����� . As opposed to the �| � case, here there is no up-down
symmetry since the magnetic field favours the negative orientation of spins.
Therefore the negative and positive magnetization branches are now different.
Moreover, the locally stable steady state with positive magnetization is now
metastable. Numerically solving the set of eqs. (3.21) subject to the conditions
(3.26) we obtain the results shown in Fig. 3.4. In this figure we also show results
from simulations analogous to the ones described above, but with �ø��ª����� ,
and where the initial state is defined with all spins up (down) if we want to
measure the positive (negative) magnetization branch. Comparatively, these
results are very similar to the results obtained for ���� .
3.3.3 Hysteresis and the Intrinsic Coercive Field

An interesting question consists in knowing what happen to locally stable
steady states as we change the magnetic field. In order to answer this ques-
tion we numerically solve again the set of eqs. (3.21) subject to Hurwitz condi-
tions for fixed temperature and dynamic random perturbation

�
, varying the

magnetic field between �û �N� and �û LN� . In particular, Fig. 3.5 shows
the result for

� æ��� V � �Z� � and
� æ��� �~�=< . This curve forms what is generally

known as a hysteresis loop. Hysteresis is a property of many systems near a
first order critical point, and it is intimately related to metastability. A system
is said to exhibit hysteresis if its properties depend on its previous history. Thus
systems showing hysteresis are systems with memory. In our case, as can be
seen in Fig. 3.5 for fixed

�
and

�
and for a fixed magnetic field in the intervalF �(�:8 �&���	��
è� �08 �&���	��
&J , the system properties (represented this time by the magne-

tization) depend on whether the system evolved along the positive or the neg-
ative magnetization branch, i.e. they depend on the previous system history.
As we can see in Fig. 3.5, this dependence on previous history is clearly due
to metastability, i.e. locally stable steady states with magnetization opposed to
the magnetic field.

There is a magnetic field � 8 �����	��
 such that for all � ��� `�� 8 �&���	��
 metastable
states disappear. This magnetic field �98 �����	��
 is known as intrinsic coercive field3.
As we increase the absolute value of the field, metastable states get weaker and
weaker. The reason underlies on the increase of the transition rate for spins in
the metastable phase as we increase the magnetic field strength, see eq. (3.20).
Thus there is a value of the magnetic field for which the metastable state is no
more metastable and transforms into a unstable state. In order to study this
point more carefully, let’s suppose that we are able to simplify eqs. (3.19) in

3The intrinsic coercive field []\ is defined in a precise manner as the magnetic field for which
magnetization is zero in a hysteresis loop. In our case, the hysteresis loop goes discontinuously
from positive to negative magnetization (and vice versa) when the metastable state disappears, so
we can say that magnetization discontinuously crosses ^áÜ`_ at [KÜ`[a\ .[55]
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Figure 3.5: Locally stable steady state magnetization for both magnetization branches
as a function of magnetic field A for fixed bcBTD
H d)b	e.f�g and 4OBhD
H DID�K . The continuous
line represents stable states, the dashed line represents metastable states, and the dot-
dashed line signals the discontinuous transition where metastable states disappear. This
discontinuity appears for a magnetic field A \ Çibkj 4�É .
such a way that we know öR�ö � õ 
 . Now we can rewrite eq. (3.17) as,

d õ
d o �� �=l � õ 
�Cõ (3.30)

where l � õ 
 is a (nonequilibrium) potential which controls the system evolu-
tion. Fig. 3.6 shows a schematic plot of this potential for the ordered phase at
fixed temperature and

�
, and for several negative magnetic fields of increasing

absolute value. As we can see, the effect of the magnetic field is to attenu-
ate the local minimum associated to the metastable state. For magnetic fields� ���z� � 8 �����à��
 this local minimum, although attenuated, exists. However, for
magnetic fields � ���¶`á�:8 �����à��
 the metastable minimum disappears, and so the
metastable state. Therefore, for � ���ÿ`��98 �&���	��
 the set of eqs. (3.21) has only one
solution, with magnetization sign equal to that of the applied field.

In order to calculate �:8 �����à��
 let’s study how a metastable state changes un-
der small perturbations of magnetic field. Let’s assume then that

� õ ��m� ' � ö ��m� ' 
 is
a locally stable stationary state for parameters

�
,
�

and � ´ , with magnetization
opposed to the external magnetic field. If we slightly perturb this magnetic
field, �Gø� ´ L��4� , also the locally stable stationary solution will be modified,õ � � ' Gõ ��m� ' LC�� and ö � � ' ö ��m� ' LC�
� . We can write,

d õ � � '
d o  ü = � õ � � ' � ö � � ' n_� 
�� ü = � õ ��m� ' � ö ��m� ' n_� ´ 
 L � ü =� õ � õ �nm� ' � ö ��m� ' nf� ´ 
 � L � ü =� ö � õ ��m� ' � ö ��m� ' n_� ´ 
 � � L � ü =� � � õ ��m� ' � ö �nm� ' nf� ´ 
 �4� (3.31)
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Figure 3.6: Schematic plot of the potential o�Çqp�É defined in the main text, for fixed
temperature and 4 , and for several different values of magnetic field A`r$D . Notice that
the local minimum in the positive magnetization branch is attenuated as s Ats increases,
up to its disappearance for large enough values of s Aus .
where we have specified the magnetic field dependence. Due to the steadiness
of the initial state, ü = � õ �nm� ' � ö ��m� ' nf� ´ 
 �� , and since

� õ � � ' � ö � � ' 
 is also a steady state,

we have that d 3v /01
d
' �� . Hence,� ü =� õ � õ � m� ' � ö � m� ' nf� ´ 
 �  L � ü =� ö � õ � m� ' � ö � m� ' nf� ´ 
 � � �� � ü =� � � õ � m� ' � ö � m� ' nf� ´ 
 �4� (3.32)

In a similar way we can calculate the perturbation that ö � � ' suffers,� ü �� õ � õ ��m� ' � ö �nm� ' nf� ´ 
 �  L � ü �� ö � õ ��m� ' � ö ��m� ' nf� ´ 
 � � �� � ü �� � � õ ��m� ' � ö ��m� ' nf� ´ 
 �4� (3.33)

Solving the linear system formed by eqs. (3.32) and (3.33) for �� we obtain,

�   Ä � ü �� � � ü =� ö � � ü =� � � ü �� ö� ü =� õ � ü �� ö � � ü �� õ � ü =� ö Å  v m/01 V � v m/01 V �nm V w4V 8 �4� (3.34)

This equation says that the metastable state magnetization response after a
small variation of the magnetic field is proportional to such perturbation in a
first approximation. However, the magnetization response will be divergent
when, Ä � ü =� õ � ü �� ö � � ü �� õ � ü =� ö Å  v m/x1 V � v m/01 V ��m V w4V 8 �� (3.35)

When this condition holds, there will be a discontinuity in the metastable mag-
netization as a function of � . For fixed

�
and

�
we thus identify the mag-

netic field � ´ for which condition (3.35) is fulfilled as the intrinsic coercive field,



36 Mean Field Approximation to the Problem of Metastability

0 0,5 1
T/T

ons

-2

-1,5

-1

-0,5

0

h* (T
,p

)

T
1
/T

ons
T

2
/T

ons

Figure 3.7: Intrinsic coercive field, A \ Çib�j 4�É , as a function of temperature for different
values of 4 . From bottom to top, 4$ByD , D�H D
J , D
H D)z , D
H DUN , D�H DUN�J , D
H D�NUz , D�H DUN�K , D�H D){ , D�H D)K
and D�HRJ . Notice that the qualitative change of behavior in the low temperature limit
appears for 4}|áÇ�D
H D�NkJIj�D
H DUNUz�É . Here we also show, for AhBEPQD�H zIK , the temperaturesb   r�b § such that for b   r�b~r�b § there are metastable states for 4�B�D�H D�K .
�08 �����à��
 . Unfortunately, we cannot analytically calculate ��8 �&���	��
 , since we do
not explicitely know the metastable solutions õ ��m� ' and ö ��m� ' . Solving again the
problem with standard numerical methods, we obtain the results shown in Fig.
3.7. There we plot �:8 �����à��
 as a function of temperature for different values of
the nonequilibrium parameter

�
. The first conclusion we draw from this family

of curves is the existence of two different low temperature limits for ��8 �����	��
 ,
depending on the value of

�
. For small enough values of

�
(including the equi-

librium case,
� ]� ), the curve �:8 �����à��
 extrapolates towards � � in the limit� t � . In particular this is true for

� EÀF � � ��� ��Z�� J (see Fig. 3.7). On the con-
trary, for large enough values of

�
, namely

� EMF ��� �3Z ��� >µ � 
 , the curve � 8 �����à��

extrapolates towards � in the limit

� t � . There is a critical value for
�

, that
we estimate here to be � � � ��� �3Z��@< , which separates both types of asymptotic
behaviors. As we said before, the intrinsic coercive field � 8 �����à��
 signals the
magnetic field strength above which there are no metastable states. As we see
in Fig. 3.7, for

� ��� � the behavior of �:8 �&���	��
 for the nonequilibrium sys-
tem is qualitatively similar to that of the equilibrium one: � �98 �����à� ��� ��
 � is a
monotonously decreasing function of

�
. Therefore, for

� �E� � , if we cool the
system we need a stronger magnetic field in order to destroy the metastable
state. This result agree with intuition. In a metastable state there are two com-
peting processes: a net tendency of the system to line up in the direction of
the field, and a net tendency in order to maintain the spin order, i.e. in order
to keep all spins oriented in the same direction (whatever this direction is).
A metastable state survives a long time because the tendency towards main-
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taining the order in the system overcomes the tendency to line up along the
field direction. Both the temperature

�
and the nonequilibrium parameter

�
are ingredients which introduce disorder in the system. Hence if we drop tem-
perature, since in this way order grows in the system, we would expect in this
phenomenologic picture that the magnetic field needed in order to destroy the
metastable state should be stronger, as we effectively check for

� ��� � . In the
same way, as

�
is increased, disorder grows in the system, so �98 �����à��
 must

decrease for a fixed temperature, as we again observe.
On the contrary, for

� `�� � the system exhibits an unexpected behavior,
difficult to understand using the above phenomenologic picture. Let’s assume
we fix the magnetic field to be �á��ª��� � < and the nonequilibrium parameter
to be

� ¬��� �=<M`�� � . As we can see in Fig. 3.7, we can define two differ-
ent temperatures,

� = � � � , such that if
� � � = or

� ` � � the system does not
show metastable states, while metastable states does exist if temperature lies
in the interval

� E ��� = �_� � 
 . The fact that �:8 �&���	��
 extrapolates to zero in the
low temperature limit for

�  ��� �=<�`�� � points out that the nonequilibrium
parameter

� M��� �3< , which is the relevant source of disorder and randomness
in the low temperature limit, takes a value in this case large enough in order to
destroy on its own any metastable state. In principle, following the above phe-
nomenologic picture, we would say that increasing in this case temperature
the metastable state should not ever exist, because we add disorder to the sys-
tem. However, we observe that a regime of intermediate temperatures exists,� E ��� = �f� � 
 , where metastable states emerge. This observation involves the
presence of a non-linear cooperative phenomenon between the thermal noise (pa-
rameterized by

�
) and the non-thermal fluctuation source (parameterized by�

): although both noises add independently disorder to the system, which in-
volves the attenuation or even the destruction of the existing metastable states,
the combination of both noise sources, parameterized in the dynamics (2.3), not
always implies a larger disorder, giving rise to regions in parameter space

�&���	��

where there are no metastable states for low and high temperatures, existing
however metastability for intermediate temperatures. This counter-intuitive
behavior resembles in some sense the behavior of some systems under the ac-
tion of multiplicative noise, as for instance the annealed Ising model[57], where
a disordered phase exists for low and high temperatures, but there is an or-
dered phase for intermediate temperatures.[58]

3.3.4 Intrinsic Coercive Field from Monte Carlo Simulations:
Stable Phase Growth and Shrinkage Rates

Now we want to check our theoretical predictions via computer simulations,
so we need to discern when the system exhibits a metastable state. In order to
establish a criterion, we must introduce the concept of spin class (see Appendix
A). For a spin A in the lattice, the spin class to which this spin belongs to is
defined once we know the spin orientation, ARøLN� or AR��N� , and its number
of up nearest neighbors, é�E�F � � 5 J . Therefore, for the two-dimensional isotropic
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Class Central spin Number of up neighbors
%�O

1 +1 4 8J+2h
2 +1 3 4J+2h
3 +1 2 2h
4 +1 1 -4J+2h
5 +1 0 -8J+2h
6 -1 4 -8J-2h
7 -1 3 -4J-2h
8 -1 2 -2h
9 -1 1 4J-2h

10 -1 0 8J-2h

Table 3.1: Spin classes for the two-dimensional isotropic Ising model with periodic
boundary conditions. The last column shows the energy increment involved by a spin
flip for each class.

Ising model subject to periodic boundary conditions there are �#� different spin
classes, schematized in Table 3.1. All spins belonging to the same spin class
involve the same energy increment

%�O[� A � é 
 when flipped (see Table 3.1), so
the transition rate for a spin to flip depends exclusively on the spin class D"EF©� � �#� J to which the spin belongs to,

r B"c r � A � é 
 , see eq. (3.20). If é�� � + 
 is
the number of spins in the system that belong to class } when the system has
magnetization + , then é�� � + 
 r � will be the number of spins in class } which
flip per unit time when we have éQ� 8  IÏ� �ªL�+ 
 5 � up spins. Since in our
convention (see Table 3.1) all classes }|E�FH� � < J are characterized by a central
spin with A ÀL?� and éM�5 � Z � �Z�Z� � � up nearest neighbors, the number of up
spins which flip per unit time when magnetization is + will be,

î � + 
  >S��^ = é�� � + 
 r � (3.36)

This observable is the growth rate of the negative magnetization phase, and it
depends on system’s magnetization. In a similar way, we define the shrinkage
rate of the negative magnetization phase as,

A � + 
  = ´S��^�� é � � + 
 r � (3.37)

Now A � + 
 is the number of down spins which flip per unit time when system’s
magnetization is + . Since we are studying a system subject to a negative mag-
netic field, we will name î � + 
 and A � + 
 stable phase growth and shrinkage rates,
respectively.[46]

If we have a state with magnetization + , the rate of change of magnetiza-
tion will be,

d +
d o  �I q A � + 
 ��î � + 
kv (3.38)



3.3 Static Properties 39

-1 -0,5 0 0,5 1
m=(2n

up
-N)/N

0

0,005

0,01

0,015

0,02

0,025

g(
m

)/
N

, s
(m

)/
N

0,7 0,8 0,9 1

m

0,01

0,015
g(

m
)/

N
, s

(m
)/

N
0

1

Figure 3.8: Growth and shrinkage probabilities of the stable phase, ��Çi�ÏÉ��3� and� Çi�ÏÉ��3� respectively, for a system of size L�BFK=N , with bCB�D
H �Ub�e@fng , 4�B�D�H DID)K andAhBEPQD�HRJ . The continuous line represents ��Çi�ÏÉ��3� , while the dashed line represents� Çi�ÏÉ��3� . The inset shows a detail of the positive magnetization region.

Thus the system will show steady states for î � + 
 �A � + 
 . Fig. 3.8 showsî � + 
 5 I and A � + 
 5 I as measured in a system with size
- E<
Z , temperature� Á��� �C���h� � , � Á��� ���=< and ��æ������� , after averaging over �#���~� different de-

magnetization experiments. These demagnetization experiments begin with
all spins up (such state is metastable for the studied parameters) and finish
once the negative magnetization stable state has been reached. As we can see
in Fig. 3.8, there are three points where the curves î � + 
 and A � + 
 intersect one
each other. Two of this intersection points appear in the positive magnetiza-
tion region, and the third one appears in the negative magnetization region.
The points where î � + 
 �A � + 
 indicate steady states of the real system, whose
magnetization can be deduced from the intersection abscissa. Let’s denote
these magnetization values as + <0= , + ´ and + = , being + <0= the magnetization
of the intersection point in the negative magnetization region, + ´ the magne-
tization of the intermediate intersection point, and + = the largest intersection
point magnetization. In order to discern local stability, let’s study what happen
if we slightly perturb the magnetization in these steady states. If we perturb for
instance the steady state with the largest intersection point magnetization, + = ,
in such a way that the final state has magnetization + �+ = L�ÿ+ , we can see
that if �ÿ+¬`�� then î � + = L°�ÿ+ 
 `�A � + = L°�ÿ+ 
 , while î � + = L°�4+ 
 �ÑA � + = L°�4+ 

if �ÿ+���� . In both cases, as indicated by eq. (3.38), the system tends to coun-
teract the perturbation, coming back to the stationary state. Hence the sta-
tionary state with the largest magnetization, + = , is locally stable under small
perturbations. The arrows in the inset of Fig. 3.8 represent the tendency of
the system immediately after the perturbation. We find something analogous
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Figure 3.9: Probability of finding a metastable state, as defined in the main text, as
a function of magnetic field A�r�D for a system of size L�BYK=N , with temperatureb'B�D�H d�bae.f�g and 4�B�D , where we have performed �����@��BSK3DUD demagnetization exper-
iments for each value of A . Error bars are smaller than symbol sizes.

for the steady state with negative magnetization, + <0= , i.e. it is locally stable.
Therefore the stationary state represented by + = signals the metastable state,
while the stationary state + <0= signals the stable state in this case (remember�Ñ��� ). The steady state + ´ is unstable under small perturbations, as can be
easily derived using the above arguments. This stationary state signals the
separation point between the region where the stable phase tends to disappear
( + ` + ´ ), and the region where the stable phase tends to grow ( + �b+ ´ ).
As we will see in forthcoming chapters, this point defines the critical fluctu-
ation needed in order to exit the metastable state. This critical fluctuation is
the magnitude that controls the demagnetization process. Finally, we want
to point out that measuring î � + 
 y A � + 
 in particular experiments, extracting
the stable and metastable state magnetizations, + <0= and + = respectively, and
averaging such measures over many different experiments, we can obtain a
measure of the average stable and metastable state magnetizations. This mea-
sure compares perfectly with the previously presented results (see Fig. 3.3 and
3.4, and complementary discussion).

It is clear from the previous discussion that if there is a magnetization inter-
val inside the metastable region (in our case, the positive magnetization region)
where A � + 
 `áî � + 
 , that is, where the stable phase shrinkage rate is larger than
its growth rate, then a metastable state will exists. On the other hand, when� ����`��:8 �&���	��
 the metastable state will not exist. In this case it is observed that
the curve A � + 
 does not intersect î � + 
 in the positive magnetization region.
Hence the existence or absence of intersection between A � + 
 and î � + 
 in the
positive magnetization region (for ���ø� ) allows us to decide whether the sys-
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Figure 3.10: Monte Carlo results for the intrinsic coercive field, A \ Çib�j 4�É , as a function
of temperature for different values of 4 . In particular, from bottom to top, 4OBTD , D�H D�J ,D�H DUN , D�H D�N=D�K , D�H DUN�z3D , D�H DUN�K3D , D�H D){ and D�H D�K . Notice the change of asymptotic behavior in
the low temperature limit for 4�|ÍÇ�D
H D�N�j�D�H D�N=D�K�É . This figure is to be compared with Fig.
3.7.

tem exhibits a metastable state or not. In the above discussion we have treated
all states with the same magnetization as an single state. However, there are
many different microscopic states in the system which are compatible with a
fixed magnetization. These states may exhibit very different properties. In
particular, the rates î � + 
 y A � + 
 depend not only on magnetization, but on
the population of all the spin classes. Thus, for a fixed set of parameters

�
,
�

and �G�|� , we can have experiments where A � + 
 and î � + 
 intersect one each
other in the positive magnetization region, and for the same parameters we can
observe other experiments where they do not intersect. Therefore, instead of
speaking about the existence or absence of a metastable state, we must speak
about the probability of existence of a metastable state. In this way we can de-
fine a method to measure the intrinsic coercive field �98 �����à��
 in Monte Carlo
simulations. For a fixed set of parameters

�
,
�

and �|�û� , we perform
I 9  8

different demagnetization experiments, starting from a state with all spins up.
We measure on each experiment the stable phase growth and shrinkage rates,î � + 
 and A � + 
 respectively, as a function of magnetization. If é ) 9 ' of thoseI 9  8 experiments are such that î � + 
 and A � + 
 intersect one each other in the
positive magnetization region, we can define the probability of existence of a
metastable state as é ) 9 '��&���	��� � 
 5 I 9  8 . If we repeat such process for fixed val-
ues of temperature

�
and nonequilibrium perturbation

�
, varying the magnetic

field in a wide interval, we obtain the results shown in Fig. 3.9. Here we ob-
serve that the metastable state existence probability abruptly changes from LN�
to � in a narrow magnetic field interval. Therefore we define in this case the in-



42 Mean Field Approximation to the Problem of Metastability

trinsic coercive field, � 8 �����à��
 , for fixed
�

and
�

, as the magnetic field for whiché ) 9 '������à��� �08 
 5 I 9  8 ���� < .
Fig. 3.10 shows �:8 �&���	��
 , as measured from Monte Carlo simulations using

the above explained method, as a function of temperature for a system size-  <�Z , and for varying values of
�

. Comparing this figure with Fig. 3.7,
we observe that Monte Carlo results confirm both qualitatively and quantita-
tively4 the theoretical predictions based on Pair Approximation. In this way
we observe that the low temperature asymptotic behavior of �98 �&���	��
 depends
on the nonequilibrium parameter

�
. There is a critical value � � for

�
which sep-

arates both asymptotic behaviors. We estimate from Monte Carlo simulations�  �¡� � ��� �3Z�� � < (see Fig. 3.10). This critical value has to be compared with the
result derived from Pair Approximation, � 8]¢ B0£� � ��� �3Z��+< . Hence we confirm
that the system exhibits, as we discussed in the previous section, a non-linear
cooperative phenomenon between the thermal noise, parameterized by

�
, and

the non-thermal noise, parameterized by
�

, for
� `�� � , in such a way that there

are no metastable states for low and high temperatures, but there is an interme-
diate temperature region where metastable states emerge due to the non-linear
coupling between both noises.

3.4 Dynamics of Metastable States in Mean Field
Approximation

In the previous section we have studied the static properties of our metastable
system. These static properties are related to the properties of the nonequilib-
rium potential, defined by eq. (3.30), which controls the system behavior, see
Fig. 3.6. In particular, we have calculated the local extrema positions, and their
local stability against small perturbations. Finally, we have investigated the
intrinsic coercive magnetic field. These static investigations give us a good pic-
ture of the nonequilibrium potential shape for different values of temperature�

, nonequilibrium perturbation
�

and magnetic field � .
However, the metastability phenomenon is, as we discussed in Chapter 2,

a dynamical process where the system, after wandering a long time around
the metastable state, evolves towards the globally stable state. Therefore we
are also interested in understanding the properties of this evolution, the pro-
cesses which give rise to the metastable-stable transition, and the role played
by nonequilibrium conditions in the system behavior. We also want to char-
acterize the system dynamics with observables that, as the metastable state
lifetime, define the typical temporal scales of the process.

Due to the successful description that we have obtained from the dynamic
mean field approximation for the static properties of the system, it seems sen-
sible to derive also the system dynamic properties using this approximation.

4At the quantitative level, Monte Carlo results match rather well with the theoretical predic-
tions, although we observe, as expected, some systematic deviations for temperatures close enough
to the critical one.
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However, this methodology faces up to a fundamental problem, implicit in the
structure of the mean field approximation. In the previous section we affirmed
that, in mean field theory, all locally stable steady states with positive magne-
tization are metastable for �ø� � . However, we can trivially prove that once
the set of non-linear differential equations (3.19) reaches a steady state, it never
evolves to any other state. This fact does not fit with the definition we gave
in Chapter 2 for a metastable state, where we identified as a key feature of
such state its transient character, i.e. a metastable state finally evolves towards
the truly stable state. The reason why mean field theory fails when describ-
ing the exit from a metastable state underlies in one of the basic hypothesis
assumed in this approximation: the suppression of fluctuations. The real sys-
tem, once situated in the metastable region, fluctuates around the metastable
state, due to the presence of noise in the system (in our case, noise has ther-
mal -

�
- and non-thermal -

�
- origin). These fluctuations temporarily separate

the system from the metastable state, although it rapidly reacts coming back
to the metastable state. However, the existence of such fluctuations implies a
non vanishing probability for one of these fluctuations to have a large enough
amplitude in order to allow the system to overcomes the energy barrier which
separates the metastable state from the stable one. That is, fluctuations consti-
tute the origin of the metastable-stable transition, so a theory which neglects
fluctuations cannot properly describe this dynamical process.

Hence, in order to theoretically investigate the dynamical aspects associ-
ated to metastability in our system using mean field theory, we must generalize
the Pair Approximation in order to include the effect of fluctuations. In order
to do so, let’s remember one of the two basic equations in our approximation,
namely eq. (3.17),

dõ
d o  � �~ïS� ^ ´ ó

��ëé ô Ä õ =.< �~ï ö � � õR�Pö 
 �~ï < � r � L � é 
� � �9��õ 
 =1< �~ï � õK�Pö 
 � � �9LPö¨� � õ 
 ��ï < � r � � � é 
 Å (3.39)

This equation describes the time evolution of the probability of finding an up
spin in the system, õ�c¼ê � L 
 , as a function of both õ and ö , where ö is the
probability of finding a

� L � L 
 nearest neighbor pair. Let’s remember now that
the magnitudes,ä*� L � é 
 c ó ��ëé ô õ =1< �~ï ö � � õK�Pö 
 �~ï < � ó ��ëé ô ê � L 
 ê � LK� L 
 � ê � �K� L 
 �~ï < �ä*� � � é 
 c ó ��ëé ô � �9��õ 
 =1< �~ï � õN�[ö 
 � � �9L[ö�� � õ 
 ��ï < � ó ��ëé ô ê � � 
 ê � LK� � 
 � ê � �K� � 
 �~ï < � (3.40)
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defined in eq. (3.12) and entering eq. (3.39), are the probabilities of finding a
spin in state up or down, respectively, and with é up nearest neighbors. In the
previous section we have specified that the spin class to which a spin belongs
to is defined by the spin orientation and by its number of up nearest neighbors.
Therefore, the magnitude

ä°� A � é 
 , which we define in mean field theory for our
particular choice of the domain topology, is the probability of finding a spin in
the system belonging to a spin class defined by the pair

� A � é 
 . For instance,ä*� L � 5 
 is the probability (in mean field approximation) of finding a spin in
the system belonging to the first spin class, as defined in our convention, see
Table 3.1. Although it is not clearly stated in our notation, we must notice thatä*� A � é 
 depends on õ and ö , see eqs. (3.40).

Once we have identified the magnitudes
ä*� A � é 
 as the population densities

for each spin class in Pair Approximation, we can trivially write down the sta-
ble phase growth and shrinkage probabilities, ˜î � õ � ö 
 and ˜A � õ � ö 
 respectively,
in this approximation,

˜î � õ � ö 
 c �~ïS� ^ ´ ä  V � � L � é 
 r � L � é 
 �~ïS� ^ ´ ó
��ëéaô õ =.< �~ï ö � � õN�[ö 
 �~ï < � r � L � é 


˜A � õ � ö 
 c �~ïS� ^ ´ ä  V � � � � é 
 r � � � é 
 �~ïS� ^ ´ ó
��ëé ô � �9��õ 
 =.< �~ï � õN�[ö 
 � � �9L[ö�� � õ 
 �~ï < � r � � � é 
 (3.41)

where we have stressed when using the notation
ä  V � � A � é 
 the dependence of

the spin class population densities on õ and ö . Now we can write eq. (3.39) as,

d õ
d o  ˜A � õ � ö 
 � ˜î � õ � ö 
 (3.42)

which is formally equivalent to eq. (3.38), taking into account that we spoke
there about stable phase growth and shrinkage rates, and here we speak about
stable phase growth and shrinkage probabilities.

This reformulation of some of the Pair Approximation original equations in
terms of spin class population densities will allow us to introduce fluctuations
in the system in a very natural way. Other methods which introduce fluctua-
tions in mean field theories have been proposed in the literature[56], although
these methods need additional assumptions. In order to implement fluctua-
tions in mean field theory, let’s have a look on the real system evolution. In our
model, each spin in the lattice belongs to one of �Z� possible spin classes. As the
stochastic dynamics flips the spins, the population of the different spin classes
changes. Moreover, as we explain in Appendix A, the population of the differ-
ent classes is the magnitude which defines, together with the microscopic dy-
namics of the system, the stochastic jumps in system’s phase space. Our mean
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field theory yields an approximation for the spin class population densities for
each value of õ and ö . Hence, in order to include fluctuations in our mean field
theory we only have to build a stochastic process similar to the one observed in
the real system, but where instead of using the spin class population densities
obtained from simulations, we will use the spin class population densities de-
rived from mean field theory. This process will give rise to stochastic trajectories
in the mean field phase space, defined by

� õ � ö 
 , which will include fluctuations
around the average behavior equivalent to those observed in the real system.

Let’s assume now that we want to study the system dynamics in mean field
approximation for temperature

�
, nonequilibrium perturbation

�
, and mag-

netic field ���ø� . The algorithm we use in order to study the demagnetization
process is the following5,

1. We put the mean field system in an initial state defined by õ� �Ï ö .
This initial state is equivalent to a state with all spins up.

2. For those values of õ and ö we evaluate the spin class population densities
for all the classes,

ä  V � � A � é 
 , using eqs. (3.40).

3. We calculate the time
% o the system spends in the current state

� õ � ö 
 be-
fore going to some other state (see Appendix A). This time depends ex-
clusively on the current state. We increment time, o(t¬o9L % o .

4. We randomly select one of the possible spin classes with probability pro-
portional to the spin class flip probabilities,

ä  V � � A � é 
~¸ r � A � é 
 . This spin
class is defined by the pair

� A � é 
 , where A� ò � and é��� � �Z�h� � 5 .
5. We actualize the variables õ and ö , in such a way that õat õKL��hõ � A 
 andöÊt ö�LG�4ö � A � é 
 .
6. We come back to point 2 until we reach the stable state.

The increments �Cõ � A 
 and �ÿö � A � é 
 obviously depend on the chosen spin class
in order to actualize the system. Thus, if we choose class 1, characterized by
a central spin A�¼LN� and é ¤5 up nearest neighbors (see Table 3.1), we
know that õ , which is the probability of finding an up spin in the system, will
decrease in an amount �#5 I when we flip a spin in this spin class, where

I
plays

the role of the number of spins in the system. On the other hand, if we choose
class 7, characterized by a down central spin and é�}Z up nearest neighbors,
now õ will increase up to õÊL��#5 I . Therefore, the increment induced on õ only
depends on the values of the central spin which defines each class, and not on
the number of up nearest neighbors. Thus we can write, for a fixed selected
spin class characterized by a central spin A ,�hõ � A 
 �� AI (3.43)

5This algorithm is based on the s-1 MCAMC algorithm explained in Appendix A. In general,
MCAMC algorithms, when applied to the real system, are exact reformulations of the standard
Monte Carlo algorithm, although they are much more efficient since they are rejection-free. The
philosophy used by these algorithms, based on the different spin class populations, allows us to
write down a mean field stochastic dynamics from our theory, as we show in the main text.
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In order to calculate the modification that the variable ö suffers after one step,�4ö � A � é 
 , let’s assume again that we choose class 1 to actualize the system,
where we already know that A¡ÑL?� and éT5 . Variable ö is the probability of
finding a

� L � L 
 pair in the system, ê � L � L 
 . Each spin in class 1 contribute to ö
with é�y5 different

� L � L 
 nearest neighbors pairs. The total number of pairs
in a system with

I
spins and dimension

ë
is
ë�I

. Hence when we flip a spin
in class 1, the variable ö has to decrease in an amount 5¶5 ë�I . In general we can
write, �4ö � A � é 
 �� A½éë�I (3.44)

With eqs. (3.43) and (3.44) we completely define the mean field stochastic dy-
namics previously explained. We have checked that this stochastic dynamics
yields the same results for the static properties of the system that we found
using Pair Approximation in the previous section. On the other hand, this
method allows us to obtain the dependence of ö on õ for any õ*EGF � � � J , öÊ�ö � õ 
 ,
for any parameter space point

�����à��� � 
 . This was not possible numerically inte-
grating the set of eqs. (3.17) and (3.18), due to the presence of multiple station-
ary states. In particular, once we obtain the dependence ö � õ 
 , we can compare
the stable phase growth and shrinkage probabilities calculated using the mean
field stochastic dynamics, ecs. (3.41), with the computational results for these
observables. Fig. 3.11 shows this comparison. We use there the parameters� Á��� �4���h� � , � À��� �~�=< and ��À�ª��� � for a system size

- �<
Z , i.e.
I  � ;�� �

spins. These parameters were also used in Fig. 3.8.
We observe in this figure that, while the comparison between the compu-

tational results and the mean field stochastic dynamics prediction is remark-
ably good in the relatively narrow magnetization intervals +�EF �?� � + <0= J and+ EÀF + = � � J (we defined + = and + <0= in the previous section), this compari-
son turns over disastrous for magnetizations in the interval +®E � + <0= � + = 
 .
In particular, the values + <:= and + = derived from the mean field stochas-
tic dynamics nicely agree with the stable and metastable state magnetizations
measured in the real system.

The stable phase growth and shrinkage probabilities, î � + 
 5 I y A � + 
 5 I
respectively, are the most relevant observables in the metastable-stable transi-
tion. They determine most of the properties of this dynamic process between
the metastable state ( + = ) and the stable one ( + <0= ). For instance, we can cal-
culate the metastable state lifetime from these probabilities (see Appendix A).
Therefore, the discrepancies between the theoretical prediction for both prob-
abilities (based on the mean field stochastic dynamics approximation) and the
measured values for î � + 
 5 I y A � + 
 5 I in the interval + E � + <0= � + = 
 points
out that our theoretical approximation, in spite of taking into account fluctua-
tions, is not able to describe the dynamics of the metastable state demagnetiza-
tion process.

The key question now is: Why does the extended mean field approxima-
tion fail when describing the dynamics of the demagnetization process ?. The
answer to this question underlies again in one of the basic hypothesis of mean
field approximation: the hypothesis of homogeneity. During the formulation of
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Figure 3.11: Comparison of stable phase growth and shrinkage probabilities, ��Çi�ÏÉ��3�
and � Çi�ÏÉ��3� respectively, as obtained from mean field stochastic dynamics (pair of
curves with larger amplitude) and from Monte Carlo simulations of the real system.
The continuous line represents ��Çi�ÏÉ��3� in both cases, while the dashed line represents� Çi�ÏÉ��3� . The parameters are bOB�D�H ��b e.f�g , 4$ByD�H DID)K and A�B}PQD�HRJ , for a system sizeL¥B�K=N , i.e. �}B�z=¦IDU§ spins. These parameters are the same than those used in Fig. 3.8.
Notice that ��BSz�p¨P�J .
Pair Approximation (see section 3.2) we assumed two basic hypothesis: ho-
mogeneity and kinetic isolation6. The kinetic isolation hypothesis involved
neglecting long range correlations. Although these long range correlations
are generally relevant to understand the global behavior of the system, we
can neglect them for temperatures far away the critical one, as in our case.
On the other hand, the homogeneity hypothesis involved the assumption that
the properties of the system did not depend on the position in the system.
However, the metastable-stable dynamic transition is a highly inhomogeneous
phenomenon: fluctuations present in the system give rise to small droplets
of the stable phase inside the metastable bulk. These compact droplets ap-
pear instead of non-compact fluctuations because compact fluctuations mini-
mize in some sense the surface-volume ratio, and hence they are energetically
favoured. These localized droplets constitute an inhomogeneity not taken into
account in our mean field theory. If one (or several) of these droplets reaches
a size large enough such that the system is able to overcome the energy bar-
rier which separates the metastable state from the stable one, then the system
will rapidly evolve towards the stable state. When we impose homogeneity in
mean field theory, we force the system to behave coherently, that is, all spins
in the system behave in the same way. Therefore, the fluctuations we have
included in the theory via the mean field stochastic dynamics approach, de-

6We have to add a third hypothesis, namely suppression of fluctuations.
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scribed above, are coherent, non-compact fluctuations, and hence energetically
punished. This is the reason why we observe that it is much more difficult for
the system to exit the metastable well in mean field approximation than for the
real system7. In particular, it is observed in Fig. 3.11 that the surface delimited
by the curve F A � + 
 ��î � + 
&J 5 I between the points + ´ and + = , which is in some
sense a measure of the strength of the metastable state, is much larger in mean
field approximation than for the real system. On the other hand, our mean
field theory describes in a proper way the static properties of both the stable
and metastable states because these states are homogeneous, i.e. without any
preferred point.

The above discussion implies that we need to build a inhomogeneous the-
ory, based on the picture of nucleation of stable phase compact droplets in
the metastable bulk, in order to understand the dynamic properties of the
metastable system. This theory was formulated long ago for equilibrium sys-
tems [23, 26], and it is based on the free energy of one of these droplets. This
droplet free energy can be written as the competition of two different terms.
On one hand, there is a volume term, related to the properties of the pure ho-
mogeneous phase which constitutes the droplet, i.e. the stable phase. On the
other hand, there is a surface term, related to the interface separating the stable
phase inside the droplet from the metastable phase that surrounds it. This term
is associated with the inhomogeneity which characterize the metastable-stable
transition. In previous sections we have studied the properties of both pure ho-
mogeneous phases (the metastable and the stable phases) for our nonequilib-
rium system. If we want to build a droplet theory valid for the nonequilibrium
ferromagnetic system we must understand also the system interfacial prop-
erties, which will characterize the inhomogeneous, surface term which deter-
mines, in competition with the volume term, the droplet properties. Therefore,
our aim in the next chapter consists in studying the interface in our model8.

3.5 Conclusion

In this chapter we have studied both the static and dynamic properties of
metastable states in the nonequilibrium ferromagnetic model using a first or-
der dynamic mean field approximation.

In particular, we have applied the so-called Pair Approximation[50, 51],
a dynamic analogous of the equilibrium Bethe-Peierls Approximation, to the
problem of metastability in our lattice spin system. This theory is based on a

7In practice, in order to perform the simulation with mean field stochastic dynamics we must
implement the slow forcing approximation (see Appendix A). In this way we are able to exit the
metastable state.

8This last section, devoted to the investigation of the system dynamics in mean field approx-
imation, can be thought as a waste of time, since it was obvious from the very beginning that
the homogeneity hypothesis in mean field theory should impede any realistic description of the
dynamics. However, apart from the pedagogical value of the discussion, in this section we have
presented a novel method to include fluctuations in mean field theory in a natural way, which may
be very useful in other kind of problems where the system is homogeneous.
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mean field approximation for the master equation governing the system dy-
namics, once this stochastic equation is reduced to local observables. The ap-
proximation is developed using three fundamental hypothesis. In a first step,
it neglects all fluctuations in the system, so in this approach we only study
the average behavior of local observables. On the other hand, this theory also
neglects long range correlations. In particular, we only have into account near-
est neighbor correlations (this is why this approximation is termed first order).
The last hypothesis assumes that the system is homogeneous, which implies
that all points in the lattice behave in the same way, independently from their
positions.

Taking into account these hypothesis, and taking as starting point the mas-
ter equation, we obtain two coupled non-linear differential equations for the
dynamics of õ , the probability of finding an up spin in the system, and ö , the
probability of finding a

� L � L 
 nearest neighbors pair in the system. We ob-
tain numerically the locally stable steady solutions of this set of differential
equations, both for zero magnetic field and ����� . For ��Á� we obtain theo-
retical predictions for the stationary state magnetization as a function of tem-
perature for different values of

�
. These predictions perfectly compare with

Monte Carlo results in the low and intermediate temperature regime, although
some differences between theory and simulation appear for temperatures near
to the critical one,

� � �H��

, since for these temperatures long range correlations

become important. As the value of the nonequilibrium perturbation
�

is in-
creased, the stationary state magnetization decreases in magnitude for �áæ�
for a fixed temperature, although the qualitative shape of curves + �W©ª�� �&���	��


is
similar to those of the equilibrium system. The critical temperature

���C�©��

sig-

nals a second order phase transition in the nonequilibrium systems between a
disordered phase for high temperatures and an ordered phase for low temper-
atures. Applying the marginal stability condition to the dynamic equations, we
are able to extract the phase diagram in first order mean field approximation
for the nonequilibrium model. The phase diagram yields the critical tempera-
ture

� � �©��

as a function of the nonequilibrium parameter

�
. The ordered phase

disappears for all temperatures when
� ` � � , where

� �  >µ � in this approxi-
mation. Finally, for the locally stable steady magnetization for ���Ñ� we obtain
qualitatively similar results as compared with the �M � case, although now
the up-down symmetry which held for �|�� breaks up. The comparison of
predicted curves with Monte Carlo results for both magnetization branches for� ��� is also excellent.

On the other hand, the system exhibits hysteresis due to the existence of
metastable states. This implies that the system keeps memory of the past evolu-
tion history. In particular, using mean field approximation we calculate the in-
trinsic coercive field �:8 �����	��
 , defined in this case as the magnetic field for which
the metastable state becomes unstable. We observe that �98 �����à��
 shows two dif-
ferent kinds of asymptotic behaviors in the low temperature limit, which de-
pend on the value of

�
. There is a critical value for

�
, � � � ��� �3Z��@< , which sep-

arates both behaviors. For
� ��� � the intrinsic coercive field �98 �&���	��
 increases
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in magnitude as temperature decreases, in the same way that in equilibrium
systems. However, for

� `�� � we predict that the intrinsic coercive field con-
verges towards zero in the limit

� t � , showing a maximum in magnitude for
certain intermediate temperature. This involves the existence of a non-linear co-
operative phenomenon between the thermal noise (parameterized by

�
) and the

non-thermal noise (parameterized by
�

): although both noise sources indepen-
dently add disorder to the system, which implies the attenuation, or even de-
struction of existing metastable states, the combination of both noises parame-
terized in the microscopic dynamics does not always involves a larger disorder,
giving rise to parameter space regions where there are no metastable states for
low and high temperatures, but metastable states appear for intermediate tem-
peratures. This theoretical prediction based on the mean field approximation
is fully confirmed via Monte Carlo simulations.

Finally, apart from the mean field investigations on the static properties of
both stable and metastable states in the system, summarized in previous para-
graphs, we have also attempted a description of the dynamics of the metastable-
stable transition using Pair Approximation. However, one of the basic hypoth-
esis in this approximation, namely the hypothesis of suppression of fluctu-
ations, impedes any realistic description of this dynamic process using Pair
Approximation. The reason underlies in that fluctuations constitute the ba-
sic mechanism which gives rise to the metastable-stable transition. Therefore,
in order to describe the metastable state demagnetization process, we relax
the above hypothesis, including fluctuations in the dynamic mean field theory.
This can be done in a natural way using the concepts of stable phase growth
and shrinkage rates, observables which are defined in a simple manner in our
approximation, and the philosophy underlying MCAMC algorithms (see Ap-
pendix A). In this way we write a mean field stochastic dynamics, which includes
fluctuations in a natural way. From this extended theory we predict the dy-
namic (and static) properties of the system. However, while the static results
obtained from the mean field stochastic dynamics are equivalent to those ob-
tained in Pair Approximation and reproduce the measured properties in Monte
Carlo simulations, the results on the dynamics of the metastable-stable transi-
tion are remarkably different from those obtained in simulations. This discrep-
ancy is due to the failure of another basic hypothesis of mean field approxima-
tion: the homogeneity hypothesis. This hypothesis implies that the exit from
the metastable state in the mean field stochastic dynamics approximation is
produced by coherent fluctuations of all spins in the system, which is energet-
ically punished. The metastable demagnetization process in the real system
is, on the other hand, an highly inhomogeneous process, where one or sev-
eral stable phase droplets nucleate in the metastable bulk, since these compact
structures minimize the system free energy for a fixed magnetization. Thus, in
order to understand the dynamics of the metastable-stable transition we must
therefore write an inhomogeneous theory where the interface plays a very im-
portant role. This inhomogeneous theory, based on the droplet picture, will
be developed in Chapter 5. However, in order to write such theory for the
nonequilibrium system, we must first understand the interfacial properties in
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the model, since they will play a fundamental role in the droplet nucleation
process. We study this problem in the next chapter.
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Chapter 4

Interfacial Properties

4.1 Introduction

In the previous chapter we have inferred the need of an inhomogeneous de-
scription, based on the picture of droplets of the stable phase nucleating in the
metastable bulk, in order to describe properly the dynamics of the metastable-
stable transition in the nonequilibrium ferromagnetic system. One of the fun-
damental features characterizing the inhomogeneity in this process is the pres-
ence of interfaces separating the metastable phase from the stable one. Thereby,
we must study the properties of an interface in the classic spin system un-
der nonequilibrium conditions in order to develop an inhomogeneous theory
that explains the dynamics of the demagnetization process from the metastable
state.

We devote this chapter to the study of the interfacial properties of the non-
equilibrium spin model. In particular, we are going to pay attention to both
the microscopic properties of the interface and its surface tension. With this
aim in mind we will first describe the Solid-On-Solid (SOS) approximation,
first formulated by Burton, Cabrera and Frank[59]. This approximation stud-
ies the interfacial properties in the Ising model for zero magnetic field, and it
is based on a microscopic description of the interface. In spite of the approxi-
mate character of this theory, the predictions derived from it nicely reproduce
the properties of the equilibrium interface. Afterwards we will present a gen-
eralization of SOS approximation which will allow us to study and predict the
properties of the interface in our nonequilibrium spin model. Finally, using the
results obtained via the generalized SOS theory, we will study the shape of a
spin droplet in the nonequilibrium system. This shape can be derived once we
know the interface surface tension using Wulff construction[68].
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4.2 The Solid-On-Solid Approximation

The Solid-On-Solid approximation (see ref. [59]) describes the interface in a
bidimensional equilibrium Ising model for zero magnetic field, �P�� , using a
simple picture where the interface is an univaluated function. If we have, as in
our case, a square lattice, the interface is completely defined by a set of integer
height values, «  , with õú�� � �Z�h� �.- , as Fig. 4.1.a shows. If y Gd�«�B � D��� � �h�Z� �1-¶i
is a configuration of the interface, the energy associated to this configuration
is, OO¬Z�

y

  � Q�S B_^ = � �9L�� «�B��O«�B <0= � 
 (4.1)

where Q is the spin coupling constant in Ising model (see eq. (2.1)). If we com-
pare this Hamiltonian

OO¬
with the original equilibrium Ising Hamiltonian, eq.

(2.1), for zero magnetic field, �Ñ�� , we observe that
O�¬Z�

y



is just the energy
contributed by all

� L � � 
 spin pairs forming the interface to the total Ising con-
figuration energy. Since in the ferromagnetic Ising model spins tend to align
with their nearest neighbor spins, we can say that a

� L � � 
 spin pair constitutes
a broken bond. The energy cost of a broken bond in the Ising model is just

� Q , so
the Hamiltonian

O ¬
is just the energy associated to all the broken bonds which

define the interface.
Let’s introduce now the canonical ensemble for this model, which consists

in all possible interfacial configurations in a system with length
-

and with
boundary conditions specified by «  ��« ´ C®|c - tan º , where º is the angle
formed by the interface and the ¯õ axis. The associated partition function will
be given by, ° �Ù-3� º 
  S

y

e <:w~y²± � y � � q � « \ �S« ´ 
 �$® v (4.2)

where > is the inverse temperature, and � � o 
 is the Kronecker Delta function
( � � o 
 �� if oK�� and � � o 
 M� otherwise). The corresponding free energy per
site is defined using the following limit,³ 8 £ � º 
  lim�´¥µ � �> - ln

° �Ù-3� º 
 (4.3)

This free energy is known as the projected surface tension[60]. The surface
tension, which is the free energy per unit length, can be written as,³ � º 
 �� cos º(� ³ 8 £ � º 
 (4.4)

Due to the boundary conditions, mathematically expressed via the Kronecker
Delta function that appears in eq. (4.2), it is not possible to perform the sum
needed to calculate the canonical partition function. In order to perform the
calculation we introduce a new ensemble, conjugated to the previous one,
where instead of fixing the height values at the borders (that is, instead of fix-
ing the angle º formed between the interface and the ¯õ axis), we fix a new
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Figure 4.1: (a) Schematic representation of a SOS interface between an up spin phase
and a down spin phase. In this case L�B�JUJ . The numbers inside the spins indicate the
spin class to which they belong to (see Table 3.1). Notice that interfacial spins belong
to classes z , N and { . (b) Example of configuration with overhangs, which is forbidden
in SOS approximation. The marked spin involves a multivaluated interface for thatp coordinate. (c) Schematic representation of an interface close to interact with bulk
fluctuations. These kind of configurations are also forbidden in SOS approximation.

thermodynamic parameter, , � º 
 1. If we define the step variables �~B�¶«�B¶�`«�B <:= ,
we can write the Hamiltonian for an interface with a configuration �RGdè�~B � D9� � �Z�h� �1- i as

O ¬ � � 
  � Q ¯ B_^ = � �¨L�� � B � 
 . Thus boundary conditions, defined by«  �O« ´ C® , can be expressed now as ¯ Bè^ = � B T® . The partition function for
the new ensemble is, ° � �Ù-3� , 
  Sk· e <:w~y²± � · � e ¸ ��¹��)º�»{x¼ , · { (4.5)

where the new thermodynamic parameter , � º 
 is just the Lagrange multi-
plier which keeps the average step variable in a õ independent value, that is,ju�4B m  tan º for all DNE�FH� �1-�J .[61] If we use in eq. (4.5) the previously derived
expression for

OS¬#� � 
 , we obtain,° �z�Y-3� , 
  e < � w þ  F ö � , 
&J  (4.6)

where ö � , 
 is the partition function for a single step,

ö � , 
  µS· ^ < µ e < � w þ�½ · ½ e ¸ ��¹�� ·  �9�$¾ ��:L¿¾ � � � ¾ cosh , � º 
 (4.7)

1This is similar to what happens when we introduce the macrocanonic ensemble in gases. While
the thermodynamic parameters in the canonical ensemble for gases are £ÁÀ�ÂRÃ	ÂWÄ¡¦ , in the macro-
canonical ensemble we introduce a new thermodynamic parameter, namely the chemical potentialÅ , which substitutes the number of particles Ä , which is not fixed now in this new ensemble.
The thermodynamic potentials derived from both ensembles are related via a Legendre transform
based on the thermodynamic parameters Å and Ä .
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and where we have used the notation ¾�c e < � w þ . It is obvious from eq. (4.6)
that in SOS approximation the different step variables � B are supposed to be
statistically independent among them. We could also derive this idea from
the additive character of the Hamiltonian

OS¬
once written in terms of the step

variables. In order to calculate the º dependence of the Lagrange multiplier, � º 
 , we use the condition ju� m  tan º . The probability of finding a step with
size � in the new ensemble is (see the previous equation),��� � 
  �ö � , 
�¾ ½ · ½ e ¸ ��¹u� · (4.8)

We thus can write, jà� m  � ln ö � , 
� ,  tan º (4.9)

where we use the single step partition function as a moment generating func-
tion. From this equality we find,

e ¸ ��¹��  � �9L¿¾ � 
 tan º�L�� � º 
� ¾ � tan º�L�� 

e < ¸ ��¹��  � �9L¿¾ � 
 tan º���� � º 
� ¾ � tan º���� 
 (4.10)

where � � º 
 �F � �3��¾ � 
 � tan
� ºúLÆ5�¾ � J =�Ç � . Substituting these expressions in eq.

(4.7) we arrive to, ö � º 
  � �9�$¾ � 
ß� ��� tan
� º 
�9L¿¾ � �G� � º 
 (4.11)

The thermodynamic potential associated to this second ensemble can be writ-
ten as a function of º in the following way,È � º 
 c lim�´¥µ � �> - ln

° � F -3� , � º 
&J
 � �> ln

q ¾ � ���$¾ � 
ß� �9� tan
� º 
�9L$¾ � �� � º 
 v

(4.12)

This thermodynamic potential is related to the projected surface tension, eq.
(4.3), via a Legendre transform which involves the thermodynamic variables
tan º and , . If we perform such Legendre transform, and obtain from the so-
calculated ³ 8 £ � º 
 the surface tension, we find,³ ��É�� � º�n �ª
  � cos º(�RÊ�� � ln

q ¾ � ���$¾ � 
.� �9� tan
� º 
�9L$¾ � �G� � º 
 v

L � tan º ln
q � �9L¶¾ � 
 tan º�L�� � º 
� ¾ � tan º�L�� 
 v�Ë

(4.13)

where we have used that >Í|�#5 � , with
�

the system temperature. The subindex
SOS included in our notation for the surface tension, ³ ��É�� � º�n �ª
 , points out
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that this is the solution in Solid-On-Solid approximation. This theory is ap-
proximate in several ways. First, as we said before, the SOS approximation ne-
glects correlations between neighboring step variables � B . On the other hand,
when we assume that the interface is univaluated we are neglecting the pos-
sible presence of overhangs. These overhangs give rise to non-analytic regions
in the interface of the real Ising model, since for a fixed õ coordinate there are
several different values of the height « � õ 
 . Fig. 4.1.b shows an example of
overhang. Furthermore, the SOS approximation also neglects all possible in-
teractions between the interface and the fluctuations or droplets appearing in
the bulk. Fig. 4.1.c shows an example of this possible interaction. Therefore it
is surprising that, in spite of these approximations, the surface tension derived
in SOS approximation, eq. (4.13), reproduces the known exact result for º�Ñ�
[62], and yields a very good approximation for � º(��ÌÍ��535 .[63] For values of� º(� larger that ��535 is more reasonable to use the SOS approximation taking as
reference frame the ¯« axis instead of the ¯õ axis.

4.3 Generalization of the Solid-On-Solid Approxi-
mation for an Interface under Nonequilibrium
Conditions

In this section we wan to generalize the SOS approximation to our nonequilib-
rium model. In order to perform such extension of the equilibrium interfacial
theory we must understand deeply, in a first step, the effects that the nonequi-
librium random perturbation

�
induces on the system.

4.3.1 Effective Temperature

Our starting point to do that is the microscopic dynamics we have imposed to
the system. The transition rate in the model, eq. (2.3), is,r � A � é 
  � L � �9� ��
 e <9w�xzy � �ZV � ��9L e <:w�xzy � �ZV � � (4.14)

This dynamics, which we called Glauber dynamics, is local as far as it depends
exclusively on the spin A we are trying to flip, and on the number of its up near-
est neighbor spins, é , through the energy increment involved in the transition,%�O[� A � é 
 . As we discussed before, there are many other different competing
dynamics. One of the most used dynamics in literature because of its appro-
priate features is Metropolis dynamics,r � A � é 
  � L � �9� ��
 min F©� � e <:w�xzy � �#V � � J (4.15)

This dynamics is a bit faster than Glauber dynamics, although the qualita-
tive results derived using Metropolis dynamics to study metastability in the
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nonequilibrium system are very similar to those obtained with Glauber dy-
namics. In order to analyze the effect that the nonequilibrium dynamic pertur-
bation induces on the system behavior, it is appropriate to work initially using
Metropolis dynamics instead of the original Glauber dynamics due to techni-
cal details which will be clear later on in this section. The results we obtain are
apparently independent of this detail.

Dynamics as those written in eqs. (4.14) and (4.15), where two canonical
rates working at different temperatures compete, generically drive the system
towards a nonequilibrium steady state. We could think however that we can
map this a priori nonequilibrium system to an equilibrium system with effec-
tive parameters. The transition rate should verify now the detailed balance
condition, eq. (2.4), for these effective parameters. In particular, for compet-
ing temperatures, we could think of mapping the nonequilibrium system to an
equilibrium model with certain effective temperature. In order to calculate this ef-
fective temperature we use eq. (4.15). Thus we want to write the transition rate
(4.15) as min FH� � e <:w�Î�ÏxÏ_xzy � �#V � � J , which is a dynamics driving the system towards
an equilibrium steady state at inverse temperature > 9ÑÐ�Ð . For

%�O[� A � é 
 `� ,� L � �9� ��
 e <9w�xzy � �ZV � � c e <:w Î�ÏxÏ xzy � �#V � � (4.16)

where > 9ÑÐ�Ð ¼�Z5 � 9.Ð�Ð , being
� 9ÑÐ�Ð the effective temperature. From this equa-

tion we obtain an expression for the effective temperature, as deduced from
Metropolis rate, for

%�O[� A � é 
 `� ,� � �ZV � �9ÑÐ�Ð �©��
  � %�OP� A � é 

ln
q � L � �9� ��
 e <:w�xzy � �ZV � � v (4.17)

For
%�OP� A � é 
 Ì|� we have that

� � �ZV � �9ÑÐ�Ð  � . The effective temperature defined
in this way is not unique for a system with

�À�Á� , because it clearly depends
on the spin class to which the flipping spin belongs to through the energy in-
crement

%�OP� A � é 
 involved in this transition, for
%�O[� A � é 
 `b� . All spins in

the same spin class share the same energy increment
%�O[� A � é 
 when flipped.

Hence, all spins in the same spin class suffer the same effective temperature.
However, for ��� � ��� this effective temperature varies depending on the
chosen spin class. In the limit

� Ñ� the effective temperature defined in (4.17)
reduces to the usual temperature,

�
.

First, the fact that the effective temperature depends on
%�O[� A � é 
 points

out that we cannot exactly map the nonequilibrium system to an equilibrium
model with well-defined effective temperature. On the other hand, the depen-
dence of

� � �#V � �9.Ð�Ð on the energy increment (that is, on the spin class to which
the chosen spin belongs to) will allow us to obtain a clear physical picture
of the effect that the nonequilibrium parameter

�
induces on system’s dy-

namics. Fig. 4.2 shows the effective temperature for each spin class, as de-
fined from Metropolis dynamics, see eq. (4.17), for a system with temperature� ���� < � �Z� � and

� ���� ��� (the magnetic field � is always zero in this sec-
tion), taking into account that the energy increment associated to each class
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Figure 4.2: Effective temperature b~Ò g.Ó f�Ô�ÑÕxÕ as a function of the spin class Ö�|}× JIj@J@D)Ø as
obtained from Metropolis dynamics ( Ù ) and from Glauber dynamics ( Ú ), for a system
with bcB¿D�H KIb e.f�g and 4�B¿D�H D�J ( A�B�D always in this section). Notice that b~Ò gÑÓ f�Ô�ÑÕxÕ is not
defined for spin classes N and ¦ (both corresponding with ÛªÜúÇ � j0Ý�É�B�D ) for Glauber
dynamics. The dotted line corresponds to the system temperature, b .

is
%�O[� A � é 
  � A�F � Q � é�� ë�
 Lá� J . In this figure we observe that the effective

temperature curve is fully symmetrical for up and down spins: that is, spin
classes 1 and 10 suffer the same effective temperature, and the same happens
for spin classes 2 and 9, 3 and 8, 4 and 7, 5 and 6. On the other hand, we see
that more ordered spin classes, i.e. spin classes characterized by a larger num-
ber of nearest neighbor spins pointing in the same direction that the central
spin, suffer a higher effective temperature. Thus, classes 1 and 10, where all
four nearest neighbor spins point in the same direction than the central spin,
are subject to the highest effective temperature. This observation is compatible
with intuition. As we have explained before, the presence of the nonequilib-
rium perturbation

�
implies that, with a very small probability, spins in the

system are able to flip independently from energetic restrictions imposed by
the interaction with their nearest neighbors. The larger is the number of near-
est neighbors pointing in the same direction than the central spin, the larger
is the energy barrier that is violated when flipping such central spin indepen-
dently from any energetic constraint. Hence, if we interpret the effect of the
nonequilibrium parameter

�
in terms of an effective temperature, it is obvious

the need of a larger effective temperature in order to overcome higher energy
barriers. Therefore we would a priori expect that the larger is the local order
that a spin feels, the larger is the effective temperature this spin suffers. This is
in fact what we have obtained in the above calculation.

The effective temperature can be also defined using Glauber dynamics, eq.
(4.14), in a way similar to the one followed when using Metropolis dynamics,
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eq. (4.17). However, the definition of effective temperature based on Glauber
dynamics shows a singularity for

%�O[� A � é 
 �� , that is, for spin classes 3 and 8,
so using this definition in theoretical analysis is not suitable. Fig. 4.2 also shows
the effective temperature as obtained from Glauber dynamics. The effective
temperature obtained from Metropolis dynamics is almost indistinguishable
from the one obtained via Glauber dynamics, and it does not show any singu-
larity for

%�O[� A � é 
  � . This is the reason why we have used from the very
beginning Metropolis dynamics to define the effective temperature, instead of
using Glauber dynamics.

4.3.2 Statistical Weight Associated to a Broken Bond in the
Nonequilibrium Interface

Coming back to the interface problem, we observe in Fig. 4.1.a that the spins
that define the interface belong to different spin classes. If we fix our attention
on the up phase interfacial spins2, they belong to spin classes 2, 3 and 4. Spins
in classes 1 and 5 cannot never belong to the interface. Spins in class 1 are
typical of the up phase bulk, and spins in class 5 are isolated up spins in the
down phase bulk. If we call

� � B �9.Ð�Ð the effective temperature associated to classD�E�FH� � �#� J , then we have spins in the interface that suffer effective temperatures� � �3�9ÑÐ�Ð�Þ � � µ �9ÑÐ�Ð�Þ � � ³ �9ÑÐ�Ð if they belong to classes 2, 3 and 4, respectively.
One of the central magnitudes in the Solid-On-Solid approximation for the

equilibrium system (
� �� ) is ¾Pc e < � w þ , which is the probabilistic weight asso-

ciated to a broken bond in the interface. Thus the probability of finding a step
of height � in the interface is proportional to ¾ ½ · ½ , see eq. (4.8). Using the con-
cept of effective temperature previously introduced, we can assume that the
probabilistic weight associated to a broken bond in the nonequilibrium system
(
�Ñ��� ) will depend on the spin class to which the interfacial spin whose bond

is broken belongs to through the effective temperature associated to this spin
class. If this spin belongs to class D , we denote this statistical weight as ¾ B .
Hence we can write in this picture ¾ B  e < � w]ß {áàÎ�ÏxÏ þ , where > � B �9.Ð�Ð ��#5 � � B �9ÑÐ�Ð , being� � B �9ÑÐ�Ð the effective temperature associated to the class D to which the interfacial
spin whose bond is broken belongs to. That is, we assume that each spin classD behaves as an equilibrium system at effective temperature

� � B �9ÑÐ�Ð , so the proba-
bilistic weight associated to a broken bond in class D is just the Boltzmann factor
associated to this broken bond at temperature

� � B �9.Ð�Ð , ¾ B  e < � w ß {áàÎ�ÏxÏ þ . Moreover,
we assume now that, as a first approximation, the probabilistic weight associ-
ated to a interfacial broken bond in the system with

�á�Ñ� will be given by the
following average,¾ 8  � � �&���	��
 ¾ � L � µ �&���	��
 ¾ µ L � ³ �&���	��
 ¾ ³ (4.18)

2In order to define the interface we must center our attention on all up interfacial spins, or on
all down interfacial spins. In this case we choose the up interfacial spins.



4.3 Nonequilibrium Generalization of SOS Approximation 61

where
� B �����	��
 is the probability of finding an interfacial spin belonging to classD , and where ¾ B is the statistical weight for a broken bond associated to class D ,

as we said before. This last assumption constitutes a mean field approximation,
because we neglect the effect derived from presence of different spin classes in
the interface, with different associated statistical weights ¾�B for each broken
bond. Instead we average such effect, building an average probabilistic weight¾ 8 , identical for all broken bonds in the interface and independent of the spin
class. Since all interfacial spins in the up phase belong to classes 2, 3 and 4, it is
obvious that the following normalization condition holds,� � �&���	��
 L � µ �&���	��
 L � ³ �����à��
 �� (4.19)¾ 8 is our approximation for the statistical weight associated to a broken
bond in the nonequilibrium interface. In order to generalize the SOS approx-
imation to the system with

�¬�¬� , we only have to substitute in the results
obtained in the previous section the variable ¾ for the new generalized prob-
abilistic weight ¾ 8 . Thus, for the nonequilibrium system, the probability of
finding a step in the interface with magnitude � is,� 8 � � 
  �ö 8 � , 8 
U¾ ½

· ½8 ȩnâ ��¹�� · (4.20)

where now ö 8 � , 8 
 and , 8 � º 
 are the corresponding generalized versions, sub-
stituting ¾ for ¾ 8 , of the partition function associated to a single step and the
thermodynamic parameter conjugated to the interface slope, respectively. In
the same way, the generalized surface tension is now,³ � 8 ���É�� � º�n ���	��
  � cos º(�RÊ�� � ln

q ¾ 8 � ���$¾ �8 
.� �9� tan
� º 
�9L$¾ �8 ��� 8 � º 
 v

L � tan º ln
q � �9L$¾ �8 
 tan ºÏL� 8 � º 
� ¾ 8 � tan º�L�� 
 v�Ë

(4.21)

where � 8 � º 
  F � �¨�h¾ �8 
 � tan
� º�L¿5�¾ �8 J =�Ç � . In order to find the explicit form

of all these magnitudes we only have to evaluate the probabilities
� B �&���	��
 of

finding an interfacial spin in class D .
4.3.3 Population of Interfacial Spin Classes

In order to explicitely calculate the probabilities
� B �����à��
 we must introduce the

two-body probability function
��� � � � 
 , which yields the probability that a step

variable in the interface takes a value � and its right neighbor step variable
takes a value � . Indeed, coming back to Fig. 4.1.a, we observe there that, for a
fixed spin column, we know how many interfacial spins associated to this col-
umn belong to each spin class once we know the value of the left and right step
variables associated to that interfacial spin column, � and � respectively. Thus,
for instance, if we have a spin column where �¡ÑL � and �K�� � (see column 5
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Notation Configuration Step variables
��� � � � 


A
δ

ε

�K`� , ��`� F ã · �Xä ¾ �µ ¾�åI¾ · <0=� ¾ ä <0=· J 5:æ
B

ε

δ �K`� , �N�� F ã · ¾ · <:=� ¾ �µ J 5:æ
C

δ ε �K`� , �K��� F ã · �ªä ¾9µ³ ¾ �
�èç <0= �µ ¾Q! < ç� J 5:æ
D

δ
ε �Ê�� , ��`� F ã ä ¾ � å ¾ ä <:=· J 5]æ

E
δ ε �Ê�� , �N�� ¾ � 5:æ

F

δ

ε �Ê�� , �K��� F ã ä ¾ �µ ¾ ½ ä3½ <0=� J 5:æ
G

δ
ε �¡��� , ��`� F ã · �ªä ¾ µ é ¾ �
�èç <0= �å ¾ ! < ç· J 5:æ

H

δ ε �¡��� , �N�� F ã · ¾ � å ¾ ½ · ½ <:=· J 5]æ
I

δ

ε �¡��� , �K��� F ã · �Xä ¾ �µ ¾�åI¾ ½ ä3½ <0=� ¾ ½ · ½ <0=· J 5:æ
Table 4.1: In this table we present the 9 different typical configurations of an interfacial
spin column in the SOS approximation. These typical configurations are defined by the
sign of the left step, ê , and the sign of the right step, ë . The first column shows the
notation we use for each typical configuration. The second column shows a schematic
graphical representation for each typical configuration. The third column presents the
characteristic values of ê and ë for each case. Finally, the fourth column shows the
two-body probability 40Ç�êkjÑë�É of finding each typical configuration. Notice that ìíB
e î â Ò�ï Ô and ð�ñ�B e ò §Ióxô ß {áàÎ�ÏxÏ . In some cases we have to define õFB min Çxs ê�s j�s ë�s É andö B max Çxs ê�s jÑs ë�s É .
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in Fig. 4.1.a) we know that, given the total number �"�L � of interfacial spins
associated to this column, there is one in class 4 and another one in class 3. On
the other hand, if we have ���� � and �ú�LN� (see column 6 in Fig. 4.1.a) we
find only one interfacial spin associated to this column, and it belongs to class
2. In general, we have

�
different typical configurations for an interfacial spin

column in the generalized SOS approximation, as shown in Table 4.1. These�
typical configurations come from the possible sign combinations between �

and � , taking zero into account. Any interface in SOS approximation can be
constructed from these 9 typical column configurations.

Let’s assume for a while that we have one of the previous typical configu-
rations with �N�L � y ���L � , as the one found in column 4 in Fig. 4.1.a. This
configuration corresponds to a configuration type A (see Table 4.1). This spin
column formed by up and down spins in contact with the interface and flanked
by a step �?�L � to the left and a step �"�L � to the right is composed by one
spin in class 2, one spin in class 3, one spin in class 8 and one spin in class 9.
Therefore there are 5 broken bonds which define this interfacial column: one
of these broken bonds belongs to the spin in class 2, two of them belong to the
spin in class 3, another one belongs to the spin in class 8 and the last one be-
longs to the spin in class 9. The probabilistic weights associated to these broken
bonds will be, respectively, ¾ � , ¾ �µ , ¾ å y ¾ · . We assume now that the proba-
bility of finding this configuration will be

��� �úÁL �z� �*�L ��
�÷ ã�³+¾ � ¾ �µ ¾ å ¾ · ,where ã  e ¸nâ ��¹�� is the factor associated to the thermodynamic parameter, 8 � º 
 , which fixes the average interface’s slope. In general, for a configuration
type A, we have, ��� �K`� � ��`� 
  �æ F ã · �Xä ¾ �µ ¾�åI¾ · <0=� ¾ ä <0=· J

(4.22)

where æ is the associated normalization factor, which will be calculated later
on.

Let’s assume now that we have a configuration type C, with ��`�� and�K��� . If we define in this case ø� min
� � � � � � ��� 
 and "ú max

� � �¶� � � ��� 
 , we have "
interfacial spins associated to this spin column type C: "��Sø of those interfacial
spins are in class 2, each one with one associated broken bond, øa�á� of those
interfacial spins are in class 3, each one with two associated broken bonds, and
finally one of those " interfacial spins belongs to class 4, and it has three broken
bonds. Hence the probability

��� � � � 
 of finding an interfacial column with �N`G�
and �K��� is, ��� �N`� � �K��� 
  �æ F ã · �ªä ¾ µ³ ¾ �
�èç <0= �µ ¾Q! < ç� J

(4.23)

In the same way we can build the probability
��� � � � 
 for the rest of typical

configurations (see Table 4.1). In the limit where the nonequilibrium dynamic
perturbation is zero,

�  � , i.e. for the equilibrium system, where the effec-
tive temperature

� � B �9ÑÐ�Ð associated to class D reduces to the usual temperature
�

,
we have that ¾ B �H� Á� 
 �¾ , so the two-body probability function reduces to��� � � � 
  ��� � 
���� � 
 for

� M� , being
��� õ 
 the probability of finding a step vari-

able of magnitude õ in the equilibrium SOS approximation, see eq. (4.8). The



64 Interfacial Properties

two-body probability function
��� � � � 
 factorizes in the limit

� À� as a conse-
quence of the statistical independence of neighboring steps in the equilibrium
SOS approximation. However, for

���û� , although the two-body probability
function

��� � � � 
 is written as the product of the probabilistic weights for the
different broken bonds associated to the different spin classes, ¾�B , such prob-
ability

�¨� � � � 
 includes nontrivial correlations, since the classes to which inter-
facial spins belong to depend strongly on the relative signs of � and � . In this
sense the use of

�¨� � � � 
 is beyond the SOS approximation for
���Ñ� , where it is

assumed no correlations between neighboring steps.
The normalization constant æ associated to the two-body probability func-

tion
��� � � � 
 can be calculated from the normalization condition,� µS· V ä ^ < µ

��� � � � 
 M� (4.24)

The double sum in � and � must be divided depending on the sign of both
step variables, �*��� , �aæ� and �Ï`Á� , and in the same way for � , yielding 9
different sums where the probabilities of each column configuration type enter
(see Table 4.1). Taking into account the geometric sum, we obtain,æ  ¾9µµ ã �� �9�¶¾ � ã 
 � L � ¾ �µ ã���$¾ � ã L ¾9µ³� �9�¶¾ �µ ¾ <0=� ã <0= 
.� ���$¾ � ã 
� ¾ µ³ ¾ �µ ¾ <0=� ã <0=� �9�¶¾ �µ ¾ <0=� ã <0= 
.� ���$¾ �µ 
 L ¾ µ³ ¾ � ã <0=� �9�$¾ � ã <0= 
.� �9�¶¾ �µ 
 L$¾ �L � ¾ �µ ã <0=�9�$¾ � ã <0= L ¾ µ³� �9�¶¾ �µ ¾ <0=� ã 
.� ���¿¾ � ã <0= 
 L ¾ µµ ã < �� ���$¾ � ã <0= 
 �� ¾ µ³ ¾ �µ ¾ <0=� ã� �9�¶¾ �µ ¾ <0=� ã 
.� ���¶¾ �µ 
 L ¾ µ³ ¾ � ã� �9�¶¾ � ã 
ß� ���$¾ �µ 
 (4.25)

where we remind that ¾ �  e < �ÿþ w ßúù àÎ�ÏxÏ , ¾ µ  e < �ÿþ w ßqû àÎ�ÏxÏ , ¾ ³  e < �ÿþ w ßúü àÎ�ÏxÏ and ãá
e ¸nâ ��¹u� . In order to write the above formula we have taken into account that¾ · T¾ � , ¾ å T¾ µ and ¾ é C¾ ³ .

Once we have calculated the two-body probability functions
�¨� � � � 
 , it is

easy to evaluate the probability
� B �����à��
 of finding an interfacial spin in classD . We assume for an interface in the SOS approximation that the probability of

finding an interfacial spin in class D is equal to the probability of finding a spin
of an interfacial spin column in class D . Assuming the last statement we neglect
correlations between neighboring spin columns, following the Solid-On-Solid
spirit. Therefore, the probability of finding an interfacial spin belonging to
class D¨E�F ��� 5 J is, � B  � µS· V ä ^ < µ � B

� � � � 
 ��� � � � 
 (4.26)

where ��B � � � � 
 is the probability of finding a spin belonging to class D in an in-
terfacial spin column characterized by the pair of steps

� � � � 
 , and where we
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Notation é � � � � � 
 é µ � � � � 
 é ³ � � � � 
 IÏ� � � � 

A �¨��� 1 0 �
B �¨��� 1 0 �
C "K�Cø ø"�á� 1 "
D 1 0 0 1
E 1 0 0 1
F � ���1��� 1 0 � ���
G 1 0 0 1
H 1 0 0 1
I � ���1��� 1 0 � ���

Table 4.2: In this table we show the populations ÝXñßÇ�êkjÑë�É for each interfacial class,ÖýBEzþjxNkjè{ , for each one of the column configuration types summarized in Table 4.1.
Thus, in the second column we write the number of spins in class 2 for each column
configuration type, in the third column we write the number of spins in class 3, and
in the fourth column, the number of spins in class 4. The last column shows the total
number of interfacial (up) spins associated to each column configuration type, ��Ç�êkj�ë�É .
The first column yields the notation for each type. Remember that õ'B min Çxs ê�s j�s ë�s É andö B max Çxs ê�s j�s ëks É .
have not written explicitely the dependence on temperature

�
and nonequilib-

rium perturbation
�

. In general, we can write,

� B � � � � 
  é9B � � � � 
IÏ� � � � 
 (4.27)

é B � � � � 
 is the number of spins belonging to class D in an interfacial spin col-
umn characterized by

� � � � 
 , and
IÏ� � � � 
 is the total number of interfacial spins

associated to such spin column. Table 4.2 shows é B � � � � 
 and
IÍ� � � � 
 for the

different column configuration types. Thus, for instance, for a column type
A with � � �Ñ`e� , we have

IÏ� ��`]� � �ø`]� 
  � (up) interfacial spins, from
which �ª�|� belong to class 2, and one belongs to class 3. Hence, in this case,� � � ��`Ñ� � �ú`�� 
  � ���á� 
 5�� , � µ � � `�� � �ú`�� 
 ��Z5�� and � ³ � � `�� � �ú`Ñ� 
 ø� .
For a column type C, where �°`á� and �ú�M� , we must define the magnitudesø� min

� � �¶� � � ��� 
 and "[ max
� � � � � � ��� 
 . There are " (up) interfacial spins, from

which "N��ø belong to class 2, ø°�ø� belong to class 3 and only one belongs to
class 4. Therefore � ��� �*`ø� � �ú�M� 
  � "N�}ø 
 5
" , � µ � �*`ø� � �ú�M� 
  � ø°�ø� 
 5
"
and � ³ � �?`�� � �N�Ñ� 
 M�#5
" . The rest of probabilities ��B � � � � 
 are defined in the
same way from the different entries in Table 4.2.

In order to calculate the probabilities
� B �&���Ù��
 we must perform the sums

involved in eq. (4.26). We need the classic results for the geometric sum and
series to perform such sums, as well as some results derived from them tak-
ing into account the linear behavior of both the derivative and the Riemann
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integral operators,

µS��^ ´ õ �  ��9��õ � � õ��h�|� (4.28)�S��^ ´ õ �  �9��õ � � =�9��õ � õ �|� (4.29)

µS��^ = õ
�}  ln

� ��9��õ 
 � � õ��h�|� (4.30)�S��^ = õ
�}  ln

� ��9��õ 
 �¿ÿ ´ d« « ��9�S« � � õ��Z�M� (4.31)

µS��^ = } õ �  õ� �9��õ 
 � � � õ��Z�M� (4.32)�S��^ = } õ �  õ � �9��õ � 
� �9��õ 
 � � é0õ � � =�9��õ � õ �|� (4.33)

Using these equalities we find the desired results for the probabilities
� B �����	��
 .

In particular, we obtain for
� � �&���	��


the following result,

�(�  �æ Ê ¾ µµ ã �� �9�¶¾ � ã 
 � � ¾ µµ ¾ <0=� ã�9�$¾ � ã ln ð ��:�¶¾ � ã ñ L ¾ �µ ã�9�$¾ � ã� ¾ �µ¾ � ln ð ��9�$¾ � ã ñ L ¾ µ³� �9�¶¾ �µ ¾ <0=� ã <0= 
.� ���$¾ � ã 
L ¾ µ³ ¾ <0=� ã <0=� �9�$¾ �µ ¾ <0=� ã <0= 
 � ln ð �9�$¾ � ã�9�$¾ �µ ñ � ¾ µ³ ¾
� ¾ < �µ ã <0=�9�¶¾ � ã <0=L ¾9µ³ ¾ � ¾ < �µ ã¨<:=� �9�$¾ � ã <:= 
.� ���$¾ �µ ¾ <0=� ã 
 L ¾ �µ ã�9�$¾ � ã L$¾ �L ¾ µ³ ¾ <0=� ã� �9�$¾ �µ ¾ <0=� ã 
 � ln ð �9�¶¾ � ã <:=�9�¶¾ �µ ñ L ¾ �µ ã <0=�9�$¾ � ã <0=� ¾ �µ¾ � ln ð ��9�$¾ � ã <0= ñ L ¾ µ³� �9�$¾ �µ ¾ <:=� ã 
.� ���$¾ � ã <:= 
� ¾ µ³ ¾ �µ ¾ <0=� ã� �9�$¾ �µ ¾ <0=� ã 
.� ���$¾ �µ 
 L ¾ µ³ ¾ � ã� �9�$¾ � ã 
ß� ���$¾ �µ 
 (4.34)

L ¾ �µ ã <0=�9�¶¾ � ã <0= L ¾ µµ ã < �� �9�$¾ � ã <0= 
 � � ¾ µµ ¾ <0=� ã <0=�9�¶¾ � ã <0= ln ð ��9�¶¾ � ã <0= ñ Ë
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In the same way we can calculate
� ³ �&���	��
 , obtaining,� ³  �æ Ê ¾ µ³ ¾ <0=� ã <0=�9�$¾ �µ ¾ <:=� ã <0= ln ð ��9�$¾ � ã ñ � ¾ µ³ ¾ <0=� ã <0=�9�$¾ �µ ¾ <0=� ã <0= ln ð ��9�$¾ �µ ñL ¾9µ³ ¾ <0=� ã�9�¶¾ �µ ¾ <0=� ã ln ð ��9�$¾ � ã <:= ñ � ¾9µ³ ¾ < �µ�9�$¾ �µ ¾ <0=� ã ln ð ��:�¶¾ �µ ñ Ë (4.35)

In order to obtain
� µ we only have to apply the normalization condition, eq.

(4.19), which in this case implies
� µ ¼�¡� �(� � � ³ . The details about the

calculation of the probabilities
� B are exposed in Appendix B, where we write

down in particular the detailed calculation for
���

.
At this point we must notice that the probabilities

� B �&���Ù��
 depend in prin-
ciple on the thermodynamic parameter , 8 � º 
 (remember that ã� e ¸nâ ��¹�� ),
and via this parameter they implicitly depend on the average interface slope,
tan º . Hence we must use the notation

� B F ���à��� , 8 � º 
kJ . On the other hand, this
dependence was expected, since the interfacial spin distribution among the
different classes strongly depends on the typical values of the step variables �
and � for each column, and these values depend on the average interface slope.
Hence ¾ 8 will depend on the parameter , 8 � º 
 due to the explicit dependence
of
� B F ���	��� , 8 � º 
&J on such parameter, and it will be impossible to extract the

explicit relation between the thermodynamic parameter , 8 � º 
 and the inter-
face slope, tan º , on the contrary to what happened in the equilibrium case,
where we calculated this explicit relation through eq. (4.9). However, we need
to know the properties of the interface, i.e. its microscopic structure, codified
in the probability function

� 8 � � 
 , and its macroscopic structure, codified in the
surface tension, ³ � 8 ���É0� , as a function of the angle º formed between the interface
and the ¯õ axis. This knowledge will give us the possibility of studying the prop-
erties and the shape of a spin droplet, which is one of the fundamental objects
needed to write a nucleation theory for metastability (see next chapter). There-
fore we must make an additional approximation at this stage. This approxima-
tion consists in assuming that the probabilities

� B of finding an interfacial spin
belonging to class D do not depend on the angle º formed between the inter-
face and the ¯õ axis. These probabilities

� B enter the definition of the statistical
weight for an interfacial broken bond in the generalized SOS approximation,¾ 8 . Thus we assume that the probabilities

� B are the ones we have obtained
previously, see eqs. (4.34) and (4.35), particularized to an interface forming an
angle ºÀæ� with the ¯õ axis. In this case we will have ãÑ e ¸nâ ��¹�� b� in the
definition of the probabilities

� B , so all the dependence on , 8 � º 
 disappears
inside ¾ 8 . The dependence on the interface slope enters the theory through the
statistical weight ã ¸ â ��¹�� · that appears in the probability

� 8 � � 
 of finding a step
of size � in the nonequilibrium interface, see eq. (4.20). In this way we build
in a simple way a generalization of the original SOS approximation through
the definition of a new probabilistic weight associated to an interfacial broken
bond, ¾ 8 , which exclusively depends on the temperature

�
and the nonequi-

librium perturbation
�

. This generalized theory keeps the elegant and simple
structure of the original SOS approximation.
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4.4 Properties of the Nonequilibrium Interface

Once we have completed the generalization of SOS approximation to take into
account the nonequilibrium character of our interface, the next step consists in
verifying the predictions of this theory.

4.4.1 Interfacial Microscopic Structure

In a first step, we wonder about the interfacial microscopic structure. Here the
extended theory predicts that the probability of finding a step in the interface
with size � is given by eq. (4.20), where ¾ 8 is, as we know, the probabilistic
weight associated to an interfacial broken bond. In order to check this pre-
diction, we perform Monte Carlo simulations of the model interface, paying
special attention to its microscopic structure. To do that we define the system
on a rectangular lattice with shape

-�/�¸�-32
, where

-�/
is the lattice size in the

direction perpendicular to the interface, and
-�2

is the lattice size in the direc-
tion of the interface. The initial condition for the simulation consists in a stripe
formed by up spins which completely filles the first Ł

/ 5 � rows of the system,
and a second stripe formed by down spins filling the remainder of the system.
In this way the initial configuration exhibits a linear interface in the ¯õ direction
between a phase with spins up (bottom) and a phase with spins down (top).
Boundary conditions are periodic in the direction of the interface, and open in
the direction perpendicular to the interface. Thus spins in column 1,

� D � � 
 withD�E�FH� �1-�/0J , have as left neighbors the corresponding spins in column
-�2

,
� D �1-32C
 ,

and reversely. The open boundary conditions in the direction perpendicular to
the interface involve that spins in the first row,

� � �fl½
 with
l EPFH� �1-�2èJ , do not have

down neighbors, and spins in the last row,
�Ù-�/��fl½


, do not have up neighbors.
In order to completely define the system to simulate, we must implement

Glauber dynamics, previously defined in eq. (2.3). However we are only in-
terested in computationally studying the interfacial structure. Thus we must
eliminate the possible interaction between the interface and the fluctuations
present in the bulk. Moreover, the Solid-On-Solid approximation (both the
equilibrium one and our generalization) assumes that the interface does not in-
teract with the bulk. Hence in order to properly compare the theoretical results
with the computational ones we must suppress bulk dynamics, eliminating in
this way the presence of bulk fluctuations. We can do that in practice mak-
ing zero the transition rates for spins belonging to both spin classes 1 and 10,
which are the spins that initially form the bulk. In this way the bulk remains
frozen, fluctuation-free during the whole simulation process, thus preventing
the interference of bulk fluctuations on the interface properties. However, we
can wonder about the effect that these bulk fluctuations involve on interfacial
properties. In order to investigate this effect, we have also simulated the inter-
face using the full Glauber dynamics, i.e. including bulk dynamics. We observe
that bulk fluctuations are not relevant for the interfacial properties as far as we
are well below the critical temperature, where fluctuations of all scales appear
in the system. Since we are interested in the properties of the interface at tem-
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Figure 4.3: Probability of finding in the interface a step with size ê , 4 � Ç�ê�É , for a system
size L����ÆL��¨BFJÑz3¦��`zUK3� at temperature b�B}D
H NIbae@fng and several different values of
the nonequilibrium perturbation 4 . Namely, from bottom to top, 4�B�D , D�H D�J , D�H D)z , D
H DUN ,D�H D){ and D�H D)K . For the shake of clarity the curves has been shifted a factor z ñ , Ö |$× Dkj0KUØ
in the vertical direction, where Ö�BhJ@DUD��¥4 .

peratures far away the critical one,
���C�©��


, the suppression of bulk dynamics
will not influence our results for the interface.

For the fixed initial condition, and using the trunked Glauber dynamics,
the system rapidly evolves from the initial state with a completely flat in-
terface towards a stationary state characterized by a rough non-trivial inter-
face configuration. Such configuration is defined by the step variables vector��dè�4B � Dag� �.-32.i 3, where �ÿBaY«�B¨�h«�B <0= , being «�B the height of the inter-
face for the spin column D . In order to measure the probability

� 8 � � 
 we wait
until the interface reaches the steady state. For a fixed interfacial configura-
tion we measure the step sizes �ÿB using an algorithm for microscopic interfa-
cial recognition[65]. From those values �~B we accumulate the histogram

� 8 � � 
 .
However, as opposed to the SOS approximation, the real model shows correla-
tions between close steps, parameterized by certain typical correlation length�

. In order to build the histogram
� 8 � � 
 we must use statistically independent

measures of the step variable � . Therefore for a fixed interfacial configuration
we measure step variables separated by a distance larger that

�
, so in this way

we ensure the statistical independence of measures. In our case we sample
the interfacial configuration extracting measures of � separated by a distance� �

. In order to accumulate enough statistics we let the system evolve in time,

3When we characterize an interfacial configuration in the real system via the step variables
vector 	 we are neglecting the presence of overhangs (see Fig. 4.1.b) in this interface. In fact it is
observed that the presence of overhangs in the interface affects very weakly its properties, at least
for temperatures well below the critical one.
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repeating the histogram measurement process for
� 8 � � 
 at time intervals

% o
larger than the typical correlation time in the interface (again, in order to en-
sure statistical independence of data). The results of such measurements are
shown in Fig. 4.3, where we observe the probability of finding a step with size� in the interface,

� 8 � � 
 , for a system size
- / ¸�-32 �� � ; ¸Í� < � and a temper-

ature
� |��� Z � �Z� � with different values of

� E�F � � ��� �=< J . The interface we have
studied was parallel to the ¯õ axis, so º�M� . As we can observe in this figure,
the distribution

� 8 � � 
 is a decreasing exponential of � �¶� . Furthermore, as we
increase the nonequilibrium parameter

�
, the probability of finding larger step

sizes increases, as expected. Fig. 4.3 also shows, for comparison, the theoreti-
cal prediction based on the generalized SOS approximation for

� 8 � � 
 , eq. (4.20)
(notice that here we have ã�Á� because ºÑ�� ). As we see, the agreement be-
tween theory and simulations is nearly perfect for all studied values of

�
. This

agreement points out that the generalized SOS approximation, based on the
concept of effective temperature, correctly reproduces the microscopic features
of the interface subject to nonequilibrium conditions. We have also studied the
microscopic properties of the interface for other temperature values below the
critical temperature,

� � �©��

, always finding a very good agreement between the-

ory and simulations. On the other hand, we have investigated the differences
that the presence of overhangs and the interaction between the interface and
the bulk induce in our computational results. We conclude that, as far as we
are well below the critical region, the extended SOS approximation describes
very well the observed real interface structure (including overhangs and bulk
dynamics).

4.4.2 Interfacial Macroscopic Properties

We next pay attention to the macroscopic properties of the interface, codified in
the surface tension, ³ � 8 ���É0� � º�n ���à��
 . Fig. 4.4 shows ³ � 8 ���É0� � ºá|��n ���à��
 , as defined
in eq. (4.21), as a function of temperature for different values of the nonequi-
librium parameter

�
. These curves show the theoretical prediction for the sur-

face tension in the real system. The first conclusion derived from this figure
is the fundamental difference between the surface tension for the equilibrium
system (

� á� ) and that for the nonequilibrium system (
�Ñ�Ñ� ) in the low tem-

perature limit. We can observe in Fig. 4.4 that for
�  � the surface tension

grows monotonously as temperature decreases, converging towards 2 in the
low temperature limit. However, for any

����� we observe that the surface
tension exhibits a maximum for certain temperature,

� ) ¢  . For
� � � ) ¢  the

surface tension decreases as temperature decreases, while for
� ` ��) ¢  the sur-

face tension increases as temperature decreases. Moreover, ³ � 8 ���É�� � ºÀû��n ���à��

linearly converges towards 0 in the limit

� t�� for
����� . As we will see in the

next chapter, this fundamental difference in the macroscopic properties of the
interface will involve very important differences in the properties of metastable
states in the nonequilibrium system as compared to the equilibrium one in the
low temperature region.
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Figure 4.4: Surface tension 
 Ò ��Ô���� Ç��SB�D�0bkj 4�É as a function of temperature for different
values of 4 , as derived from the generalized SOS approximation for an interface parallel
to the �p axis. In particular, from top to bottom, 4�B$D , J.D
ò�� , J@D=ò�� , J.D3ò�� , J.D3ò�� , K��`J.D3ò�� ,J@D=ò § , z��OJ@D3ò § , N���J@D3ò § and {���J@D3ò § . Notice that for any 4��ByD the surface tension
shows a maximum for certain temperature, and it converges towards zero for smaller
temperatures.

Let’s rewrite ¾ 8 in order to understand why this unexpected behavior emerges
for the nonequilibrium system. As we know, ¾ 8 is the statistical weight asso-
ciated to a interfacial broken bond in the generalized SOS approximation. In
the limit

� Ñ� , the weight ¾ 8 converges to ¾G e < �ÿþ w , where > is the system’s
inverse temperature. Comparatively, for

����� we can write ¾ 8 as,¾ 8 c e < �ÿþ w ±Î�ÏxÏ (4.36)

where > ¬9ÑÐ�Ð c �#5 � ¬9ÑÐ�Ð . The previous equation defines the interface effective
temperature,

� ¬9ÑÐ . In some sense this interface effective temperature yields the
average of the effective temperatures associated to the different spin classes in
the interface, taking into account the classes relative populations. In the limit� ø� it is evident that the interface effective temperature,

� ¬9.Ð�Ð , reduces to the
usual temperature,

�
. However, for any

����� both temperatures defer. Fig. 4.5
shows the interface effective temperature, as defined in eq. (4.36), as a function
of
�

for different values of
�

. The behavior of
� ¬9ÑÐ�Ð �&�¡
 shown in Fig. 4.5 helps us

to understand the novel behavior of surface tension for low temperatures in the
nonequilibrium model. First we observe that for a fixed value of

�
the relation

between
� ¬9.Ð�Ð and

�
is linear for high temperatures. That is, in the high temper-

ature limit, where the thermal noise (
�

) dominates over the non-thermal noise
(
�

), the interface effective temperature is completely coupled to the system’s
temperature. In this limit the effect induced by

�
reduces to a slight increase of

the interface effective temperature as compared to the system’s temperature.
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Figure 4.5: The main plot shows the interface effective temperature, b���ÑÕ0Õ , obtained
from our generalized SOS approximation, as a function of system’s temperature, b , for
varying 4 . From bottom to top 4ÆB�D , J.D�ò�� , J@D=ò�� , J.D3ò�� , J@D3ò�� , K��MJ@D=ò�� , J.D3ò § , z �MJ@D3ò § ,N!�~J@D3ò § and {"�~J@D=ò § . The inset shows the probabilities #�ñßÇib�j 4�É of finding an interfacial
spin belonging to class Ö as a function of temperature for 4OB¿D�H D�J . Notice that for low
temperatures almost all spins belong to class 2.

However, in the low temperature limit the noise with non-thermal origin dom-
inates, so the interface effective temperature

� ¬9.Ð�Ð completely decouples from
the system’s thermodynamic temperature,

�
, converging to a constant nonzero

value, see Fig. 4.5. This low temperature limit for the interface effective tem-
perature can be easily calculated, taking into account that, as shown in the
inset of Fig. 4.5, almost all interfacial spins belong to class 2 in this limit and
for moderate values of

�
. Therefore

� ¬9ÑÐ�Ð converges towards
� �H���9ÑÐ�Ð ��� á� 
 in the

limit
� t � , where

� �H�3�9ÑÐ�Ð ��� |� 
 is the effective temperature associated to class
2 for

� �� . Hence,

limw ´ ´ �
¬9.Ð�Ð �����à��
���� �H���9ÑÐ�Ð ��� �� �à��
  �65

ln
�H��
 `G� (4.37)

Thus the interface suffers a nonzero effective temperature, independent of
�

,
at low temperatures due to the non-thermal noise. Hence the statistical weight¾ 8 converges to a nonzero and constant value for

� t � , so the surface ten-
sion, which is directly proportional to

�
, converges linearly towards zero in

this limit.
The next logical step should be the measurement of surface tension in Monte

Carlo simulations for the interface of the discrete model, in order to compare
these computational results with the theoretical predictions. However, we do
not know how to define in the system a thermodynamic potential as the sur-
face tension from the microscopic point of view, because the system is out of
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equilibrium. Moreover, if we could microscopically define such potential, we
still would have to face the additional problem of its explicit measurement.
This problem comes from the need of a dense sampling of the complete sys-
tem’s phase space in order to obtain a reliable measurement of surface tension.
The system presents many degrees of freedom, so its phase space is incredibly
huge. Therefore any feasible Monte Carlo simulation only samples a small re-
gion of this phase space, which implies an incorrect measurement of surface
tension4. As an alternative option, we can evaluate physical observables easy
to define and measure from the microscopic point of view, which have a direct
and simple relation with surface tension. This is the case for the size of the
critical droplet appearing when studying the problem of metastability in the
ferromagnetic nonequilibrium system. As we explained in previous sections,
when the system is in a metastable state (for instance, a state with positive
magnetization in the ordered phase subject to a weak negative magnetic field)
it eventually evolves from the metastable phase towards the truly stable state.
This transition proceeds through the nucleation of a droplet of the stable phase
in the metastable bulk. Small stable phase droplets tend to disappear, while
large enough droplets tend to grow. There is a critical size separating both
tendencies, which is the critical droplet size. The critical droplet controls the
demagnetization process. Generalizing the results obtained for equilibrium
systems, we observe (see next chapter) that the critical droplet size is propor-
tional to the surface tension in the model for zero magnetic field. Thus, mea-
suring the critical droplet size and comparing these measurements with the
predictions based on the generalized SOS approximation result for the surface
tension, ³ � 8 ���É�� � ºæû��n ���à��
 , we will be able to quantify in an indirect way the
agreement between the prediction for the nonequilibrium surface tension and
this observable in the real system. Fig. 5.2 in next chapter shows the compu-
tational results for the critical droplet size as a function of temperature for dif-
ferent values of

�
, and the corresponding theoretical predictions based on the

surface tension ³ � 8 ���É�� � º|Á��n ���à��
 . As we can see in this figure, the agreement
between theory and simulations is rather good. Apart from the quantitative
agreement, which is very good taking into account the approximate character
of the theory, it is remarkable that the predictions perfectly reproduce the exis-
tence of a maximum in the critical droplet size as a function of temperature for
any

����� . This maximum is directly related to the maximum observed for the
surface tension in the nonequilibrium model.

Therefore we conclude that, from both the microscopic -
� 8 � � 
 - and the macro-

scopic - ³ � 8 ���É�� � º�n ���à��
 - point of view, the generalized SOS approximation that
we have derived in this chapter for the interface in the nonequilibrium mag-
netic system correctly explains the properties of such interface, both qualita-
tively and quantitatively. This agreement between theory and simulations will
allow us to deduce in the next section some properties for a spin droplet. These
properties will be very useful when trying to study and understand the dy-

4Nowadays there are some methods which allow to calculate thermodynamic potentials as the
free energy of a complex system.[66]
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(a) (b)

Figure 4.6: (a) Polar plot of the surface tension as obtained in the generalized SOS
approximation, 
 Ò ��Ô��$� Ç���É , for temperature b B D
H NUb�e.f�g and 4�B�D�H D
J . Notice the
underlying symmetry of surface tension, and the presence of singularities for angles�CB�ÇWzIÝ&%�JhÉ(']��{ , with ÝhB�D�j@H@H@H+j0N ; (b) Polar plot of the droplet radius )�Ç�*�É derived
from the surface tension plotted in (a) using the Wulff construction. The singularities in
 Ò �kÔ�+��� Ç���É involve angular regions where )�Ç�* É is not defined.

namic properties of metastable states in the ferromagnetic nonequilibrium sys-
tem.

4.5 Shape and Form Factor of a Spin Droplet using
Wulff Construction

In the previous section we have developed a theoretical approximation, based
on the Solid-On-Solid approximation by Burton, Cabrera and Frank[59]. It has
allowed us to calculate the surface tension associated to the interface in the fer-
romagnetic system under nonequilibrium conditions. In this section we want
to use the results obtained in the previous section in order to calculate the shape
of a spin droplet and the associated form factor.

4.5.1 The Wulff Construction

As we have stated above several times, the process of demagnetization from
a metastable state in our system takes place through the nucleation of one or
several droplets of the stable phase in the metastable bulk. In order to under-
stand and analyze the nucleation and consequent growth of these droplets we
need to know in detail their shape. In general, the equilibrium shape of these
droplets is determined by minimization of the associated total surface tension
for a fixed volume. For isotropic systems this process yields a droplet with
spherical shape (circular in two dimensions). However, when the surface ten-
sion depends, as in our case, on the orientation of the interface with respect
to certain privileged axis, the shape of the droplet will adjust to take advan-
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tage of the low free energy cost of certain interface orientations, and this shape
will minimize interface orientations with high free energy cost. This mecha-
nism gives rise to droplets with typical crystal-like shape, which will depend
on temperature and other system parameters.[67]

In our case we know the surface tension ³ � 8 ���É�� � º 
 for all possible interface
orientations, parameterized by the angle º . Hence the Wulff construction[68]
will allow us to obtain the equilibrium droplet shape. This construction can be
summarized as follows: through each point of the polar curve ³ � 8 ���É�� � º 
 , withº�EPF � �_� � J , we draw a line perpendicular to the radius linking such point with
the center. The interior envelope of all these perpendicular lines determines� �-,T
 , which is the droplet radius in polar coordinates. Mathematically speak-
ing, the equilibrium shape � ��,3
 can be calculated parametrically[69],� ��,T
  � ´ 7 õ � � º 
 LO« � � º 
õ � º 
  �

cos º 
 ³ � 8 ���É�� � º 
 � � sin º 
 d ³ � 8 ���É0� � º 

d º (4.38)

« � º 
  �
sin º 
 ³ � 8 ���É�� � º 
 L � cos º 
 d ³ � 8 ���É0� � º 


d º
tan

,  « � º 
õ � º 

where � ´ is just a constant that fixes the droplet radius, and ³ � 8 ���É�� � º 
 is the sur-
face tension derived from the SOS approximation generalized to the nonequi-
librium case, eq. (4.21). In fact, in order to define the surface tension ³ � 8 ���É�� � º 

for angles outside the interval º E F �¨��5=5 � ��5=5 J we use the symmetry that³ � 8 ���É�� � º 
 exhibits. As we previously discussed, in order to study the surface
tension of an interface forming an angle � º(�0` ��5=5 with the ¯õ axis, it is con-
venient to change the reference axis to be the ¯« axis. Thus if we suppose for
instance that ��535°�Àºá����5 � , we have that ³ � 8 ���É�� � º 
  ³ � 8 ���É�� � ��5 � �Ñº 
 , where
now ���Y��5 � �|º �Y��535 . In the same way we can extend using equivalent
symmetry arguments the definition of ³ � 8 ���É�� � º 
 to the whole circumference,º�EPF � �_� � J .

The surface tension ³ � 8 ���É�� � º 
 , as defined in the generalized SOS approxima-
tion, eq. (4.21), and once extended by symmetry over the whole circumference,
has a fundamental problem, because it is singular for angles º� �&� é�LÑ� 
 ��535 ,
with é� � � �h�Z� � Z . Fig. 4.6.a shows a polar plot of ³ � 8 ���É�� � º 
 for temperature� ���� Z ���Z� � and

� ���� ��� . In this figure we observe the aforementioned singu-
larities. These singularities found in ³ � 8 ���É0� � º 
 induce the appearance of angular
regions where the droplet radius, � ��,3
 , obtained from the Wulff construction,
eqs. (4.38), is not defined, see Fig. 4.6.b. These undefined regions in � ��,3
 con-
stitute an important objection in our investigation, because one of the principal
aims in this section consists in calculating the so-called form factor, . ïz�����à��
 ,
which is the constant that relates the droplet radius / (to be defined later on)
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and the droplet volume. Thus l�0. ï �����à��
 / ï , where
ë

is the system dimen-
sion. The so-defined form factor is an important magnitude in order to write
a nucleation theory which correctly describes the dynamics of the nonequilib-
rium metastable-stable transition. To calculate . ïz���z�	��
 we need to evaluate
the droplet shape, parameterized by � ��,T
 , for all values of

,
. Hence we must

regularize in some sense the function � ��,T
 obtained from the generalized SOS
approximation, in order to define this function over the whole circumference.

4.5.2 Analytic Continuation of the Radial Function

In order to regularize � �-,T
 in the undefined angular regions, we propose an an-
alytical continuation of the radial function � ��,T
 inside such regions. We denote
this analytical continuation as � � � � �-,T
 . In particular, we analytically continue
the radial function using a second order polynomial, � � � � ��,3
 21 , � L43 , L65 .
In order to fix the three free coefficients in this polynomial we need three dif-
ferent conditions for it. In a first step, we notice that the angular symmetry
that surface tension exhibits is inherited by the radial function � �-,T
 , as can be
observed in Fig. 4.6. This symmetry implies that the analytical continuation of
the radial function must fulfill,

d � � � � ��,T

d
, � 7 ^98 Ç ³ �� (4.39)

since we expect that � � � � � ��535�Lí� 
 b� � � � � ��535"�í� 
 . This equation provides
the first condition on � � � � �-,T
 . The other two conditions are obtained requiring
continuity and analyticity to the analytic continuation. Hence, if

, 8 is the angle
where the connection between the radial function � �-,T
 and its analytical con-
tinuation � � � � ��,3
 takes place, the continuity and analyticity conditions reduce
respectively to, � � � � �-,T
 � 7 ^ 7:  � ��,T
 � 7 ^ 7: (4.40)

d � � � � �-,T

d
, � 7 ^ 7:  d � ��,3


d
, � 7 ^ 7: (4.41)

Using these three conditions we are able to obtain the coefficients 1 , 3 and 5
which appear in the definition of the analytical continuation � � � � ��,T
 as a func-
tion of the connection angle

, 8 and the values that � �-,T
 and its derivative take
for such connection angle. The only remaining problem is the determination of, 8 . However, it is easy to solve such problem, because the nature of the singu-
larity in the surface tension is such that it gives rise to a discontinuous change
in the derivative of � ��,T
 for certain angle

, 8 , as observed in Fig. 4.6.b. This
angle

, 8 where the derivative of � ��,3
 is discontinuous signals the angle where
the undefined region for � ��,T
 begins. Therefore we define this angle (see Fig.
4.6.b) as the connection angle

, 8 . This connection angle can be calculated nu-
merically in a simple way5. In this way we are able to continue analytically

5For high temperatures, the influence of the singularity appearing for the surface tension ex-
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(a) (b)

Figure 4.7: (a) Shape of a spin droplet for the equilibrium system (4�B¶D ), and several
different temperatures. In particular, from outside to inside, b���b e@fng B¿D�HRJ , D
H z , D�H N , D
H { ,D�H K , D
H � , D�H d , D
H ¦ and D�H § . For the shake of clarity we have rescaled the droplet radius
depending on temperature; (b) The same than in (a), but for the nonequilibrium model,
with 4�B�D�H D�J .
the radial function � ��,T
 in a safe manner. We only have to apply the analytical
continuation once, inside the angular interval

, EøF � � ��5=5 J , due to the angular
symmetry exhibited by the radial function (inherited from the angular symme-
try shown by the surface tension). The remainder of the analytically extended
angular function is defined by symmetry taking as starting point this small
angular interval.

Using this analytical continuation technique we obtain the shape of a spin
droplet for the nonequilibrium ferromagnetic model. Fig. 4.7 shows the shape
of such droplet for different temperatures, for an equilibrium system (with�  � ) and for a nonequilibrium one, with

� ���� ��� . We observe for
�  �

that the shape of the droplet tends to be a square at low temperatures, while
for high temperatures we recover the circular shape associated to a bidimen-
sional isotropic system. Thus for high temperatures the observed differences
in the surface tension for different orientations are very small as compared to
thermal energy, so in practice the interface does not feel the existence of priv-
ileged interface orientations. This process gives rise to the observed isotropy.
On the contrary, for low temperatures, the differences observed in the surface
tension for different interface orientations are very important as compared to
thermal energy, so interface orientations not parallel to the privileged axes are
highly punished. An important detail is that for temperatures of the order of� æ��� < � �Z� � the spin droplet shape is already almost circular for

� æ� . This
property points out that effective isotropy appears at not very high tempera-

tends to certain interval around it. Hence the radial function feels the singularity before it reaches
the angular undefined region. In these cases we can get rid of the region where ; £=<�¦ feels the
singularity by performing the analytical continuation for a connection angle previous to the an-
gle defined by the discontinuous change in the derivative of ; £=<�¦ . This new connection angle is
detected looking for the angle where the angular derivative of ; £><�¦ becomes negative, since such
condition points out that the effect of the singularity is becoming relevant.
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Figure 4.8: Form factor ?A@ Çib�jÁ4�É as a function of temperature for different values of 4 .
In particular, from top to bottom, 4�B}D , D�H DUD�J , D
H DUD�K , D�H D�J , D
H D�z and D
H DUN . The upper
dotted line signals ? @ BO{ , while the lower dotted line signals ? @ BB' .

tures. Fig. 4.7.b shows the shape of a spin droplet for different temperatures,
but now for the nonequilibrium system with

� ���� ��� . Equivalently to what we
observed in the equilibrium system (

� |� ), the droplet for high enough tem-
peratures takes circular (isotropic) shape. However, for low temperatures we
observe that its shape converges towards an intermediate structure between a
circle and a square, where the underlying lattice anisotropy is reflected only
partially. In order to understand this difference between the equilibrium sys-
tem (

�  � ) and the nonequilibrium one (
� � � ) we must recall the concept

of interface effective temperature,
� ¬9ÑÐ�Ð �����à��
 , see eq. (4.36). In the previous sec-

tion we observed that for
�|�|� the interface effective temperature converged

towards a nonzero value in the limit
� t � , see Fig. 4.5. Therefore, taking

into account this interface effective temperature picture, we would expect that
in this low temperature limit for

�e�¬� the shape of the droplet should not
depend on system’s temperature. Instead we would expect this shape to con-
verge towards a structure similar to that observed in the equilibrium system for
a temperature approximately equal to the interface effective temperature. This
is so because the shape of the droplet is exclusively defined by the interfacial
properties. In fact, such independence of the shape of the droplet on system’s
temperature is what we exactly observe for low temperatures, see Fig. 4.7.b.

4.5.3 Droplet Form Factor

Our last objective in this section consists in calculating the form factor, . ï �����	��
 ,
which relates the droplet radius, / , with its volume, lûC. ïT�����	��
 / ï . In or-
der to calculate . ïz�����à��
 we need to precisely define the droplet radius, / ,
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which is a typical length scale which characterizes the droplet size. In this case
we choose the droplet radius / to be the radial function � �-,T
 for

, b� , i.e./�c�� �-, |� 
 . In this way in the high temperature limit, where the droplet is
circular, the droplet radius / will coincide with the circle radius, while in the
low temperature limit, where the droplet is a square (for

� |� ), the radius /
will be D15 � , where D is the square side. The droplet volume is defined by the
following radial integral for a bidimensional system,

lá6. ï �&���	��
 / ï C; ÿ 8 Ç ³´ d
, ÿ E � 7 �´ F d F (4.42)

so the form factor is calculated from,. ï �����	��
 �5�ÿ 8 Ç ³´ d
,BG � ��,T
� � � 
H � (4.43)

Numerically solving the previous integral using the analytically extended
radial function we obtain the results plotted in Fig. 4.8. In this figure we show
the form factor . ïz�&���	��
 as a function of temperature for different values of

�
.

For
� e� the form factor smoothly evolves from . ï Y5 for low tempera-

tures to . ï  � for high temperatures. The value . ï �5 is typical of square
droplets, where lÀ�5 ¸�� D15 ��
 � ID � . On the other hand, the value . ï  � is
typical of circular droplets, where l�E�$/ � . As we see in Fig. 4.8, for

���Á�
the form factor for low temperature converges towards a value smaller than5 . This fact confirms the above phenomenologic observation, deduced from
the droplet shape for

�]�b� . The results derived in this section, and in par-
ticular those related to the form factor . ï �����à��
 , will be be very useful in the
next chapter, where we will formulate a nucleation theory to explain the dy-
namics of the metastable-stable transition in the ferromagnetic system subject
to nonequilibrium conditions.

4.6 Conclusion

In this chapter we have studied both theoretically and computationally the
microscopic and macroscopic properties of an interface in the nonequilibrium
model. In order to do so we have generalized the SOS approximation first in-
troduced by Burton, Cabrera and Frank[59] for a discrete interface in an equi-
librium spin system.

This theoretical approximation for the equilibrium system describes the
structure of the interface from a microscopic point of view using three basic
hypothesis. On one hand, it neglects the presence of overhangs in the interface.
Moreover, the approximation does not take into account the possible interac-
tions between the interface and bulk fluctuations. Finally, it assumes that the
different step variables defining the interface are uncorrelated. In spite of these
three hypothesis, the SOS approximation for the equilibrium system correctly
predicts the microscopic and macroscopic interfacial structure. In particular, it
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predicts a surface tension for the equilibrium system which coincides with the
known exact result obtained for the two dimensional Ising model for an angleº��� , and it is a very good approximation for nonzero angles.

The generalized SOS approximation for
� � � is based on the concept of

effective temperature. That is, the effect induced by the nonequilibrium pertur-
bation

�
on the system can be re-interpreted in terms of an effective temper-

ature. We calculate that the higher is the order to which a spin is subject (i.e.
the larger is the number of neighboring spins pointing in the same direction
that the given spin), the higher is the effective temperature this spin suffers
for

��� � . The interface is composed by spins belonging to different classes
(i.e. spins subject to different degrees of order), which, consistently, suffer dif-
ferent effective temperatures. The central magnitude in the equilibrium SOS
approximation is the probabilistic weight or Boltzmann factor associated to an
interfacial broken bond, ¾| e < �ÿþ w . In order to build the SOS approximation
for
�ø�ø� we generalize this statistical weight, denoted now as ¾ 8 , taking into

account the effective temperature of the different spin classes. To do that we
perform an average over the statistical weights associated to the different spin
classes (each class having its own well defined effective temperature) using in
this average the population densities for each interfacial spin class. We have
calculated these population densities using two-body probability functions.

We obtain from this generalization predictions for the microscopic struc-
ture of the interface . These predictions are codified in the probability function� 8 � � 
 , which is the probability of finding a step of size � in the nonequilibrium
interface. The comparison between the theoretical prediction for

� 8 � � 
 and
Monte Carlo results for the real system is excellent. This agreement supports
the validity of our approach for

����� .
On the other hand, we obtain the surface tension of the interface for

�|���
using the extended theory. This surface tension exhibits an unexpected behav-
ior for the nonequilibrium system as compared to the equilibrium one. In par-
ticular, we observe that, while the equilibrium surface tension monotonously
increases as we decrease temperature, for the nonequilibrium model the sur-
face tension ³ � 8 ���É�� shows a maximum for certain temperature, converging lin-
early towards zero for lower temperature. In order to understand this behav-
ior it is necessary to turn again to the concept of effective temperature. Thus
we can define a global effective temperature for the interface. We observe for� � � that, while for high temperatures the interface effective temperature,� ¬9ÑÐ�Ð , is totally coupled to the system’s temperature, in the

� t � limit
� ¬9ÑÐ�Ð

completely decouples from
�

, converging towards a constant, nonzero value,
which involves that surface tension converges towards zero for at low tem-
perature for

�Á�À� . Unfortunately, we cannot check this result through direct
simulations for the surface tension. However, as we will describe in the next
chapter, there are certain observables, as the critical droplet size (to be defined
later on), which are directly related to the surface tension. As we will see, the
theoretical predictions derived for this observable, based on the results for the
surface tension of the nonequilibrium interface,

�]�]� , nicely reproduce the
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measurements obtained via Monte Carlo simulations. The unexpected behav-
ior of the surface tension for

� � � will be crucial for the properties of the
metastable-stable transition, to be discussed in next chapter.

Finally, we have obtained the shape of a spin droplet in the nonequilibrium
system from the surface tension we have derived in the generalized SOS ap-
proximation, using the Wulff construction[68]. On one hand, we observe that
for the equilibrium model the droplet shape varies continuously from a square
at low temperatures to a circle at high temperatures. On the contrary, for the
nonequilibrium system we obtain a droplet shape that, although it is circular
for high temperature, in the low temperature limit it converges towards an
intermediate shape which is not a square, but partially exhibits the anisotropy
inherited from the underlying lattice. We have numerically calculated the form
factor . ï associated to the droplet, confirming that while for

� À� the form
factor varies from . ï Y5 to . ï  � , for

����� the form factor converges
towards a constant value . ï E � � � 5 
 for low temperatures.

The results obtained in this chapter on the effect of the nonequilibrium
conditions on the interfacial properties are not only relevant for the study of
metastability, but they are also important for the study of many systems where
one of the fundamental ingredients consists in a nonequilibrium interface.
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Chapter 5

Nucleation Theory for the
Study of Metastability

5.1 Introduction

In this chapter we want to extend the nucleation theory, already developed
for equilibrium spin systems[26, 71], to our nonequilibrium system subject to
a magnetic field. Nucleation theory explains in a detailed way the (highly in-
homogeneous) processes which make a ferromagnetic system to evolve from a
metastable state to the corresponding stable state. This theory is based on the
concepts of stable phase spin droplet and free energy cost of such droplet. In
this chapter we will present in a first step the nucleation theory, as formulated
for equilibrium magnetic systems. Once we understand the foundations of this
theoretical approximation, we will extend such theory to the nonequilibrium
system. This extension will provide us with a good approximation for the dy-
namics of the metastable-stable transition in this case. Finally we will analyze
the effects that nonequilibrium conditions involve on the properties of such
transition.

5.2 Nucleation Theory for Equilibrium Magnetic Sys-
tems

In what follows we describe, following in part reference [26], the foundations of
nucleation theory as applied to our system when

� �� , i.e. for the equilibrium
case.[26, 71] The Hamiltonian of this system is that of eq. (2.1), and the imple-
mented dynamics is given by the Glauber rate, eq. (2.3), once we fix

� �� .
An initial state with all spins up subject to a weak negative magnetic field for
a temperature below the critical temperature,

���Z� � , is a metastable state. As
we have explained in previous chapters, a system in a metastable state eventu-
ally evolves towards the truly stable one. This evolution proceeds through the
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nucleation of one or several droplets of the stable phase (down spins) in the
metastable bulk (up spins). We could think of other different ways in order to
evolve from the metastable phase to the stable one. For instance, we could hy-
pothesize that the metastable-stable transition happens due to the coherent ro-
tation of all spins in the system1. However, except for some marginal, sharply-
defined cases, the free energy cost of such coherent rotation is prohibitive (see
section 3.4), so this mechanism is not observed in practice. The same argu-
ment helps us to understand why the system nucleates droplets: these com-
pact configurations minimize in some way the free energy of the system for
a fixed magnetization, so they are observed with high probability during the
metastable state demagnetization process.

The process of nucleation and growth of a droplet is controlled by two dif-
ferent, competing terms.[26] On one hand we have a bulk term, related to the
droplet volume, which favours the droplet growth, because the droplet belongs
to the stable phase, favoured by the magnetic field. On the other hand there is
a surface term, which impedes the droplet growth due to the free energy cost
of the interface between the stable and metastable phases (the droplet bulk and
the rest of the system, respectively). Due to the competition between these two
terms, it is observed that small droplets, where the surface term dominates
over the bulk term, tend to shrink, while droplets with size larger than certain
threshold size tend to grow (in this case, the bulk term dominates). The droplet
size that separates both typical behaviors is called critical droplet size, / � . This
observable, / � , yields a typical length scale for the metastable-stable transi-
tion. However, there are other different, well-defined typical length scales in
the system. For instance, we have also the lattice spacing 1 , the typical correla-
tion lengths of both the stable and metastable phases,

� � and
� ) � respectively,

the radius / ´ up to which a droplet can grow before interacting with another
droplet (we name this radius / ´ the mean droplet separation), and the system
size,

-
. However, only three of these six typical length scales will be relevant

to our problem. The lattice spacing is fixed to unity in this study, 1Gb� . On
the other hand, the typical correlation lengths

� � and
� ) � will always be much

smaller than the remaining length scales, since we are interested in tempera-
tures well below the critical one, so both correlation lengths will be irrelevant
for the investigation. Hence all characteristic processes related to metastability
in the equilibrium system will be a consequence of the interplay among the
three relevant length scales for this problem, namely / � , / ´ and

-
.

Let’s assume that we have a stable phase droplet with radius � in a sys-
tem at temperature

�
in equilibrium,

� ]� . The droplet volume is l � � 
 . ï ���ª
 � ï , where . ï ���ª
 is the form factor defined in section 4.5. The free en-
ergy associated to this droplet can be written as[26],ü � � 
  ë . ï � ï <0= ³ ´ ��. ï � ï % (5.1)

where
%

is the free energy density difference between the metastable and sta-

1In fact, the Neél-Brown theory[70], which is aimed to explain the process of demagnetization
in metastable magnetic particles, is based on the concept of coherent rotation of spins.
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ble phases, and
ë . ï � ï <0= is the surface associated to a droplet with volume. ï � ï . The factor ³ ´ is the surface tension (or interfacial free energy per unit

length) along a primitive lattice vector (i.e. for an angle º b� between the
interface and one of the reference axis). We exactly know the surface ten-
sion ³ � º 
 for zero magnetic field in equilibrium. The solution obtained from
the Solid-On-Solid approximation for the surface tension reproduces the ex-
actly known result for ºe � .[63] In principle, we could expect that ³ ´ de-
pends on the magnetic field. However, many different studies based on an-
alytic series expansions[72], transfer matrix calculations[73] and Monte Carlo
simulations[74] point out that the surface tension ³ ´ entering the droplet free
energy cost is the equilibrium surface tension for zero magnetic field. Hence
we will use from now on the notation ³ ´ �&�ª
 to emphasize the independence of
this term on the magnetic field.

In eq. (5.1) we observe the competence between the surface term, which
impedes the droplet growth, and the bulk term, which favours it. Since the
system attempts to minimize the free energy, in order to determine the critical
droplet radius / � , which separates the growth tendency from the shrinkage
tendency we only have to find the maximum of the droplet free energy with
respect to droplet radius. In this way we obtain,[71]/ � ���Ê
  �uë ��� 
 ³ ´ ���¡
% � �uë ��� 
 ³ ´ �&�¡
� + � �&�ª
 � ��� (5.2)

where he have substituted
%Ñ��� + � ���¡
 � ��� , with � the magnetic field and + � ���¡


the equilibrium spontaneous magnetization (defined positive).
In order to understand the previous approximation for the free energy den-

sity difference between the metastable and stable phases,
%

, we start from the
definition of free energy, ü[���}�� � ln

° �&�ª

, where }�� is the Boltzmann con-

stant, which we fix to unity already in Chapter 2, and where
° �&�ª


is the canon-
ical partition function, ° ����
  S

s

e <:wÿy � s � (5.3)

Here
O[�

s



is the energy associated to a spin configuration s in the equilibrium
system, eq. (2.1). In the low temperature limit, the only states with relevant sta-
tistical weight (Boltzmann factor) are the stable and metastable states, e <:w~y /
and e <:w~y�J / . Hence, in this very low temperatures limit the free energy associ-
ated to a metastable state will be approximately the energy associated to such
state, ü ) � �&� �ª� 
��ÑO ) � , and equivalently for the stable state, ü�� ��� �¡� 
���O � .
In this limit the metastable state will be given by a configuration where prac-
tically all spins are up, while in the stable state almost all spins will be down.
The system Hamiltonian was

O[�
s

 ��KQ�¯ U B1V WYX A B A W ����¯ B A B . For

� t � the
exchange term will be approximately ¯ U B1V WYX A B A W ����I , where

��I
is the num-

ber of neighbor spin pairs in the system. Hence we can write
I?% �ü ) � � ü � �O*) � � O � �ÀI �¨F + � �&��� � 
 �+ ) � ����� � 
kJ , where + � �&��� � 
 and + ) � ����� � 
 are the

stable and metastable magnetizations, respectively, +g I <:= ¯ B AZB . For weak
magnetic fields we have � +[� �&��� � 
 � � � + ) � ����� � 
 � � +�� ����� �Á � 
 , so, if we
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define + � �&�ª
 cÑ+ � �&��� �ú�� 
 , we finally arrive to
%���� + � ���ª
 � ��� . This approxi-

mation is expected to remain valid even for temperatures near the critical one,
although we have derived it in the low temperature limit.[72]

The free energy cost associated to the critical droplet is,ü � � / ��
 6. ï ���ª
 ³ ´ ���ª
 / ï <:=�  ³ ´ ���¡
 l �/ � (5.4)

where l � cK. ï / ï� is the critical droplet volume. The nucleation rate L ����� � 

per unit time and volume, which is the probability per unit time and volume
of nucleating a critical droplet in the system, can be determined from ü � � / � 

using the Arrhenius law[23, 75],L �&� � � 
 �Ö ���¡
 � ��� M � � e < *ONP � Ö ���¡
 � ��� M � � e <�Q mSR NT N P (5.5)

The function Ö ���ª
 is non-universal, the exponent 3 is an universal exponent
related to the Goldstone modes present on the droplet surface[76], and the ex-
ponent 5 yields the dependence of the kinetic prefactor on the magnetic field[75],
being the only part of L �&��� � 
 which can explicitely depend on the specific spin
dynamics. In particular, for a bidimensional system there are many numeri-
cal evidences pointing out that 3 � , as predicted via field theory[76], while
the value of 5 changes between 5 � � for sequential dynamics and 5 ��� for
random dynamics.[26]

The nucleation rate L ����� � 
 yields the rate at which the critical droplet nu-
cleates in the system. Using the information codified in eq. (5.5), and once we
determine the mean droplet separation, / ´ , and its associated time scale, o ´ ,
which is the time the droplet needs in order to radially grow a distance / ´ ,
we will be able to calculate the metastable state mean lifetime using Avrami
law[23, 78]. In order to calculate / ´ and o ´ we need to know the radial growth
velocity for a stable phase droplet, ÷ / . This growth velocity can be determined
using the Allen-Cahn approximation[23]. This approximation is based on a
phenomenologic motion equation written using thermodynamic arguments,
which linearly relates the rate of change of the local order parameter, which in
our case is the magnetization + �VUF 
 , to the local thermodynamic force,

d + �VUF 

do ��XW s �~ü�4+ � UF 
 (5.6)

From this equation, assuming that the free energy functional ü has a shape sim-
ilar to that of the asymmetrical Ginzburg-Landau functional[77], and assuming
that the droplet has a spherical shape, we find the following result for the radial
growth velocity of a stable phase droplet in Allen-Cahn approximation[23],÷ /  �uë ��� 
 W � �/ ��� �� 
&Y tE ´¥µ �uë ��� 
 W/ � c�÷ ´ (5.7)

where the constant W depends on the particular implemented dynamics. We
can approximate ÷ / � ÷ ´ always that, as in our case, / ´[Z / � , so from now
on we take ÷ ´ as the radial growth velocity.
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It is obvious that / ´ [÷ ´ o ´ , since o ´ is the time the droplet needs to radially
grow a distance / ´ . On the other hand, we also know that / ï´ o ´ L�M� , since, by
definition of both magnitudes / ´ and o ´ , the probability of finding a droplet
nucleating a volume / ï´ in a time o ´ is equal to unity. From these two relations
we arrive to, o ´ �&��� � 
  � ÷ ï´ L 
 < ,\^] , `_ ���ª
 � ��� <ba ] N ]�\\c] , e d ß P àe v e \cf , (5.8)/ ´ �&��� � 
  ÷ ´ o ´ hg �&�¡
 � �9� < a ] N f ,\^] , e d ß P àe v e \cf , (5.9)

where we have defined the function i ���Ê
 as,i ���Ê
  �ë LÑ� . ï ���¡
 � ë �Ñ�� +�� ���ª
 � ï <0= ³ ï´ ���Ê
� (5.10)

and where both amplitudes are written in the following way,_ ���¡
  � � WC+�� �&�ª
�uë ��� 
 ³ ´ ���¡
 � f�\\^] , Ö ���ª
 < ,\^] , (5.11)g ���¡
  � WC+�� �&�ª
�uë ��� 
 ³ ´ ���¡
j_ ���ª
 (5.12)

In the above equations we have carefully specified that i ���¡
 , and the ampli-
tudes _ �&�ª
 and g ���ª
 , do depend exclusively on temperature. We must notice
that the amplitudes _ ���ª
 and g �&�ª
 inherit the non-universal character of Ö ���Ê
 .

We can calculate the metastable state lifetime using the results obtained up
to now. In general, this lifetime is defined as the average first passage time
(in Monte Carlo Steps per spin, MCSS) to certain stable phase volume fraction.
The stable phase volume fraction at time o , k � � o 
 , is defined as the number of
spins in the stable phase divided by the total number of spins,

I
. We hence

can interpret k � � o 
 as the probability, at time o , that a spin already belongs to
the stable phase. In order to calculate k � � o 
 it is convenient, on the other hand,
to ask the opposite question: for a fixed point l in the system, which is the
probability $ that the point l does not belong to the stable phase at time o ?. In
order to calculate such probability, we know that a droplet of the stable phase
will reach the point l before a time o if the following conditions are fulfilled:7 The droplet nucleates a distance F s away the point l such that �cÌ F s Ì÷ ´ o .7 The time o s which signals the beginning of the nucleation event must

fulfill �'Ì�o s Ìo:� £ pm m .
Since the nucleation rate L �&��� � 
 is the probability of nucleating a droplet per
unit time and volume, the probability $ that point l has not been reached by
the stable phase at time o can be written as,$Ï çmjnpo p nrq m 1msn 1 p n 1 f o pq m q �9�6L ����� � 
 dUF s d o¶s v (5.13)
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We have that e < ¬ d t£ p d ' p æ���`L d UF s d o s , and since the product is continuous, we
can write in general, for a

ë
-dimensional system,

$Í exp
Ä �`L �&��� � 
 ÿ m m '´ d F s ë . ï F s ï <0= ÿ ' < o pq m´ d o s Å  e <vu \\c] , ð 11 m ñ \^] , (5.14)

Hence, the probability that the point l belongs to the stable phase at time o ,
i.e. the stable phase volume fraction at time o , will be given by k � � o 
 À����$ .
The last equality constitutes the Avrami’s law.[78] From this equation we can
obtain the time the system needs to nucleate for first time certain stable phase
volume fraction k�� ,

± � k � 
 Go ´ ����� � 
 Ä ë L��. ï ���ª
 ln ð ��9�wk � ñ Å ,\c] ,
(5.15)

This equation yields the mean lifetime of the metastable state as a function
of the nucleated volume fraction of the stable phase that we fix as threshold
for its measure, for an equilibrium ferromagnetic system of infinite size. We
must take into account that we have assumed that the positions of the (pos-
sibly overlapping) growing droplets are uncorrelated when constructing the
probability $ . This ideal gas hypothesis will be valid when the total volume frac-
tion occupied by the droplets is small enough, so we can neglect correlations
among them. This is the case in our study, due to the weakness of the magnetic
field. For strong magnetic fields the picture of localized nucleating droplets
is no longer valid in order to explain the exit from the metastable state. The
metastable-stable transition is then observed to proceed via long-wavelength
unstable modes reminiscent of spinodal decomposition.[26]

5.3 Extension of Nucleation Theory to Nonequilib-
rium Ferromagnetic Systems

In the previous section we have presented nucleation theory, which explains
the dynamics of the metastable-stable transition for an equilibrium ferromag-
netic system, based on the droplet picture. The central magnitude in this theory
is the droplet free energy, eq. (5.1). From such observable we have calculated
the critical droplet size, and using Arrhenius law, the nucleation rate, from
which, applying Avrami’s law, we obtained the mean lifetime of the metastable
state.

In order to extend this theory to the nonequilibrium system (
�e�e� ), we

first have to write the free energy cost of a droplet in this case. However, here
we face some fundamental problems, which impede any first-principles defi-
nition for the free energy in the nonequilibrium case. First, from a microscopic
point of view, we do not know for

����� the stationary probability distribution$ � s 
 of finding the magnetic system in a steady configuration s. This steady
probability function is solution of the master equation, eq. (3.1), once applied
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(a) (b)

Figure 5.1: (a) Snapshot of the metastable-stable transition for a system with b�BD�H K=bae.f�g , A`B$P�D
HúJ , 4�B$D (equilibrium system) and L BhJÑz=¦ . In black, stable phase spins
(down spins), while metastable phase spins (up spins) are in white. (b) The same than
in (a), for the same magnetization, but for the nonequilibrium system, with 4�B�D
H D
J .
the stationarity condition. Since detailed balance does not hold for

�M��� , see
eq. (2.4), the distribution $ � s 
 will be different from the Boltzmann distribu-
tion. Moreover, the system is open, subject to a continuous energy flux due to
the nonequilibrium perturbation. We do not know how to precisely define the
energy of this system. We also do not know how to construct any statistical
ensemble in the nonequilibrium case, and we also do not know how to connect
the microscopic properties of the system, which should be captured by those
nonequilibrium statistical ensembles, with the system macroscopic behavior.
Finally, there is not even an unique macroscopic theory, equivalent to equi-
librium Thermodynamics, to connect with taking as a starting point the mi-
croscopic equations. This inexistent macroscopic theory ought to satisfactorily
describe the macroscopic phenomena that appear in nonequilibrium systems2.
All these facts force us to propose a phenomenologic approximation, not based
on first principles, to the problem of the nonequilibrium free energy associated
to a stable phase droplet in the system with

����� .
5.3.1 Nonequilibrium Potential and Critical Droplet Size

Fig. 5.1.a shows a typical escape configuration from the metastable state in
an equilibrium system, with

� ���� < ���C� � , �Mû�ª��� � , �  � and
- e� � ; , for

certain fixed magnetization, while Fig. 5.1.b shows an escape configuration
for an identical system, for the same magnetization, but with

�  ��� ��� , i.e.
under nonequilibrium conditions. Comparing both figures we realize that, in

2Irreversible Thermodynamics[79] is an extension of usual Thermodynamics, based on con-
servation and balance equations, the maximum entropy production postulate, and a series of phe-
nomenological laws which postulate the proportionality among the fluxes and the thermodynamic
forces (for more references, see Chapter 9 in this thesis). This macroscopic theory describes in a
partial and approximate way some nonequilibrium situations, although it cannot be considered a
complete macroscopic theory for nonequilibrium systems.
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spite of the obvious differences due to the presence of the nonequilibrium per-
turbation, which introduces small fluctuations in the bulk, the picture based
on a stable phase droplet which nucleates in the metastable bulk is still valid.
Furthermore, we think that the shape and the growth of such droplet in the
nonequilibrium system are again controlled by the competition between the
droplet bulk, which favours the droplet growth, and the droplet surface, which
hinders such growth. Therefore we observe that, although there are many fun-
damental problems in order to define from first principles a nonequilibrium
potential which controls the exit from the metastable state for

�|��� , it is pos-
sible to establish from a phenomenological level a formal equivalence between
the equilibrium and nonequilibrium cases.

Taking into account this observation, we assume the existence of a nonequi-
librium potential, x , which controls the metastable-stable transition for the
nonequilibrium system. We also assume that there are two different terms
competing in x : a surface term, which hinders the droplet growth process,
and a bulk (or volume) term, which favours such growth. Moreover, we as-
sume that this nonequilibrium potential for a stable phase droplet is formally
identical to the free energy of a droplet in the equilibrium case, eq. (5.1), so for
a droplet of size � ,x � � 
  ë . ïz���z�	��
 � ï <0= ³ ´ �&���	��
 � � +�� �����à��
 � ��� . ï��&���	��
 � ï (5.16)

where now . ï �����	��
 is the form factor associated to a droplet of the stable phase
at temperature

�
and nonequilibrium perturbation

�
, see Fig. 4.8, ³ ´ �����à��
 is the

surface tension along one of the primitive lattice vectors for zero magnetic field
and parameters

�
and

�
, and + � �����à��
 is the spontaneous magnetization for the

nonequilibrium system (defined positive) at temperature
�

and perturbation
�

.
This phenomenologic hypothesis, which is not justified from a formal point of
view, will be checked a posteriori, comparing the theoretical predictions derived
from it with the results obtained from Monte Carlo simulations of the original
model.

Although we do not have exact solutions for the observables . ïT�����à��
 , ³ ´ �&���	��

and +[� �&���	��
 , we have developed in previous chapters good approximations
for all of them. Thus, we take the spontaneous magnetization + � �&���	��
 as the
steady solution for zero magnetic field of the set of eqs. (3.17)-(3.18) which we
obtained in Pair Approximation, see section 3.2 and Fig. 3.3. We approximate³ ´ �����à��
 using the expression we derived for the surface tension in the general-
ized SOS approximation (section 4.3), ³ � 8 ���É�� � º�n ���	��
 for an angle ºøM� , which
we denote as ³ � 8 ���É0� ���¡
 c ³ � 8 ���É�� � º]¬��n ���à��
 , see eq. (4.21). The form factor. ïT�����à��
 has been calculated in section 4.5 using the generalized SOS result for
the surface tension, see Fig. 4.8.

Using this information, and taking into account the form of the nonequilib-
rium potential for a stable phase droplet, the critical droplet size for

����� will
be, / � �����à��
  �fë ��� 
 ³ � 8 ���É0� ���ª
� + � �����à��
 � �9� (5.17)
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Figure 5.2: Critical droplet size, y�z , as a function of temperature for different values
of 4 , for a system size LCB K=N , with periodic boundary conditions and subject to a
magnetic field A�B$P�D
HRJ . In particular, from top to bottom, 4�B�D ( Ù ), D�H DUD�J ( Ú ), D�H DUD�K ( { )
and D�H D
J ( | ). The points are Monte Carlo results, measuring y z Çib�jÁ4�É using the method
based on the probability of growth of an initial square droplet, after averaging over� ���@� B J@DUDID experiments. Lines correspond to the theoretical prediction, eq. (5.17).
For the shake of clarity, results for the Ý -th value of 4 , Ý�B�J=j@H.H@H+j { (using the above
order) have been shifted ÇxJkP¥Ý�É units in the �} axis. The inset shows Monte Carlo results
for y�z as those plotted in the main graph, but here we measure y~z using the stable
phase growth and shrinkage rates. Data here have been also shifted. In all cases error
bars are smaller than the symbol sizes.

where the different magnitudes have been defined in the previous paragraph.
Fig. 5.2 shows the theoretical prediction for the critical droplet size / � �����à��
 as a
function of temperature for different values of

�
and ����ª����� . This figure also

shows the results of different Monte Carlo simulations for a system with size-  <
Z , with periodic boundary conditions and the same magnetic field. As
we see there, the agreement between theory and Monte Carlo results is rather
good. From the qualitative point of view, we observe that in the equilibrium
system (

� b� ) the critical droplet size grows monotonously as temperature
decreases, converging towards a value / � �&� t � 
�� �#5�� ����æ�#� . On the other
hand, for any

�Á��� the critical droplet size depicts a maximum as a function
of temperature, decreasing for lower temperatures. This non-monotonous be-
havior of / � �����à��|� 
 is clearly inherited from the non-monotonous behavior
of the surface tension which we derived in the generalized SOS approximation
for the nonequilibrium interface. Moreover, as we said previously, the good
agreement shown in Fig. 5.2 verifies in an indirect way that the surface tension
we derived in the generalized SOS approximation constitutes a good approxi-
mation for the nonequilibrium surface tension.
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On the other hand, from the quantitative point of view, we observe that the
theoretical predictions are very good for low enough temperatures, although
they slightly overestimate the value of the measured / � for larger tempera-
tures, for any value of

�
. It is remarkable that this overestimation for / � at

high temperatures also appears for the equilibrium system, where ³ � 8 ^ ´ ���É�� ���¡

perfectly reproduces the exact known result for the surface tension, and where+ � �����	� �� 
 yields values almost indistinguishable from the real ones. In this
case the observed differences between theoretical predictions and computa-
tional results for the critical droplet size at high temperatures can be traced
back to the lack of precision of the approximation

%���� + � �&�ª
 � ��� in this temper-
ature regime. For

�M��� it is observed that the differences appearing between
the measured critical droplet size and the one predicted by the nonequilibrium
nucleation theory are similar to those observed in the equilibrium system, so
again the approximation for the free energy density difference between the
metastable and stable phases,

%
, seems to be at the origin of the discrepancy.

In spite of these slight differences, we can affirm that our theoretical approxi-
mation nicely reproduces the simulation results.

In order to obtain the critical droplet size from Monte Carlo simulations
of the real system we have used two different methods which, as we can ob-
serve in Fig. 5.2, yield equivalent results. In a first method, we simulate a
system with size

-
, with a total amount of

I  - �
spins, and subject to pe-

riodic boundary conditions. We initialize the system in a state with all spins
up (i.e. in the metastable phase), except for a square droplet of down spins
(stable phase spins) with side

� � which we situate on the lattice center. For
this initial condition we let evolve the system under the usual Glauber dy-
namics, eq. (2.3), for fixed temperature

�
, nonequilibrium perturbation

�
and

magnetic field ���À� . The imposed initial condition is highly unstable. If the
initial state converges as time goes on to a state with magnetization + � LN�
(metastable state), then the initial droplet, with side

� � , was subcritical (that
is, for this droplet the surface term dominates over the bulk term, so it tends
to shrink). This means that the radius � of the initial droplet, defined as half
of the square droplet side, is smaller than the critical droplet radius / � �����à��� � 

for these parameters. On the other hand, if the initial droplet grows until the
system reaches a state with magnetization near + � �?� (stable state), the ra-
dius � of the initial square droplet was larger than the critical droplet radius,
so the initial droplet was supercritical (now the bulk term dominates over the
interfacial one). Since the system is stochastic, the growth or shrinkage of a
droplet depending on its size is not a deterministic process. Therefore we can
define a function $ �á� 8 9�£ � � 
 which yields the probability that a (square) stable
phase droplet with radius � is supercritical. In our case, in order to evaluate
such probability we perform

I 9  8 experiments as the above described, and we
accumulate the number of times é �á� 8 9�£ � � 
 that a droplet of size � grows up to
the stable state. In this case we have that $ ��� 8 9�£ � � 
 é ��� 8 9Ñ£ � � 
 5 I 9  8 . Fig. 5.3
shows the probability $���� 8 9�£ � � 
 for a system size

- h<
Z , with periodic bound-
ary conditions, at temperature

� Á��� 5 � �Z� � , nonequilibrium parameter
� À�



5.3 Nonequilibrium Extension of Nucleation Theory 93

6 8 10 12
R

0

0,2

0,4

0,6

0,8

1

P
su

pe
r(R

)

Figure 5.3: Probability that a initial (square) droplet with radius ) is supercritical,� gV���k���#Ç�)3É , as a function of ) for a system size L$B�KIN , at temperature byBED�H {3b�e@fng ,4OBTD , AOBCPQD�HRJ , once we collect � ���@� B}J@DUDID different experiments for each value of) .

and magnetic field �á������ � , once we collect a total amount of
I 9  8 b�#�~�~�

different experiments for each value of � . As expected, the function $0�á� 8 9�£ � � 

abruptly changes from 0 to 1 in a narrow interval for the radius of the initial
square droplet. Here we define the critical droplet radius / � as the radius � 8
for which $ ��� 8 9Ñ£ � ��8 
 M��� < .3 Using this method we have obtained the results
shown in the main plot in Fig. 5.2, after averaging over

I 9  8 Á�Z�~�~� different
experiments.

The second method we previously referred to in order to measure / � �&���	��� � 

is based on the stable phase growth and shrinkage rates, î � + 
 and A � + 
 re-
spectively, defined in section 3.3, see eqs. (3.36) and (3.37) and complementary
discussion. We said there that î � + 
 was the number of spins in the system that
change from the metastable phase to the stable one per unit time, when the
system was in a state with magnetization + . Equivalently, A � + 
 was the num-
ber of spins in the system that change from the stable phase to the metastable
one per unit time, when the system magnetization is + . The rate of change
associated to the order parameter was given by the difference A � + 
 �Áî � + 
 ,
see eq. (3.38), so stationary states was defined by the solutions of the equa-
tion A � + 
 �î � + 
 . We deduced that this equation has three different solutions
for a system showing metastability, + = , + ´ y + <0= , where + = and + <0= were
magnetizations near L?� and �?� , respectively, and + ´ signaled a intermediate
positive magnetization for ����� (see Fig. 3.8). While + = and + <0= were locally

3Due to the discontinuous character of variable ; , most of the times there is no sampled value;n\ such that ��g-���k��� £ ;n\ ¦ Üh_�� � . In these cases it is necessary to perform a linear interpolation
between the two values of the variable ; that flank the intersection point between the function� g-���k��� £ ; ¦ and the constant line �?Ü`_�� � (see Fig. 5.3).
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stable solutions which identified the metastable and stable states respectively,
the solution + ´ was unstable against small perturbations. Moreover, we de-
duced that if + `G+ ´ the system rapidly evolves towards the metastable state,
while if + ��+ ´ the system evolves towards the stable state. In this sense the
magnetization + ´ signals a critical magnetization separating the region where
the stable phase tends to shrink ( +®`û+ ´ ) from the region where the stable
phase tends to grow ( +���+ ´ ). This concept is formally analogous to that of
critical droplet. Furthermore, the magnetization + ´ signals the magnetization
that the system exhibits when the critical droplet nucleates. As we will explain
in the following, we are able to obtain the critical droplet size using this mag-
netization value, + ´ , and the metastable state magnetization, + = . We defineé <´  IÏ� ���G+ ´ 
 5 � as the number of down spins in the critical state character-
ized by + ´ , where

I
is the total number of spins in the system. Equivalently,

we define é < =  IÏ� �¨�G+ = 
 5 � as the number of down spins in the metastable
state. In the critical state we expect that é <´  é <� L�é <M � ¹ � , where é <� is the
number of down spins belonging to the critical droplet, and é <M � ¹ � is the num-
ber of down spins in the metastable phase bulk which has not been occupied
by the critical droplet. We can assume that, as a first approximation, the den-
sity of down spins in the metastable bulk when we are in the critical state is
equal to the density of down spins in the metastable state, which we define asë < = �é < = 5 I . In this case we have that é <M � ¹ �  ë < = �YI �[é <� 
 , so,

é <�  é <´ ��é < =�:� � f ,\ (5.18)

The variable é <� yields the volume of the critical droplet. As a definition of the
critical droplet size we choose, / � c�� é <�� (5.19)

Thus measuring the magnetizations + ´ and + = for which the curves î � + 
 andA � + 
 intersect one each other, we can obtain a measure of the critical droplet
size. In order to do so we perform a series of

I 9  8 experiments studying the
demagnetization process from the metastable to the stable state. We measure
in each experiment the rates î � + 
 and A � + 
 . As we have already done in other
simulations, we initialize the system in a state with all spins up under the ac-
tion of a negative magnetic field. Such state is metastable, and the system even-
tually evolves up to the stable state. We measure the magnetizations + ´ and+ = on each experiment, and we calculate from them the critical droplet size/ � defined in eq. (5.19). Finally, we average over the different experiments in
order to obtain good statistics. In this way we have obtained the results shown
in the inset of Fig. 5.2 for the critical droplet radius as a function of temper-
ature for different values of

�
. These data have been obtained for a system

size
- �<�Z with a magnetic field ����ª��� � , and averaging over

I 9  8 ��Z�~�~�
different experiments.
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If we compare the computational results obtained using both methods for
the critical droplet size, we observe that these results are completely equiva-
lent, up to a small amplitude factor, which varies slightly with the tempera-
ture and the nonequilibrium parameter

�
. In particular, the results for / � ob-

tained from the probability $���� 8 9�£ � � 
 of finding a supercritical square droplet
with side

� � are slightly larger than the results obtained from the stable phase
growth and shrinkage rates. In order to collapse both measures we must multi-
ply the results obtained via the first method by a scaling factor of order ��� � . On
the other hand, these tiny global differences observed between both measures
were expected due to the different influence of the form factor on each com-
putational scheme. However, in spite of these small discrepancies, the results
obtained from both measures depict the same behavior: / � is monotonous in
equilibrium, while / � shows a maximum as a function of temperature for the
nonequilibrium system. Finally, we must notice before going on that the two
computational methods presented here in order to measure the critical droplet
size will be valid always that the metastable-stable transition proceeds through
the nucleation of a single critical droplet, and not for several critical droplets, as
is observed in certain parameter space regions. However, for the parameters
we study, the system usually decays through the nucleation of a single critical
droplet (see next sections).

5.3.2 Radial Growth Velocity for a Stable Phase Droplet

In the following we study the radial growth velocity for a stable phase droplet
in the nonequilibrium system. In equilibrium we deduced this velocity via the
Allen-Cahn approximation. This approximation was based on a phenomeno-
logic equation postulating the proportionality between the rate of change of
the order parameter and the local thermodynamic force, eq. (5.6). This ther-
modynamic force is just the variation induced on the system free energy by
a perturbation of the local magnetization, �ÿü#5¶�4+ ��UF 
 . For the nonequilibrium
case we cannot properly define a free energy functional. However, if our pos-
tulate about the existence of a nonequilibrium potential for

�]��� similar to
the free energy in the equilibrium system is correct, we can define the thermo-
dynamic force the order parameter suffers in the same way, but now using the
nonequilibrium potential x instead of the equilibrium free energy ü . Further-
more, due to the similarities observed in the metastable-stable transition for
both the equilibrium and nonequilibrium systems, we assume that the shape
of the nonequilibrium potential matches in some sense that of the Ginzburg-
Landau functional. Hence the same formal result we derived in equilibrium is
assumed to be valid for

����� ,
÷ ´ �&���	��� � 
  �uë ��� 
 W/ � �����	��� � 
 (5.20)

where now / � �&���	��� � 
 is the critical droplet radius for the nonequilibrium sys-
tem, see eq. (5.17).
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Figure 5.4: In ��É we show the initial configuration for the semi–infinite system defined
in the text. In �3É we show a possible schematic configuration before we shift the lattice.
The fraction of up spins in this configuration has decreased to a value close to õ . Finally,
in �~É it is shown the final system configuration after the shift. We have added some new
up spins to the top of the system, and some down spins from the bottom of the system
have been removed.

In order to check this prediction about the interface velocity we perform
Monte Carlo simulations. We then build a system with effective size

-"¸ % . To
do that in practice, we define the system in a square

-�¸�-
lattice. We impose

periodic boundary conditions in the horizontal direction ( ¯õ axis), and open
boundary conditions in the vertical one ( ¯« axis), forming in this way a cylinder
with height

-
. All spins in the upper row are fixed in the up state, while all

spins in the lower row are fixed in the down state. The initial configuration
consists of a spin stripe of height ø - where all spins are down, which fills the
first ø - rows, and a complementary stripe where all spins are up, which fills the
remaining

� ���¿ø 
à- rows. We choose in this case ø ������@< . The interface moves
upwards for a negative magnetic field (i.e. the stable phase -down spins- grows
at the expense of the metastable one -up spins). In order to emulate an infinite
system in the interface movement direction, we shift the observation window as
the interface advances, always keeping it inside the system. In practice we do
that generating a new region with up spins in the upper part of the system as
the interface advances, and eliminating an equivalent down spins region in the
lower part of the system. In fact the shift is performed each time the fraction of
up spins in the system is smaller than ø . The magnitude of the shift is such that
once performed we approximately recover the fraction of up and down spins
we had in the initial configuration, i.e. �@< % of up spins and ;=< % of down spins.
The choice ø ������@< allows the added up spins to relax towards the typical state
of the metastable bulk for the studied parameters

�
,
�

and � before the interface
reaches them (see figure 5.4). In order to measure the interface velocity we
calculate the system magnetization + � o 
 as a function of time, evaluating + � o 

without taking into account the variations in magnetization due to the added
and removed spins in the upper and lower parts of the system respectively.
The slope of + � o 
 yields the interface velocity, ÷ ´ �����	��� � 
 .

We measure the interface velocity using this method for a system size
- � � ; as a function of temperature for different values of

�
with fixed �G|����� � .

Fig. 5.5 shows the results of these measures. This figure also includes the pre-
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Figure 5.5: Monte Carlo results for the interface velocity as a function of temperature
for different values of 4 , and AcBhPQD�HRJ . In particular, from bottom to top, 4�B�D , D�H DUD�J ,D�H DID)K , D
H D
J , D
H D)z and D�H DUN . Continuous lines are our theoretical prediction. The free
parameter � (see main text) is fixed in each case to yield the best fit, always obtaining�Æ|T×  � j  � Ø . For the shake of clarity, if the integer ÝCB�J=j@H.H@H+jx� characterizes the curve
position (its order from bottom to top), we have shifted the results for each 4 an amountÇWÝ`P�JhÉ���D�H D)z in the vertical axis. Error bars are smaller than symbol sizes.

dictions based on eq. (5.20), once we fix the only free parameter, W , to yield the
best fit in each case (we obtain always W"EPF => � =³ J ). The theory reproduces rather
well the Monte Carlo results for most of the values for

�
and

�
. It is remark-

able that for
� �� (and very small values of

�
, say

�  ��� �~��� ) the interface
velocity prediction based on eq. (5.20) fails in the low temperature limit. This
discrepancy is due to the underlying lattice anisotropy which induces effects
that dominate the behavior of the system in the low temperature limit (remem-
ber the droplet shape in the low temperature limit for

� b� , Fig. 4.7.a). A
continuous and macroscopic theory as the Allen-Cahn approximation, which
is isotropic and does not take into account the lattice details, fails when de-
scribing the interface velocity at low temperatures. However this discrepancy
is healed as the value of

�
is increased, since the interface for

����� feels an effec-
tive temperature

� ¬9ÑÐ�Ð ` � , eq. (4.36), due to the nonequilibrium perturbation,
which is nonzero even in the low temperature limit. Hence the interface almost
does not realize the presence of the underlying lattice for large enough

�|�|� ,
and so the continuous approximation remains valid.

On the other hand we also observe in Fig. 5.5 that the differences between
the theoretical prediction for the interface velocity and the computational re-
sults grow as we approach the critical temperature

���h�H��

. These differences are

due to the interaction between the interface and bulk fluctuations, whose rela-
tive importance grows as we approach the critical point. Our theory does not
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take into account such possible interaction. We can remove these differences
in the high temperature limit eliminating the bulk dynamics, as we did when
measuring the interface microscopic structure in the nonequilibrium system,
see section 4.3 and Fig. 4.3. In this way we recover the agreement between the
theory and the measured velocities for high temperatures.

It is remarkable that the interface velocity shows a minimum as a function
of temperature for an intermediate temperature in the nonequilibrium system
(
� ��� ), growing the interface velocity if we further decrease temperature,

see Fig. 5.5. This surprising feature of the nonequilibrium system, measured
in Monte Carlo simulations and compatible with our theory, points out that
when there is non-thermal noise (

�
), a decrease of the thermal noise (

�
) when

the system is at intermediate temperatures favours the interface advance. The
origin of this property underlies again on the non-monotonous behavior of
surface tension for

����� , see Fig. 4.4.

5.3.3 Mean Lifetime for the Metastable State

The hypothesis of existence of a nonequilibrium potential x , formally identical
to the equilibrium free energy, which controls the dynamics of the metastable-
stable transition for

����� , has provided us with correct theoretical predictions
for both the critical droplet size and the droplet radial growth velocity. Once
we have derived these magnitudes we are able to study the metastable state
mean lifetime for

����� . In this case, the nucleation rate L �&���Ù��� � 
 can be written
using Arrhenius law[23, 75] as,L �����à��� � 
 Ö ���z�	��
 � �9� M � � e <�� N ß P^� â � v àP (5.21)

where x �¶�����à��� � 
 0x � ���/ ��
 , eq. (5.16). For the nonequilibrium system the
non-universal amplitude factor Ö �&���	��
 will depend not only on temperature,
but generically also on

�
. We can calculate for

�æ��� , in a equivalent way as
we did in equilibrium, the mean droplet separation / ´ �&���	��� � 
 and the timeo ´ �����à��� � 
 a droplet needs to grow radially a distance / ´ once we know the
nucleation rate, obtaining,

o ´ �����à��� � 
  _ �&���	��
 � ��� < a ] N ]�\\c] , e d ß P^� â àe v e \^f , (5.22)/ ´ �����à��� � 
  g �&���	��
 � ��� <ba ] N f ,\c] , e d ß P^� â àe v e \^f , (5.23)

where now we define the function i ���z�	��
 as,i �����à��
  �ë LÑ� . ïT�����	��
 � ë ���� + � �&���	��
 � ï <0= q ³
� 8 ���É�� �&�¡
 v ï� (5.24)
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and where both amplitudes for the nonequilibrium system are written as,_ �����à��
  � � WC+�� �&���	��
�uë ��� 
 ³ � 8 ���É�� ���¡
 � f�\\^] , Ö �����à��
 < ,\^] , (5.25)g �����à��
  � W4+ � �&���	��
�uë ��� 
 ³ � 8 ���É�� ���¡
 _ �����à��
 (5.26)

These equations are structurally identical to those formulated for the equilib-
rium system, eqs. (5.8)-(5.12). The difference between these equations for

�Ñ���
and their counterparts in equilibrium rests on the nonequilibrium generalized
observables . ïz�����à��
 , +�� �&���	��
 and ³ � 8 ���É�� �&�ª
 . Using Avrami’s law[23, 78] we can
write the mean lifetime of the metastable state as a function of the stable phase
volume fraction for

����� ,
± � kN�hn ���à��� � 
 Go ´ �&���	��� � 
 Ä ë L��. ï �����à��
 ln ð ��9�6k � ñ Å ,\c] ,

(5.27)

This equation yields the mean lifetime of a metastable state for a system with�ø�ø� and infinite size. However, the systems we study are always finite, with
a typical size

-
. In this case the system will evolve from the metastable to

the stable state nucleating one or several stable phase droplets (or via some
other marginal mechanisms to be described later on), depending on the value
of
-

and its relation to the other relevant length scales in the system, namely/ � �&���	��� � 
 and / ´ �&���	��� � 
 .
In general, the mean droplet separation / ´ for intermediate values of the

parameters (as the ones we are interested in) is much larger than the critical
droplet size, / ��� / ´ . In this case the picture based on nucleation of droplets
is valid, because the droplet volume fraction is small enough so we can neglect
correlations between droplets. For very strong magnetic fields (not studied in
this thesis) the picture based on localized droplets is no longer valid, and now
the system decays from the metastable state via long-wavelength Goldstone
modes reminiscent of spinodal decomposition. The region of parameter space
where the localized droplets picture is no longer valid is known as the Strong
Field Region (SF)[26], and the magnetic field signaling the transition between
the intermediate field region, where the metastable-stable transition proceed
through the nucleation of one or several critical droplets, and the Strong Field
Region is known as Mean Field Spinodal Point, � �  �!Z��� � .[26, 80]

We now assume a large system size, such that,- Z / ´ Z / � (5.28)

In this case the system evolves from the metastable state to the stable one
through the nucleation of many stable phase critical droplets. This region is
known as Multidroplet Region (MD)[26]. In order to calculate the mean lifetime
in this case, we perform a partition of the system in

�Y- 5�/ ´ 
 ï cells of volume/ ï´ . Each cell decays from the metastable state to the stable one in an inde-
pendent Poisson process of rate / ´ L0o <0=´ . This rate is the probability per unit
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time that a cell with volume / ï´ will decay to the stable phase. The stable phase
volume fraction is in this case self-averaging, and hence k � B �� inside any cell D
coincides approximately with the total stable phase volume fraction of the sys-
tem at any time. Therefore the mean lifetime of the metastable state will be in
this case approximately equal to the result obtained for the infinite system,

±3 � � kN�Cn � �à��� � 
 o ´ �&���	��� � 
 Ä ë L��. ï �����à��
 ln ð ��:�`k � ñ Å ,\c] ,
(5.29)

This lifetime does no depend on system size
-

. Additionally, it can be shown
that the relative standard deviation associated to the lifetime in region MD, F�� ,
is very small (this is also observed in SF region), so both regions (MD and SF)
are termed Deterministic Region in literature[26].

For smaller system sizes, such that/ ´ Z - Z / � (5.30)

the random nucleation of a single stable phase critical droplet in a Poisson pro-
cess of rate

- ï L is the rate-determining step in the metastable-stable transition.
Therefore in this case a single stable phase droplet will nucleate and it will
rapidly grow to cover the whole system much before any other critical droplet
appears. The time the system needs to nucleate a critical droplet is much larger
than the time this critical droplet needs to grow and cover the whole system.
Hence we can approximate in this case the metastable state mean lifetime with± ���  �Y- ï L 
 <0= , i.e.,

±���� �&���	��� � 
  � ��� < � M � � �Ö �&���	��
	- ï e d ß PS� â àe v e \cf , (5.31)

The parameter space region where the exit from the metastable state proceeds
through the nucleation of a single droplet is called Single Droplet Region (SD)[26].
The mean lifetime in this region only exhibits a slight dependence on the thresh-
old k?� , since the time the system needs to nucleate a critical droplet is much
larger than the time the droplet needs to grow and cover the whole system. On
the other hand, in this case it can be shown that the relative standard deviation
associated to the lifetime, F � , is of order unity, so we call this region Stochastic
Region[26].

The magnetic field which signals the transition between the Single Droplet
Region (SD) and the Multidroplet Region (MD) is known as Dynamic Spinodal
Point, � � ����� � .[26, 80] This Dynamic Spinodal Point can be estimated from the
condition / ´ �����à��� � ����� 
6÷�- . Taking into account the expression derived for/ ´ in the nonequilibrium system, eq. (5.23), we have in the limit �Ñt � that
the Dynamic Spinodal Point is given by,� � �9��� �C q i �����à��


ln
�Ù-3
 v ,\^f , (5.32)

where the function i �����à��
 is defined in eq. (5.24). � ��������� converges towards
zero in the limit

- t?% , which involves that the only relevant process in this
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large system size limit is that of nucleation of multiple droplets. However,
this convergence is logarithmic, i.e. very slow, so the exit process from the
metastable state via the nucleation of a single droplet of the stable phase will
be measurably even for macroscopic systems. On the other hand, the Mean
Field Spinodal Point, � �� "!#����� , which separates the MD and SF regions, can be
roughly estimated from the condition

� / � � � ) � , where
� ) � is the correlation

length in the metastable phase.[26] When this condition holds, the correlation
between droplets is relevant, so the description based on the droplet nucleation
process is no longer valid. For temperatures well below the critical one, the
correlation length

� ) � is small, of the same order of magnitude that the lattice
spacing, so

� ) � � � . Using this observation in the above condition, we obtain
the Mean Field Spinodal Point,

� �  "!#��� �C �uë ��� 
 ³ � 8 ���É�� ���¡
+ � �����	��
 (5.33)

Finally, there is a last possibility, captured by the condition,/ ´ Z / � Z -
(5.34)

In this case the critical droplet size is larger than the system size, and the de-
magnetization process from the metastable state proceeds through the coherent
rotation of all spins in the system. This mechanism is relevant only for very
small system sizes and for very weak magnetic fields. The parameter space
region where this mechanism is observed is known as the Coexistence Region
(CE), and the magnetic field separating CE and SD regions is known as Ther-
modynamic Spinodal Point, � � w������ � .[26]

The above analysis allows us to investigate the finite size effects which af-
fect the properties of the mean lifetime of the metastable state in the nonequi-
librium system. In the following we want to check these theoretical predictions
using Monte Carlo simulations of the metastable-stable transition. We thus
build a square system with size

-
, subject to periodic boundary conditions. We

impose as initial condition a state with all spins up, in such a way that under
the action of a negative magnetic field this initial state is metastable. We let
evolve the system under these conditions using Glauber dynamics, eq. (2.3).
The system rapidly evolves from the initial state to a state in the metastable
region, with magnetization close to L?� . After this fast initial relaxation, the
system spends a long time wandering around the metastable state. Eventually
it will nucleate one or several critical droplets of the stable phase (assuming
our parameters are such that the system is in the SD or MD regions), which
will grow rapidly making the system to evolve from the metastable state to the
stable one, where it stays forever. We define the mean lifetime of the metastable
state, ± �����à��� � 
 , as the average first passage time (in Monte Carlo Steps per spin,
MCSS) to +��� . Hence in order to calculate the mean lifetime from our equa-
tions we must use k?�Rø��� < due to this convention. In practice the metastable
state lifetime can be a long as �#�~³C´ MCSS, so we need to use Monte Carlo with
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Figure 5.6: Semilogarithmic plot for the mean lifetime of the metastable state as a func-
tion of temperature for different values of 4 , as obtained in Monte Carlo simulations.
We study here a system with size LMB¶K=N , subject to periodic boundary conditions and
with ACBEP�D
HúJ , and we average over � ���@� B�J.DIDUD independent runs. In particular,
from top to bottom, 4TBíD ( Ù ), D�H DUD�J ( Ú ), D
H DID�K ( { ) and D
H D
J ( | ). The continuous lines
are the theoretical predictions for each case. For the shake of clarity, we rescale the Ý -th
curve (in the aforementioned order) by a factor J@D�ò § Ò f ò   Ô . Error bars are smaller than
symbol sizes.

Absorbing Markov Chains (MCAMC) algorithms in order to perform the sim-
ulations. In particular, we have used the Aª�M� MCAMC algorithm, together
with the slow forcing approximation4. These advanced algorithms are pre-
sented in Appendix A. In order to improve our statistics for the lifetime, we
simulate

I 9  8 different metastable state demagnetization experiment, averag-
ing the lifetime over all them.

Fig. 5.6 shows the mean lifetime of the metastable state, as defined in the
above paragraph, in semilog scale, as a function of temperature for different
values of

�
, as measured in Monte Carlo simulations for a system with size-  <
Z , with � g������� once we average over

I 9  8  �#�~�~� different runs.
This figure also shows the theoretical predictions, based on eqs. (5.29) and
(5.31). For each temperature

�
and nonequilibrium parameter

�
( �áÀ�ª����� is

fixed) we evaluate whether the system is in the MD or SD regions calculating/ ´ �����à��� � 
 and comparing it with the system size
-

. Consequently we use ex-
pressions (5.29) or (5.31) to predict the lifetime. In practice we observe that
most of the studied temperature interval in Fig. 5.6 lies on the SD region. The

4Whenever we apply the slow forcing approximation, we ensure that the forcing rate � (see
Appendix A) is slow enough so we have reached the slow forcing limit, where the measured ob-
servables do not depend on the applied forcing. Notice on the other hand that when we apply the
slow forcing approximation, the metastable state mean lifetime is derived from the stable phase
growth and shrinkage rates, see Appendix A.
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only free parameters in our theory are the constant W which related the radial
growth velocity to the inverse of the critical droplet size, see eq. (5.20), and
the non-universal amplitude factor � �����à��
 c|Ö �&���	��
 � ��� M � � that appears in the
nucleation rate L �����	��� � 
 , eq. (5.21). We fixed the constant W in each case when
we studied the radial growth velocity in the previous section, where we ob-
tained W"EGF => � =³ J depending on the value of

�
. For the amplitude factor � �&���	��


we assume that its temperature dependence is weak as compared to the expo-
nential dependence on temperature which dominates the behavior of L �����à��� � 
 .
Therefore we fix the value of � �����à��
 to a constant which does not depend on
temperature, � �©��
 . For each

�
, � �H��
 is derived from the best fit between the

theoretical prediction and computational results (notice that � �����à��
Ê� � �H��

only produces a vertical shift, in semilogarithmic scale, in the mean lifetime
curve).

As we can observe in Fig. 5.6, in the equilibrium system the mean lifetime
grows monotonously as temperature decreases (moreover, ± �&� �à� �� � � 
 grows
exponentially with �#5 � , as predicted by nucleation theory). However, the mean
lifetime for

����� grows as temperature decreases, up to certain nonzero tem-
perature

� � � �) ¢  �©��� � 
 where the lifetime reaches a maximum, after which the
lifetime change its tendency and decreases as temperature decreases. Hence
we see that for any

�M��� the metastable state survives a maximum time for a
nontrivial, nonzero temperature

� � � �) ¢  �H��� � 
 . Therefore if we need to maximally
prolong the lifetime of a metastable state in a real magnetic thin film, which
shows the kind of impure behavior parameterized by the nonequilibrium per-
turbation

�
(think for instance of the problem posed by magnetic storage of

information in technological applications), the most effective method will not
consists in a blind decrease of temperature, but in the search of the tempera-
ture

� � � �) ¢  �©��� � 
 for which the metastable states has the longest lifetime. On
the other hand, the theoretical results for the lifetime reproduce rather well, at
least from the qualitative and semi-quantitative point of view, the Monte Carlo
results. The theory predicts a maximum in ± �����à�|� � � � 
 for certain nonzero
temperature, which coincides with the one observed in simulations. This non-
monotonous behavior of the mean lifetime is inherited again from the non-
monotonous behavior of surface tension in the nonequilibrium system. Hence
the interfacial properties of the system determine in a fundamental way the
dynamical and statical processes related to metastability. On the other hand,
from the quantitative point of view, our approximation for the lifetime of the
metastable state for

�ø��� differs somewhat from Monte Carlo results. In par-
ticular, we observe that although the general shape of the theoretical curves is
similar to Monte Carlo curves, the theoretical curves are more steep than the
computational results.
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Figure 5.7: Dynamic Spinodal Point, s A�� �+� s Çib�j 4�É , represented by a continuous line,
and Mean Field Spinodal Point, s A"��� �� s Çib�j 4�É , represented by a dashed line, as a func-
tion of temperature for: (a) 4�B�D , and (b) 4�B�D
H D
J . Notice the fundamental change in
behavior for low temperatures when we compare the equilibrium case (4�B�D ) with the
nonequilibrium one (4��B�D ).
5.3.4 Morphology of the Metastable-Stable Transition

An interesting question is to study the morphology of the metastable-stable
transition as a function of the system parameters. This study will allow us
to divide the parameter space in different regions, each one characterized by
a well-defined typical morphology for the process of demagnetization of the
metastable state. In order to characterize the different morphologies we study
the Dynamic Spinodal Point, � � ����� � , and the Mean Field Spinodal Point, � �  �!#��� � ,
defined respectively in eqs. (5.32) and (5.33), as functions of temperature for
different values of

�
. The field � � ����� � �����à��
 separates the Single Droplet Region

from the Multidroplet Region. Hence if � ���Z�|� � ����� � the metastable-stable tran-
sition proceeds through the nucleation of a single droplet of the stable phase,
while if � �� "!#���T�¶`�� ����`�� �9������� it proceeds through the nucleation of multiple
droplets. On the other hand, the Mean Field Spinodal Point , � �� �!#���z� , separates
the Multidroplet Region from the Strong Field Region, where the nucleating
droplet picture is no longer valid. The SF region is observed for � ���4`á� �¨ �!#���z� .

Fig. 5.7.a shows the theoretical prediction for the fields � � �9��� � �&���	��
 and� �  �!#��� � �&���	��
 as a function of temperature for a equilibrium system (
�  � )

with size
- G<
Z . The parameter space is divided in three different regions.

The SD region, characterized by the nucleation of a single critical droplet, dom-
inates the morphology of the metastable-stable transition for low temperatures
in this case (

� ¬� ). For intermediate temperatures, if the magnetic field is
high enough, the metastable state demagnetization process proceeds through
the nucleation of multiple critical droplets, which is the typical morphology of
MD region. Finally, for very strong magnetic fields the metastable-stable tran-
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Figure 5.8: (a) s A�� �� s Çib�j 4�É as a function of temperature for L�BíK=N and several dif-
ferent values of 4 . In particular, from top to bottom, 4¿B�D , D
H DID�J , D�H DID)K and D
H D
J ; (b)s A���� �� s Çibkj 4�É as a function of temperature for the same values of 4 . Notice the funda-
mental change of behavior in both s A � �+� s Çib�j 4�É and s A ��� �� s Çibkj 4�É in the low temperature
limit for any 4 �B$D as compared to the equilibrium case.

sitions exhibits a morphology typical of SF region, where the concept of mu-
tually independent nucleating droplets is not valid. These theoretical results
about the morphology of the metastable-stable transition, first derived in refs.
[26, 81], are perfectly verified in Monte Carlo simulations of the system with� �� .[26, 81] Therefore, for a fixed (intermediate) magnetic field, the typical
sequence of morphologies as temperature decreases from temperatures close
to the critical one is SF t MD t SD.

Fig. 5.7.b shows the same results than Fig. 5.7.a but for a system with� ���� ��� , i.e. under nonequilibrium conditions. As in equilibrium , the param-
eter space is divided in three different regions. However, for

�À�À� there is a
fundamental difference as compared to the equilibrium case: both � ���9���z� �&���	��

and � �  �!Z��� � �����	��
 converge towards zero in the low temperature limit for

���� . This implies that the SD region does not dominates now at low tempera-
tures. Instead, we observe that there is a region for intermediate temperatures
and weak magnetic fields where the SD region determines the morphology of
the metastable-stable transition. This region disappears if we excessively in-
crease or decrease the temperature, appearing instead the MD region. Hence,
for intermediate magnetic fields the characteristic morphology sequence in the
metastable-stable transition will be SF t MD t SF as we decrease temperature
from values near the critical one. For weak magnetic fields this sequence will
be SF t MD t SD t MD t SF.

Fig. 5.8.a shows the theoretical prediction for the Dynamic Spinodal Point,� � ����� � �����	��
 , as a function of temperature for varying
�

in a system with size
- <
Z . Apart from the fundamental change of behavior observed in � � �9��� � �&���	��
 at

low temperatures for
�M�M� , we observe that, as

�
increases the SD region de-

creases, increasing the MD region. This behavior is easy to understand from a
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Figure 5.9: Snapshots of the metastable-stable transition for a system with size L�BhJÑz=¦ ,
with 4�B�D�H D�J , A�B�P�D
H zUK and temperatures b¶B�D
HúJÑb�e.f�g (left column), b¶B�D
H NUb�e.f�g
(central column) and b�B¶D�H d�b e.f�g (right column). The first row corresponds to a stable
phase volume fraction ¡ g BíD�HRJ , the second one to ¡ g B�D
H { , the third one to ¡ g BD
H d and the last one tho the stable state for each temperature. Notice that, while forbhBFD�HRJ.bae.f�g and bhB�D
H d�bae@fng the decay from the metastable state proceeds through
the nucleation of multiple droplets, for the intermediate temperature b�BCD�H NIb e@fng this
transition proceeds through the nucleation of a single droplet, in total agreement with
the theoretical predictions (see the main text).
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phenomenologic point of view, because the nonequilibrium perturbation
�

acts
as a noise with non-thermal origin, affecting mainly the most ordered regions
in the system (remember the definition of effective temperature in Chapter 4),
so the presence of

����� favours the nucleation of new stable phase droplets in
the metastable bulk, favouring in this way the MD morphology at the expense
of the SD region. Analogously, Fig. 5.8.b shows the theoretical prediction for� �� "!#����� �����à��
 as a function of

�
for varying

�
. We observe here that as we in-

crease
�

, the SF region grows at the expense of the MD region.
Finally, if we take a constant magnetic field ������� � < in Fig. 5.7.b, where

we plot � � ����� � �����à��
 and � �  "!#��� � �����à��
 as a function of
�

for a system with
� ��� ��� and

- �<
Z , we observe that the theory points out that for a temperature� ������ ���Z� � the morphology associated to the metastable-stable transition will
be that of the MD region. For

� ø��� Z ���h� � this morphology will be the typical
of SD region, while for

� ���� V � �h� � we again will recover the MD morphology.
Fig. 5.9 shows a series of snapshots for the temporal evolution of a system
with size

-  � � ; ,5 with periodic boundary conditions and with a magnetic
field �]¼����� � < , for

� ���� ��� and temperatures
� ������ � �h� � , ��� Z � �C� � and��� V � �Z� � . It is remarkable that, in agreement with the theoretical predictions,

the metastable-stable transition proceeds through the nucleation of multiple
droplets for both

� ���� � ���h� � and
� M��� V ���Z� � , while it proceeds through the

nucleation of a single droplet for the intermediate temperature
� ���� Z �:�Z� � .

Therefore, the fundamental differences that the approximation predicts in the
low temperature limit for the decay morphology between the equilibrium and
the nonequilibrium cases are verified in Monte Carlo simulations.

5.4 Conclusion

In this chapter we have developed a nucleation theory for the nonequilibrium
ferromagnetic system, in order to understand the dynamics of the metastable-
stable transition in such system.

We have generalized the equilibrium nucleation theory[26, 71], based on a
picture where stable phase droplets nucleate in the metastable bulk, in order
to build the nonequilibrium dynamic theory. The central magnitude of nucle-
ation theory is the free energy cost of a droplet of the stable phase with radius � .
In our generalization we have hypothesized the existence of certain nonequi-
librium potential x � � 
 , which controls the exit from the metastable state, and
plays in the system the same role than the droplet free energy in equilibrium.
Moreover, we have proposed, based on phenomenological grounds, a particu-
lar expression for this nonequilibrium potential, which is formally identical to
the droplet equilibrium free energy.

5The theoretical predictions about the morphology of the metastable-stable transition that we
perform using the curves associated to a system with size ¢[ÜI�^£ are almost identical to the
predictions we would perform for a system size ¢�Ü ¤¥¤¦ . This is so because the logarithmic
dependence of § [ � �� § £ÁÀ
Â ��¦ on the system size ¢ and the independence of § [ ��� �+� § £ÁÀ
Â ��¦ on ¢ . In
Fig. 5.9 we use a system size ¢�Ü ¤¥¤c¦ for the shake of clarity.
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There are two competing terms in the nonequilibrium potential x � � 
 : a
volume term, which favours the droplet growth, and a surface term, which
hinders such growth. The physical observables which determine the relative
importance of both terms are +[� �����à��
 , ³ ´ �&���	��
 and . ïT�&���	��
 , where +�� �����à��

is the spontaneous magnetization of the nonequilibrium system for zero mag-
netic field, ³ ´ �����à��
 is the surface tension along one of the primitive lattice vec-
tors for ���� , and . ïT�����	��
 is the form factor which relates the droplet volume
to its radius, all these observables defined for temperature

�
and nonequilib-

rium perturbation
�

. Although we do not know the exact expression for any
of these observables when

�|��� , we have obtained in previous chapters very
good approximations to all of them.

We write a nucleation theory for
�e�]� using all this information. From

this theory we are able to correctly predict the behavior and the properties of
fundamental observables associated to the dynamic problem of metastability.
For instance, the extended nucleation theory precisely predicts the dependence
on
�

and
�

of the critical droplet radius, / � �����à��� � 
 . In particular, we find that
while the equilibrium system shows a critical droplet size which monotonously
increases as temperature decreases, the critical droplet size for the nonequilib-
rium system (

����� ) exhibits a maximum as a function of temperature, which
depends on

�
. In the same way, the generalized nucleation theory approxi-

mately predicts the growth velocity of a stable phase droplet under nonzero
magnetic field, ÷ ´ �����	��� � 
 . We observe that for

����� this velocity shows a min-
imum for certain temperature,

� � m �) B � , growing for
� � � � m �) B � . The mean lifetime

of the metastable state, defined as the average first passage time to a zero mag-
netization state, ± �����	��� � 
 , is also correctly predicted by the theory. In the same
way than for the previously discussed observables, the fundamental feature
distinguishing the equilibrium and nonequilibrium cases is the fact that, for����� , the mean lifetime ± �����	��� � 
 is non-monotonous with temperature, show-
ing a maximum for a given nonzero temperature

� � � �) ¢  , while in the equilib-
rium case the lifetime grows monotonously as temperature decreases. Finally,
the generalized theory also describes correctly the different typical morpholo-
gies which characterize the metastable-stable transition. The dominant typical
morphology in the equilibrium system at low temperatures is that character-
ized by the nucleation of a single critical droplet, dominating at higher tem-
peratures the nucleation of multiple droplets. For the nonequilibrium system
this behavior enriches considerably. We observe for

�û��� that the morphol-
ogy characterized by the nucleation of the single droplet dominates for inter-
mediate temperatures, being the characteristic morphology for low and high
temperatures that associated to the nucleation of multiple droplets. All the
theoretical predictions have been checked in Monte Carlo simulations of the
nonequilibrium system.

The generalized nucleation theory allows us to describe in an approximate
manner the dynamics of the metastable-stable transition in the nonequilibrium
ferromagnetic system. An important conclusion derived from this study is that
the properties of the interface determine in a fundamental way the exit dynam-
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ics from the metastable state. All the fundamental differences that we observe
(and predict) in this dynamic process between the equilibrium and nonequi-
librium cases can be easily understood once we know the properties of the
interface for

�À�À� , which were studied in Chapter 4, and how they compare
with the equilibrium interfacial properties. In particular, the non-monotonous
behavior of surface tension as a function of temperature for

�|��� is inherited
by all the observables associated to the metastable decay process, namely / � ,÷ ´ , ± , � ���9���z� and � �� "!#���T� .

The extended nucleation theory is based on a phenomenologic, non-justi-
fied hypothesis which assumes the existence and the particular form of a non-
equilibrium potential which controls the exit from the metastable state, in a
similar way to that of the free energy in equilibrium. This hypothesis allows us
to obtain many results about the dynamics of the metastable-stable transition,
which correctly reproduce the behavior of the real system (as obtained from
Monte Carlo simulations). The fundamental ingredient in this hypothesis con-
sist in assuming that, similarly to what happens in equilibrium systems, the
droplet dynamics is determined by the competition between the droplet bulk
and its surface, in such a way that if we correctly capture the bulk and interfa-
cial behavior we will be able to obtain much information about the metastable
state demagnetization process. This observation, which yields very good re-
sults for the nonequilibrium ferromagnetic system here studied, may be gen-
eralizable to many other nonequilibrium systems showing metastability.

Finally, our results may also be relevant from the technological point of
view. Think for a while on magnetic systems used for magnetic storage of in-
formation (previously discussed in Chapter 2). Such systems are magnetic thin
films composed by many small monodomain ferromagnetic particles. These
particles, for which Ising-like models are in some cases a good description,
generally show an impure behavior related to the presence of lattice, bond
and/or spin disorder, quantum tunneling, etc. Therefore we expect that our
simplified nonequilibrium system will model adequately (at least in a first ap-
proximation) the behavior of these magnetic materials. On the other hand,
a main concern in these magnetic systems is to retain as long as possible the
stored information. The information is stored in these systems magnetizing
with a strong magnetic field the particular domains, defining in this way a bit
of information for each magnetized particle. Due to the interaction with the
external medium, the different particles suffer small random magnetic fields,
which involve the eventual appearance of metastable states in such magnetic
particles. The resistance of the stored information to these external perturba-
tions strongly depends on the properties of the underlying metastable states,
including the details of their decay. As we have derived in this chapter, the
presence of impurities, parameterized in our model by the nonequilibrium per-
turbation

�
, affects in a fundamental way the properties of metastable states. In

particular, if we want to prolong as much as possible the metastable state life-
time, we must not blindly decrease the system temperature, but we must look
for the temperature

� � � �) ¢  for which the metastable state lifetime is maximum.
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Chapter 6

Scale Free Avalanches during
Decay from Metastable States
in Impure Ferromagnetic
Nanoparticles

6.1 Introduction

In previous chapters we have studied the problem of metastability in a nonequi-
librium ferromagnetic system which we think correctly models the behavior of
some real impure magnetic materials. We have developed a nonequilibrium
nucleation theory which explains the dynamics of the metastable-stable tran-
sition in this system. This theory is based on a phenomenologic hypothesis
about the existence of a nonequilibrium potential that controls the exit from
the metastable state in a way similar to that of the free energy in equilibrium
systems. Such nonequilibrium potential depends on the properties of both the
bulk and the interface separating the stable phase from the metastable one. We
have derived these properties using mean field-like approximations.

This theoretical and computational study has shown that the presence of
nonequilibrium conditions considerably enriches the behavior of the system,
mainly at low temperatures. In particular, we observe that the properties of
metastable states strongly depend on the properties of the interface separating
the metastable phase from the stable one. Thus, the non-monotonous behavior
of surface tension as a function of temperature in the nonequilibrium model is
inherited by most of the physical observables that characterize the dynamics
of the metastable-stable transition, as for instance the metastable state mean
lifetime ± , the critical droplet size / � , etc.

As we have previously discussed, the results of this analysis, apart from
their theoretical value, are relevant from the technological point of view. Con-
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sider again the problem posed by magnetic storage of information. We already
know that the resistance of stored information in magnetic recording media
strongly depends on the properties of the underlying metastable states of the
magnetic particles that compose such materials. Retaining the orientation of
such domains for as long as possible is a main technological concern. An-
other principal aim during recording is to maximize the amount of information
stored. This requires manufacturing very dense media which is also important
for many other areas of present and emergent technologies.[83] One needs in
practice to create and control fine grains, i.e., magnetic particles with borders
whose size ranges from mesoscopic to atomic levels, namely, clusters of �#��³ to�#� � spins, and even smaller ones. Though experimental techniques are already
accurate for the purpose,[84, 85] the underlying physics is much less under-
stood than for bulk properties. In particular, one cannot assume that such par-
ticles are neither infinite nor pure. That is, they have free borders, which results
in a large surface/volume ratio inducing strong border effects, and impurities,
which might dominate the behavior of near-microscopic particles; in fact, they
are known to influence even macroscopic systems.

The effects that free borders induce on the properties of the metastable-
stable transition have been already studied in equilibrium systems.[27, 28] In
this case it is observed that the system evolves from the metastable state to
the stable one through the heterogeneous nucleation of one or several critical
droplets which always appear at the system’s border.[27] That is, the free bor-
der acts as a droplet condenser. This is so because it is energetically favorable
for the droplet to nucleate at the border. Apart from the observed heteroge-
neous nucleation, the properties of the metastable-stable transition in equilib-
rium ferromagnetic nanoparticles do not change qualitatively as compared to
the periodic boundary conditions case.[28] In our nonequilibrium system we
obtain similar results, namely heterogeneous nucleation and the same qualita-
tive nucleation properties. However, it is very interesting to study the fluctua-
tions or noise that the nonequilibrium system exhibits as it evolves towards the
stable state subject to the combined action of free borders and the nonequilib-
rium perturbation. As we will describe below, the metastable-stable transition
in this case proceeds through avalanches. These burst-like events, present in our
model case, characterize the dynamics of an enormous amount of nonequilib-
rium complex systems.[102]

In general, noise in magnetic systems has been shown to be of major impor-
tance in many technological applications, [86, 87] as well as from the theoretical
point of view[88]. The celebrated Barkhausen Noise, e.g. the magnetic noise
by which a impure ferromagnet responds to a slowly varying magnetic field,
has been profusely used as a non � invasive material characterization technique
[87, 89]. The statistical properties of Barkhausen Noise are extremely sensitive
to microstructural changes in the material, thus providing a sharp tool in order
to characterize such system. Its applications include microstructure analysis,
fatigue testing, measurement of fundamental properties of magnetic materials,
stress analysis, etc. [87] Theoretically, systems exhibiting Barkhausen Noise
have been studied as a paradigm of complex spatio-temporal extended sys-
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tems showing generically scale invariance.[88, 90] Barkhausen systems show
avalanche � like dynamics, where avalanches are scale-free. Furthermore, this
property is found naturally in these magnetic materials, i.e. no fine tuning is
needed in order to reach such scale invariant state.

Scale-free noise is observed ubiquitously in Nature,[91] and its origin still
remains unknown. It receives the generic name of �#5�6 noise,[92] and Barkhausen
Noise is just a particular realization. This name reflects the power law behav-
ior of the fluctuation’s power spectrum, which also involves a power law be-
havior for avalanche distributions. There are many natural systems (besides
Barkhausen materials) which show �Z5�6 noise. Some examples are: biological
(e.g. human cognition [93]), economical (e.g. the number of stocks traded daily
[94]) and social systems, earthquakes [95], superconductors [96], combustion,
piles of rice [97] and sand [98], crumpling paper [99], music [100], etc. The
universality of this phenomenon points out the existence of a common underly-
ing mechanism present in all the above apparently unrelated situations. In re-
cent years it has been claimed that a new idea, namely Self Organized Criticality
(SOC) [101, 102], could be behind this universal, scale invariant phenomenon.
Self-Organized Criticality is based on the idea that complex, scale-free behav-
ior can develop spontaneously in many body systems whose dynamics is dom-
inated by at least two very different time scales, and where metastability is
observed.[102] In this picture, the system would evolve towards a critical state
where avalanches of all scales appear. In particular, Barkhausen Noise has
been thought as an experimental realization of SOC, thus provoking an active
and excited research in this field. However, experimental works are not able
to conclude on the underlying mechanism responsible of this �#5�6 noise. Fur-
thermore, experimentalists cannot even affirm the existence of any underlying
critical point[88], neither a plain old one nor a SOC one.

Summing up, the scenario to be investigated in this chapter involves the
formation and evolution of a stable phase droplet inside the metastable parent
phase in our nonequilibrium (i.e. impure) ferromagnetic system subject to free
boundaries. Under the combined action of both the nonequilibrium perturba-
tion and free boundaries, the formation of a nucleus of the stable phase turns
out to proceed by avalanches. In addition to small events, which show up as a
completely random, thermal effect (extrinsic noise [88]) having an exponential
distribution, we describe well-defined critical avalanches. These are typically
much larger than the extrinsic noise, while they apparently show no character-
istic temporal and spatial scale. In particular, we find size and lifetime distribu-
tions that follow power laws, $ �k%()°
 ² % < �) and $ �&%�'C
 ² % < ç' with ± t �~� V � � 5 

and ø�t � � � < � Z 
 for large enough systems. This holds up to an exponential
cutoff which grows as a power law of system size. A detailed analysis of these
scale free avalanches reveals that they are in fact the combined result of many
avalanches of different well-defined typical size and duration. That is, the sim-
plicity and versatility of our model system allows us to identify many different
types of avalanches, each type characterized by a probability distribution with
well defined typical size and duration, associated with a particular curvature of
the domain wall. Due to free borders and the microscopic impurity the system



114 Scale Free Avalanches during Decay from Metastable States

visits a broad range of domain wall configurations, and thus the combination
of these avalanches generally results in a distribution which exhibits several
decades of power law behavior and an exponential cutoff. However, this ap-
parent scale-free behavior does not mean that avalanches are critical, in the
sense of a second order phase transition where diverging correlation lengths
appear. Instead, we find that avalanches in the magnetic nanoparticle have
a large (but finite) number of different, gap-separated typical sizes and dura-
tions.

These observations led us to suspect that Barkhausen Noise, as defined
above, might also come from the superposition of more elementary events.
In fact, the �#5�6 noise behavior in this case is assumed to reflect topological
rearrangements of domain walls,[104] which result in practice in a series of
jumps between different metastable states, which is the basic process in our
model. We strongly support this conjecture because our avalanche model re-
produces many features previously observed in different experimental situa-
tions. For instance, the avalanche exponents we obtain are almost identical to
those measured in some Barkhausen experiments [88], and our model system
shows some properties, as for example reproducibility [105], observed in real
magnetic materials. Up to now, theoretical explanations of Barkhausen Noise
were based on the hypothesis of the existence of an underlying critical point,
thus yielding the observed scale invariance. However, this assumption faces
some fundamental problems, since experiments on Barkhausen Noise show no
universality: experimental critical exponents are different for different condi-
tions and materials, and expected universal observables in Barkhausen Noise
are in practice very sensitive to microscopic details, which is against the con-
cept of universality derived from a critical point. The conceptual framework
we propose here for Barkhausen Noise solves this problem, since it does not
imply the existence of an underlying critical point, and thus no universality is
expected. The chances are that our observation that scale invariance originates
in a combination of simple events, which we can prove in our model cases, is
a general feature of similar phenomena in many complex systems [91].

The remainder of the chapter is organized as follows. In section 6.2 we
briefly remind the model, introducing the free boundary conditions we use in
this chapter. In section 6.3 we present our simulations, and the analysis of the
avalanche distributions obtained. Section 6.4 is devoted to the search of an
explanation for the observed behavior. Finally, in Section 6.5 we present the
conclusions, paying special attention to the consequences derived from our
results for the explanation of Barkhausen Noise in particular, and �#5�6 noise in
general.
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Figure 6.1: Schematic plot of the system subject to open circular boundary conditions.
The spins are represented by black points. White points are empty nodes. Spins at the
border nodes do not have nearest neighbor spins outside the circle.

6.2 The Magnetic Particle Model

In this chapter we consider a modification of the system studied in Chapters
2-5. This modification only involves a change on the implemented boundary
conditions. The system is defined again on a two-dimensional square lattice,
with binary spins A B  ò � on each node, D¨EGF©� �.IKJ . These spins interact among
them and with an external magnetic field via the Ising Hamiltonian, eq. (2.1).
We choose the transition rate to be the Glauber rate, defined in eq. (2.3). This
rule describes a spin-flip mechanism under the action of two competing heat
baths whose relative strength is characterized by the nonequilibrium param-
eter

�
, see eq. (2.3). For

� ��� the transition rate (2.3) asymptotically drives
the system towards a nonequilibrium state, which essentially defers from the
Gibbs (equilibrium) one.

Motivated by the experimental situation, we choose to study a finite, rel-
atively small system subject to open circular boundary conditions. In order to
implement these boundary conditions, we inscribe a circle of radius � in the
square lattice where the system is defined. Sites outside this circle do not be-
long to the system. In this way we define the free boundary: spins at the border
sites inside the circle do not have nearest-neighbor spins outside the circle. Fig.
6.1 shows an example. The lattice is set initially with all spins up, A B �L?�
for D*�� � ��� � �1I . Under a weak negative magnetic field, this ordered state is
metastable, and it eventually decays to the stable state which, for low tem-
peratures, corresponds to + c I <0= ¯ B A B~¨ �?� . Investigating the influence
of different boundary conditions on the relaxation, and how a small system
compares with a macroscopic one, is a crucial issue when trying to understand
better the behavior of particles of ²��Z� µ spins. For this reason we will also use
other different boundary conditions (to be defined later), in order to under-
stand the role played by the free boundary.
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We mainly report here on a set of fixed values for the model parameters,
namely, Q9|� , �������� � , � ���� �~� ���h� � , and

� |�#� < � , where Q is the (ferromag-
netic) coupling constant, � is the magnetic field,

�
is the system temperature

and
�

is the nonequilibrium perturbation. This choice is dictated by simplicity
and also because (after exploring the behavior for other cases) we came to the
conclusion that this corresponds to an interesting region of the system parame-
ter space. In fact, the field, which only aims to produce a convenient metastable
situation, needs to be small � to avoid becoming a relevant parameter � but not
too small that metastability lasts for a very long (unobservable) time. The re-
striction to this small value for � also guarantees that the system is in a regime
in which the decay is dominated by a single droplet (see section 5.3.4); other-
wise a finite density of droplets, or even a more complex situation, may occur,
as we have concluded in the previous chapter. The low value of

�
allows for

compact configurations, which are more convenient for analysis of clusters.
Finally, our choice for

�
corresponds to a small enough perturbation which in-

duces interesting significant effects that are in fact comparable to the ones by
other stochastic sources. In particular, a measure of the relative importance
of the thermal (

�
) and non-thermal (

�
) noise sources can be obtained using the

concept of interface effective temperature,
� ¬9ÑÐ�Ð , first introduced in section 4.4.2.

For high temperatures, where the thermal noise dominates,
� ¬9ÑÐ�Ð depends lin-

early on
�

, while for low temperatures, where the non-thermal noise source
dominates,

� ¬9.Ð�Ð is independent of
�

, converging to a nonzero value, see Fig.
4.5. For a fixed

�
there is narrow range of temperatures where

� ¬9.Ð�Ð changes
its asymptotic tendency. In this temperature interval the relative importance of
both noise sources is comparable. Hence the temperature

� ���� �~� �0�h� � ensures
for
� M�#� < � that both

�
and

�
have a comparable effect, see Fig. 4.5. For these

values of the model parameters the system shows many metastable states be-
tween + � L?� and + � �?� , which introduces interesting phenomena, as we
will see below. Summing up, we believe that we are describing here typical
behavior of our model, and the chances are that it can be observed in actual
materials.

In spite of the free borders, which considerably accelerate the exit from the
metastable state, the simulations reported here required in practice using theA4�?� MCAMC algorithm[107, 44], together with the slow forcing approximation
(see Appendix A).[45] We have checked that the results reported in this chapter
do not depend on the implemented forcing.

6.3 Monte Carlo Results for Avalanche Statistics

We are concerned with demagnetization from an initial fully � ordered state
with + �L?� . This is subject to a negative (small) field, so that the system
eventually relaxes towards the stable state with + � �?� . The temporal relax-
ation typically shows three principal regimes (see Fig. 6.2):

1. After a very short transient time, o = , the system reaches the metastable
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Figure 6.2: Sketch of a typical decay from a metastable state showing the different time
regimes. Time units ( ©«ª ) are arbitrary. The threshold magnetizations, �A��� and PQ�¬�
� ,
and the metastable magnetization, �® g are also shown. For the shake of clarity, time
scales ©   , © § and © � have been plotted within the same order of magnitude, which is not
the case in simulations and real systems.

state. The magnetization + � o 
 is then observed to fluctuate, around its
characteristic metastable value, + ms, during a long time interval, o � .

2. Suddenly at some time during such wandering, + � o 
 decays in a time
interval o µ to a value near the stable magnetization, + st. As we know
this evolution proceeds through the nucleation of a critical droplet of the
stable phase and its subsequent growth. Time scales are o = �¡��o µ �¡��o � .
It turns out convenient to define the time ± ´ at which this regime begins
as the last time for which + � o 
  + up

�
where + up ��+ ms is a given

magnetization threshold set + up ]��� � here. We then define o µ as the
time interval between ± ´ and the time at which + � o 
 ��(+ up.

3. After this fast decay, + � o 
 stays fluctuating around + st.

As it is clear in Fig. 6.3, the relaxation of + � o 
 occurs via a sequence of
well � defined abrupt jumps. That is, when the system relaxation is observed af-
ter each MCSS, which corresponds to a ‘macroscopic’ time scale, strictly mono-
tonic changes of + � o 
 can be identified that we shall call avalanches in the fol-
lowing. One may think of other definitions of these avalanches, of course, so
that we are somewhat arbitrary at this point, but we believe this does not sig-
nificantly affect our results in this paper. Moreover, since our model system
is subject to dynamical fluctuations, a clear � cut definition of avalanche is not
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Figure 6.3: Decay from a metastable state for the circular system with radius )}BNID , and the model parameters defined in the text. This figure corresponds to the © �
region sketched in Fig. 6.2. The discrete, abrupt jumps in the magnetization (avalanches)
are seen by direct inspection. Time is in units of MCSS (Monte Carlo Steps per Spin).
Here ¯ ª is the time for which magnetization crosses the upper magnetization threshold�¬��� B�D
H § . In this case ¯pª�B°©   %�© §²± J@D � ª MCSS, and notice that © � ± NkH K���J@D � MCSS.

possible, and thus this lack of precision will always exists. The important fact
is that fluctuations on the microscopic, single � spin � flip scale are despised.

To be precise, consider the avalanche beginning at time o ¢ , when the system
magnetization is + � o ¢ 
 , and finishing at o M . We define its size and lifetime or
duration, respectively, as

%�) �� + � o M 
 ��+ � o ¢ 
 � and
%�'  � o M ��o ¢ � . (We also

studied + � o M 
 �Í+ � o ¢ 
 , i.e., positive and negative events. Such detail turns out
to be irrelevant for the purposes here, however; in fact, large events cannot be
positive in practice.). Alternatively, let us consider now the time evolution of
the activity, defined as Ö � o 
 ]+ � o�LÀ� 
 �á+ � o 
 . It is just the magnetization
change in an unit time (measured in MCSS). This observable is the analogous
to voltage pulses observed in experiments on magnetic noise. [108, 109] An
avalanche is thus comprised between two successive crossings of Ö � o 
 with
the origin. In this way, the avalanche size is proportional to the area below this
curve, and its duration or lifetime is defined as the time interval between such
crossings. Our interest is on the histograms $ �k% ) 
 , $ �k% ' 
 and $ �k% ' � % ) 
 .
6.3.1 Global Avalanche Distributions

Fig. 6.4 shows, among other things, a semilog plot of $ �&%�)°
 for a circular
nanoparticle with radius �� Z�� (i.e.

I  � ; � ; spins, as compared to
I EF©�Z� µ � �Z�ÿ³ J spins in real magnetic nanoparticles), as obtained after performing�#�ÿ³ different runs. Direct inspection of $ �k% ) 
 reveals the existence of two
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Figure 6.4: Here we show the avalanche size distribution for a circular magnetic
nanoparticle of radius )¿B�N=D ( Ù ) and the same histogram for the semi–infinite sys-
tem defined in the text ( Ú ). Results have been shifted in the vertical direction for
the shake of clarity. The slope of the dashed line is a theoretical prediction for small
avalanches. Notice the good accordance between theory and simulations. The inset
shows the avalanche lifetime distribution for this circular particle.

well � defined different regimes:
� D 
 An exponential regime for small avalanches

(
%() � � � ), $ �&%()ú
 ² exp

� � %() 5 ¯% � ) ¢ ¹à¹ 
 , where events have a typical size,
namely ¯% � ) ¢ ¹	¹ � �~� 5 , and

� DfD 
 a second regime for larger avalanches with no
easily identifiable distribution. In order to elucidate the nature of both regimes,
and the physical origin of this crossover, we now introduce a modification of
our model, where boundary effects are effectively absent.

Let us study again our system on the
-"¸ % square lattice we introduced in

the previous chapter (see section 5.3.2 and Fig. 5.4) when studying the growth
velocity of the interface. There we defined the system in a

-[¸�-
, with peri-

odic boundary conditions along the x̂ (horizontal) direction, while the lattice is
open along the ŷ direction. The initial configuration in this case consists in two
horizontal stripes of height, respectively,

� ���Cø 
à- (upper part of the cylinder),
in which all spins are set AhB¡ÀLN� , and ø - , in which all spins are set AhBÊÀ�?� ,
with øÍ���� �+< . The interface moves upwards for the parameters in our simula-
tions (remember,

� á��� ��� � ¡ , �Pá�ª����� and
� ��#� < � ). In order to simulate an

infinite system in the interface movement direction, we perform a shift of the
lattice in such a way that the interface does not feel the presence of the bound-
ary and it advances indefinitely (see section 5.3.2 for more details). We choose- E<
Z , and thus

I  � ;~� � , very similar to the number of spins in the circu-
lar system. This system simulates the temporal evolution of a model’s domain
wall in an semi-infinite bulk.

Domain wall motion in this system proceeds also by avalanches (as defined
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Figure 6.5: Large avalanche size distribution
� \ ÇiÛ³¡É for the circular magnetic

nanoparticle and for K different sizes. From top to bottom, )CBÍJ�z3D , ¦){ , �ID , {=z andNID . Curves have been shifted in the vertical direction for visual convenience. The accu-
mulated statistics goes from 15000 runs for the smallest size to 7000 experiments for the
largest one.

above). Fig. 6.4 also shows the histogram $ �&%�)ú
 for this semi-infinite sys-
tem, where boundary effects are negligible. Comparing this histogram with
the same curve for the circular particle, we observe that although the initial ex-
ponential regime is almost identical in both cases, the tail of $ �&%ª) 
 correspond-
ing to the second regime does not exist for the semi-infinite system. A similar
result holds if we define our model in a square lattice with periodic boundary
conditions, as we did in previous chapters, or if we set

�  � in the circular
nanoparticle. Thereby, the combined action of both free boundaries and im-
purities induces a new mechanism which is behind the large avalanches and
essentially differs from the standard bulk noise driving the system and caus-
ing small, exponentially distributed avalanches only. It can be demonstrated
analytically (see Appendix C for the details) that small events are local ran-
dom fluctuations of a growing flat domain wall. It can be also shown that this
small avalanches follow an exponential distribution of the form $ � ) ¢ ¹à¹ �k%�)a
 ²
exp

� � %() 5 ¯% � ) ¢ ¹à¹ 
 , with a typical size,

¯% � ) ¢ ¹à¹  �
ln
q � �9L ��
ß� �9L e

� w ½ �:½ 
� L e
� w ½ �]½ v (6.1)

where >Ñe�Z5~} � � , and we set the Boltzmann constant } � �� . Fig. 6.4 also
shows the analytical $�� ) ¢ ¹à¹ �k% ) 
 for comparison; the agreement with simula-
tion is excellent.
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Figure 6.6: Large avalanche lifetime distribution
� \ ÇiÛµ´#É for several different sizes of

the circular magnetic nanoparticle. The sizes ) decrease from top to bottom, and take
the same values as in the previous figure. Again, curves have been shifted in the vertical
direction for visual convenience.

6.3.2 Large Avalanche Distributions

Our aim in this chapter is to analyze large avalanches in the circular magnetic
nanoparticle, its distribution and its origin. In order to do so, we must filter
in some way the trivial small avalanches (extrinsic noise [88]) reported above,
since they soil the main signal. There are many different methods all over the
literature to perform such filtering.[88, 97] In our case, we just subtract the
fitted exponential behavior for small avalanches from the global histogram1.
This process yields the distributions $08 �k% ) 
 for large avalanches shown in Fig.
6.5. A power law behavior, followed by an (exponential) cutoff for very large
avalanches, is thus clearly observed.

In particular, Fig. 6.5 shows large avalanche size distributions $98 �k% ) 
 for< different sizes of the magnetic nanoparticle, namely �á Z�� , 5 � , � � , ;I5 and� � � spins. The measured power law exponents, $:8 �&%()*
 ² % < � � E �)
, are shown

in table 6.1. As observed, we find size-dependent corrections to scaling for
the exponent ± . Similar corrections have been also found in real experimental
systems. [97] The observed finite � size corrections are compatible with a func-

1In practice, we must subtract two slightly different exponential distributions for small
avalanches. As stated previously, small (trivial) avalanches are random local fluctuations of a
growing flat domain wall. However, the critical droplet which appears as the circular nanopar-
ticle demagnetizes shows different flat fronts (see Fig. 6.9). Trivial avalanches near the corner
formed between two different flat domain walls have a slightly larger typical size due to surface
tension effects. This subtle effect must be taken into account in order to obtain the clean power law
distributions observed in Fig. 6.5
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R 30 42 60 84 120± 2.76(2) 2.24(2) 2.06(2) 1.77(2) 1.77(2)% �) 27.9(7) 56.3(14) 123(3) 300(9) 675(16)ø 3.70(2) 3.52(2) 2.85(2) 2.61(2) 2.39(2)% �' 5.92(20) 9.3(3) 16.1(6) 26.7(7) 48.6(12)

Table 6.1: Here we show the size dependence of both the power law exponents,� \ ÇiÛ³RÉ ± Û ò�¶ Ò(· Ô and
� \ ÇiÛ ´ É ± Û ò¹¸ Ò(· Ô´ , and the observed exponential cutoffs, Û z Ç�)�É

and Û z´ Ç�)�É .
tional dependence of the form ± � � 
 Ñ± µ L�1�5�� � , where ± µ À�~� V � � 5 
 .2 Anal-
ogously, we can perform a similar analysis for the avalanche lifetime distribu-
tions, $08 �k%¨'ÿ
 ² % < ç]� E �' . Fig. 6.6 shows $08 �k%�'~
 for large avalanches (once the
extrinsic noise has been subtracted) and for the system sizes reported above.
The measured exponents ø � � 
 are also shown in table 6.1. Again, these are
compatible with a law ø � � 
  ø µ L61 s 5�� � , where ø µ  � � � < � Z 
 . Hence we ex-
pect avalanche power law distributions $:8 �k% ) 
 ² % < � µ) and $�8 �&% ' 
 ² % < ç µ' ,
with ± µ ��~� V � � 5 
 and ø µ  � � � < � Z 
 , in the Thermodynamic Limit. At a first
glance this result could seem unphysical, because we have proven before that
large avalanches are due to the presence of free boundaries, whose importance
diminish as the system grows (i.e. as the surface/volume ratio goes to zero).
However we will prove later in this chapter that the mechanism responsible of
large avalanches (which appears due to free boundaries) remains relevant in
the Thermodynamic Limit.3

On the other hand, as stated previously, the power law behavior of both$�8 �k% ) 
 and $08 �&% ' 
 lasts up to an exponential cutoff
% �) and

% �' , respectively,
which depends on system size. We measure these cutoff values (see table 6.1)
fitting an exponential function of the form í½õ � F � % ) � ' � 5 % �) � ' � J to the cutoff
tails, and find a power law dependence with � , i.e.

% �) ²�� w�J and
% �' ²�� w 1 ,

where > )  � � Z �T�Ù� 
 and > '  �~� <
Z � Z 
 (see Fig. 6.7). Analogous power law
dependences of cutoff with system size have been found in real magnetic ma-
terials. [110] Typically, this power law dependence of cutoff with system size
has been identified as a sign of genuine critical behavior. [102] However, as we
will prove below, this is not the case here.

We can now wonder about the relation between the size and the lifetime of
an avalanche. Moreover, we would like to know if there is any relation between
them at all. With this aim we study the histogram $ �&%(' � %�)*
 , i.e. the probability
of measuring an avalanche with lifetime

% '
when its size is

% )
. Fig. 6.8 shows$ �k% ' � % ) 
 for a circular magnetic nanoparticle of radius ��EZ�� . The first rel-

2The fact that º µ¼» ¤ involves that the mean value of the size power law distribution does not
exist in the Thermodynamic Limit. [102]

3In fact, the importance of boundary conditions in the Thermodynamic Limit is not a new idea
in Physics. For instance, for problems related with (thermal) conductivity, the boundary heat reser-
voirs play a fundamental role in order to understand the nonequilibrium physics in the Thermo-
dynamic Limit.
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Figure 6.7: Log–log plot of the cutoff dependence with system size. In particular, we
observe that Û z ± ) ô J ( Ù ) and Û z´ ± ) ô 1 ( | ), with ½�hBSzkH N�z Ç���É and ½ ´ B�JIH K=N�ÇiN�É .
evant conclusion derived from this plot is that the distribution $ �&%(' � %()°
 is
peaked. That is, for each value of

%�)
, the marginal distribution $ �&%(' � %()*


shows a narrow peak around certain typical value j %�'Zm x¹J . This means that the
relation between the lifetime and the size of an avalanche is rather determin-
istic in our model system, for both large and small events. Let us assume that
the relation is completely deterministic, and that for large enough avalanches it
can be written as

% ) ² % ¸ ' . This equation defines the exponent , .4 Hence, tak-
ing into account the conservation of probability, i.e. $:8 �&% ) 
 d % ) �$08 �&% ' 
 d % ' ,
and assuming that both $08 �&% ) 
 and $�8 �&% ' 
 are pure power law distributions,
we can write a scaling relation among the different avalanche exponents,

,� �:�yø�:�[± (6.2)

This scaling relation predicts a value ,� �~� V ��� ; 
 in our system. In order to
corroborate such prediction, we should calculate from the marginal distribu-
tion $ �k%�' � %()°
 the mean value j %�'Zm x¹J for each

%()
in the scaling region, thus

obtaining a relation j %�'#m x¹J `¾ �&%()*
 which should yield the value of , . How-
ever, we do not know the distribution $�� ) ¢ ¹à¹ �&% ' � % ) 
 for the extrinsic noise,
and it soils the scaling region, so this way of measuring , does not yield any
definite conclusion. Instead, we are able to measure , in an indirect way using
the cutoff dependence with � . As we previously pointed out,

% �) ²�� w�J and% �' ²Í� w 1 . On the other hand, using the relation between
% )

and
% '

assumed

4Many references about Barkhausen Noise [108, 109, 111, 112] refer to ¿ as ¤ÁÀ+Â«Ã�Ä , where Â , Ã
and Ä are critical exponents. These references assume the existence of an underlying critical point
in order to explain Barkhausen noise.
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Figure 6.8: Normalized marginal distribution
� ÇiÛ³´.s Û  É for a circular nanoparticle of

radius )¿BíN=D , after performing 15000 different experiments. In particular, we show� ÇiÛ ´ s Û³¡É for Û³�B�J@D ( Ù ), z3D ( Ú ), K3D ( { ) and J@DID ( | ). Notice the peaked form of the
distribution, and that larger avalanche sizes involve longer lifetimes.

above, we can write
% �) ² �&% �' 
 ¸ , and thus

,� > )> ' (6.3)

which yields ,ø��~� < �T� < 
 . This indirectly measured value is similar, although
not compatible, with the one predicted by the scaling relation (6.2). This is not
a surprise, since the scaling relation (6.2) is based on the assumption that both$�8 �k% ) 
 and $08 �&% ' 
 are pure power law distributions. However, as we will
see later on in this chapter, these probability functions are not purely power-
law distributed, but instead come from the superposition of many different
exponential distributions. This observation breaks the above scaling relation,
eq. (6.2); in fact we can prove (see Fig. 6.16 and complementary discussion)
that the three measured exponents, ± , ø and , , are related in the framework of
a superposition of typical scales.

Studying the power spectrum of the avalanches time signal constitutes an-
other way of measuring , . Many avalanche systems have a power spectrum
which shows two different power law regions, one for low frequencies and
another one for high frequencies. The low frequency region reflects the cor-
relations between avalanches, while the high frequency region reflects the dy-
namics within avalanches. For avalanche systems with ± µ � �

it has been
shown that the high frequency power spectrum decays as Å � r 
 ² r < ¸ .[108]
Hence we could also obtain the value of , in this way (this analysis will be
done in a forthcoming work).
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Figure 6.9: Some snapshots of a particular decay of a circular nanoparticle of radius)�B JÑz=D . Avalanches are plotted in grey. Notice that large avalanches appear only for
curved domain walls.

6.4 The Physical Origin of Scale Invariant Noise

Let us summarize our results up to now. We have observed that the presence of
free boundaries and impurities in a magnetic system induces large avalanches
in the demagnetization process from a metastable state. These large avalanches
follow power law distributions for their sizes and lifetimes up to certain ex-
ponential cutoff, which depends algebraically on system size. Moreover, the
power law distributions converge in the Thermodynamic Limit to size inde-
pendent power laws, $08 �&%()*
 ² % < � µ) and $�8 �&%�'ÿ
 ² % < ç µ' with ± µ æ�~� V � � 5 

and ø µ  � � � < � Z 
 . We have also found that the relation between the size and
the lifetime of an avalanche is rather deterministic. In fact, this relation can be
quantified with an exponent ,[|��� < �3� < 
 .

A physicist trained in critical phenomena would say that these results stron-
gly support the existence of an underlying continuous phase transition or sec-
ond order critical point responsible of the observed scale invariance. This crit-
ical point would induce macroscopically large correlation lengths, and thus all
scales in the system should be equally relevant. Moreover, the response to a
small (microscopic) perturbation should appear at any scale (even at macro-
scopic ones). The characterization of this critical point should depend only
on the symmetries and conservation laws present in the system, and not on
the specific microscopic details. However, as we will see below, the observed
power law behavior is effective, in the sense that the system is not really critical
(i.e. the system does not present any singularity for our parameters). Instead,
we will show that a finite (but large) number of different, gap � separated typi-
cal scales appear superposed in such a way that the global distributions exhibit
several decades of power law behavior, as shown in Figs. 6.5 and 6.6.
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Figure 6.10: Semilog plot of the mean avalanche size (solid line) and the mean curva-
ture (dashed line), Æ�Û ÈÇ and ÆÊÉ Ç respectively, as functions of magnetization, after aver-
aging over 3500 different runs. It is clear from this plot that, in average, large avalanches
appear in the final part of the evolution. There are also some values of magnetization
characterized by a very small mean avalanche size. In any case, this function shows
clearly non–trivial structure. The same is true for ÆÊÉ Ç Çi�ÏÉ . Also noticiable is the high
degree of correlation between Æ�Û� Ç Çi�ÏÉ and ÆÊÉ Ç Çi�ÏÉ
6.4.1 Avalanches and Domain Wall Curvature

First of all, let us understand the origin of large avalanches in the circular mag-
netic nanoparticle. Fig. 6.9 shows some snapshots of the temporal evolution
of a magnetic particle of radius ��æ� � � . Due to the low temperature of simu-
lations, the dynamics is restricted to the interface, the bulk being almost com-
pletely frozen. Hence the evolution of the system will be determined by the
interface and its interplay with the open boundaries. It can be also shown
that for our parameter values, configurations with only flat domain walls are
metastable5. In fact, there are free energy barriers which impede flat domain
walls to advance. In this way, the system presents many different metastable
states. On the other hand, in Fig. 6.9 we observe again two different types
of avalanches (plotted in grey): small, local avalanches associated with a flat
domain wall, and large, global avalanches involving curved regions of the do-
main wall. In this latter case large avalanches appear because curvature in-
creases domain wall interfacial energy, thus giving rise to large events towards
configurations with less interfacial energy (i.e. less curvature).

In order to understand more deeply the relation between avalanches and
domain wall curvature, let us study both the mean avalanche size and the mean
domain wall curvature as a function of system magnetization, j %ª)?mC� + 
 and

5The stable phase shrinkage rate is larger than the stable phase growth rate for these configura-
tions (see Chapter 3).
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(a) (b)

(c) (d)

Figure 6.11: Some snapshots of the rhombus demagnetization process. Again,
avalanches are plotted in grey. Notice that the domain wall remains flat when the con-
tact angle with the open boundary is greater that §UD e , and then only small avalanches
appear. On the other hand, the domain wall gets curved when the contact angle is less
that §UD e , and large avalanches do appear.

j�Ë mC� + 
 respectively. We will take as a measure of curvature Ë the number of
step–like up spins in the interface between the stable phase and the metastable
one, where step–like up spins are interfacial spins in class 3 (see Table 3.1), i.e.
up spins with two up neighbors and two down neighbors6. Fig. 6.10 showsj %�)�m and j�Ë m as a function of magnetization + for a particle of radius ���Z�� ,
after averaging over 3500 different demagnetization experiments. Here we ob-
serve that both j %()�mh� + 
 and j(Ë mh� + 
 are highly non-homogeneous functions of
magnetization, showing a non-trivial structure. In particular, we observe that
there are certain well-defined magnetization values for which avalanches are
typically very small. These magnetization values correspond to configurations
where domain walls are flat, as can be deduced from the curvature plot. On
the other hand, we observe that there are other magnetization values where
typical avalanches involve many spins. In particular, we observe in Fig. 6.10
that for magnetizations in the range + EøF �?� � �ª��� VI< J the avalanche mean size
is much larger than for other magnetizations (compare these results with the
snapshots shown in Fig. 6.9). A main conclusion derived from Fig. 6.10 is the
high correlation existing between the typical avalanche size and the domain
wall curvature, as defined above. Large curvature implies large avalanches
and reversely. Hence the size of an avalanches is perfectly determined by the

6This way of measuring curvature is valid only for low temperatures, since in this case clusters
are very compact.
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Figure 6.12: Sketch of the contact angle effect described in the text. In Ç���É the contact
angle * is larger than §ID o , and microscopically border up spins near the interface have a
low probability of being flipped if selected. On the other hand, in ÇÊ�3É the contact angle* is smaller than §ID e , and border up spins near the interface have probability one of
being flipped if selected.

curvature of the interface when this avalanche starts.
Our next question concerns the origin of domain wall curvature. As it can

be easily guessed, its origin underlies on the interplay between the interface
and the open boundaries. However, in order to understand better the mech-
anism which gives rise to curved interfaces as the critical droplet grows, we
study now demagnetization from a metastable state in our model system de-
fined on a rhombus with free boundary conditions. Fig. 6.11 shows some snap-
shots of the rhombus demagnetization process. For our parameter values this
system demagnetizes through the nucleation of a single critical droplet. As
predicted in recent theoretical studies, [27] this critical droplet always appears
in one of the four corners of the rhombus geometry. It is clear from Fig. 6.11
that while the domain wall advances forming a convex angle (

, ` � � o) with
the open boundary the interface remains flat, and only small avalanches ap-
pear. However, when the contact angle is concave (

, � � � o), the interface
gets curved, as a consequence of the faster growth of the domain wall near the
concave open borders, and large avalanches towards configurations with less
interfacial energy develop. Microscopically, the interface gets curved because
for concave contact angles the unflipped border spins near the interface have a
probability one of being flipped if selected. This is shown in Fig. 6.12, where
this mechanism is sketched for the circular particle. In this way, as the interface
advances subject to concave boundary conditions, it gets curved.

6.4.2 Avalanche Statistics for Constant Domain Wall Curva-
ture

We have shown that large avalanches originate due to domain wall curvature,
and that the size of the avalanche is intimately related to the specific curva-
ture of the interface. Now we want to know the distribution of avalanches
for a given curved domain wall. That is, we wonder what is the probabil-
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Figure 6.13: Sketch of the dynamic boundary conditions in the �p –direction used in
the new system explained in the text. Here we represent the first and last columns
of the system, and the local, dynamic magnetic field that each spin in these columns
suffers as the system evolves in time. The effect of these dynamic boundary conditions
is equivalent to eliminate the interaction of each border spin with its up neighbor, i.e.
concave boundary conditions.

ity of finding an avalanche of a given size
% )

if the domain wall has certain
constant curvature. In order to find out which is this relationship we have
designed an (unrealistic) modification of our basic system, where an interface
with constant (up to small fluctuations) non-zero curvature develops, evolv-
ing via avalanches. Let us define again our system in a

-  ¸ % lattice, with
concave open boundary conditions in the ¯õ direction. This is done in practice
in the following way. The system is set on a

-  ¸�-�Ì square lattice, with very
particular boundary conditions. The lattice is open in the ¯« direction. Spins in
the upper row are fixed to L?� , and spins in the lower row are fixed to �N� . On
the other hand, boundary conditions in the ¯õ direction are dynamic: the lattice
is also open in the ¯õ direction, although each spin in the first and last column
suffers an additional dynamic magnetic field, equal at any time to the negative
value of its up neighbor. This is sketched in Fig. 6.13. For each spin in the
first and the last columns, the effect of these dynamic boundary conditions is
to effectively decouple this spin with its up neighbor. In this way we emulate
a concave, step–like border (as the one found by the interface in the rhombus
system in the second part of its evolution), with a fixed distance between both
concave borders. The initial configuration is identical to the one exposed for
the semi–infinite system described previously, and we shift the system in a
similar way in order to get an infinitely evolving domain wall. Thus, we simu-
late a semi–infinite system subject to open concave boundary conditions with
a fixed distance

-  between the concave borders.
After a short transient, the initially flat domain wall reaches an stationary

state, with an almost constant (up to small fluctuations) non–zero curvature,
which depends on the size

-  . Measuring curvature as stated previously, we
notice that the steady domain wall curvature in this system is proportional to
the system size

-  . On the other hand, this system evolves through avalanches,
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Figure 6.14: Avalanche size distribution
� ÇiÛ  É for the semi–infinite system with con-

cave open boundary conditions described in text. Here we show
� ÇiÛ��É for different

system sizes, namely (from bottom to top) L � B�z=D , zUK , NID , N�K and {3D . The large
avalanche tails are stretched exponentials, with well defined typical size. Distributions
have been shifted in the vertical direction for visual convenience.

whose distribution we can measure. Fig. 6.14 shows the avalanche size distri-
bution $ �k%�)°
 for this system and several values of

-  (i.e. several different
curvatures). As for the circular nanoparticle, we observe that $ �&%ª) 
 shows
two different well defined regions, the first one being related with the expo-
nentially distributed extrinsic noise, explained before. The second regime is
compatible with a stretched exponential function of the form$ � �&%()*
  e < � x J Ç ¯x ù �ÊÍ (6.4)

where we measure Î � ��� ; � , independent of system size for large enough
values of

-  . This stretched exponential function is characterized by a typi-
cal size ¯% � , which depends on

-  (i.e., on curvature) in an exponential fash-
ion. These results clarify what is going on in the circular magnetic nanoparti-
cle. First, we observe that an interface with a given curvature evolves through
large avalanches of a well defined typical size. Moreover, this typical size ¯% �
strongly (i.e. exponentially) depends on domain wall curvature. On the other
hand, as we observed in Fig. 6.9, the interface of the growing critical droplet in
the circular magnetic nanoparticle gets curved as the droplet grows. Further-
more, interfacial curvature, as defined above, takes a wide range of different
values as the particle demagnetizes. Thus, the large avalanche distributions
observed in the circular particle are just superpositions of distributions with
well defined typical sizes.

The above results have another interesting implication. We have observed
that the large avalanche typical size grows exponentially fast with the system
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Figure 6.15: Avalanche size distribution for several fixed curvatures (measured as ex-
plained in the text) for a circular nanoparticle of radius )�B$N=D , after performing 15000
different demagnetization experiments. Curvature grows from bottom to top. Notice
that, as curvature increases, the large avalanche distribution for this curvature, which
is an stretched exponential, increases its typical size. Curves have been shifted in the
vertical direction for visual convenience.

size
-  . Hence, although the origin of large avalanches is connected to the

presence of an open boundary (which is a surface effect), the mechanism which
gives rise to large avalanches will be relevant in the Thermodynamic Limit, and
large (infinite) avalanches will appear in this limit.

The above results suggest us to study avalanche distributions in the circu-
lar nanoparticle as a function of domain wall curvature (as defined previously).
Fig. 6.15 shows $ �k%() � Ë 
 for the circular nanoparticle, which is the probability
of measuring an avalanche of size

%�)
when the interfacial curvature is Ë . Here

we note that the domain wall takes many different curvature values as de-
magnetization proceeds. For each constant curvature, the tail of the avalanche
size distribution follows again an stretched exponential law, whose typical size
grows with curvature.

This confirms what we previously stated, i.e. that large avalanches in the
circular magnetic nanoparticle have a large (but finite) number of different,
gap–separated typical sizes. Hence, the power law observed initially for the
avalanche size distribution (see Fig. 6.5) is effective: our system is not criti-
cal. Although we observe an effective scale invariance, the system’s correla-
tion lengths are non–divergent, but finite. Moreover, if we slightly perturb the
system, its response will be equally small.
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6.4.3 Power Law Behavior as a Consequence of Superposition
of Many Different Typical Scales

There is still an annoying remaining question: how can a finite superposition
of distributions with well defined different typical scales give rise to a scale
invariant power law global distribution ?. In order to answer this question
we solve a mathematical exercise. Let us assume that we have a system that
evolves via burst-like events of magnitude õ . The state of this system is char-
acterized by an observable Ö , in such a way that the probability of finding
an event of magnitude õ when the system is in a state characterized by Ö isÅ � õ�� Ö 
 �Ö exp

� ��Öªõ 
 . Therefore the observable Ö fixes the typical scale of
burst-like events. If æ � Ö 
 is the probability of finding the system in a state
characterized by Ö , the probability of finding an event of size õ is,Å � õ 
 Cÿ µ´ æ � Ö 
 Å � õ�� Ö 
 d Ö (6.5)

where we have assumed that the observable Ö varies continuously from � up
to % . Hence, due to the exponential form of Å � õ3� Ö 
 , Å � õ 
 is just the Laplace
transform of Ö`æ � Ö 
 . If we now assume the simplest case, namely that the
distribution æ � Ö 
 is flat so all possible values of Ö are equally probable, we
obtain Å � õ 
 ²Nõ < � . Hence, an infinite superposition of exponential distributions
with well-defined typical scales (defined by Ö ) yields a power law (scale free)
probability function with exponent � � . This result is not surprising. Power
law behavior is a consequence of the lack of any typical scale in the system.
However, we can interpret this lack of typical scale in the opposite way, saying
that in a system exhibiting power law behavior all possible scales are present,
so there is no typical scale. This is what eq. (6.5) says.

However, avalanches in our magnetic nanoparticle show a finite set of well-
defined typical scales7. In this case the continuous sum in eq. (6.5) must be
substituted by a discrete sum over the the typical scales present in the system.
In order to explicitely perform the calculation, let us assume that we have

I LÍ�
different typical scales Ö � , with é E F � �.IRJ , all of them in a finite interval,Ö � EÀF Ö ) B ��� Ö ) ¢  J «�é�EæF � �1IKJ . We further assume that these typical scales
are equally spaced in this interval, so Ö � |Ö ) B � L�é % , where

%  � Ö ) ¢ ¡�Ö ) B �9
 5 I . Therefore, assuming again that æ � Ö 
 is a constant function, we now
write, Å � õ 
  \S� ^ ´ Ö � e <�ÏÑÐ  %  % e <�Ï J { Ð �9� e <3x  Ä Ö ) B � �PÖ ) ¢  e < � \ � = � x � % �9� e < \ x �:� e x  Å

(6.6)

7We assume for the following calculation that these typical scales are characterized by exponen-
tial distributions, instead of stretched exponentials, as we found in previous sections. We think that
this simplification, which makes easy the calculation, does not involve any fundamental difference
in the consequent physical discussion.
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Figure 6.16: Large avalanche size ( Ù ) and lifetime ( Ú ) distributions for a circular
nanoparticle with radius )ÆBC�ID (these results are the same than those plotted in Figs.
6.5 and 6.6). The upper line corresponds to the prediction derived from eq. 6.6 for� B¶z3DID , Ò  ñ f BhD�H DUD=d and ÒÓÓÔ � B�J . The lower line is derived from eq. 6.6 assum-
ing that Û  ± Û î ´ , where we use Õ�BhJUH KUz ÇWK�É , the value we previously measured.

where we have used eqs. (4.29) and (4.33). Fig. 6.16 shows the event size distri-
bution Å � õ 
 obtained from eq. (6.6) for

I  � �~� , Ö ) B � ���� �~�
V and Ö ) ¢  �� .
As we can observe in this figure, the curve follows power law behavior up to
an exponential cutoff given by exp

� ��Ö ) B � õ 
 . Fig. 6.16 also shows for compari-
son the avalanche size distribution measured for a circular particle with �a � � .
The agreement between the theoretical curve based on a finite superposition of
different typical scales and the measured distribution is very good. Moreover,
assuming that eq. (6.6) represents the avalanche size distribution, and using
the relation

%() ² % ¸ ' between the size and the lifetime of an avalanche, we
can obtain the avalanche lifetime distribution via the conservation of probabil-
ity. Thereby, if Å �k%()*
 is the probability of finding an avalanche with size

%�)
,

the probability of finding an avalanche with lifetime
%('

is , % ¸ <:=' Å �&% ¸ ' 
 . This
curve, also shown in Fig. 6.16 for the same parameters described above, agrees
with the measured avalanche lifetime distribution for the �û � � magnetic
particle when we use the previously measured value ,Ñ��~� < �T� < 
 . This agree-
ment confirms the measured value for the exponent , , and on the other hand it
also strengthens our conclusion about the origin of the scale invariance in this
problem. Hence the superposition of a finite (but large) number of exponential
distributions with different typical rates results in a global distribution which
shows several decades of power law behavior, together with an exponential
cutoff corresponding to the slowest exponential typical rate.
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6.5 Conclusions and Outlook

In this chapter we have studied how an impure ferromagnetic nanoparticle
evolves from the metastable phase towards the stable one. Under the combined
action of both impurities (which involve nonequilibrium conditions) and free
borders, the formation of a nucleus of the stable phase turns out to proceed
by avalanches. This burst-like evolution characterizes the dynamics of many
nonequilibrium system.[102] In addition to small events, which show up as a
completely random, thermal effect (extrinsic noise[88]; see Appendix C), we
have described critical avalanches. These are typically much larger than the ex-
trinsic noise, while they apparently show no temporal and spatial scale. We find
for these large avalanches size and lifetime distributions which follow power
laws, $ �&% ) 
 ² % < �) and $ �k% ' 
 ² % < ç' with ±Pt ��� V � � 5 
 and øát � � � < � Z 
 for
large enough systems. This scale free behavior holds up to exponential cut-
offs, which grow as a power law of the system size,

% �) ² � wpJ and
% �' ² � w 1 ,

with > )  � � Z �3�Y� 
 and > ' g�~� <�Z � Z 
 respectively. In addition, the size and
lifetime of an avalanche are related via

%�) ² % ¸ ' , with ,b �~� < �T� < 
 . A de-
tailed analysis of these scale free avalanches reveals that they are in fact the
combined result of many avalanches of different well-defined typical size and
duration. That is, the simplicity and versatility of our model system allows us
to identify many different types of avalanches, each type characterized by a
probability distribution with well defined typical size and duration, associated
with a particular curvature of the domain wall. Due to free borders and the
microscopic impurity the system visits a broad range of domain wall config-
urations, and thus the combination of these avalanches generally results (see
section 6.4.3) in a distribution which exhibits several decades of power law
behavior and an exponential cutoff. However, this apparent scale-free behav-
ior does not mean that avalanches are critical, in the sense of a second order
phase transition where diverging correlation lengths appear. Instead, we find
that avalanches in the magnetic nanoparticle have a large (but finite) number
of different, gap-separated typical sizes and durations. In this way we have
proposed in this chapter a new mechanism to obtain power law distributions
not related to any underlying critical dynamics.[113]

However, the proposal of this new mechanism is not so important on its
own. The deep insight derived from this analysis comes when we extrapolate
the conceptual framework here developed to the understanding of Barkhausen
Noise in particular and �#5�6 Noise in general. As we previously stated, Barkhau-
sen Noise is the noise by which an impure ferromagnet responds to a slowly
varying external magnetic field. This response is not continuous, but burst-
like. In particular, magnetization jumps are observed as a function of the ap-
plied field which are called avalanches. Experimentalists are able to measure
the size and lifetime of these avalanches, finding that both magnitudes follow
power law distributions with well-defined exponents. In order to obtain these
exponents they must filter out the extrinsic noise which soils the main signal.
A main feature characterizing Barkhausen Noise is that the scale-free behav-
ior codified by the observed power law avalanche distributions appears with-
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Ref. ± ø ,
[111] ��� 5 ��� < 
 ����ª� �~� Vÿ� � < 

[114] = �~� � V � Z 
 �~� < � � 
 �~� V�V � � ��

[114]

� �~� <�� � < 
 � � � ���z
 �G���¡�
[88] �~� V
V �Y� 
 � � � < � ; 
 �~� <�� � � 


Our simulation ��� V � � 5 
 � � �~�3� Z 
 �~� < �T� < 

Table 6.2: In this table we show results on critical exponents for different experiments
on Barkhausen Noise. As it is clear from direct inspection, universality is not observed.
The last row shows our results for the magnetic noise in the circular nanoparticle.

out any need of fine tuning. For many years8 theoretical physicist have been
wondering about the origin of this spontaneous or self-organized scale invari-
ant behavior. Different theoretical approaches have been proposed as explana-
tion of Barkhausen Effect (most of these approaches are incompatible among
them[88]). All these theories are based on assuming the existence of an un-
derlying critical point, responsible of the observed scale invariance. The main
theoretical approaches are divided in three different branches:7 The Random Field Ising Model (RFIM) has been proposed as a possible

theoretical framework in order to explain Barkhausen Noise.[91, 108] In
this model a second order phase transition driven by the disorder is ob-
served. The calculated critical exponents are similar to those measured in
some Barkhausen experiments. This phase transition is a plain old one,
in the sense that fine tuning of parameters is needed in order to reach the
critical region, as opposed to observations in Barkhausen materials.7 Another theoretical approach is based on disordered interfaces and the
pinning-depinning transition.[90, 109, 114] As above, here an underlying
critical point is assumed. Barkhausen Noise is analyzed in this case in
terms of the domain wall motion in a bulk with quenched disorder. This
theoretical approximation is the most popular in the scientific commu-
nity.7 Some SOC models have been also proposed as possible explanation to
Barkhausen Noise. Nowadays, this theoretical approach is almost ne-
glected.

All these theoretical models reproduce some aspects of Barkhausen exper-
iments. The assumption these approaches make about the existence of an un-
derlying critical point responsible of the observed scale invariance involves
that Barkhausen experiments must show universality. That is, if the scale in-
variance observed in Barkhausen Noise is derived from an underlying critical
point, it is expected that the critical exponents measured for the avalanches will

8In fact, Barkhausen Noise was discovered a century ago, and since then its origin remains
mysterious.
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Figure 6.17: Avalanche sizes as a function of magnetization for several different runs.
Large avalanches appear in the final part of the evolution ( �CÖ¿P¨J ). Notice also that, in
general, large avalanches appear for approximately the same values of magnetization
for each run (see, for instance, the large avalanche appearing for �×ÖFD
H N in the four
first runs).

be universal, i.e. independent of the microscopic details of the material. These
critical exponents should only depend on the symmetries and conservation
laws which characterize the material. However, this is not observed in practice.
Table 6.2 compares critical exponents measured in different Barkhausen experi-
ments, and the exponents we have measured in our simple model. A compari-
son among the different experimental results shown in Table 6.2 clearly proves
the lack of universality in Barkhausen materials. This fact contradicts the as-
sumption about the existence of an underlying critical point in Barkhausen ma-
terials. Furthermore, the power of most practical applications of Barkhausen
Noise is based on the sensitivity of Barkhausen emission to microstructural de-
tails in the material.[87, 89] Such sensitivity is incompatible with the concept of
universality derived from a critical point, where by definition the behavior of
the system is not sensitive to details, but only to symmetries and conservation
laws.

Let us now analyze the relation between our results for the magnetic nanopar-
ticle and Barkhausen Noise. In Table 6.2 we observe that the exponents we
have obtained for the avalanches in the magnetic nanoparticle are almost equal
to those measured by Spasojević et al[88] in Barkhausen experiments. In partic-
ular, we have obtained exponents ± µ M�~� V�� � 5 
 , ø µ  � � � < � Z 
 and ,PM�~� < �T� < 
 ,
while Spasojević et al have performed experiments on quasi-bidimensional
VITROVAC, measuring exponents ±[]��� V�V �Y� 
 , ø� � � �~�T� ; 
 and ,�]�~� <�� � � 
 .
The results of our simulations are perfectly compatible with these experimental
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measures. These observations led us to suspect that Barkhausen Noise might
also come from the superposition of more elementary events. In fact, the �#5�6
noise behavior in this case is assumed to reflect topological rearrangements of
domain walls,[104] which result in practice in a series of jumps between differ-
ent metastable states, which is the basic process in our model.

Our system also reproduces some other phenomena observed in real ma-
terials, which support the above hypothesis about the origin of Barkhausen
Noise. For instance, our system shows reproducibility. It is observed dur-
ing the demagnetization process in the ferromagnetic nanoparticle that large
avalanches are reproducible from one experiment to another. This means that
large avalanches usually appear at the same stages of evolution, independently
of the observed experiment. Fig. 6.17 shows the avalanche size as a func-
tion of magnetization for several demagnetization experiments in our magnetic
nanoparticle. It is clear from this figure that there are certain magnetizations for
which large avalanches usually appear (see for instance avalanches for magne-
tization + � ��� Z or + EMF �N� � �ª��� V=< J ). On the other hand, extrinsic noise (i.e.
small avalanches) shows high variability. The reproducibility phenomenon
points out the existence of a dynamic correlation in the system. The same
property has been observed in experiments with Perminvar and a Fe-Ni-Co
alloy.[105] In these experiments the hysteresis loop associated to the material is
studied, and it is observed that some (large) avalanches are almost perfectly re-
producible from one hysteresis loop to another, while other (small) avalanches
show no reproducibility. That is, measuring the size of the avalanches as a
function of the applied magnetic field it is found that there are certain values
of the external field for which very large avalanches develop, and this property
is observed for many different hysteresis loops.

In order to investigate the origin of reproducibility in our system, let us
come back to Fig. 6.10. There we plotted the mean avalanche size j %ª)�mh� + 
 and
the domain wall mean curvature j(Ë mC� + 
 as a function of magnetization for a
system with radius �ÏhZ�� , after averaging over 3500 different runs. The highly
inhomogeneous (non-trivial) shape of j % ) mC� + 
 confirms the above conclusion,
i.e. our magnetic nanoparticle shows reproducibility. Moreover, the mean cur-
vature j�Ë mC� + 
 is also reproducible from one experiment to another. As we pre-
viously discussed, the high correlation between j % ) mC� + 
 and j(Ë mh� + 
 implies
that the typical scale of an avalanche is completely determined by the curva-
ture of the domain wall when this avalanche starts. Hence the reproducibility
observed in avalanches is due to the reproducibility of the domain wall cur-
vature. The observed domain wall curvature reproducibility points out that
the system evolves from the metastable phase to the stable one through certain
typical configurations, each one characterized by a typical droplet shape and a
typical domain wall curvature. Fig. 6.9 shows an example of this typical evo-
lution (we came to this conclusion after looking at many different particular
evolutions). Different experiments evolve approximately in the same way be-
cause, on one hand, the system is very efficient selecting the most energetically
favorable configurations during the evolution due to the low temperature of
simulations (in this case the free energy minima are very deep), and on the
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other hand the presence of the free boundaries involves that the droplet al-
ways nucleates at the border. In experiments showing reproducibility it is con-
cluded that the presence of quenched disorder in these real systems is essential
for the observed reproducibility.[105] In our case, the presence of the border
(together with the low temperature) is the responsible of the reproducibility
phenomenon. In this sense we could interpret the open boundary in our sys-
tem as a quenched disorder distributed in a very particular way.

Summarizing, we observe that the exponents characterizing the avalanche
distributions in our system reproduce some experimental results on Barkhausen
Noise. Moreover, our ferromagnetic nanoparticle also shows reproducibility,
which is observed in real Barkhausen materials. In addition, the avalanche
size and lifetime distributions show exponential cutoffs which depend alge-
braically on system size. This behavior has been also reported in real materials
[110]. Finally, the measured exponents ± and ø show finite size corrections
similar to those found in experiments with avalanche systems[97]. All these
similarities, together with the fact that experimental observations do not sup-
port the existence of universality9 in Barkhausen Noise, led us to suspect that
Barkhausen Noise might also come from the superposition of more elementary
events with well-defined typical scales.

The chances are that our observation that scale invariance originates in a
combination of simple events, which we can prove in our model cases, is a gen-
eral feature of similar phenomena in many complex systems [91]. This should
explain why distributions exhibiting power law, exponential or stretched ex-
ponential behavior have been identified in different but related experimental
situations and in different regimes of the same experiment.

Finally, let us mention that the analysis method introduced in this chapter
in order to identify the origin of different avalanches and the superposition
of different typical scales can be easily exported to many experimental situa-
tions, simplifying the investigation about the origin of Barkhausen emissions
in particular, and �Z5�6 Noise in general.

9Saying that universality is not observed is equivalent to affirm that there is no phase transition
underlying Barkhausen Noise.
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Chapter 7

Kinetics of Phase Separation
in the Driven Lattice Gas:
Self-Similar Pattern Growth
under Anisotropic
Nonequilibrium Conditions

7.1 Introduction

The first part of this thesis has been devoted to the study of metastability
and avalanches in a nonequilibrium magnetic model. There we have inves-
tigated the dynamic process by which a nonequilibrium spin system subject to
a nonzero magnetic field evolves from a metastable phase towards the truly
stable one. There are other dynamical phenomena in nonequilibrium systems
which involve transformations between different phases. In particular, a very
interesting phenomenon is the segregation process that emerges when a nonequi-
librium (conserved) system evolves from a disordered phase towards the or-
dered one. The aim of this chapter is to investigate the effects that nonequilib-
rium anisotropic conditions induce on this phase separation phenomenon.

Many alloys such as Al-Zn, which are homogeneous at high temperature,
undergo phase separation after a sudden quench into the miscibility gap (for
details, see the reviews [115]-[119], for instance). One first observes nucleation
in which small localized regions (grains) form. This is followed by “spinodal
decomposition”. That is, some grains grow at the expense of smaller ones,
and eventually coarsen, while their composition evolves with time. In addi-
tion to theoretically challenging, the details are of great practical importance.
For example, hardness and conductivities are determined by the spatial pat-
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tern finally resulting in the alloy, and this depends on how phase separation
competes with the progress of solidification from the melt.

A complete kinetic description of these highly non-linear processes is lack-
ing. [119] Nevertheless, the essential physics for some special situations is
now quite well understood. This is the case when nothing prevents the sys-
tem from reaching the equilibrium state, namely, coexistence of two thermody-
namic phases. The simplest example of this is the (standard) lattice gas evolv-
ing from a fully disordered state to segregation into liquid (particle-rich phase)
and gas (particle-poor phase). (Alternatively, using the language of the isomor-
phic lattice binary alloy, [120] the segregation is into, say Al-rich and Zn-rich
phases.) As first demonstrated by means of computer simulations,[121, 115,
116] this segregation, as well as similar processes in actual mixtures exhibit
time self-similarity. This property is better defined at sufficiently low temper-
ature, when the thermal correlation length is small. The system then exhibits
a single relevant length, the size D � o 
 of typical grains growing algebraically
with time. Consequently, any of the system properties (including the spatial
pattern) look alike, except for a change of scale, at different times.

This interesting property is revealed, for example, by the sphericalized struc-
ture factor Ø � } � o 
 as observed in scattering experiments. After a relatively
short transient time, one observes that Ø � } � o 
 ²�Q � o 
³Ù ü�F }ÚD � o 
&J � Taking this
as a hypothesis, one may interpret Q and D as phenomenological parameters to
scale along the Ø and } axes, respectively. The hypothesis is then widely con-
firmed, and it follows that Q � o 
 ²4D � o 
 ï where

ë
is the system dimension. It

also follows that ü ��Ûª
 hk ��Û�
!ÙjÜ�� ³ Ûª
 where k and
Ü

are universal functions.
In fact, k describes the diffraction by a single grain,

Ü
is a grain interference

function, and ³ characterizes the point in the (density � temperature) phase di-
agram where the sample is quenched. It then ensues that

Ü�� � except at small
values of } , so that, for large

Û
, ü ��Ûª
 becomes almost independent of density

and temperature, and even the substance investigated.[121, 122, 119]

The grain distribution may also be directly monitored. A detailed study
of grains in both microscopy experiments and computer simulations confirms
time scale invariance. More specifically, one observes that the relevant length
grows according to a simple power law, D � o 
 ²úo�¢ � and one typically measures1Á �#5
Z at late times. This is understood as a consequence of diffusion of
monomers that, in order to minimize surface tension, evaporate from small
grains of high curvature and condensate onto larger ones (Ostwald ripening). In
fact, Lifshitz and Slyozov, and Wagner independently predicted D�²ao =ÑÇ½µ � [123]
which is often observed, even outside the domain of validity of the involved
approximations.[124] In some circumstances, one should expect other, non-
dominant mechanisms inducing corrections to the Lifshitz-Slyozov-Wagner one.
[115, 117, 119] For instance, effective diffusion of grains (Smoluchowski coagula-
tion) leads to 1ø��#5 � � which may occur at early times;[125] interfacial con-
duction leads to 1ÍÁ�#535¶n [126, 127] and, depending on density and viscosity, a
fluid capable of hydrodynamic interactions may exhibit crossover with time to
viscous ( 1°�� ) and then inertial ( 1  � 5�Z ) regimes.[118]
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Extending the above interesting picture to more realistic situations is an
open question. The assumption that the system asymptotically tends to the
coexistence of two thermodynamic (equilibrium) phases is often unjustified in
Nature. This is the case, for example, for mixtures under a shear flow, whose
study has attracted considerable attention, e.g.[128]-[132]. The problem is that
sheared flows asymptotically evolve towards a nonequilibrium steady state and
that this is highly anisotropic. Studying the consequences of anisotropy in the
behavior of complex systems is in fact an important challenge (see, for instance,
[51, 133, 134]). Another important example is that of binary granular mixtures
under horizontal shaking. The periodic forcing causes in this case phase sepa-
ration and highly anisotropic clustering.[152]

In this chapter, we study in detail the kinetics of the driven lattice gas (DLG)
[134] following a deep quench. Our motivation is twofold. On one hand, the
DLG is recognized to be an excellent microscopic model for nonequilibrium
anisotropic phenomena.[51] On the other, the DLG is not affected by hydrody-
namic interactions, which makes physics simpler. Our goal is timely given that
the asymptotic state of the DLG is now rather well understood, and previous
studies of kinetics altogether reveal an intriguing situation.[134]-[141] Follow-
ing this pioneering effort, we here present a new theoretical description of the
essential physics during anisotropic, nonequilibrium pattern growth. This is
compared with new extensive computer simulations.[142]

7.2 Model and Simulation Details

The DLG consists in a
ë � dimensional, e.g., simple-cubic lattice with configu-

rations n *d	é B nfD:|� � � ��� �1I?i . The variable at each lattice site has two possible
states, é B �� (particle) or � (hole). As for the standard lattice gas, dynamics is
a stochastic process at temperature

�
consisting in nearest-neighbor (NN) par-

ticle/hole exchanges. This conserves the particle density, ê  I <0= ¯ B é B � and
depends on n �

A distinguishing feature of the DLG is that exchanges are favored in one of
the principal lattice directions, say

Uõ�� Therefore, assuming periodic (toroidal)
boundary conditions, a net current of particles is expected to set in along

Uõ��
This is accomplished in practice by defining a biased transition rate. We shall
refer here to the energy function Ý|��65�Q ¯ \�\ é9B_é�W � which describes attractive
interactions between particles at NN sites, and to the transition rate (per unit
time):[51] r �

n t n 8 
  min Ê�� � e < � x � �¹Þ · � Ç w Ë � (7.1)

n 8 stands for configuration n after jumping of a particle to a NN hole;
% Ý�Ý � n 8 
 �`Ý � n 
 is the energy change brought about by the jump; and units are

such that both the coupling strength Q and the Boltzmann constant are set to
unity. One further defines �? �-ß � � � 
 for NN jumps along

ò Uõ or along any of
the transverse directions, say

U« � respectively. Consistent with this,
U@Ï�@ Uõ may

be interpreted as a field driving particles, e.g., an electric field if one assumes
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that particles are charged. (One may adopt other interpretations, e.g., the bi-
nary alloy one.[120] Dynamics then consists in interchanges between particles
of different species, one of them favored along

Uõ�� )
The DLG was described as modeling surface growth, fast ionic conduction

and traffic flow, among a number of actual situations of practical interest.[51]
A common feature in these situations is anisotropy, and that steady states are
out of equilibrium. Both are essential features of the DLG induced by the rate
(7.1). The only trivial case is for @�æ� � which reduces (7.1) to the Metropolis
algorithm. In this case, detailed balance holds, and one simply has the familiar
lattice gas with a unique (equilibrium) steady state. For any, even small @ �
qualitatively new behavior emerges. In fact, detailed balance breaks down for@�`Á� and, consequently, the steady state depends on

r �
n t n 8 
 � Increasing@ � one eventually reaches saturation. That is, particles cannot jump backwards,

i.e., � Uõ � which formally corresponds to an infinite field
� @Ï�% 
 �

The way in which the microscopic anisotropy (7.1) conveys into macro-
scopic behavior is amazing.[51] Consider, for simplicity,

ë  ��� êá =� and@�G%á� The system then exhibits a critical point at
�  � µ¡ ¨ ��� 5 � ¡ � @Í�� 
 ,

where
���h� @��� 
���� � ���~� �úc ���Z� � , with novel critical behavior.[140, 141] Fur-

thermore, the asymptotic, steady states below
� µ¡ do not comprise equilibrium

phases. Instead, one observes a particle current and fully anisotropic phases;
both are nonequilibrium features. The intensity of the current increases with���

and suddenly changes slope at
� µ¡ (in fact, this property may serve to ac-

curately locate the critical point). The stable ordered configurations consist of
one stripe, to be interpreted as a liquid (rich-particle) phase of density ê  �&�ª
 �The gas (poor-particle) phase of density ê�à �&�ª
 fills the remainder of the sys-
tem. Except for some microscopic roughness, the interface is linear and rather
flat, in general1.

The computer evolutions reported here always begin with a completely dis-
ordered state to simulate the system at infinite temperature. We then model a
sudden quench and the subsequent time evolution. With this aim, one pro-
ceeds with rate (7.1) that involves the temperature

�
at which the system is

quenched. The run is followed until one stripe is obtained (eventually, in or-
der to save computer time, the run was sometimes stopped before reaching the
final stationary state). The code involves a list of Î � o 
 particle-hole NN pairs
from where the next move is drawn. Time is then increased by

% o�`Î � o 
 <0= �
so that its unit or MC step involves a visit to all sites on the average2.

The lattice is rectangular,
-�2Ê¸[-�/(�

with sides ranging from 64 to 256 and,
in a few cases, 512. Results concern an average over around thousand inde-

1Some partial, inconclusive studies about interfaces in the Driven Lattice Gas[154] have re-
viewed in Ref. [51].

2This corresponds to the standard Monte Carlo method only if the time increment á$â is drawn
from a Poisson distribution. Taking constant á$â¨Ü&ã £ â ¦ ò   involves some approximation. How-
ever, if the number of particle-hole pairs in the system is sufficiently large, the approximation is
excellent. In particular, for a half filled system subject to an infinite drive (our model case), the
minimum amount of particle-hole pairs present in the system will be of order ¤ ¢ � , which is large
for large lattices.
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Figure 7.1: A series of MC snapshots comparing very early patterns for the DLG (with
an infinite horizontal field) and for the standard lattice gas, i.e., zero field (LG) at the
same time. This corresponds to a 256x256 lattice at bvä�D�H �Ub µå H The time (in MC steps)
is here ©QB 4 and 10 (from top to bottom) for the DLG (left column) and for the LG (right
column).

pendent runs. Due to the great computational effort which is consequently
involved, this chapter describes simulations concerning a single point of the
two-dimensional DLG phase diagram. That is, most of our evolutions are forêÑ =� and @æ�% � and simulate a quench at

�  ��� ; � ¡ � @a�� 
 ¨ ��� �C� µ¡ �This choice is motivated by the fact that clustering is then reasonably compact,
which helps to obtain good statistics, while it proceeds fast enough, so that
one can observe full relaxation to the steady state. In spite of this restriction,
brief investigation of other points, together with some of our observations be-
low, led us to believe that the validity of our results extends to a large domain
around the center of the miscibility gap; in fact, such generality of behavior has
been reported for @Í���� [116, 121, 125, 119]

7.3 Growth of Order

The DLG exhibits different time regimes during phase separation. Though they
parallel the ones for @Í�� � the peculiarities induced by the anisotropic condition
are essential.

Starting from complete disorder, there is a very short initial regime in which
small grains form. The novelty is that typical grains are now fully anisotropic,
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Figure 7.2: The same as Fig. 7.1 but at late time, namely, © B 100, 1000 and 10000 MC
steps (from top to bottom) for the DLG (left column) and for the LG (right column).

stretched along
Uõ�� The grains then rapidly coarsen to form macroscopic strings,

as illustrated in Fig. 7.1. Sheared fluids (an experimentally accessible situation
that also involves both nonequilibrium physics and anisotropy) seem to ex-
hibit similar initial regimes.[130, 132] That is, during a short time interval, they
show larger growth rate along the flow than in the other directions, which is
assumed to correspond to the initial formation of anisotropic regions. After-
wards, sheared fluids develop string-like macroscopic domains similar to the
ones in the DLG.

Figs. 7.1 and 7.2 include a comparison with the zero-field case, i.e., the stan-
dard, isotropic lattice gas (LG). This clearly illustrates the strong anisotropy of
nucleation and early phase separation for the DLG. Close inspection of these
and similar graphs also seems to indicate relatively small but significant dif-
ferences in the degree of segregation between the two cases at a given time.
That is, at small distances, there is a more homogeneous distribution of parti-
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cles, both longitudinally and transversely, in the DLG than in the LG. The latter
shows up more segregated at the same time, which is already rather evident by
direct inspection of graphs for ����o�ÌM�#��� in Figs. 7.1 and 7.2. We believe this
reveals the different role played by surface tension as the degree of anisotropy
is varied: Typical DLG grains are rather linear except at their longitudinal ends,
where curvature may be even stronger than for the spherical clusters in the LG
at comparable times. This seems to be at the origin of a smother transverse
distribution of particles in the DLG at early times. On the other hand, the field
also tends to smooth things longitudinally.

In order to quantify the aforementioned observation, we evaluated the num-
ber of broken bonds in the direction of (perpendicular to) the field, é 2ÿ� o 
 ( é /�� o 
 )
as a function of time during the early evolution stage. Then Ö � o 
 c�F é /�� o 
 Lé 2ÿ� o 
kJ 5 ��I is the density of broken bonds. The higher the degree of segregation
at time o , the smaller is Ö � o 
 . For instance, we observe in a large

� < ��¸�� < �
lattice that Ö � oG¼�#� 
  ��� ��� < and Ö � oG �#� 
  ��� Z�; for the LG and DLG
respectively, confirming the above observation. On the other hand, let _ � o 
 cF é /�� o 
 �?é 24� o 
&J 5 �¶I . One would expect _ � o 
�� � (up to fluctuations) only for the
isotropic system. In fact, we measured _ � o 
:� � for the LG, while _ � o 
 rapidly
converges to a nonzero value _ � o 
�� ��� �=< for the DLG at early times (again for
a large

� < �*¸Ï� < � lattice). We take this number, _ � o 
 ���� �=< , as characterizing
the anisotropic shape of DLG clusters at early times.

The difference of segregation between the DLG and the LG at early times
merits further study. This will need to take into account the anisotropy of sur-
face tension. In any case, this concerns a regime very near the initial, melt state
that only bears minor practical importance, given that it extends extremely
shortly on the macroscopic time scale. We are interested in the rest of this
chapter on the subsequent evolution, to be described on the assumption of a
simple flat interface, which holds in Fig. 7.2 for oª`ø�Z�~���

The DLG strings coarsen with time until well defined, relatively-narrow
longitudinal (i.e., directed along

Uõ 
 stripes are formed. (For periodic boundary
conditions, the case of our simulations, each stripe forms a ring.) This results
into a multi-stripe state, as illustrated in Figs. 7.2 and 7.3. The ordering time
in the DLG, defined as the time the system needs to form the stripes, scales
with the system size in the direction of the field,

-�2
, since in this case ordered

clusters (stripes) percolate along the field direction (see below).[139] This is not
the case for the equilibrium LG, where the ordering time depends exclusively
on system intensive parameters such as temperature and density.

The multi-stripe states are not stable, however. They are only partially seg-
regated and, in fact, a definite tendency towards a fully segregated state with
a single stripe is generally observed in computer simulations. One may also
develop simple arguments indicating that, in general, a multi-stripe state will
monotonically evolve until forming a single stripe.[51, 143] It is true that, in
practice, the complete relaxation may take a very long time. More specifically,
a macroscopic system may take to decay into the true stable state a long, macro-
scopic time interval, namely, a time that may show up as mathematically infi-
nite in some time scales. In fact, the complete relaxation time is observed to
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Figure 7.3: A series of MC snapshots that illustrate (late) growth at b[ä¶D
H ��b µå H This is
for a rectangular lattice of size L � ��L���B$zIK=�Ú�'�){ and ©�B 10

§
, 10 � , 10 � j 10 � j 10 æ and

1,1x10 ç MC steps, respectively, from left to right.

increase with system size, as first demonstrated in [139]. It should also be re-
marked that this property is not a nonequilibrium feature but occurs already in
the equilibrium ( @Í�� ) case; see, for instance, [116, 118] and references therein.
Slow relaxation is a consequence of the conservation of particle density ê im-
plied by the particle-hole exchange dynamics; this induces scale invariance,
namely, slow (power-law) evolution of correlations so that, once enough order
sets in, all but very small pattern modifications during a single MC step are pre-
cluded. Consequently, certain individual runs sometimes block for a long time
in a state with several stripes; however, this does not correspond to the aver-
age behavior. As illustrated by Fig. 7.3, which shows a typical evolution, and
demonstrated below by our averages corresponding to thousand evolutions,
the number of stripes monotonically decreases with time (see also section 7.5),
and the whole relaxation can easily be observed in computer simulations if one
waits long enough.

We next attempt a theoretical description of the relaxation process. Our in-
terest is on the anisotropic spinodal decomposition by which the earliest state with
many well-defined stripes decays into a single stripe.We shall assume that re-
laxation is a consequence of monomer events causing effective diffusion of liq-
uid stripes. (Note that assuming gas stripes here would be completely equiva-
lent.) That is, due to single particle processes, liquid stripes move transversely
as a whole, and may collide and eventually coalesce with one of the neighbor-
ing stripes; see the late evolution depicted in Fig. 7.3. We notice that coales-
cence implies evaporation of the gas stripe between the two involved liquid
stripes. Therefore, given the particle/hole symmetry, our assumption is in a
sense equivalent to assuming that growth is due to evaporation of stripes;[139]
however, the view adopted here allows for a more detailed description below.

In order to evaluate the implications of stripe effective diffusion via monomer
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events, lets assume that stripes are well defined, compact and exhibit a (linear)
interface which is rather flat. This is perfectly justified at sufficiently low tem-
perature (the case analyzed in detail here),[51] and it might hold more gener-
ally, in a wide region including the center of the miscibility gap but excluding
the critical region. Under this assumption, consider a stripe of mean widthD � o 
 that consists of è particles whose coordinates along the transverse (verti-
cal) direction are «0W � o 
 n l �� � �h�Z� � è�� We characterize the stripe position by its
center of masses, ã cm

� o 
 cIè <0= ¯ W «�W � o 
 �
Let us evaluate the mobility coefficient é~ê�c I me j �k% ã cm


 � m
which depends

on the stripe width D � o 
 � Here
I

me is the number of monomer events per unit
time, and j �k% ã cm


 � m
is the mean squared displacement of the stripe associated

to one of the monomer events. We think of two possible types of events, each
giving a different contribution to é êÑë
(A) Evaporation-condensation of particles and holes in the stripe surface. Here
particles (holes) at the stripe interface evaporate to the hole (particle) gas, and
condensate later at the same interface. The evolution of the evaporated parti-
cle (hole) in the bulk can be seen as a one dimensional random walk with two
absorbing walls, the left and right interfaces, respectively. According to stan-
dard random walk theory,[144] the evaporated particle (hole) will go again
with unit probability to one of the (two) possible interfaces, Moreover, the
random walker will stick again to its original interface with high probability,
so trapping a particle (hole) from the opposite interface is unlikely. Conse-
quently, in this case (A),

I
me is simply the evaporation rate. That is,

I
me,A ì ¯ sW exp

� � ��� <0= % W 
è� where ì is the a priori frequency, the sum is over the sur-
face particles and

% W is the number of resulting broken bonds. For a flat lin-
ear interface, particles can only jump transversely away the surface, ì equals
the inverse of the lattice coordination number, Ì � and one may write

I
me,A

�5�Ì <:= -32 exp
� � � ¯% 5 �¡
 where ¯% is the mean number of broken bonds per evap-

oration event. We multiplied here by 2 to take into account evaporation of
surface holes that travel within the stripe to reach the (same) surface again. On
the other hand, evaporation processes induce changes

% ã cm íè <0= �)« � where��« is the net particle (transverse) displacement, and è �á-�2�¸ D � o 
 for compact
stripes. Therefore, é � A �ê ²�5�Ì <0= ju�)« � m e < � ¯x�Ç w - <:=2 D < � � (7.2)

(B) A hole jumps one lattice spacing away within the stripe interior. This in-
duces

% ã cm ��#5îè or 0, depending on the jump direction. One may writeI
me,B  � ì ê ���k�ª
#-32 D �t�����ª
�� where ê � is the density of holes,

-32 D is the volume
or total number of sites within the liquid stripe, and

�ª�
is the jumping probabil-

ity per unit time. The factor 2 here comes from the fact that a hole modifies ã cm
when jumping to any of the two directions

ò&U«�� At low
��� ê � is small; holes are

then rather isolated from each other, so that jumps do not modify the number
of broken bonds, and

� � � �~� It ensuesé � B �ê ² � Ì <0= ê �T- <:=2 D <0= � (7.3)
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Note that a different dependence of (7.2) and (7.3) on D is a consequence of the
fact that the rates

I
me,A and

I
me,B involve processes consisting in evaporation

on the interface and diffusion on the bulk, respectively.
For êN =� � one has on the average stripes of width D that are separated a dis-

tance D from each other. Therefore, a given stripe takes a mean time ±9ê9ïD � 5�é�ê
to find (and thus to coalesce with) another one, and this causes its width to
increase by

% D°KDC� Consequently, d D15 d o*² % D�± <0=ê ðé�ê�D <0= � Together with
(7.2) and (7.3), respectively, this implies that mechanism A is characterized by
a power law D�²Ío�=ÑÇ ³ � and that mechanism B is to be associated with D�²Ío�=ÑÇ½µ��
Furthermore, assuming that pattern growth in the DLG is the result of com-
petition between the two mechanisms, and that they are independent of each
other, é ê ïé � A �ê L�é � B �ê �

it follows that

d D
d o ² �-32 � ø AD µ L ø BD � � � (7.4)

where ø A }5 ì ju�)« � m e < � ¯x	Ç w and ø B  � ì ê � � This is our general result for the
DLG as far as the field @ is large, e.g., infinite, and the temperature

�
is low

enough so that the interfaces, and mechanisms A and B, are sufficiently simple
as assumed. This is to be compared with the Lifshitz-Slyozov-Wagner behavior
d D15 d oR²°D < � which assumes spatial isotropy and diffusion directly governed
by surface tension. Formally, (7.4) is similar to an equation obtained before by
assuming isotropic conditions; see section 7.1.[126]

The consequences of (7.2)–(7.4) are as follows. Both (7.2) and (7.3) imply
independently that D�² � È ,3
 =�Ç�ñ ðÙoZ5 -32 ñ =ÑÇ�ñ � (7.5)

The difference is that
, �ø Ï and È �5 from (7.2) while one obtains

,  ø:�
and È �Z from (7.3). On the other hand, for sufficiently late times, D becomes
large and equation (7.4) simply solves intoD � o 
 ²�øTo =�Ç½µ Lwò � (7.6)

where ø µ �Znø B
- <0=2 and òKíø A 5 � ø B � That is, the prediction is that hole diffu-

sion within the stripe (mechanism B) will be dominant at late times. A different
hypothesis, based on the stripe evaporation picture, was shown in [139] to im-
ply D?² ð oZ5 -32 ñ =ÑÇ½µ . This coincidence is not surprising since, as argued above,
the coalescence of two particles stripes implies the evaporation of the interme-
diate hole stripe and due to the particle/hole symmetry in our system, both
mechanisms (stripe diffusion/coalescence and stripe evaporation) correspond
to the same physical process yielding the same behavior. In order to uncover
the close analogy between the two pictures, one may notice that, to evaporate
a particle stripe, many of its particles must cross the surrounding hole stripes
and stick on the neighboring particle stripes (this is so since the particle den-
sity in the gas phase remains almost constant). This particle migration process
through the surrounding hole stripes is in fact what we have called ’hole dif-
fusion within the stripe’ in the presence of particle/hole symmetry. Hence the
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fundamental mechanism involved in a stripe evaporation is the diffusion of its
constituents through the neighboring stripes. This observation is a key one to
understand the relation between stripe’s evaporation and hole (particle) diffu-
sion.

The effect of mechanism A —surface evaporation and subsequent conden-
sation— on growth is more subtle. In fact, our theory predicts a crossover
from the o =�Ç ³ regime to the o =�Ç½µ regime as time is increased. That is, the two
mechanisms will have a comparable influence at o¨²N± cross with

± cross  � 5:ø A

 µ� Znø B

 ³ -32 � (7.7)

For times o��]± cross, mechanism A is dominant and the o =ÑÇ ³ behavior is ex-
pected, while mechanism B is dominant for o�`Ñ± cross and the asymptotic o =ÑÇ½µ
growth law is then observed. The crossover time ± cross is a macroscopic, ob-
servable time. Further, we may define the time ± ss at which a single stripe is
reached by the condition that D � o 
�� =� -�/ � One obtains

± ss  -32ø B ó - µ /� 5 � ò - � /5 L � ò � - / �¶;�ò µ®ô ln ø B ð � ò�L =� -�/ ñ-32 � ln
� ò�ø B-32IõÈö�� (7.8)

Hence our system is characterized by two different time scales, namely, ± cross
and ± ss. They depend on system size in a different way. For large systems
one generally obtains ± ss Z ± cross, so that the system converges, after a short,
perhaps unobservable transient time, to the relevant o =�Ç½µ behavior. However,
there are small systems for which ± ss �b± cross. These systems will reach the
stationary (single-striped) state before having time to enter into the asymp-
totic o =�Ç#µ regime. For these small systems, the only relevant behavior is theo =�Ç ³ one. Therefore, there is a size crossover between o =�Ç ³ asymptotic behavior
for small systems and o =�Ç½µ asymptotic behavior for large ones. The condition± cross

�&���1-32.
 ± ss
�&���1-32.�1- / 


defines the crossover size.
Consider now the parameter , c ± cross ð ���.-32 ñ 5ÿ± ss ð ���1-�/:�.-32 ñ � It follows

that the o�=ÑÇ½µ behavior is dominant for , � �~� However, one also has that,Pð ���1- / �.-32 ñ t � for finite
�

in the thermodynamic limit (
- / �1-32 t&% �T- / 5 -32 

const � 
 � Consequently, the o =�Ç½µ growth law is the general one, namely, the only
one we should expect to observe in a macroscopic system. Corrections to this
should only occur at early times in small systems. This is fully confirmed be-
low.

One may also define a longitudinal length,[140, 139] say D 2 ²o
¢ø÷ � where
one expects 1 2 ` �Z5�Z (given that the growth is more rapid longitudinally
than transversely). This length is only relevant during the initial regime, until
stripes become well-defined, all of them extending the whole length

-�2
. This

condition may be taken as defining the onset of the multi-stripe state, which
may be characterized by D 20� ± ms


  -324� from where it follows that ± ms ² - =�Ç ¢�÷2 �
Interesting enough, this is on the macroscopic time scale, as for both ± cross and
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Figure 7.4: Time evolution of the relevant length, ùzÇ>©hÉ , as obtained by different
methods, namely, from the number ��g of stripes (dashed line), from the maximum
width, ù max Ç�Ú¡É from the mass, ùS�Ç�|úÉ , and from the peak of the structure function,ù � ú z+':�û � Ó max Ç�Ù�É ; these quantities are defined in the main text. The graphs here
correspond to an average over 600 independent runs for the 128x128 lattice.

± ss (more precisely, ± cross ² -32 and ± ss ² -32½- µ/ 
 � The fact that all these relevant
times are on the macroscopic, observable time scale confirms that, as argued
above, the single-stripe (and not the multi-stripe) state is the only stable one
in general. It is also to be remarked that, once the multi-stripe state sets in,
the only relevant length is the transverse one, DC� Of course, this is compatible
with the possible existence of two correlation lengths describing thermal fluc-
tuations at criticality.

In order to test our predictions, several measures of the relevant length in
computer simulations were monitored, namely:7 the maximum width of the stripe, D max

�
averaged over all stripes in the

configuration. This maximum width is defined as the distance in the di-
rection perpendicular to the field between the leftmost and the rightmost
particles within the stripe;7 DC chè�5 -32C� where è¼0è � o 
 is the mass, or number of particles belong-
ing to the stripe, averaged over all stripes in the configuration. This mass
width is defined as the width of a perfectly dense stripe with è particles.7 D½�(c - / 5 ��I � � where

I � is the number of stripes in the configuration.

After averaging over many independent evolutions, all these quantities hap-
pen to behave similarly with time. Further measures of the relevant length
that we define in the next section behave in the same way. We shall refer to
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Figure 7.5: The main graph shows ùTÇ>©hÉ]BBù � Ç=©CÉ versus © Ô^ü for � � BhJ.��{ in the case of
the “small” 64x64 lattice. A similar behavior is obtained for any of the studied measures
of ù (see the main text for definitions), which are represented in the insets by different
symbols, namely, ù max ( Ú ), ù � ( Ù ), and ùS� ( | ). The upper inset shows the chi square
function for varying � � as obtained from a series of fits; a well-defined minimum is
exhibited indicating that � � ä J@��{ in this case. The lower inset shows the effective
exponent, d log § ù�� d log § ©=j as a function of J.�ùTÇý©CÉ ; this extrapolates to the same value
of � � .

this common behavior, which is illustrated in Fig. 7.4, as D � o 
 � (It is noticeable
that, before showing a common behavior, Fig. 7.4 reveals some significant dif-
ferences between our measures of D � o 
 at early times. This confirms the more
difficult description —not attempted here— which is required by the initial
regime.)

In Figs. 7.5 and 7.6 we illustrate our analysis and main results concern-
ing the (late) time evolution of D � o 
 � The predictions above are confirmed and,
in particular, “small” lattices —Fig. 7.5— happen to behave differently than
“large” lattices —Fig. 7.6. In both cases we plotted D � o 
 versus ok¢ ü for vary-
ing 1 / � looking for the best linear fit D � o 
  øTo�¢ ü L4ò � excluding the initial time
regime. The upper insets in the figures show the chi square function associated
to each fit, namely, þ � � 1 / 
  ÿSBè^ = F D � o B 
 � � øTo ¢ üB Lwò 
&J �øTo ¢ üB Lwò �

(7.9)

for a least-squares fit to Î data points using parameters 1 /�� ø and ò . The graphs
confirm the existence of a common behavior for all the monitored measures
of D � o 
 (indicated by different symbols). These graphs also demonstrate thatD � o 
 FøTo
¢ ü L�ò � with small ò � during the whole time regime of consideration.
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Figure 7.6: Same as Fig. 7.5 but demonstrating that � � BhJ.�IN for the “large” L � �~L � BzUK3�)p��+{ lattice (one obtains a similar result for larger L � ).
On the other hand, the upper insets indicate that 1 / is very close to =³ for
“small” systems (in fact, for

- / Ì�� � ; ) while 1 / ¨ =µ as the system becomes
larger, say

-�/ Þ � < � that corresponds to a “large” lattice according to familiar
MC standards. As an alternative method to analyze D � o 
�� one may evaluate1 � o 
 c d log � D � o 


d log � o � (7.10)

Our prediction is that 1 � o 
  1 / � òp1 / 5�D � o 
 � i.e., this should provide the
exponent 1 / by extrapolating to large D � o 
 (late time). The insets at the bottom
of Figs. 7.5 and 7.6 show the results for é� � � They are in agreement with the
other method, and again confirm our predictions.

As indicated above, the size crossover between the o =ÑÇ ³ and o =�Ç½µ asymp-
totic regimes is expected for a system size

�Y-�24�1-�/�

such that ± cross ð ���1-32 ñ ± ss ð ���.- / �1-�2 ñ � In order to make this condition explicit, we need to estimate the

amplitudes ø A and ø B in (7.4); see equations (7.7) and (7.8). These amplitudes,
which state the relative importance of surface evaporation/condensation ver-
sus bulk hole-diffusion, are given respectively by ø A T5�Ì <:= jà��« � m e < � ¯x	Ç w andø B  � Ì <:= ê � � We note that, for a sufficiently flat interface (i.e., one that in-
volves microscopic –but not macroscopic– roughness), jà��« � m ²�� � � 
 and ¯% ¨<�� On the other hand, the excess energy associated to an isolated hole is 16, so
that ê � ² exp

� �N� � 5 �ª
 is a rough estimate of the hole density. As depicted in
Fig. 7.7, it follows numerically, in full agreement with our observations, that1 /  =³ is to be observed only at early times, earlier for larger systems; to be
more specific, the crossover for

-�2  � 5 � for instance, is predicted for
- / ²Ï�.5¶� �

which confirms the above; see also Figs. 7.5 and 7.6.
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Figure 7.7: The parameter ÕSB ¯ cross Çib�jiL � É��^¯ ss Çibkj�L � jxL � É�j with the characteristic times¯ cross and ¯ ss defined in the main text, as a function of L � for L � B��+{ , using our estimates
for the amplitudes õ � and õ�� . This confirms our distinction between “small” and
“large” lattices, as explained in the main text.

This behavior may be understood on simple grounds. The surface/volume
ratio is large initially and, consequently, mechanism A (based on surface events)
is then dominant. This is more dramatic the smaller the system is. That is, the
surface is negligible for macroscopic systems, in general, and, as illustrated in
Fig. 7.3, even if the surface is relevant at very early times, its ratio to the vol-
ume will monotonically decrease with time. This causes hole diffusion in the
bulk (mechanism B) to become dominant, more rapidly for larger systems, as
the liquid phase is trying to exhibit only two surfaces. On the other hand, ref.
[139] studies the stripe coarsening process in the infinitely driven lattice gas.
Pure o =�Ç½µ behavior is reported assuming the stripe evaporation mechanism.
This result is perfectly compatible with our results, given that the systems in
ref. [139] correspond to very large values of

- /
( ;~�~� and

�~� � ) and small values
of
-32

( ; , � � and Z � ). For these shapes our theory also predicts the (simple) o =ÑÇ½µ
asymptotic behavior.

7.4 Correlations and the Structure Factor

Consider now the Fourier transform of the pair correlation function g � õ � «0nfo 
 jYé ´ V ´ � o 
 é  V Ì"� o 
àm3� where é  V Ì stands for the occupation variable at lattice siteUF  � õ � « 
 � This is the so-called structure factor, Ø � U} � o 
1� where
U}ø � } 2C� } /(
 �

Given that the } 2 dependence is only relevant at early times, before the multi-
stripe state sets in, i.e., for o���± ms, we shall set } 2 �� in the following. That is,
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Figure 7.8: Time development of the structure factor
� ÇÊû � �-©CÉ , as defined in the main

text, for a “large” lattice L � �OL��`B�zUK3�¬�czIK=� during early and intermediate phase
segregation. A peak grows with time as it shifts towards the small values of û � H
our interest here is onØ � } / nuo 
  �-32½-�/ ##### S  V Ì é  V Ì � o 
 exp F i } / « J #####

� � (7.11)

As illustrated in Fig. 7.8, this function develops a peak at } / Ñ} max
� o 
 imme-

diately after quenching. The peak then monotonically shifts towards smaller
wave numbers with increasing ohn in fact, one expects } / t � as oat % in a
macroscopic system. The wave length D � c � ��5�} max turns out to be an excel-
lent characterization of the relevant order, namely, it measures both the stripe
width and the stripe separation during phase segregation. In particular, we
confirm that D � � o 
 has the common behavior discussed above for length D � o 
 n
see Figs. 7.4, 7.5 and 7.6.

The fact that the DLG shows a unique time-dependent relevant length, D / D � o 
�� has some important consequences. For example, extrapolating from the
equilibrium case (see section 7.1),[121] one should probably expect dynamical
scaling, i.e. Ø � } / nuo 
	÷ D � o 
 ü�F } / D � o 
kJ (7.12)

for the anisotropic DLG in two dimensions. This is indeed observed to hold
during most of the relaxation and, in particular, during all the segregation
process after formation of well-defined stripes. This is illustrated in Fig. 7.9
depicting the scaling function ü4� A time-dependent mean-field model of a bi-
nary mixture in shear flow has recently been demonstrated to exhibit a similar
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Figure 7.9: The scaling with both time and size of the structure function to show that¡KÇ���É ú � ÇÊû � ��©hÉ=�ù�L�j with �¥Bïû � ù�L ò   , is well-defined and universal, i.e., the same at
any time (excluding some early evolution) and for any square lattice of side LnH This plot
includes all data for ©�� 10 � MC steps and 64x64, 128x128, and 256x256 lattices. The
broken lines illustrate the different kinds of behavior of ¡�Ç���É that are discussed in the
main text.

property, though involving two lengths both behaving differently from D � o 

above.[132]

The structure factor may be obtained by scattering, which makes it an im-
portant tool in many studies. Analyzing further the details of functions Ø � } / nuo 

and ü ��Û�
 or, alternatively, the universal function k ��Û�
 cIØ 5�D - , as observed in
computer simulations is therefore of great interest (the extra

-
factor in the def-

inition of k ��Ûª
 is our finite size scaling ansatz). Experimental studies often
refer to the mean ‘radius of gyration’ of the grains as the slope of the straight
portion in a plot of ln F Ø � } � o 
kJ versus } � � [145] We checked the validity under
anisotropic conditions of this concept, which is in fact quite useful in equilib-
rium even outside the domain of validity of its approximations.[121] We con-
firm that Ø � } / nfo 
 exhibits the Guinier Gaussian peak, namely,k ��Ûª
 ² exp

Ä � const.
�-Û � Û max


 � Å
(7.13)

around the maximum
Û

max � More intriguing is the behavior of k ��Û�
 before the
peak,

Û � Û max � Fig. 7.9 indicates that scaling does not hold in this region even
at the end of our (otherwise long enough) simulations. This is so because k ��Û�

goes as ê � - 5�D � o 
 at } / �� , and thus depends on time for very small values of	 , breaking the scaling observed for larger values of 	 . However, a detailed
study of data reveals that the scaling function near the origin tends with time
towards a common envelope k ��Û�
 ² Û = � =�Ç½µ for

Û ´ � Û � Û
max n we do not
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have a simple explanation of this. In any case, this behavior breaks down close
to the origin,

Û�
2Û ´ � where k ��Ûª
 t � as
Û t � and o"t % for the infinite

system.
The behavior after the peak,

Û ` Û max
�
may be predicted on simple grounds.

The (sphericalized) structure factor for (equilibrium) isotropic binary mixtures
is known to satisfy the Porod’s law, Ø*²a} < �	ï=� = � at large enough } � where

ë
is

the system dimension,[121] i.e., ØN²"} <Tµ in two dimensions. The main contribu-
tion to the large- } tail comes from the short-distance behavior of g � õ � «�nfo 
 � That
is, the Porod’s region for the DLG may be taken to correspond to " /�� } <0=/ �D � o 
�� where " / stands for a (transverse) thermal length that characterizes the
smallest, thermal fluctuations. Let two points,

UF ´ and
UF ´ L UF �$UF  � õ � « 
 � For

any õ such that " / � õ � D � o 
è� one roughly has that the product é t£ m � o 
 é t£ � o 

equals LN� if the two points are on the stripe, and � otherwise, i.e., if either an
interface exists between them or else the two points belong to the gas between
stripes. Since õ � D � o 
 , the probability that

UF crosses more than one interface
is negligible. For a half-filled system, the probability that

UF ´ lies at a particle
stripe is =� � and the probability that both

UF ´ and
UF ´ L UF belong to the same stripe

is roughly =� � D � o 
 �[õ 
 5�D � o 
 � Hence,g � õ � «0nfo 
 ¨ ��Gó �9� õD � o 
 ô � õ � D � o 
 � (7.14)

By power counting, this implies the anisotropic Porod law (in two dimensions):Ø � } / nfo 
 ² �D � o 
 } � / � " / � } <0=/ � D � o 
 � (7.15)

Therefore, k �-Ûª
 ² Û < � - <0= � which is confirmed in Fig. 7.9. This is in con-
trast with the (isotropic) Porod’s result. The difference is a consequence of
the fact that the DLG clusters are stripes that percolate in the direction of the
field, instead of the isotropic clusters of the LG. The short-distance pair corre-
lation function for the latter is g � UF nuo 
 ¨ =� � �9��� F � 5�D � o 
è
 , from which one has
that k ��Û�
 ² Û <Tµ � It follows that anisotropy may easily be detected by looking
at the tail of the structure factor.

The detailed analysis of Ø � } / nuo 
 also reveals that, as
-�2

is increased in com-
puter simulations, the anisotropic behavior k�² Û < � crosses over to k�² Û <Tµ
for larger

Û
; see Fig. 7.9. We believe this reflects the existence of standard ther-

mal fluctuations. That is, very small clusters of particles occur in the gas in
the asymptotic regime whose typical size in the direction perpendicular to the
field is of order " / . These very-small asymptotic clusters are rather isotropic,
namely, they do not differ essentially from the corresponding ones in equilib-
rium binary mixtures. More specifically, for õM²�" /(� one may approximateg � UF nfo 
 ²Í�z��� F � 5�" /(� o 
è� which implies the

Û <Tµ power-law tail for large
Û � On the

other hand, according to (7.5), the mean stripe width grows as D � o 
 ² � oZ5 -�2C
 ¢
with 1°|�Z5=5 or 1 |�Z5�Z � depending on the value of

- /
. Therefore, the number

of stripes at time o is proportional to
- / - ¢2 5~o
¢ and, for a given time, the num-

ber of stripes increases with
-�2

as
- ¢2 . We also know that, at a given time, the
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number of small, fluctuating clusters is proportional to
-�2

. Hence the relative
importance of small clusters due to thermal fluctuations as compared to stripes
is proportional to

-�2 � In fact, the
Û <Tµ tail is observed for large enough values

of
-32

but not for small lattices.

7.5 A Continuum Description

The rigorous derivation of a general continuum analog of the driven lattice
gas is an open problem.[51] Recent studies led to the following proposal for a
coarse-grained density, º � r � o 
 ë [147]� ' º � r � o 
 G± /� � / º�� � ³ / º�L " � � � / º µ L�± 2 � � 2 º�L �"/ � � r � o 
 � (7.16)

Here, the last term stands for a conserved Gaussian noise representing the fast
degrees of freedom, and ± / , ± 2 and " are model parameters. Compared to pre-
vious proposals,[148, 137] this Langevin type of equation amounts to neglect
a non-linear current term, �ýø � 2 º � � that was believed to be essential (relevant)
at criticality. However, one may show that, at least in the limit @|t % � the
coefficient ø cancels out (due in this case to a subtle saturation effect).[147] In
fact, recent scaling analysis has unambiguously confirmed that a particle cur-
rent is not relevant and that equation (7.16) captures the correct critical behav-
ior of the DLG.[140, 141] Consequently, an important question is now whether
(7.16) reproduces also the kinetic behavior of the DLG as described in previ-
ous sections. We present here a first confirmation that, as compared with other
approaches,[137] (7.16) is indeed a proper continuum description of the DLG
kinetic relaxation.

In order to numerically integrate (7.16), let us introduce the indexes D �_l � � �Z�h� �1I to represent, respectively, the two components of r c ð õ /�� õ 2 ñ � One
thus makes a trivial discretization of the space, and then of the time by Cauchy-
Euler method.[149] The result is a set of

I � ��� coupled nonlinear equations,
namely,º � D �_l nfo:L % o 
 øº � D �fl½� o 
 (7.17)L % o G ± /��� � / º � �� ³ / ºÏL " � �� � / º µ L�± 2��� � 2 º H L�� % o �� / � � D �fl nuo 
 �

This equation is to be solved by the computer. With this aim, we may write�� / � � D �fl nuo 
 �F � � D�LÑ� �fl nuo 
 � � � D3�á� �fl nuo 
kJ 5 ��% õ / and º � D �fl nuo 
 cMº � D % õ /��_là% õ 2 nuo 

where

% õ /  -�/ 5 I and
% õ 2  -�2 5 I � The maximum value of

% õ / is thus lim-
ited by the interface width. For Fig. 7.10, which concerns a

� < �a¸�� < � lattice�ÙI  � < ��
 we —rather arbitrarily— used
% õ /  % õ 2 e��� V � and

% oa ��� �3< �
which produce a locally stable solution. The parameters ± / , ± 2 and " , are fixed
on the basis of its physical meaning. The mass terms ± 2 and ± / represent tem-
peratures along the longitudinal and transverse directions, respectively, rela-
tive to the critical temperature, i.e., ± / ² ��� / � � µ¡ 
 � Given the anisotropy of
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Figure 7.10: Series of snapshots as obtained from equation (7.17) for the zIK3�¬�czUK3�
lattice with parameters as given in the main text. Time (arbitrary units) is ©�BD�j.J@D�j)J.DID�j0z3DID�j0K3DUD , and J.DIDUD respectively, from left to right and from top to bottom.
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phase segregation, with longitudinal interfaces only, ± / �Ñ� and ± 2 `��� On the
other hand, � ± / � should be small enough to allow for a relatively fast evolution.
Our choices for Fig. 7.10 are ± / Ñ����� � < , ± 2 ���� < and "ú|� .

It is remarkable that, in spite of some apparent similarity, the problem here
differs from the one in the study of (standard) spinodal decomposition by
means of the isotropic ( @a�� ) Cahn-Hilliard equation. In equilibrium,[150] one
usually assumes that the influence of noise on growth, which is then assumed
to be directly driven by surface tension, is negligible far from criticality. The
noise term in (7.17) may be expected to be important in a more general context,
however. That is, as described in section 7.3, the DLG develops striped patterns
in which surface tension smooths the interfaces but has no other dominant role
on the basic kinetic events. Consequently, neglecting the noise in (7.17) would
turn metastable any striped geometry after coarsening of strings, which is not
acceptable (see section 7.3).

Finally, it is interesting to notice that if a one-dimensional structure is as-
sumed, and the gradient in the direction parallel to the field in Eq. 7.16 is
eliminated, then this equation reduces to the one-dimensional time-dependent
Ginzburg-Landau model in [153]. There it was found a ln

� o 
 growth at zero
temperature and a crossover from ln

� o 
 to o =�Ç#µ at finite temperatures.

7.6 Conclusion

This chapter presents a theoretical description of spinodal decomposition in
the DLG, and compares it with new data from a kinetic Monte Carlo study.
This is also compared with the kinetic implications of a Langevin, continuum
equation that had previously been shown to capture correctly the critical be-
havior of the DLG. The resulting picture from these three approaches, which
is summarized below, should probably hold for a class of highly-anisotropic
phase segregation phenomena. In fact, our results provide a method for ana-
lyzing experiments that could be checked against laboratory realizations of the
DLG, i.e., the case of phase segregation under biased fields or other influences
such as electric fields, gravity and elastic stresses.

Immediately after a deep quench, there is an early regime in which anisotro-
pic grains develop. They tend to coarsen to form small strings that then com-
bine into well-defined thin stripes. Such nucleation and early coarsening (Figs.
7.1 and 7.2) seem governed by surface tension at the string ends competing
with other both surface and bulk processes. This complicated situation typ-
ically extends less than 10 µ MC steps in computer simulations, which corre-
sponds to a very short macroscopic time, so that it would be hardly observable
in experiments. As a matter of fact, most of the system relaxation proceeds by
coarsening of stripes until full segregation (Fig. 7.3). Surprisingly enough, this
regime, which has been studied for more than a decade now,[135]-[139] hap-
pens to be theoretically simpler than the corresponding one for the isotropic
case.[115]-[125]

The evolution from many stripes to a single one mainly proceeds by compe-
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tition of two mechanisms: (A) evaporation of a particle (hole) from one stripe
surface and subsequent deposition at the same surface, and (B) diffusion of
a hole within the bulk of the stripe. The first one dominates initially (and
lasts more for smaller systems), when the surface/volume ratio is relatively
large. Mechanism A implies that the relevant length (as defined in Fig. 7.4) in-
creases with time according to D � o 
 ²�o =�Ç ³�� The surface/volume ratio decreases
with time, however, and mechanism B soon becomes dominant. This impliesD � o 
 ²*o =ÑÇ½µ which is the general prediction for a macroscopic system (cf. Figs.
7.5, 7.6 and 7.7)3. This was obtained before by assuming coarsening of two (liq-
uid) stripes by evaporation of the gas stripe placed between them;[139] see also
[135]. Note that the o =�Ç½µ law is precisely the behavior which is acknowledged
to be dominant under isotropy, but this has a different origin in the equilibrium
case.[118, 119] Note also that surface tension determines evaporation rates but
has no other influence on mechanisms A and B.

The o =�Ç½µ growth law, (7.6), is perfectly confirmed by the DLG data (Fig.
7.6). This indicates time-scale invariance. In fact, such invariance was demon-
strated for the isotropic case, in which the situation is somewhat more involved
(section 7.1). The invariance property may be better analyzed by looking at
the structure factor transversely to the drive, Ø � } /�� o 
 (Fig. 7.8). This exhibits
dynamic scaling, i.e., it remains self-similar during phase segregation4. More
specifically, k ��Ûª
 c Ø � } / nuo 
 5�D -3� with

Û �} / D - <0= , is universal, namely, the
same at any (sufficiently late) time o and for any square lattice of side

- � Fur-
thermore, the function k ��Ûª
 has a well-defined shape. In particular, it exhibits
the Guinier Gaussian peak, and this is followed by the anisotropic Porod decay,k ��Û�
 ² Û < � and then by a thermal tail k ��Ûª
 ² Û <Tµ (Fig. 7.9). Also noticeable
is the fact that the the parameter to scale along the Ø axis is Q � o 
 �D and not D �
as under isotropy.

Our results in this chapter have two main restrictions, both due to the great
computational effort required by this problem.[51] Firstly, they follow from an
extensive analysis of only one phase-diagram point, namely, ê� =� � @áG% �
and

� |��� ; � ´¡ � However, our own observations (including brief investigation
of other points), together with an extrapolation of the many results known for
the isotropic case, strongly suggest that the picture in this chapter holds within
a large domain around the center of the miscibility gap5. In fact, the scaled
structure factor for isotropic systems was shown to be almost independent of
density and temperature, and even the substance investigated, in a wide region
below the coexistence line.[124] Our consideration of only a two-dimensional
system does not seem a real restriction neither. That is, adding an extra (trans-
verse) dimension should not essentially modify the picture here6.

3The â  �� � behavior here is in contrast with the logarithmic growth that is assumed to govern a
class of lattice models in which coarsening is not a direct consequence of surface tension.[151]

4More properly, one should speak here of “self-affinity”, given the underlying anisotropy.[133]
5Extending some of our arguments to ���Ü  § needs some care but the whole picture should still

be valid, at least not far from �9Ü  § �
6Note that the Lifshitz-Slyozov-Wagner behavior is known to be valid in some cases in both� Ü ¤ and

� Ü[£ .[119]
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It would be interesting to look next in the laboratory for both time-scale
invariance and o =�Ç½µ growth under highly anisotropic conditions. In fact, there
are some evidences of such behavior in sheared fluids (section 7.1), and one
may think of some more direct experimental realizations of the driven lattice
gas. In particular, coarsening striped patterns very similar to those observed
in our system are found in some intriguing experiments on granular binary
mixtures under shaking.[152] We think that the mechanisms we propose in
this chapter should help the understanding of such experimental results. In
general, we hope our observations will motivate both experiments and future
more complete theories.
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Chapter 8

Dynamic Phase Transitions in
Systems with Superabsorbing
States

8.1 Introduction

Dynamic phase transitions separating active from fluctuation-free absorbing
phases appear in a vast group of physical phenomena and models as, for in-
stance, directed percolation [155, 156], catalytic reactions [157], the pining of
surfaces by disorder [158], the contact process [159], damage spreading transi-
tions [160], nonequilibrium wetting [161], or sandpiles [162, 163]. See [155] and
[156] for recent reviews. Classifying these transitions into universality classes
is a first priority theoretical task. As conjectured by Janssen and Grassberger
[164] some time ago and corroborated by a huge number of theoretical studies
and computer simulations, systems exhibiting a continuous transition into a
unique absorbing state with no extra symmetry or conservation law belong to
one and the same universality class, namely that of directed percolation (DP).
At a field theoretical level this class is represented by the Reggeon field theory
(RFT) [165].

This universality conjecture has been extended to include multicomponent
systems [166] and systems with infinitely many absorbing states [167, 168]. On
the other hand some other, less broad, universality classes of systems with ab-
sorbing states have been identified in recent years. They all include some extra
symmetry or conservation law, foreign to the DP class. For example, if two
symmetric absorbing states exist (which in many cases is equivalent to having
activity parity-conservation [169]), the universality class is other than DP, and
the corresponding field theory differs from RFT [170]. A second example is
constituted by systems with absorbing states in which fluctuations occur only
at the interfaces separating active from absorbing regions, but not in the bulk of
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compact active regions (examples of this are the voter model or compact directed
percolation [171]). In this case the exponents are also non DP. A third and last
example is that of systems with many absorbing states in which the activity
field is coupled to an extra conserved field. This type of situation appears, for
example, in conserved sandpile models, and has been recently shown to define
a new universality class [162, 172]. Apart from these and some few other well
known examples1, systems with absorbing states belong generically into the
DP universality class.

Recently, it has been proposed a very simple, biologically motivated model,
exhibiting a continuous transition into an absorbing phase,[176] and claimed
that this model shows a sort of “superuniversality”, i.e. in both one and two
dimensions the model has the same critical exponents, namely those of one-
dimensional DP. Consequently, the system has been hypothesized to show a
rather strange dimensional reduction2 in two dimensions. This conclusion, if
confirmed, would break the Janssen-Grassberger conjecture, since it is not clear
that any new symmetry or extra conservation law is present in this model. In
what follows we show what are the physical reasons why this model does not
show directed percolation behavior: the presence of what we called superab-
sorbing sites is at the basis of this anomalous behavior. We will discuss also
how DP can be restored by changing the geometry of the lattice on which the
model is defined.

8.2 The Model

The model (called from now on Lipowski model) is defined operationally as
follows: let’s consider a square d-dimensional lattice. At a bond linking neigh-
boring sites, D �fl , a random variable ùgMù BàW is assigned. Different bonds are
uncorrelated, and ù is distributed homogeneously in the interval F � � � J . At
each site D one defines F B as the sum of the four bonds connecting this site to
its four nearest neighbors. If F B is larger that a certain threshold, F (that acts
as a control parameter) the site is declared active, otherwise the site is inactive
or absorbing. Active sites are considered unstable; at each step one of them
is chosen randomly and its four associated ù B	W bond variables are replaced
by four freshly chosen independent random values (extracted from the same
homogeneous probability distribution), and time is incremented by an amount% o(|�Z5ÿé � o 
 , where é � o 
 is the number of active sites at that time. Critical expo-
nents are defined as it is customary in the realm of absorbing phase transitions
[155].

It is clear that for small values of F , for instance F æ� , the system will al-
ways be active, while for large enough values of F an absorbing configuration

1For example, long range interactions do also change the universality.[173]
2Dimensional reduction is not a new concept in statistical physics. For example, quenched

disordered magnetic systems were some time ago claimed to behave in d dimensions as their
corresponding pure counterparts in

� ¥Ú¤ dimensions [174]. However, this results, is at odds with
simple domain wall arguments, and has recently proven to fail [175].
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(with F B � F for all sites D ) will be eventually reached. Separating these two
regimes we observe a critical value of F , F � , signaling the presence of a contin-
uous phase transition. In

ë �� F ��� ��� 5�5�� � [176], while for
ë  �

we findF � ��~� Z
; � 5�Z � Z 
 . As bond variables are continuous it is obvious that there is
a continuous degeneracy of the absorbing state (i.e. infinitely many absorbing
configurations).

In the one dimensional case, all the measured critical exponents take the
expected DP values [176], compatible with theoretical predictions for systems
with many absorbing states [168, 177]. The only discrepancy comes from the
fact that the spreading exponents Î and � (see section 8.3.2 for definitions) ap-
pear to be non-universal, but the combination ÎPL�� coincides with the DP
expectation. This non-universality in the spreading is however generic of one-
dimensional systems with an infinite number of absorbing states [178, 177],
and therefore it does not invalidate the conclusion that the system behaves as
DP.

In two dimensions the only measured critical exponent in [179] is the order
parameter one, > , which has been reported to take a value surprisingly close to
the one dimensional DP expectation, > � ��� � V [179]. Based on this observation
it has been claimed that the system exhibits a sort of dimensional reduction.
This possibility would be very interesting from a theoretical point of view and
elucidating it constitutes the main original motivation of what follows.

Finally let us mention that for spreading experiments it was found that, as
happens generically in two-dimensional systems with many absorbing states
[177, 180], the critical point is shifted, and its location depends on the nature of
the absorbing environment the initial seed spreads in. In particular, the annular
type of growth described in [179] in the case of spreading into favorable me-
dia is typical of spreading in two-dimensional systems with many absorbing
states, and it is well known to be described by dynamical percolation [177, 180].

8.3 Model Analysis

In order to obtain reliable estimations for > and determine other exponents, we
have performed extensive Monte Carlo simulations in

ë  �
combined with

finite size scaling analysis, as well as properly defined spreading experiments.

8.3.1 Finite Size Scaling Analysis

We have considered square lattice with linear dimension
-

ranging from 32
to 256. Averages are performed over a number of independent runs ranging
from �#� � to �#� > depending on the distance to the critical point and on sys-
tem size. The first magnitude we measure is the averaged density of active
sites, ê �Ù-3� F � o 
 , which for asymptotically large times converges to a stationary
value ê �Y-�� F 
 . Observe that for small system sizes the system always reaches
an absorbing configuration in finite time and therefore the only truly station-
ary state is ê°�� . In order to extrapolate the right asymptotic behavior in the
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active phase one has to determine ê �Y-�� F 
 averaged over the runs which have
not reach an absorbing configuration. A peculiarity of this system is that its
convergence towards a well defined stationary state is very slow, fluctuations
around mean values are extremely persistent and, therefore, a huge number
of runs is needed in order to obtain smooth evolution curves. Owing to this
fact, numerical studies are rather costly from a computational point of view.
The reasons underlying such anomalously long lived fluctuations will be dis-
cussed in forthcoming sections. The maximum times considered are ; ¸ �#� >
Monte Carlo steps per spin; this is one order of magnitude larger than simu-
lations presented in [179]. Near the critical point the relaxation times are very
large (larger than �Z� > ) and, in order to compute stationary averages, transient
effects have been cut off. We observe the presence of a continuous phase tran-
sition separating the active from the absorbing phase at a value of F � �~� Z
; .

Assuming that finite size scaling holds [181] in the vicinity of the critical
point point F � , we expect for values of F � F � (i.e. in the active phase)ê �Y-3� F 
 ² - <:w�Ç�� ü ¾ �Y- 5 % <�� ü 
 (8.1)

where
% �� F � F � � . Right at the critical point, this corresponds to a straight

line in a double logarithmic plot of ê �Ù-3� F 
 vs.
-

. In Fig. 8.1 it can be seen that,
in fact, we observe a straight line as a function of ���Tî �Y-3
 for F ���� Z
; � 5�Z � Z 

which constitutes our best estimation of F � . This finite size analysis allows us to
determine F � with much better precision than in the previous estimations [179].
From the slope of the previous log-log plot we measure >T5 ì / ���� <kV ����
 which
is quite far from both, the one-dimensional DP exponent >T5 ì / b��� � < � � � � 
 ,
and the two-dimensional value ��� V � < � < 
 .

We have considered the larger available system size,
-  � < � , and studied

the time decay of a fully active initial state for values of F close to F � in the active
phase (see Fig. 8.2). The stationary values for large values of o should scale asê �Y-3� F 
 ² %N�Y-�
 w . From the best fit of our data (see Fig. 8.3) we determine bothF � �Y-  � < � 
�� �~� Z
; � 5
< and >Ï���� 5�� �&��
 .

At the critical point, ê � F  F ��� o 
 ²�o < 7 . From the asymptotic slope of the
curve for F � �Y-  � < � 
 in Fig. 8.2, we measure

, æ��� � VI< � �+< 
 . In this way, we
have already determined three independent exponents. From these, using scal-
ing laws, we can determine others, as for example ì / �>T5 � >T5 ì /(
 À��� �~���Ù� 

(to be compared with the DP prediction �~� � � in

ë M� and ��� V=Z�Z in two dimen-
sions [182]).

To further verify the consistency of our results we have considered ê �Y-3� F 

computed for different values of F and

-
, and assumed that ê �Y-3� F 
	- w�Ç�� ü , de-

pends on F and
-

through the combination
- =ÑÇ�� ü % [155]. In Fig. 8.4, we show

the corresponding data collapse which is rather good when the previously re-
ported values of > and ì / are used. In the inset we verify that the data points
are broadly scattered when one-dimensional DP exponent values are consid-
ered, showing that the dimensional reduction hypothesis is not valid. Data col-
lapse is neither observed using two-dimensional DP exponents; this provides
a strong evidence that we are in the presence of anomalous (non-DP) scaling
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Figure 8.1: Log-log plot of the density of active sites as a function of L (the linear
system size) for different values of � : from top to bottom, JIH NI¦I�UNID , JIH NI¦I�){3D , JUH NI¦I�+{3N ,JIH N=¦U�){IK , and JIH N=¦U��K3D respectively. The straight solid line corresponds to the critical
point � z BhJIH NI¦I�){=N¶ÇiN�É .
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Figure 8.2: Log-log plot of the time evolution of the density of active sites for L B�zIK=�
and different values of � in the active phase, namely, from top to bottom ��B�JIH N=¦
J�{3N ,JIH N=¦+{�D)z , JUH N=¦�KUz�d , JIH N=¦)K3¦Id , JUH NI¦I�
J@� , JIH NI¦I�UNID , JUH N=¦I��N3d , and JUH NI¦I�+{�D respectively. From the
slope of the straight dashed line we estimate *²B�D�H z�d+K ÇxJ�K¶É .
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Figure 8.3: Log-log plot of the stationary density of active sites as a function of the
distance to the critical point, for L�ByzIK=� and different values of � in the active phase
(the same values reported in Fig 8.2). The best fit gives ½�B¶D�H {�D�ÇWz¶É and � z Ç�LýB$zIK=��É¹ÖJUH NI¦I�+{=K . Filled (empty) circles are used to represent scaling (not scaling) points.

behavior. Finally, let us remark that the observed scaling does not extend over
many decades for any of the computed steady state magnitudes. Much better
scaling is observed for spreading exponents as will be shown in the following
section.

8.3.2 Spreading Experiments and Superabsorbing States

In order to further verify and support our previous conclusion we have per-
formed also spreading experiments as it is customarily done in systems with
absorbing states [183, 155]. These consist in locating a seed of activity at the
center of an otherwise absorbing configuration, and studying how it spreads
on average in that medium [155]. In the absorbing phase the seed dies ex-
ponentially fast, propagates indefinitely in the active phase, while the critical
point corresponds to a marginal (power law) propagation regime [155].

As said before, it is well established that two-dimensional systems with in-
finitely many absorbing states show some peculiarities in studies of the spread-
ing of a localized activity seed. The absorbing environment surrounding the
seed can either favor or un-favor the propagation of activity depending on its
nature (see [177, 180] and references therein). For the, so called, natural ini-
tial conditions [155] the critical point for spreading coincides with the bulk
critical point, and standard DP exponents are expected. In order to generate
such natural configurations one could start the system with some highly ac-
tive configuration and run the system right at the critical point; once it reaches
an absorbing configuration it can be taken as a natural or self-generated en-
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Figure 8.4: Log-log data collapse for the density of active sites: �! uÇ�L�j0Û�ÉGB��Ç�L�j0Û�ÉèL ô"��# ü and Û  B ÛQL  ���# ü . Using the obtained exponent values, ½���$ � ÖíD
H K3d ,
and $ � Ö¶D
H �U§ , a reasonably good data collapse is observed. In the inset we show an at-
tempt to collapse data using one-dimensional DP exponent values. There is no evidence
of scaling neither in this case nor using two-dimensional DP exponents.

vironment for spreading. An alternative, more efficient way of proceeding,
inspired in sandpile systems [162], is as follows. One considers an arbitrary
absorbing configuration and runs a spreading experiment. Once the epidemic
(or “avalanche” in the language of self-organized criticality [162]) is over, one
considers the newly reached absorbing configuration as initial state for a new
spreading experiment avalanche. After iterating this process a number of times
the system reaches a statistically stationary absorbing state: the natural one (see
[162] and references therein). Using this absorbing state for spreading leads to
DP exponent values (and critical point) in systems with many absorbing states
as for example the pair contact process [178, 184].

By following this procedure we have found a very peculiar property of this
model, that we believe to be at the basis of its deviating from DP. If the initial
seed is located for all avalanches in the same site (or small group of localized
sites), as is usually the case, after a relatively small number of avalanches the
system reaches an absorbing configuration such that it is impossible to prop-
agate activity for any possible forthcoming avalanche beyond a certain closed
contour. For example, configurations as the one showed in Fig. 8.5.a are gener-
ated. The four sites at the center are the ones at which activity seeds are placed
in order to start avalanches. White sites are active and grey ones are absorbing.
At each marked-in-black site, the sum of the three (black) bonds connecting it
to sites other than a central one is smaller than F � �P������ Z�; � 5�Z � Z 
 . In this way,
regardless the value of the bond connecting the site to the central region the site
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(b)

(a)

(c)

Figure 8.5: Different frozen configurations of superabsorbing (black) sites. White
(grey) color stands for active (absorbing) sites. (a) Blocking configuration for spreading
from the central cluster of four sites. Black sites cannot change their state whatever the
state or dynamics inside the cluster might be. Black bonds remain also frozen. (b) Span-
ning frozen cluster of superabsorbing sites. (c) Almost-frozen cluster of superabsorbing
sites. This, and analogous structures, can be destabilized from the outside corners.

remains inactive: it is a superabsorbing site. The existence of “inactive forever”
sites have been already pointed out in [179, 185]. In the configuration showed
in Fig. 8.5.a activity cannot propagate out of the “fence” of superabsorbing
sites: the cluster of superabsorbing sites will remain frozen indefinitely, and
activity cannot possibly spread out. All avalanches will necessarily die after a
few time steps. This type of blocking structure is quite generic, and appears in
all experiments after some relatively short transient.

In conclusion, this way of iterating spreading experiments leads always to
blocking closed configurations of superabsorbing sites instead of driving the
system to a natural absorbing configuration.

Observe that some activity put out of a blocking fence of sites in Fig. 8.5.a
could well affect any of the external bonds of the superabsorbing sites (the
dangling black bonds in Fig. 8.5.a), converting the corresponding site to an
absorbing or even an active one. Therefore, in order to overcome this diffi-
culty of the frozen blocking configurations and be able to perform spreading
experiments in some meaningful way, we iterate avalanches by locating the
initial seed at randomly chosen sites in the lattice. In this way there is always
a non-vanishing probability of destroying blocking “fences” by breaking them
from outside as previously discussed. Measurements of the different relevant
magnitudes are stopped when the system falls into an absorbing configuration
or alternatively whenever a linear distance

- 5 � from the avalanche origin is
reached. Observe that in the second case the dynamics has to be run further
in order to reach a new absorbing configuration at which launching the next
avalanche.
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Figure 8.6: Numerical results for spreading experiments. ) § Ç>©hÉ (topmost curve), � g Ç>©hÉ
(second curve from above), ��Ç>©hÉ (third curve from above), and

� Ç>©CÉ (bottom curve).
From the slopes we estimate %ÆBFD�H §I��ÇxJCÉ and &v%¶ê�B�D
H d
J4ÇxJhÉ , &TB�D
H D�K ÇxJhÉ and êÆBD�H �I��ÇxJCÉ respectively.

We monitor the following magnitudes: the total number of active sites in all
the runs as a function of time

IÏ� o 
 (we also estimate
I � � o 
 defined as the aver-

age number of active sites restricted to surviving runs), the surviving probabil-
ity $ � o 
 , and the average square distance from the origin, � � � o 
 . At the critical
point these are expected to scale as

IÏ� o 
 ²�o ÿ , $ � o 
 ²�o < · and � � � o 
 ²�o � . Results
for this type of measurements are reported in Fig. 8.6.

We obtain rather good algebraic behaviors at the previously estimated crit-
ical point, F � , confirming that the iteration-of-avalanches procedure leads the
system to a natural absorbing environment. Slightly subcritical (supercritical)
values of F generate downward (upward) curvatures in this plot for all the four
magnitudes. Our best estimates for the exponents at criticality are: öÊ���� ����� � 
 ,Îøû��� �=< � � 
 , ��û��� �~��� � 
 (see Table 8.1). To double check our results we also
plot

I � � o 
 , which is expected to scale with an exponent Î?L[� . An independent
measurement of its slope in the log-log plot gives ÎÏLá� û��� V�� � � 
 , in perfect
agreement with the previously obtained results.

We can use these values to verify the hyperscaling relation [186, 177]ÎúLG�¨L ,  ë ö� � (8.2)

Substituting the found values for ö and ÎªLÍ� we obtain
,"� ��� � < ����
 , compatible

within error bars with the previously determined value
, ���� � VI< � �+< 
 .

One more check of the consistency of our results by using scaling laws is
the following. As ö" � ì / 5 ì 2 [182], we can estimate ì 2 from ö and ì / . Then,
using ì 2 and the fact that

, �>T5 ì 2 we obtain
, Á��� � V � � 
 , again in excellent

agreement with the directly measured value.
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Model > >T5 ì / , Î � ö
Lipowski ��� 5�� �&��
 ��� <kV ���z
 ��� � V=< � �@< 
 ��� �3< � � 
 0.66(1) ��� �~��� � 

DP,

ë M� ��� � V � ��� � < � �����@< � ��� Z��+Z ��� �+< � �~� ��� <
DP,

ë  � ��� <k;3Z ��� V � < ��� 5
<�� ��� �~��� ��� 5�<�� �~���+Z �
Table 8.1: Exponent values for the two dimensional Lipowski model and directed per-
colation in both one and two dimensions. Figures in parenthesis denote statistical un-
certainty (note that error-bars are statistical errors coming from power-law fittings, and
therefore do not include eventual systematic corrections to scaling).

In Table 8.1, we present the collection of exponents and compare them with
DP values in both one and two dimensions [182]. There is no trace of dimen-
sional reduction: this model does not behave, at least up to the scales we have
analyzed, as any other known universality class.

8.3.3 More about Superabsorbing States

Let us recall our definition of superabsorbing states. A site, three of whose
associated bonds take values such that the sum of them is smaller that F �|� ,
cannot be activated from the remaining direction by neighboring activity. We
say that this site is superabsorbing in that direction (or it is in a superabsorb-
ing state). A site can be superabsorbing in one or more than one directions.
Still a site in a superabsorbing state can obviously be activated by neighboring
activity in any of the remaining directions (if any).

Having stated the existence of frozen clusters in standard spreading exper-
iments (when initialized from a fixed localized set of sites), one may wonder
whether there are similar frozen structures in simulations started with an ho-
mogeneous initial distribution of activity, or in the modified type of spreading
experiments we have just used (i.e. allowing the initial seed to land at a ran-
domly chosen site) in the neighborhood of the critical point.

In principle, for any finite lattice, the answer to that question is affirmative.
In Fig. 8.5.b we show the shape of a frozen cluster of superabsorbing sites: any
of the sites in it is superabsorbing with respect to the corresponding outward
direction, and it cannot be “infected” from any of the other directions as neigh-
boring sites are similarly superabsorbing. If a cluster like that is formed (or
put by hand on the initial state) it will remain superabsorbing forever. How-
ever the probability to form such a perfectly regular chain is extremely small
for large system sizes. Observe also that in order to have a completely frozen
two-site broad band structure it has to be unlimitedly long (or closed if peri-
odic boundary conditions are employed). If instead it was finite, then sites at
the corners would be linked to two external susceptible-to-change bonds and,
therefore, themselves would be susceptible to become active: they would not
be blocked forever. In this way any finite structure of superabsorbing sites in
the square lattice is unstable: it can be eaten up (though very slowly) by the



8.3 Model Analysis 175

Figure 8.7: Snapshot of a configuration in a NUzX�MN�z lattice in the stationary regime for
a value of � close to the critical point. White color denotes activity, black corresponds to
superabsorbing sites, while grey stands for absorbing sites. Observe that superabsorb-
ing sites percolate through the lattice.

dynamics, and is therefore not fully frozen. For instance, the cluster of super-
absorbing sites represented in Fig. 8.5.c is almost-frozen, but not really frozen
as it may lose its superabsorbing character from the outside corners as previ-
ously described. Analogously, any other cluster shape of superabsorbing sites
may be destabilized from its outside corners.

In conclusion, frozen clusters of superabsorbing sites do not appear sponta-
neously. However, almost-frozen regions do appear and may have extremely
long life spans, specially close to the critical point where activity is scarce, and
therefore the possibility of destabilizing them is small. In order to give an idea
of how frequently superabsorbing sites appear we present in Fig. 8.7 a snap-
shot of a typical system-state near the critical point.

White corresponds to active sites, while the remaining sites are absorbing:
in black we represent superabsorbing (in one or more than one directions)
sites, while simple absorbing (not-superabsorbing) sites are marked in grey
color. Observe that superabsorbing sites are ubiquitous; in fact they percolate
through the system. Among them, about one forth are superabsorbing in all
four directions.

Even though none of the clusters of superabsorbing sites is completely
frozen, and in principle, activity could reach any lattice site, the dynamics is
glassy [187] in some sense. For instance, imagine an active region separated
from an absorbing region by a line of superabsorbing-in-the-direction-of-the-
activity sites. In order to reach the absorbing region, activity has to circumvent
the superabsorbing barrier. But near the critical point, where activity is scarce,
barriers of superabsorbing sites are intertwisted among them forming struc-
tures that, even if not completely frozen, are very unlikely to be infected: activ-
ity has to overcome them progressively in order to reach the interior of super-
absorbing regions. This resembles some aspects of glassy systems for which
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degrees of freedom are hierarchically coupled and, at observable timescales,
they may appear effectively frozen [187].

This phenomenology is certainly very different from DP, and it is the rea-
son why the relaxation towards stationary states is so slow, and why deviations
from mean values are so persistent in numerical simulations. In particular, as
superabsorbing regions are long lived, the time required for the system to self-
average is very large, and as near the critical point the probability of reaching
an absorbing state is large, in practice, the system does not have the time to
self-average. Consequently, a huge amount of independent initial states and
runs have to be considered in order to measure smooth well behaved physical
magnitudes [188]. We strongly believe that this type of pathological dynamics
is responsible for the departure of the Lipowski model from the DP universal-
ity class in two dimensions.

At this point one might wonder whether the one-dimensional version of
this model is essentially different. Or in other words, why (one-dimensional)
DP exponents are observed in

ë À� [176]?. The answer to this question is not
difficult if one argues in terms of superabsorbing sites. First of all notice that
in
ë  �

, F � `e� . This means that just by changing one bond, whatever the
value of the output is, the site can stay below threshold if the other three bonds
sum less than F � �ø� ; this is to say superabsorbing states do exist at criticality.
However in

ë û� , F � Á��� 5�5�� � �û� . In this case by changing one bond value
it is always possible to activate the corresponding site: superabsorbing sites
do not exist in

ë �� at the critical point3. Once the “disturbing” ingredient
is removed from the model, we are back to the DP class as general principles
dictate.

8.3.4 The Honeycomb Lattice

In order to further test our statement that superabsorbing states are respon-
sible for the anomalous scaling of the two-dimensional Lipowski model, we
have studied the following variation of it. We have considered the model de-
fined on a honeycomb lattice (with three bonds per site), and performed Monte
Carlo simulations. In this case there is the (geometrical) possibility of having
completely frozen clusters of superabsorbing sites (see Fig. 8.8).

The main geometrical difference from the previous case comes from the fact
that here cluster-corners are linked only to one external bond, and therefore are
more prone to form frozen clusters. In principle, before performing any numer-
ical analysis, there are two alternative possibilities: either the critical point is
located at a value of F smaller than � or larger than � . In the first case, there
would be no superabsorbing sites (in analogy with the one-dimensional case);
in the second case pathologies associated with superabsorbing sites should be
observed. The case F � |� would be marginal. Finite size scaling analysis indi-
cate the presence of a continuous phase transition located at F � �~� �~� �C� (very

3Observe that for values of the control parameter ')( ¤ , well into the absorbing phase, super-
absorbing sites show up also in

� Ü ¤ ; but they do not affect the critical region.
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Active sites

Absorbing sites

Superabsorbing
sites

Figure 8.8: Frozen cluster in the honeycomb lattice. This type of frozen structure of
superabsorbing sites remains indefinitely superabsorbing at the critical point. Black:
superabsorbing sites. Grey: absorbing sites. White: active sites.

nearby the marginal case, but significatively larger than F |� ).
For Monte Carlo simulations, we have employed lattices of up to a maxi-

mum of
� < �"¸°� < � sites. All the observed phenomenology is perfectly compat-

ible with two-dimensional DP behavior. The dynamics does not show any of
the anomalies described for the square lattice case. In particular, from the de-
pendence of the stationary activity density on system size we evaluate >T5 ì / ��� ;~� � � 
 ; from the time decay at criticality

, M��� 5�< � � 
 , and finally >����� <�V ����
 ;
fully confirming consistency with two-dimensional DP behavior. This result
seems to be in contradiction with the two alternative possibilities presented
above. Let us now discuss why this is the case.

As the coordination number is Z in this case, the sum of two bond-values
has to be smaller than F � �� � ��� �~� �4� in order to have a superabsorbing site in
the direction of the remaining bond at criticality. As the two bonds are indepen-
dent random variables, the probability of creating a superabsorbing site if the
two of them are changed, is fewer than ��� < %, and the probability to generate
frozen clusters (composed by six neighboring superabsorbing sites as shown
in Fig. 8.8), is negligible at the critical point. In fact, we have not been able
to observe any of them in our simulations. This means that one should study
extremely large system sizes and extraordinarily long simulations in order to
see anomalies associated with superabsorbing sites, otherwise, for any feasible
simulation the behavior is expected to be DP-like. The observation of DP expo-
nents in this case strongly supports the hypothesis that superabsorbing states
are at the basis of the anomalous behavior of the model on the square lattice.

However, strictly speaking, the system should exhibit a (unobservable) first-
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order phase transition at F Á� in the thermodynamic limit. Indeed, for values
of F larger than � there is a finite, though extremely small, probability of cre-
ating frozen clusters of superabsorbing sites (as the one in Fig. 8.8). As this is
an irreversible process, after some (divergently long) transient there would be
a percolating network of frozen clusters of superabsorbing sites, and the only
possible stationary state would be an absorbing one with zero activity. On the
other hand, for values of F smaller than unity, the probability of creating su-
perabsorbing sites is strictly zero, and there will be a non-vanishing density of
activity. As the density at F M� , almost independent of system size, is ê � �����); ,
the transition is expected to be discontinuous, and therefore the DP transition
observed in our simulations is merely a finite size effect, and should disappear
for large enough sizes and long times. In any case, this first order transition is
unobservable computationally.

8.4 Conclusions and Outlook

Summing up, we have shown that the two-dimensional Lipowski model does
not belong to any known universality class. We have measured different criti-
cal exponents by running Monte Carlo simulations started from homogeneous
initial states and also by performing spreading experiments. In any case, we
find absolutely no trace of dimensional reduction, and there is neither evidence
for the system to behave as two-dimensional DP. Instead, a novel scaling be-
havior is observed. The main relevant physical ingredient of this class is the
presence of superabsorbing sites, and almost-frozen clusters of superabsorb-
ing sites which slow down enormously the dynamics.

The previous conclusion is strongly supported by two other observations:
(i) the regular DP behavior observed in the one-dimensional version of the
model for which superabsorbing states do not appear at criticality, and (ii) the
two-dimensional DP behavior observed for the two-dimensional model de-
fined on a honeycomb lattice, for which the probability of generating super-
absorbing sites at criticality is almost negligible.

In general, superabsorbing sites can either arrange into completely frozen
clusters or not depending on dimensionality, coordination number and other
system details. Let us distinguish three main cases:7 When completely frozen clusters of superabsorbing sites appear below

(or above) a certain value of the control parameter but not above (below),
first order transitions are expected (as occurs in the multiplicative model
discussed in Appendix D [185]).7 If completely frozen clusters do not appear at criticality, but instead almost-
frozen clusters are present, we expect anomalous behavior (as occurs in
the original Lipowski model [179]).7 If neither frozen nor almost-frozen clusters are observed at criticality (as
is the case for the one dimensional version of the model [176]) we expect
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standard directed percolation behavior.

There are two possible follow-ups of this work. First, it would be worth
studying in more realistic situations as, for instance, in surface catalysis (dimer-
dimer or dimer-trimer) models [167] whether effects similar to those described
in this chapter play any relevant role. In particular, for those models depend-
ing upon lattice and particle geometry there are cases in which activity cannot
propagate to neighboring regions, but is constrained to evolve following cer-
tain directions or paths. It would be rather interesting to sort out whether
anomalies reported for those models [167] are related to the existence of super-
absorbing states.

On the other hand, from a more theoretical point of view, an interesting
question is: what is the field theory or Langevin equation capturing the previ-
ously described phase transition with superabsorbing states? and, how does
it change with respect to Reggeon field theory?. Establishing what this theory
looks like, would clarify greatly at a field theoretical level the effect of superab-
sorbing states on phase transitions, and would permit to shed some light on the
degree of universality of this anomalous phenomenology. Our guess is that a
Reggeon field theory [165, 164] with a spatio-temporal dependent anisotropic
Laplacian term (which, for example, would enhance, un-favor or forbid dif-
fusion from certain sites in certain directions) could be a good candidate to
describe this new phenomenology. Analogously to what happens in field the-
oretical descriptions of other systems with many a absorbing states [167, 177],
the inhomogeneous Laplacian-term coefficient should be described by a sec-
ond physical field coupled to the activity field in such a way that its fluctua-
tions would vanish upon local absence of activity. Further pursuing this line
of reasoning is beyond the scope of the present chapter. As long as this pro-
gram has not been completed, is not safe to conclude unambiguously that the
anomalies described in this chapter are relevant in the limit of extremely large
times and system sizes.
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Chapter 9

Heat Conduction and
Fourier’s Law in
One-Dimensional Systems

9.1 Introduction

A research on dynamics of nonequilibrium systems must include a reference
to transport phenomena. These dynamic processes appear ubiquitously in Na-
ture. Some classical examples are heat and mass transport in fluids (eg. boiling
water), diffusion, electric conduction, etc. Many natural systems can be un-
derstood and analyzed using the transport phenomena jargon, as for instance
atmospheric dynamics, oceanic currents, ion currents between cells, stellar con-
vection, traffic flow, social migration, diffusion of information, etc. These ini-
tially so different systems share certain common features. In general, they are
usually inhomogeneous, and typically show nonzero gradients of several mag-
nitudes, together with non–zero net fluxes carrying energy, mass and/or mo-
mentum through the system.

Classically, transport phenomena have been studied by Irreversible Ther-
modynamics, where these processes are analyzed in terms of conservation
laws, local entropy balance equations and the maximum entropy production
postulate. [79] This theory builds up using a series of phenomenological macro-
scopic laws based upon the proportionality among the fluxes and the thermo-
dynamical forces. Fick’s law of diffusion, Fourier’s law of heat conduction and
Ohm’s law of electric conduction, for instance, belong to this class of linear
phenomenological laws. Such laws are completely defined once certain pro-
portionality factors, called transport coefficients, are specified. Some of these
transport coefficients are the diffusivity, and the thermal and electrical conduc-
tivity (related, respectively, to the above mentioned laws). It has been shown
that the phenomenological laws of Irreversible Thermodynamics remain valid
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(i.e. reproduce experimental results) as far as the system under study stays
close enough to thermodynamic equilibrium, although the notion of “close
enough to equilibrium” is not clear.

On the other hand, nonequilibrium Statistical Mechanics is a theory which
aspire to describe macroscopic nonequilibrium phenomena (and, as a limiting
case, the equilibrium ones) starting from the microscopic description of Nature.
Therefore, a successful nonequilibrium statistical–mechanical theory should be
able to calculate microscopically, among other things, the transport coefficients
associated to the linear laws of Irreversible Thermodynamics, commonly ob-
served in Nature. Moreover, this theory should be capable to define precisely
the notion of “close enough to equilibrium” for a general system. Although
great advances have been made in the field, up to now there is no closed the-
ory for the mechanical–statistical description of nonequilibrium systems.

In order to further advance in the field, we must understand deeper the
microscopic mechanisms underlying irreversible processes. In particular, in
this chapter we want to investigate the microscopic basis of heat transport. The
corresponding linear phenomenological law of Irreversible Thermodynamics
associated to heat transport is Fourier’s law, which in its more general form
reads, 5 m �&�ª
 �� o �R�-UF � o 
  U� Ù F 	 U� �Ê�VUF � o 
kJ (9.1)

where
�Ê�VUF � o 
 is the temperature measured by a probe at position

UF at time o ,5 m ���¡
 is the specific heat per unit volume, and 	 is the thermal conductivity.
Notice that, in order to write down this equation, one should assume that no
mass transport and/or other mechanism different from heat conduction ap-
pears in the system. This diffusion–like equation describes the time evolution
of a macroscopic system whose initial temperature profile

�Ê�¥UF � o��� 
 c � ´ �-UF 

should be inhomogeneous. Alternatively, Fourier’s law (eq. 9.1) can be applied
to a homogeneous system in contact with heat reservoirs at time invariant tem-
peratures

� ç
. In the stationary state, the temperature profile should be solution

of the equation, U� Ù F 	 U� �R� UF � o 
kJ �� (9.2)

where Q�cM� 	 U� �Ê�VUF � o 
 is the stationary heat flux through the system. This law
has been extensively tested in experiments in fluids and crystals. However, we
do not understand yet many of its fundamental aspects. [190, 191]

In particular, derivation of Fourier’s law from a microscopic Hamiltonian
dynamics is still an open question. Moreover, writing eq. 9.1 we assume that
the state of the system is completely defined, from the macroscopic point of
view, by the local temperature field

�Ê� UF � o 
 at any time o . Such assumption
implicitly involves that the Local Thermodynamic Equilibrium (LTE) property
holds for the investigated system, which usually is far from clear. As a simple
picture of what LTE means, let us imagine our system divided up into many
small cells, large enough so each one contains a large (quasi–macroscopic) num-
ber of atoms, and at the same time small enough in order to be accurately de-
scribed by an (equilibrium) Gibbs measure at temperature

�Ê��UF � o 
 for each cell
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at position
UF . Thus, although the system is macroscopically inhomogeneous, lo-

cally thermodynamic equilibrium holds (in the sense of Gibbs measures). This
concept can be precisely defined using the Hydrodynamic Scaling Limit, where
the ratio of micro to macro scales goes to zero. [190]

Thus, many fundamental questions arise related to the microscopic under-
standing of heat conduction, as for instance: which are the necessary and suf-
ficient conditions in order to observe LTE in a system?, which is the interplay
among LTE, energy equipartition and heat transport?, which are the minimum
requirements a system must fulfill in order to obey Fourier’s law?, etc. In or-
der to answer all these question (and many other, equally interesting questions)
we must study simplified mathematical models of real systems. The study of
these simple models will give us a firm basis in order to understand the mi-
croscopic origin of heat conduction and the physical hypothesis underlying
Fourier’s law. As usual in Theoretical Physics, mathematical and computa-
tional simplicity drive us to consider low dimensional systems, namely one
and two–dimensional systems, which are comparatively much easier to han-
dle with than real three–dimensional ones.1 On the other hand, there is also
experimental motivation for studying heat conduction in low dimensional sys-
tems. As an example, let us mention anisotropic crystals, solid polymers, single
walled nanotubes, quantum wires, etc. [191]

In particular, heat transport in one–dimensional systems is nowadays a
highly interesting problem in the context of both non-linear dynamics and
non–equilibrium statistical physics. Its study has added new insights to the un-
derstanding of the microscopic origin of normal heat conduction, as we will see
below. Long ago, Peierls was the first one to identify a mechanism which gives
rise to a finite thermal conductivity. He proposed a successful perturbative
theory, based on a phonon scattering mechanism, in order to explain thermal
conductivity in solids. [192] In electrically insulating solids, heat is transmitted
by lattice vibrations. In that case, it is useful to visualize the solid as a gas of
interacting phonons. These phonons (elementary lattice excitations) store and
transport energy through the system. In a perfect harmonic crystal, phonons
behave as a gas of non–interacting particles. Hence, energy flow through the
system without any loss, so the energy current (assuming that the system is
subject to a temperature gradient) does not decrease with crystal length. There-
fore, a perfect harmonic crystal should have an infinite thermal conductivity.
However, a real crystal presents anharmonicities which give rise to phonon
interactions, i.e. phonons scatter among them. In these collisions momentum
is conserved modulus a vector of the reciprocal lattice. We thus can classify
phonon collisions in two distinct classes: those which perfectly conserved mo-
mentum (normal process), and those where the difference between the initial
and the final momentum is a vector

U} of the reciprocal lattice (umklapp process).
Peierls theory shows that, in absence of umklapp processes, the thermal con-

1In spite of their apparent simplicity, low dimensional systems present some unusual features
which usually do not appear in their three–dimensional counterparts. For instance, transport co-
efficients in low dimensional systems may not even exist.
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ductivity of a solid is infinite. Consequently, this theory predicts that we do
not expect a finite thermal conductivity in monoatomic one–dimensional lat-
tices with nearest neighbor interactions. However, as we will see below, other
mechanisms are possible which give rise to normal heat conduction in these
one–dimensional chains. More generally, it has been shown that any integrable
Hamiltonian system must have a divergent thermal conductivity, since its as-
sociated normal modes behave as a gas of non–interacting phonons, carrying
energy from the hot to the cold sources without any loss.[191] On the other
hand, there are one–dimensional non–integrable systems, to which Peierls the-
ory does not apply directly, which also show a divergent thermal conductivity,
as for instance the Fermi–Pasta–Ulam– > model [193].

Many recent studies have focused their attention on heat transport in sev-
eral one–dimensional systems, with the hope of identifying the relevant mech-
anisms underlying normal (finite) heat conduction. Some of these models yield
a finite thermal conductivity, while others yield an infinite 	 . Nowadays, the
general belief is that integrability,2 total momentum conservation and total
pressure are the relevant ingredients which define whether a systems presents
normal heat transport or, instead, anomalous thermal conductivity. In partic-
ular, it has been shown that the non–integrability is a sufficient condition in
order to obtain a non–trivial temperature profile, although this property is not
sufficient to guarantee normal heat conduction. [194] Furthermore, there are
one–dimensional systems with zero total pressure and translational invariant
Hamiltonian which show normal heat conduction. On the other hand, it has
been shown that the effect of local potentials, which break the Hamiltonian
translational invariance and simulate interactions of the one–dimensional sys-
tem with its embedding higher–dimensional space, is crucial in order to guar-
antee normal heat transport. Local potentials break total momentum conser-
vation, thus identifying this symmetry as a relevant one in the heat transport
problem. It is actually believed that one should not expect in general a finite
thermal conductivity in one–dimensional systems with momentum conserving
interactions and non–zero pressure. [195]

The last statement has been formally established in a recent theorem due
to Prosen and Campbell [196], which affirms that “in 1D systems, conserva-
tion of total momentum implies anomalous conductivity provided only that
the average pressure is non-vanishing in thermodynamic limit”. The goal of
this chapter is to show a counterexample to the above theorem. We introduce
a system that, although its particle interaction conserves momentum and it ex-
hibits a nonzero pressure, the energy behavior has a diffusive character and
Fourier’s law holds, thus implying a finite thermal conductivity. Therefore, we
think that in one dimensional systems with nonzero pressure, the conservation
of momentum does not seem to be a key factor to find anomalous heat trans-
port. We think that there are other cooperative mechanisms that can do the job
of the local potentials. As we will see below, maybe systems having degrees

2A system with Ä degrees of freedom is integrable if there exists a canonical transformation
such that the system can be described by Ä conjugated action–angle canonical coordinates. Hence,
an integrable system with Ä degrees of freedom will have Ä constants of motion.
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of freedom that acquire easily energy but release it in a very long times scale
have, in general, normal thermal conductivity. On the other hand, and sup-
porting our results, there are strong evidences (which we will describe later)
pointing out that Prosen and Campbell’s theorem is empty, in the sense that
all the calculations are correct, but they do not predict anything about system’s
thermal conductivity.

The structure of this chapter is as follows. In section 9.2 we present our
one–dimensional model, together with the boundary heat baths used, explain-
ing carefully their properties and the reasons underlying our choices. In Sec-
tion 9.3 we describe the numerical results obtained. There we study the system
from several perspectives, all of them pointing out the finiteness of thermal
conductivity in the model in thermodynamic limit, and thus the validity of
Fourier’s law in this system. Finally, in Section 9.4 we summarize our results
and present the conclusions, paying special attention to the fundamental im-
plications that our observations have on the microscopic understanding of heat
conduction.

9.2 One Dimensional Model of Heat Conduction

Our model consists in a one–dimensional chain of interacting particles subject
to a temperature gradient, which induces a heat flux from the hot extreme to
the cold one. In a line of length

-
, there are

I
point particles of different masses

interacting exclusively via elastic collisions. In order to minimize the finite size
effects, the particles have only two different masses and they alternate along
the line, i.e. + � ¹ <0= |� and + � ¹9 � ��L � < 
 5 � with �:�� � ��� � �1I 5 � . We have cho-
sen the masses of the even particles to be the most irrational number (golden
number) in order to minimize possible periodicities, resonances or non-ergodic
behaviors. At the extremes of the line there are thermal reservoirs at fixed (time
invariant) temperatures

� = |� and
� �  � at õú�� and õú - , respectively.

We simulate the reservoirs by using the following deterministic process:
each time particle � (

-
) hits the boundary at õÏ|� (õ  - ) with velocity ÷ , the

particle is reflected with the velocity modulus

÷ s  G � �+ = �  � > = � �3� ln ó �9��í < * , ßúù àù ) , ß » à m ù ô H =�Ç � (9.3)

where > = � �3� ��#5 � = � �3� (see Fig. 9.1). This reversible and deterministic heat
bath is due to H. van Beijeren (private communication). This map emulates
a true heat bath. Other mechanisms exist that emulate the presence of true
heat baths, as for example stochastic thermal reservoirs, where the particle col-
liding with the end wall returns with a velocity modulus randomly extracted
from a Maxwellian distribution for the corresponding temperature. In gen-
eral the correct, rigorous procedure should require studying infinite systems,
but this is usually not feasible, and hence one must look for alternative, effec-
tive implementations of a thermal reservoir, as the one chosen. These effective
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Figure 9.1: Graphic representation of the deterministic heat bath scheme. Notice that
when the particle reaches the end wall with a large velocity, it is reflected with low
velocity, and reciprocally. This thermal reservoir generates thermal equilibrium.

heat baths must thermalize the system exactly as a real semi–infinite heat bath
should do, since it has been shown [197] that the coupling between the sys-
tem and the thermal reservoirs dramatically affects the physical properties of
the system, even in the Thermodynamic Limit. Needless to say that we tested,
as a preliminary step, that our deterministic heat bath generates an equilib-
rium distribution (Gibbs measure) starting from a completely random state,
and thus correctly simulates a true thermal source. On the other hand, the
deterministic thermal reservoir shows a very interesting property: it is time
reversible. Hence, dissipation and irreversibility appear intrinsically in the
system, and not as a consequence of the randomness introduced by stochas-
tic thermal reservoirs. Furthermore, this type of heat bath guarantees that our
system is completely deterministic, and thus the tools from non-linear system
analysis can be used. Let us mention that, in order to check the influence of the
type of reservoir into the measured system properties, we have also used the
more conventional stochastic boundary conditions described above, but only
different finite size effects and no other relevant behavior has been observed.

For
� = � � � , due to the temperature gradient, there is a flow of energy from

the high temperature reservoir to the low one, and the system then evolves to
a nonequilibrium stationary state. This properties (nonzero temperature gra-
dient and nonzero net heat flux) are typical of nonequilibrium systems. On
the other hand, numerical studies of our model are rather complex, since there
relaxation times are very long.3 This problem restricts simulations to relatively

3Very often low dimensional systems show very large relaxation times. This is due to the re-
strictions induced by its low dimensionality in phase space flow.
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small systems, where finite size effects are very important. We will notice this
problem in the forthcoming analysis. In spite of these difficulties, several au-
thors have studied this model before. [198, 199, 200] For instance, in [199]
special attention is payed to the existence of a non–trivial temperature profile.
There it is observed that the temperature profile does not change under rescal-
ing of masses. Moreover, it is found that

�Ê� õ�n ì � = � ì ���ÿ
  ì �¡� õ�n � = �_�z�4
 . This
involves that the independent variables of the system are è�5~+ ,

� = 5 �T� and
I

.
Furthermore, as the number of particles

I
increases, the temperature profile

get closer to a limiting profile, similar to that predicted by kinetic theory. A
version of this model in which the masses are randomly placed was already
studied in [198]. In this work, the system Thermodynamic Limit behavior was
not considered but the Local Thermodynamic Equilibrium (LTE) property was
demonstrated. This property guarantees the existence of a well–defined local
temperature. Moreover, LTE has been numerically observed in the alternating
masses model for large enough system sizes (otherwise, we couldn’t define lo-
cal temperatures). [199] Some of these works [199, 200] have also studied the
thermal conductivity as a function of system size, arriving to the conclusion
that 	 slowly diverges in the Thermodynamic Limit. As we will see below, this
type of analysis is strongly affected by finite size effects, and thus any conclu-
sion derived from it about thermal conductivity could be wrong. In fact, as we
will demonstrate, the thermal conductivity 	 is finite in the Thermodynamic
Limit for this system, and hence Fourier’s law holds here.

9.3 Numerical Analysis

Our goal in this chapter is to check whether the system has a finite thermal
conductivity in the Thermodynamic Limit,

Ia�1- t&% with
I 5 - M� , or instead

it exhibits a divergent 	 . With this aim we performed a detailed numerical
analysis along several different, complementary lines.

9.3.1 The Existence of a Non-trivial Thermal Profile

Before going on the analysis of conductivity, we have to check whether this
system shows a nontrivial temperature profile. This would indicate that LTE
holds in the system, and then it makes sense to wonder whether Fourier’s law
holds or not. As a first step, we must give a working definition of local temper-
ature. We define the local temperature by measuring the mean kinetic energy
of each particle and its mean position ¯õ B at the stationary state. Assuming that
energy equipartition holds at least locally (we checked this point), this mean
kinetic energy is proportional to the local temperature at position ¯õ B . There are
many other methods to measure local temperature, almost all of them based on
the Virial theorem. Strictly speaking, the only correct method to measure tem-
perature profiles consists in dividing the system in cells, each one with a large
enough number of particles, and measuring the velocity distribution in every
cell. If local equilibrium holds, one expects a Maxwellian distribution for each
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Figure 9.2: Temperature profile at the stationary state for � particles. Lines are the
best fits of the data in the interval p��3�Y|�× D
H {þjáD�H �+Ø . The corresponding equations are
shown in the box. Errors in the coefficients are in brackets. We have also included, for
direct comparison, temperature profiles obtained using stochastic boundary conditions
(noted as rbc).

cell, with local temperatures proportional to the variance of this distribution
[198]. The method we use, and those based on Virial theorem, are just (numer-
ically efficient) approximations. These approximations are effective as far as
they confirm the existence of a non–trivial temperature profile in the Thermo-
dynamic Limit. This is the important conclusion here, and not the exact shape
of the temperature profile, which of course depends somehow on the thermal
baths used and the definition of local temperature.

We computed the profiles for
I �<�� , �Z�~� , <���� , �#�~�~� , � �~��� particles, with

fixed
I 5 - �� , � = e� and

�z�  �
. Fig.9.2 shows the local temperature as a

function of õ�5 I (by seeking clearer figures, we have performed local averaging
of the temperatures and positions to draw only �#�~� points; no difference is
found by drawing all the points). We see in Fig.9.2 that the temperatures follow
linear profiles in the interval õ�5 I EeF ��� 5 � ��� �CJ with slopes depending on the
system size. This slope apparently tend to converge to unity but we find that
the convergence is very slow. On the other hand, the temperature profile get
curved near the boundary heat baths. This surface resistance [201], which is
consistent with previous studies [199, 201], tends to diminish as the system
grows. In any case, a non–flat profile is clearly expected in the Thermodynamic
Limit.
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9.3.2 The Averaged Heat Current

We now pay attention to the heat flux through the system. If Fourier law
holds and the heat conductivity is finite, the mean heat current, defined asQK I <0= ¯ \Bè^ = + BÙ÷�µB 5 � , should go to zero as �Z5 I whenever

� = V � and
I 5 - are

kept fix. This is so because in the steady state we have Q0�� 	 � �Ê�¥UF � o 
�� 	 ���z� �� = 
 5 I . If instead Q�² I < ç with øÏ�|� then we should have a divergent thermal
conductivity, 	 �Q I 5 ��� � � � = 
 . [193] In our case, the data does not give us a
conclusive answer. In fact we fitted our experimental points ( Q corresponding
up to seven different

I
’s) to behaviors like Q0h1 I < ´,+ é = , Q0h1 I <0= � �0L 3 ln

I*

,

both yielding a divergent conductivity, and Q� 1 I <:= � �RLh3 I <0= 
 and Q�1 I <0= � ��L�335 ln
I*


, both yielding a finite conductivity. All these four fits had re-
gression parameters of order ��� �~��� . Thus we cannot conclude nor convergence
nor divergence of thermal conductivity from this point of view. Moreover, our
fits reflect that finite size corrections to the leading order are dominant and that
we are far from the asymptotic regime for the observable heat current. There-
fore, the direct use of the Fourier’s law 	 øQ I 5 ���3� � � = 
 does not clarifies (from
the numerical point of view) the existence of a finite heat conductivity in the
Thermodynamic Limit. Some authors find for the same model that the heat
current goes like

I < ´,+ å µ [199] or
I < ´,+ � > [200]. These results are similar to our

direct fit to power law behavior. However, in contrast with them, we conclude
that such fits are done in a non-asymptotic regime.

9.3.3 The Current-current Self Correlation Function

It is clear from the previous section that direct use of Fourier’s law does not
yield any definite conclusion about system’s thermal conductivity in the Ther-
modynamic Limit, due to the strong finite size effects affecting our data. Hence
we must look for other different methods in order to conclude about 	 . One of
these methods is based upon the Green–Kubo formulae. The heat conductivity
is connected to the total energy current–current time correlation function eval-
uated at equilibrium via its time integral (Green-Kubo formula[79]). It can be
written as, 	  lim� ´¥µ lim�´¥µ ÿ

�
< � ��Q � � 
 Q � o 
 ` w d o (9.4)

where we can write,

��Q � � 
 Q � o 
 ` w c¼g � o 
  -/. � d
� �

d Ì � Q � � 
 Q � o 
 í½õ ��� ��>$Ý 
- . � d
���

d Ì � í½õ ��� ��>$Ý 
 (9.5)

Hence g � o 
 is the equilibrium canonical average of Q � � 
 Q � o 
 at inverse tempera-
ture > for a system with Hamiltonian Ý . The order of limits in eq. (9.4) is cru-
cial in order to precisely define 	 . The integral has some meaning (i.e. yields a
finite 	 ) whenever the correlation function decays as ��Q � � 
 Q � o 
 ` w ²�o <:=1<3x
with

% ` � . Thus, we have to measure the long time tail of the total en-
ergy current–current correlation function g � o 
 in order to conclude about sys-
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tem’s thermal conductivity. As Green–Kubo formula states, this autocorrela-
tion function must be measured in equilibrium. The fact that the equilibrium
average should be taken using the canonical ensemble is related with one of
the fundamental hypothesis underlying Green-Kubo formula: Local Thermo-
dynamic Equilibrium. As previously explained, this hypothesis implies that
one can define locally a temperature, in such a way that the system behaves
locally as an equilibrium system with this temperature. This hypothesis im-
plicitly involves the use of the canonical ensemble, since in this ensemble the
temperature is defined precisely, being the energy a fluctuating observable. In
order to measure g � o 
 one thus should simulate our system with heat reser-
voirs at the borders at equal temperatures

�  �&� = L � � 
 5 � . However, this
procedure is not practical, due to the strong finite size effects affecting g � o 
 as
a consequence of the open boundaries. In practice, this finite size corrections
impede any definite analysis of the self correlation function. In order to avoid
such difficulties related to the presence of the open borders, we measure g � o 

in the microcanonical ensemble with total energy @ defined by the temperature�  �&� = L � � 
 5 � via the equipartition theorem. In this way, we substitute open
boundaries by periodic boundary conditions, recovering translational symme-
try. Using the microcanonical ensemble, where finite size effects are minimized
in some sense, we are able to successfully analyze the long time behavior of the
self correlation function g � o 
 . However, as we will see below, some easily iden-
tifiable finite size effects related with the system’s finite length remain. One
could wonder whether this ensemble change is plausible. The equivalence of
equilibrium ensembles is well known fact in Equilibrium Statistical Mechan-
ics, although it has not been rigorously proved in all cases. Hence one should
interchange microcanonical and canonical averages arbitrarily, expecting in-
variant results (up to very small –logarithmic– finite size corrections) under
such modifications. However, in order to gain confidence in our results, we
will also present evidences pointing out the validity of this interchange.

Writing eq. (9.4) we have assumed that the total momentum is set to zero
in the system. Otherwise, if a non–zero net momentum exists, one should use
the connected part of the autocorrelation function g � o 
 in eq. (9.4), defined as,g � � o 
 cÊ��Q � � 
 Q � o 
 ` w �á�øQ�` � w (9.6)

in order to precisely calculate the thermal conductivity. [190] This is an impor-
tant point, because if there is a net momentum in the system and one uses the
non–connected self correlation function g � o 
 in the Green–Kubo formula the
result won’t have nothing to do with the real thermal conductivity. This subtle
technicality has not been taken into account in a recent theoretical work [196],
which in principle proves that “. . . for classical many–body lattice Hamiltoni-
ans in one dimension, total momentum conservation implies anomalous con-
ductivity in the sense of divergent Kubo expression . . . “. However, in their
derivation, which is not restricted to a zero total momentum ensemble, these
authors have used the non–connected self correlation function g � o 
 , and thus
the divergence of the Green–Kubo formula does not implies anything on the
system’s thermal conductivity, contrary to author’s claim. Moreover, in this
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Figure 9.3: Total energy current–current time correlation function 09Ç>©hÉ for the different
masses system with � B�J.DIDID . The inset shows the results of a power law fit for the
time decay in regions ( J ) and ( z ). In region ÇxJCÉ we observe 09Ç>©hÉ ± © ò  21 � . Notice large
error-bars and strong fluctuations for ln Ç>©.�c©SªÿÉ43¶J@D . ©Oª is the mean collision time.

chapter we show a counterexample to the above affirmation, i.e. we show a
one–dimensional system, which conserves momentum and has non–zero pres-
sure, whose thermal conductivity is finite in the Thermodynamic Limit, as we
will see below.

We hence have measured g � o 
 using periodic boundary conditions and set-
ting total momentum equal to zero, with total energy defined through the
equipartition relation, @� I } � 5 � , where

�
is the arithmetic average of

� = and� �
. In Fig. 9.3 we show our results on g � o 
 for a system with

I |�Z�~�~� particles.
Here we can study two different regions:

1. Region
� � 
 , defined for ln

� oZ5~o ´ 
 E¬F ; �.�hJ , where a power law fit yieldsg � o 
 ²�o <0= + µ .
2. Region

�&��

, defined for ln

� oZ5~o ´ 
 `��Z� , where the same algebraic fit yieldsg � o 
 ²�oC< ´,+ å > .
The observed slight difference in the time decay exponent of g � o 
 depending
on the fitting region is crucial in order to conclude about the convergence or
divergence of thermal conductivity of our model in the Thermodynamic Limit.
Thus we must develop a set of physically well–motivated criteria that help us
to distinguish the true bulk asymptotic behavior from spurious finite size cor-
rections. As we will explain below, we think that only region

� � 
 corresponds
to the infinite system bulk behavior, which involves a finite thermal conduc-
tivity in the Thermodynamic Limit, and thus that Fourier’s law holds for our
total–momentum–conserving one–dimensional model. The bump observed in
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Figure 9.4: Local energy current–current time correlation function ��Ç>©hÉ for the equal
masses system with �yBSK=DID . The inset shows the results of a power law fit for the time
decay in regions ( J ) and ( z ). Here s ��Ç>©hÉás ± ©�ò�� in region ÇxJhÉ , and we observe a ©)ò ª 1 ç � tail
in region ÇWz¶É .g � o 
 for very long times (namely ln

� oZ5ÿo ´ 
 ` � � < ) is typical of system autocorre-
lations due to finite size effects 4.

As an example of the previous statement, let us study the asymptotic be-
havior of the local energy current–current time correlation function 5 � o 
 ª�l B � � 
Yl B ��l½
 ` w for the equal masses version of our model, where

l B�û+ Bà÷�µB 5 � .
Making equal the particle’s masses (i.e. è  + ) has strong implications on
system’s properties. As a first fact, let us mention that the equal masses ver-
sion of our model is not ergodic. Once we define the set of initial velocities
for the particles, these velocities will remain invariant during the whole evo-
lution. This is due to the elastic collisional kinematics, which implies that the
equal masses system effectively behaves as a gas of identical non–interacting
particles. Hence the total energy current Q is a constant of motion for the equal
masses case, and thus g � o 
 . Furthermore, this system is integrable (i.e. it has
a macroscopic number of constants of motion), and thus it shows an infinite
thermal conductivity. Long time ago, Jepsen [203] proved that, for this equal
masses system, �G÷�B � � 
 ÷ B � o 
 ` w ²"o <Tµ , where the average should be taken over
the canonical ensemble. Following the steps stated by Jepsen, it can be shown
analytically, after a lengthly calculation5, that also 5 � o 
 ÷ ��÷ B � � 
 µ ÷ B � o 
 µ ` w ²o <Tµ for this system. In order to learn how system’s finiteness affect current–
current time correlation functions, we have measured 5 � o 
 for equal masses

4As an example, autocorrelation functions of financial time series show this finite size
behavior.[202]

5Pedro L. Garrido, private communication.
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in a finite system. We have performed such simulation using the canonical
ensemble and with a Maxwellian initial velocity distribution, in order to re-
produce the previous exact result. Thus we use our deterministic heat baths at
the boundaries, with both ends at the same temperature (for completeness, we
simulated also this system using stochastic thermal reservoirs, obtaining the
same results). Notice that, for the equal masses case, we cannot interchange
freely the canonical and the microcanonical ensembles. The underlying reason
is the non-ergodic behavior of this system. The presence of the boundary heat
reservoirs restores ergodicity, while averages in the microcanonical ensemble
depend on initial conditions. Hence, since Jepsen calculation is done in the
canonical ensemble, we must simulate the equal masses system also in this en-
semble in order to recover the analytical result. Fig. 9.4 shows the numerical
computation of 5 � o 
 for

I �<���� . It is remarkable that we can also define here
two different regions:

� � 
 one for ln
� oZ5ÿo ´ 
 E�F <z� � � <�� ; J , where a power law fit

yields � 5 � o 
 � ²�o <Tµ , and
���z


one for ln
� oZ5~o ´ 
 ` � , where a power law fit yields� 5 � o 
 ��²Ïo < ´,+ å µ . We recover the theoretically predicted asymptotic bulk behav-

ior in region
� � 
 , while region

����

should be due to finite size effects. Moreover,

it is intriguing that the finite size time decay exponent ( ²��� ;3Z ) is almost the
same both in the different masses case and the equal masses one, being these
systems very different in essence, and for two different time correlation func-
tions –namely g � o 
 and 5 � o 
 . This fact points out the existence of an underlying
common finite size mechanism, responsible of this spurious long time decay.
We think that autocorrelation effects as those provoked by perturbations which
travel all around the system and come back to their origin are at the basis of
the observed long time finite size corrections. In conclusion, coming back to
the different masses case, in our opinion the above example indicates that only
region

� � 
 of Fig. 9.3 represents the asymptotic bulk behavior. Hence, any con-
clusion about system’s conductivity derived from region

���z

should be mis-

leading. This result involves a finite Green–Kubo thermal conductivity, and
hence that Fourier’s law holds in our one–dimensional system.

In order to confirm such result we computed the local energy current-current
time correlation function 5 � o 
 at equilibrium for the different masses case. It
has much better averaging properties than g � o 
 , and thus its asymptotic be-
havior is much easier to distinguish. The obvious question is whether 5 � o 
 has
something to do with the total energy current–current self correlation functiong � o 
 entering Green–Kubo formula, both calculated for the different masses
model. In general, we can write g � o 
 ² ¯ B.V ¹ � l B � � 
Yl ¹ � o 
 `( ¯ B � l B � � 
Yl B � o 
 `L�¯ B25^ ¹ � l B � � 
kl ¹ � o 
 `( I 5 � o 
 Lø¯ B25^ ¹ 5 B1V ¹ � o 
 , where 5 B.V ¹ � o 
 cÊ� l B � � 
Yl ¹ � o 
 ` .
Hence, for regular systems, where non–local time correlation functions 5 B1V ¹ � o 

decay fast enough with distance, one expects a similar time decay for bothg � o 
 and 5 � o 
 . However, there are anomalous systems for which 5 B1V ¹ � o 
 decays
very slowly, or does not decay at all. One of these anomalous systems is the
equal masses version of our model. As explained before, this system is not
ergodic; g � o 
 is constant here. Furthermore, as previously stated, it can be an-
alytically proved that 5 � o 
 ² o <Tµ there. Hence, the behaviors of g � o 
 and 5 � o 

are clearly different for the equal masses case. Moreover, since g � o 
 is the cor-
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Figure 9.5: Local energy current–current time correlation function �~Ç>©CÉ for the alternat-
ing masses system with �yBTJ.DIDID . The inset shows the results of a power law fit for the
long time decay of �~Ç>©CÉ . Here s ��Ç>©hÉás ± ©�ò  21 �S� . This result is very similar to the observed
asymptotic behavior of 09Ç>©CÉ , and thus reinforces our previous analysis. The number of
independent averaged histories is of order J.D76 .
relation function entering the Kubo formula for conductivity, in this case the
fact that 5 � o 
 ²Ío <Tµ implies nothing about the system’s conductivity. We mea-
sure 5 � o 
 for the alternating masses case using the canonical ensemble, i.e. we
simulate the system subject to thermal reservoirs at the borders, both at equal
temperature

� =  �T� ]�~� < . This measurement yields 5 � o 
 ²�o4<0=1<3x , where
%

is again very close to ��� Z (see Fig. 9.5), which is very similar to the observed
time decay of g � o 
 . This may be thought as an indication that our system is
regular, in the sense stated above. Moreover, since the averaging properties of5 � o 
 are much better, the observation of a o <0= + µ tail in 5 � o 
 confirms our analysis
for g � o 
 , reinforcing our conclusion, i.e. that Fourier’s law holds for this unidi-
mensional system. On the other hand, assuming that our different masses sys-
tem is regular, the fact that g � o 
 , measured using the microcanonical ensemble,
and 5 � o 
 , measured using the canonical ensemble, show very similar behavior
supports our previous hypothesis about the equivalence of microcanonical and
canonical ensemble averages for the alternating masses model.

In our opinion the decay of correlations is so slow that it explains the strong
finite size effects observed in the temperature profile and in the mean heat
current. In fact we can argue that Q I 5 �&� � � � = 
  	 ��Ö I <3x which explains
why we do not see a clear behavior of Q with

I
with system sizes of order �#� µ

(the corrections are of order unity for those sizes).
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9.3.4 The Energy Diffusion

The above facts imply that Fourier’s law holds for our one–dimensional alter-
nating masses system, which conserves total momentum and has a non–zero
pressure. However, this conclusion depends critically on data analysis. We
have exposed above our analysis, which we think is physically well motivated
and coherent. In spite of this, there is always a possibility that an analysis fo-
cused in only one observable may drive to the wrong conclusions. Hence, we
have attempted to obtain a global, consistent vision of the problem by measur-
ing several magnitudes. With this aim in mind we also studied the dynamical
aspects of Fourier’s law (see eq. (9.1)). Particularly, we studied the propagation
of energy in the system. We prepared the system with zero energy (all particles
at rest) and positions õ � D 
 æD0�M�#5 � , DNb� � �Z�h� �1I . Then, we give to the light
particle Da I 5 � LÁ� a velocity chosen from a Maxwellian distribution with
temperature

�  �~� < . That is, we introduced an energy pulse in an otherwise
frozen system, and monitored how the energy flows through the system until
any boundary particle moves. Finally, we average over many initial conditions
(changing the initial velocity of the central light particle). If the system follows
Fourier’s law we should see a diffusive type of behavior (if the thermal conduc-
tivity is constant). This is due to the Local Thermodynamic Equilibrium (LTE)
property: if LTE holds in the system, local temperature and local energy are
proportional (due to local equipartition of energy, involved by LTE), and thus
a diffusive behavior of energy implies a diffusive behavior of local tempera-
ture, which is exactly what Fourier’s dynamical law, eq. (9.1), states. Figure
9.6 shows the energy distribution for

I ��#��� and different times measured in
units o ´ Á��� ��Z � , where o ´ is the mean free time between consecutive particle
collisions. Let us remark here again that to apply eq. (9.1) the temperature
should have a smooth variation in the microscopic scale to guarantee that local
equilibrium holds. In Figure 9.6 we see that, for times larger than o� � �~�ÿo ´ , the
average variation in the local temperature is of order ��� �~��� . Therefore, we may
assume that we are in a regime where eq. (9.1) holds. Initially, the energy of the
light particle is transfered to the neighbors very fast and then the particle stays
very cold, much colder than its neighbors. In fact, in this initial regime, the
energy maxima are moving outwards at constant velocity. This behavior ends
at around oNæ�#�~�4o ´ . The system then begins to slow down and, at o ¨ Z��~�4o ´ ,
the structure of the energy distribution changes, and one can then differentiate
the behavior corresponding to light particles and heavy ones at least around
the maxima of the distribution. We measured the mean square displacement
of the energy distribution at each time,A � o 
  S � � é���<�� 
 � í � é � o 
 (9.7)

We found that we can fit ln A � o 
  � � � Z ��� ��� �I5 
 L � � �3< � ��� ��� 
 ln o for oZ5ÿo ´ E� Z�� � �Z�~� 
 , which is a ballistic behavior that changes smoothly until we reach oª`5����4o ´ , where we find a diffusive behavior ln A � o 
 ��?�~� �~� � ��� ��� 
 L?�~� ���=< � ��� ��� ��
 ln o
(see Fig. 9.7). This last result confirms that our system follows even the dynam-



196 Heat Conduction and Fourier’s Law in One-Dimensional Systems

0 20 40 60 80 100
n

0

0,02

0,04

e

t=700t0

t=500t0

t=300t0

t=100t0

t=800t0

t=600t0

t=400t0

t=200t0

Figure 9.6: Evolution of the energy distribution for an initial condition in which all par-
ticles, �yB�J@DID , are at rest except particle K�J which has an averaged energy correspond-
ing to temperature JIH K . The figure shows averages over J@D æ independent realizations
and © ª B�D
H D�NUz .



9.3 Numerical Analysis 197

0 200 400 600 800 1000

t

0

1×104

2×104

3×104

4×104
s(

t)

Figure 9.7: Time evolution of � Ç>©hÉ (see the text for definition). A linear behavior � Ç>©CÉ ± ©
is clear for long enough times, thus indicating a diffusive propagation of energy. For
shorter times we observe � Ç>©hÉ ± © § , i.e. ballistic propagation.

ical aspects of Fourier’s law.
As we noticed above, in Fig. 9.6 we see that the light and heavy particles

seem to follow different energy distributions, at least for times longer thano(TZ��~�4o ´ . In order to get some more insight about such behavior, we computed
the evolution of the total energy stored in the light (heavy) particles. The result
is shown in Fig. 9.8 where we can detect five different time regions:

1. oZ5~o ´ E � � � � ��
 ; only the light particle and the two heavy nearest neighbors
have a nonzero velocity.

2. oZ5~o ´ E � � � �_� Z 
 ; the five central particles (three light and two heavy ones)
are moving. The total energy stored in the light particles reaches a mini-
mum.

3. oZ5~o ´ E ��� Z �f� Z
Z 
 ; the heavy particles begin to release energy (on the aver-
age) until, at oR � Z
Zÿo ´ , both types of particles have the same amount of
energy.

4. oZ5~o ´ E ��� Z
Z �1� ��� 
 ; light particles keep getting energy until we reach the
next region,

5. oÍ` � �~�4o ´ ; where the total energy stored in the light particles reaches a
constant value that exceeds to the one corresponding to the heavier ones.
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Figure 9.8: Evolution of the total energy stored in the heavy and light particles. The
conditions are the same as in Fig.9.6. 8O�98 indicates that only the central light particle
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Let us remark that, in the asymptotic regime o¡` � �~�ÿo ´ , the energy distribution
is still evolving and, therefore, this partition of energy between both degrees
of freedom is an asymptotic dynamical (non–stationary) property of the system,
i.e. it does not appear once we reach the steady state.

In order to discard any non–ergodic behavior of our system we included
reflecting boundary conditions at the extremes of the chain and we did much
longer simulations. We saw that the isolated system tends to the equilibrium
in which equipartition of energy between all degrees of freedom holds. That is,
the total mean energy stored in the light particles is equal to the one stored in
the heavy ones once the stationary state has been reached. Moreover, we have
checked that the system at any stationary state (equilibrium or non–equilibrium)
does not present the property of non–equipartition of the energy. This is not
incompatible with the dynamical non–equipartition observed above. If due
to fluctuations a light particle gains energy over the mean particle energy, it
will release this energy excess very slowly, thus effectively trapping energy
for a long time, as a local potential would do, although finally this particle
should converge to the mean particle energy. We think that this dynamical non-
equipartition of the energy between degrees of freedom is responsible for the
normal thermal conductivity. In fact, we see that, around the distribution max-
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ima, the particles arrange in the form that hot light particles are surrounded by
cold heavy ones. The energy is then trapped and released in a diffusive way.
However, we also see that the release is diffusive when a large enough number
of those hot-cold structures develop. Therefore we think that the mechanism
for the thermal resistance is somehow cooperative.

9.4 Conclusions

In this chapter we have studied the microscopic foundations of normal heat
conduction, which is a dynamic phenomenon very interesting nowadays in
the context of nonequilibrium Statistical Mechanics. In order to do so, we have
numerically investigated a simple one-dimensional model where point parti-
cles of alternating masses elastically collide. When this system is subject to a
temperature gradient, a net heat flux emerges from the hot reservoir to the cold
one, together with a non-trivial, non-linear steady temperature profile.

An evaluation of the system thermal conductivity from the observed energy
current does not yield any conclusive answer about its convergence nor diver-
gence, due to the strong finite size effects affecting our measurements. We thus
use the Green-Kubo formula in order to evaluate 	 in the Themodynamic Limit,
for which we measure the total energy current self correlation function, g � o 
 .
A careful analysis of the long time behavior of g � o 
 , together with some other
related measurements, allow us to conclude that our model system, in spite
of being a one-dimensional momentum-conserving system with nonzero pres-
sure, exhibits a finite thermal conductivity in the Thermodynamic Limit, and
thus Fourier’s law holds in this limit. We further check this conclusion mea-
suring how energy propagates through the system, finding a diffusive kind of
propagation, compatible with the dynamic version of Fourier’s law.

In conclusion, Peierls arguments have successfully explained the observed
thermal conductivity in solids by applying a perturbative scheme around the
lattice harmonic interaction. The actual belief is that strong anharmonicity is
not enough to guarantee a normal thermal conduction in one dimensional sys-
tems. Moreover, it has been proposed that the key lacking ingredient is that
the dynamics of the system should not conserve linear momentum via the ex-
istence of local potentials through the line (think about particles attached to
the one dimensional substrate through some kind of non-linear springs). In
this way, local potentials should act as local energy reservoirs that slow down
the energy flow. These properties, anharmonicity and non-conservation of mo-
mentum, are in some way the ones used on the original Peierls argument. We
have shown a model that does not follow such clean picture. Although our
one dimensional model is non-linear and it conserves linear momentum (with
non-zero pressure), we find that it follows Fourier’s law. We think that there
are other cooperative mechanisms that can do the job of the local potentials.
Maybe, systems having degrees of freedom that acquire easily energy but re-
lease it in a very long times scale have, in general, normal thermal conductivity.
In any case, we think that it is worth to explore such possibility.
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Chapter 10

Summary, Conclusions and
Outlook

In this thesis we have studied the dynamical aspects of some nonequilibrium
systems. They are open, hysteretic systems, subject to density and/or tem-
perature gradients, energy and/or mass fluxes, under the action of external
agents and different sources of non-thermal noise, etc. Nonequilibrium sys-
tems abound in Nature. In fact, they are the rule, being equilibrium systems
an unlikely exception. Examples of out-of-equilibrium systems can be found
for instance in biology (e.g. living organisms), economy (e.g. traded stocks),
geology (e.g. earthquakes), quantum and molecular physics (e.g. magnetic
nanoparticles), hydrodynamics (e.g. turbulent fluids), astrophysics (e.g. star
evolution and structure), sociology (e.g. opinion spreading), and so on. More-
over, it seems that nonequilibrium conditions are essential for the observed
complex structure in Nature.[1]

In spite of their importance, up to now nobody has been able to formulate
a complete theory connecting the microscopic properties of nonequilibrium
systems with their macroscopic phenomenology. This connection has been
rigorously established only for equilibrium systems in terms of the partition
function.[2] The search for a statistical-mechanical description of nonequilib-
rium systems is one of the main aims of modern Physics. Nowadays there is
only a set of ad hoc techniques which describe in a partial and approximate way
some particular problems in nonequilibrium statistical physics. In particular,
most of the studies and theoretical developments in nonequilibrium physics
have been centered on nonequilibrium steady states, which constitute the sim-
plest situation in nonequilibrium phenomena. On the other hand, the dynam-
ical aspects of nonequilibrium systems have been poorly studied, and the aim
of this thesis consists in enlarging a bit our understanding of such processes.

Dynamical phenomena in complex systems are usually related to transfor-
mations between different phases. Thus we have investigated how nonequilib-
rium conditions affect such transitions. In particular, we have studied the ef-
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fects that nonequilibrium conditions induce on the dynamic problem of metas-
tablity, where a system set in a metastable phase eventually evolves towards
the stable one. We have also studied how a system under nonequilibrium
anisotropic conditions and with conserved number of particles evolves from
an initially disordered phase via segregation towards an ordered phase. In
addition to their intrinsic interest due to their ubiquity in Nature, these two ex-
amples are very interesting because they have equilibrium counterparts. That
is, both metastability and phase segregation are dynamic processes observed
in equilibrium systems, and they have been deeply investigated. This fact al-
lows us to deduce, comparing both the equilibrium and nonequilibrium cases,
the net effects induced by nonequilibrium conditions, which yields many hints
about the relevant ingredients that must be taken into account in order to build
up a general formalism for nonequilibrium systems. On the other hand, there
are dynamic processes intrinsic to nonequilibrium systems. This is the case,
for example, of dynamic phase transitions between an active phase, character-
ized by a non-trivial dynamics, and an absorbing phase, where the system is
frozen. This phase transition is irreversible, and hence it is a pure nonequi-
librium phenomenon. In this thesis we have investigated the effects that a
new, hidden symmetry has on the universality observed in these absorbing
phase transitions. Another dynamic processes with no equilibrium counter-
parts are transport phenomena in general, and heat conduction in particular.
We have also investigated the microscopic origins of normal heat conduction
and Fourier’s law. Of course, there are many nonequilibrium dynamic phe-
nomena that have not been studied in this thesis. As an example, just mention
all the rich, complex and yet not fully understood phenomenology observed in
fluids: convection, turbulent flow, etc.[8] However, we think that the nonequi-
librium dynamic phenomena studied here yield a comprehensive overview of
the richness and diversity of new effects that nonequilibrium conditions induce
on dynamic processes in complex systems.

The thesis has been divided into two different parts. The first part, which
comprises chapters 2, 3, 4 and 5, is devoted to the study of the metastability
problem and its associated dynamics in nonequilibrium systems with short-
range interactions. In particular, we have studied a nonequilibrium ferromag-
net defined on a two-dimensional lattice. On the other hand, in the second
part, which comprises chapters 7, 8 and 9, we have studied respectively the
kinetics of phase separation in an anisotropic nonequilibrium lattice gas, an
absorbing (dynamic) phase transition in a biological inspired model, and the
microscopic foundations of normal heat conduction and Fourier’s law in a one-
dimensional particle chain. In what follows we summarize the results obtained
in each chapter, and the possible follow-ups of this work.

In chapter 2 we present our motivation for studying metastability in mag-
netic systems, which is two-fold. On one hand, this problem is very interesting
from the technological point of view, since impure (i.e. nonequilibrium) mag-
netic particles are at the basis of many modern and incipient technologies, as
for instance dense recording magnetic materials, possible quantum computers,
etc. On the other hand, the study of metastability in short-range nonequilib-
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rium magnets yields much information about the link between microscopic
and macroscopic physics in nonequilibrium systems. In this chapter we also
present the model we study in the first part of the thesis, paying special atten-
tion to the model properties and the way in which nonequilibrium conditions
enter the model. In brief, the model is defined on a lattice with binary spins
at the nodes interacting via the Ising Hamiltonian, and subject to a competing
dynamics where two different Glauber rates (one at finite temperature,

�
, and

the other at “infinite” temperature) compete weighted by a nonequilibrium
parameter

�
. This impure dynamics, generically observed in real materials,

drives the system towards a nonequilibrium steady state.
The first approach to the problem of metastability in this bidimensional

nonequilibrium magnet is presented in chapter 3, where a first-order mean
field approximation is implemented. This approximation, which allows us to
study both the static and dynamic properties of metastable states, is based on
three main hypothesis: absence of fluctuations, kinetic isolation of domains,
and homogeneity. Using these hypothesis on the general master equation we
are able to calculate the system phase diagram,

���4�©��

, and both the stable and

metastable state magnetizations. On the other hand, studying the intrinsic co-
ercive magnetic field, which is the field for which metastable states become
unstable, we find that under strong nonequilibrium conditions (in particular,� ` � � � ��� �3Z��@< ) a non-linear cooperative phenomenon between the thermal
noise (parameterized by

�
) and the non-thermal noise (parameterized by

�
)

emerges: although both noise sources independently add disorder to the sys-
tem, which implies the attenuation, or even destruction of existing metastable
states, the combination of both noises parameterized in the microscopic dy-
namics does not always involves a larger disorder, giving rise to parameter
space regions where there are no metastable states for low and high tempera-
tures, but they appear for intermediate temperatures. All these predictions are
confirmed via Monte Carlo simulations. In order to investigate the dynamics
of the metastable-stable transition using mean field approximation, we extend
this theory to include fluctuations, since they are at the basis of the metastable
state exit mechanism. In this way we build up a mean field stochastic dynamics
based on the mean field predictions for the stable phase growth and shrinkage
rates. In spite of including fluctuations, the extended mean field theory fails
to describe the metastable-stable transition. This is so because this transition
is fully inhomogeneous (it proceeds via droplet nucleation and growth), and
hence cannot be described by the homogeneous mean field theory. In order to
describe this inhomogeneous dynamic process the properties of the interface
separating the stable and metastable phases must be studied. Two possible
continuations of the research presented in this chapter should be the follow-
ing:7 It should be desirable to understand in a deeper way the mechanism

which gives rise to the non-linear cooperative phenomenon between the
thermal and non-thermal noise sources for

� `�� � .7 It should be also worthy to study in depth the mean field stochastic dy-
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namics proposed in this chapter as a natural way to include fluctuations
in mean field theory. A more rigorous justification of this method, which
seems natural, must be developed. Also a comparison of the predictions
associated to fluctuations derived from this method with Monte Carlo
results should be welcome.

Chapter 4 is devoted to the study of the properties of the interface sepa-
rating the metastable and stable phases in the nonequilibrium ferromagnet. In
this chapter we develop a generalization of the Solid-On-Solid approximation
[59] in order to understand the effects that nonequilibrium conditions induce
on the microscopic and macroscopic properties of the interface. The generaliza-
tion is based on the concept of effective temperature. It is found that different
spin classes suffer different effective temperatures for the nonequilibrium case,
the more ordered spins suffering the higher effective temperatures. In this way
interfacial spins suffer different effective temperatures for

����� , depending on
the spin class to which they belong to. Using this observation, and neglecting
the presence of overhangs in the interface and the interactions between the in-
terface and bulk fluctuations, we build up the generalization of the SOS theory.
The microscopic structure codified in the step probability function and pre-
dicted by the generalized SOS approximation matches almost perfectly Monte
Carlo results, finding that the larger

�
is, the rougher the interface is. On the

other hand, the macroscopic structure is captured by the surface tension. We
find in this case that while the equilibrium surface tension monotonously in-
creases as temperature decreases, the nonequilibrium surface tension exhibits
a maximum at certain nonzero temperature, converging towards zero in the
low temperature limit. Such low temperature anomalous behavior is a conse-
quence of the dominant character of the non-thermal (nonequilibrium) noise
source in this limit, as can be deduced from the interface effective tempera-
ture, which becomes independent of

�
in the low temperature limit. The non-

monotonous behavior of surface tension in the nonequilibrium case will be
fundamental when understanding the properties of the metastable-stable tran-
sition in the nonequilibrium ferromagnet, since this anomalous behavior will
be inherited by most of the relevant observables in this problem. Using the
explicit expression derived for the nonequilibrium surface tension via the gen-
eralized SOS theory, we also study in this chapter the shape and form factor of
a nonequilibrium spin droplet using Wulff construction. The non-zero inter-
facial effective temperature induced by nonequilibrium conditions in the low
temperature limit implies that the droplet shape is no more a square in this
limit for

�b�]� (as opposed to what happens in equilibrium systems), but a
differentiable curve in between a square and a circle. In order to extend the
investigations developed in this chapter, we propose the following lines:7 The generalized SOS approximation must be further tested against Monte

Carlo simulations, both on its microscopic and macroscopic aspects. In
particular, one should study the interfacial roughness derived from this
theory, since it is a relevant observable in many surface problems. Also
the importance of overhangs and interactions between the interface and
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bulk fluctuations should be addressed.7 The effects that the suppression of the surface tension at low tempera-
ture in the nonequilibrium case induce on many natural phenomena con-
trolled by an interface must be investigated, since many real interfaces are
subject to nonequilibrium conditions as those captured by our competing
dynamics.

In chapter 5 we present a nonequilibrium extension of nucleation theory.[75,
76, 26] We hypothesize the existence of a nonequilibrium potential associated
to a spin droplet, equivalent to the equilibrium free energy, which controls the
exit from the nonequilibrium metastable state. Moreover, we assume that such
droplet nonequilibrium potential can be written as a competition between a
surface term, proportional to the (nonequilibrium) surface tension and which
hinders the droplet growth, and a volume (bulk) term, which favours droplet
growth and depends on the spontaneous magnetization. Using the results ob-
tained in previous chapters for both the nonequilibrium surface tension and
the nonequilibrium spontaneous magnetization, we build up our nonequilib-
rium generalization of nucleation theory. This extended approximation yields
correct predictions for the relevant observables in this problem, namely the crit-
ical droplet size, the droplet radial growth velocity, the metastable state mean
lifetime, etc. All these magnitudes inherit the anomalous, non-monotonous be-
havior of the nonequilibrium surface tension. In particular, we observe that the
critical droplet size and the metastable state mean lifetime exhibit a maximum
as a function of temperature for any

����� , decreasing for lower temperatures.
On the other hand, the droplet radial growth velocity shows a minimum as
a function of temperature. Thereby a main conclusion of our analysis is that
the properties of the interface separating the metastable and stable (nonequi-
librium) phases determine in a fundamental way the metastable state exit dy-
namics. All these results are verified by extensive Monte Carlo simulations.
On the other hand, the morphology of the metastable-stable transition is also
highly affected by nonequilibrium conditions, mainly at low temperatures. In
particular, it is found that finite nonequilibrium systems may demagnetize
from the metastable state through the nucleation of multiple critical droplets
both at high and low temperatures, while there is an intermediate temperature
range where this process proceeds through the nucleation of a single critical
droplet, as opposed to equilibrium systems, where the multidroplet mecha-
nism only emerges at high temperatures, being the single droplet nucleation
process the relevant one at low temperatures. This is in fact checked in Monte
Carlo simulations. A principal conclusion derived from the results presented
in this chapter is that the hypothesis of existence of a nonequilibrium potential
which controls the metastable-stable transition dynamics accurately describes
this nonequilibrium dynamic phenomenon. Hence, although we do not know
how to construct such nonequilibrium potential from the microscopic point of
view, this result points out possible paths in order to build up such potential. In
addition to their theoretical interests, these results might also be relevant from
the technological point of view, since a main technological concern is to retain
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for as long as possible the actual (possibly metastable) states of impure mag-
netic particles in storage magnetic materials. In order to continue investigating
the lines developed in this chapter, we propose:7 Investigate in depth the validity of the hypothesis of existence of a nonequi-

librium potential controlling the exit from the metastable state. From a
formal point of view, we do not know even whether this potential exists.7 It should be worthwhile to compare our theoretical results with experi-
ments in real magnetic materials. The chances are that the phenomenol-
ogy here described can be in fact observed in actual magnets.7 It should be also interesting to investigate metastability in one-dimensional
nonequilibrium systems with ordered phase at low temperatures. Here
the characterization of the interface is trivial, and the analysis of the
metastability problem and the effects of nonequilibrium conditions on
it should be much simpler.

In chapter 6 we study the effects that circular free borders induce on the
properties of the metastable-stable transition studied in previous chapters. This
transition proceeds now through the heterogeneous nucleation of droplets near
the border, due to obvious energetic effects. With this exception, all the nucle-
ation properties found in previous chapters remain qualitatively valid when
free boundaries are present. However, under the combined action of both open
borders and nonequilibrium conditions, the evolution of a stable phase nu-
cleus inside the parent metastable phase proceeds by avalanches. These burst-
like events characterize the dynamics of many complex nonequilibrium sys-
tems. Once subtracted the extrinsic noise, the measured avalanche size and
lifetime distributions show power law behavior, up to an exponential cutoff
which depends algebraically on system size. In addition, the size and life-
time of an avalanche are also power-law related. A detailed analysis of these
scale free avalanches reveals that they are in fact the combined result of many
avalanches of different well-defined typical size and duration. That is, the sim-
plicity and versatility of our model system allows us to identify many differ-
ent types of avalanches, each type characterized by a probability distribution
with well defined typical size and duration, associated with a particular curva-
ture of the domain wall. Due to free borders and the microscopic impurity the
system visits a broad range of domain wall configurations, and thus the com-
bination of these avalanches generally results in a distribution which exhibits
several decades of power law behavior and an exponential cutoff. However,
this apparent scale-free behavior does not mean that avalanches are critical,
in the sense of a second order phase transition where diverging correlation
lengths appear. The deep insight derived from this chapter comes when we
compare our results with experiments on Barkhausen Noise in particular and�#5�6 Noise in general. In fact, our measured exponents are almost identical to
those measured by Spasojević et al[88] in Barkhausen experiments in quasi-
bidimensional VITROVAC. Moreover, the exponents we measure exhibit finite
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size corrections similar to those observed in real avalanche systems, and the
algebraic dependence of cutoffs with system size is also a main feature of real
systems. Avalanches in our model show also some properties, as for instance
reproducibility, observed in real Barkhausen materials. On the other hand, all
actual theoretical approaches to Barkhausen Noise are based on the assump-
tion of the existence of an underlying critical point (plain old one or SOC one),
responsible of the observed scale invariance. However, all these explanations
imply that universality must hold in Barkhausen experiments, which is not
observed in practice. Therefore, all the similarities found between avalanche
properties in our model and Barkhausen experiments, together with the fact
that experimental observations do not support the existence of universality in
Barkhausen Noise, led us to suspect that Barkhausen Noise might also come
from the superposition of more elementary events with well-defined typical
scales, which is the underlying mechanism in our model. The chances are
that our observation that scale invariance originates in a combination of simple
events, which we can prove in our model cases, is a general feature of similar
phenomena in many complex systems. Several follow-ups of the work devel-
oped in this chapter can be proposed:7 It should be desirable to export the analysis method introduced in this

chapter in order to identify the origin of different avalanches and the
superposition of different typical scales to many experimental situations,
simplifying in this way the investigation about the origin of Barkhausen
emissions in particular, and �#5�6 Noise in general.7 A general mathematical framework and a more complete theoretical ap-
proach to our observation that scale invariance originates in a combina-
tion of simple events is needed in order to generalize this idea.

In chapter 7 we perform a theoretical and computational study of phase
segregation under anisotropic nonequilibrium conditions. In particular, we
study the driven lattice gas (DLG) in two dimensions, since it is a good micro-
scopic metaphor of many real situations. The resulting picture holds for a class
of highly anisotropic nonequilibrium phenomena in Nature: ionic supercon-
ductors, fluids under shear flow, or subject to external electric fields or gravity,
vibrated granular materials, etc. The methods developed in this chapter help
in the analysis of such situations. Coarsening in DLG evolves as follows. After
a quench from an initially fully disordered state, anisotropic grains develop,
which quickly give rise to strings. These strings further coarsen until well-
defined narrow stripes form which percolate in the field direction. While the
grain and string coarsening stages last for very short as compared to the total
evolution time, the stripe coarsening process involves most of the system evo-
lution. In fact this is due to the hydrodynamic slowing down appearing as a
consequence of particle conservation and local dynamics. Hence this last stage
is the relevant (observable) one from the experimental point of view. The stripe
coarsening proceeds through the effective diffusion and coalescence of stripes.
The effective diffusion of stripes can be understood in terms of two different
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single-particle processes: hole (particle) diffusion within the stripe (HD), and
surface evaporation/condensation (EC) of particles and holes. The EC mech-
anism is dominant at the beginning of the stripe coarsening process, due to
the large surface/volume ratio at these stages, yielding a growth law for the
stripe mean width of the form D � o 
 ²�o =�Ç ³ . However, as time goes on, the stripe
surface/volume ratio decreases, and eventually the HD mechanism becomes
dominant, implying a o =ÑÇ½µ growth law. The temporal crossover between both
growth trends appears for a time ± � £ � �.� �Y-�2C
 . This temporal crossover implies
the appearance of a size crossover, since both ± � £ � �.� �Ù-32C
 and the time the sys-
tem needs to reach the final steady state, ± �.� �Ù-�/(�.-324
 depend on system size.
It is found that, for small enough values of

-�/
, ± � £ � �.� �Ù-32C
 `M± �.� �Ù-�/��.-324
 , and

therefore only �#535 -behavior is expected at long times. On the other hand, theo =�Ç½µ growth law is the general one expected for macroscopic systems. All these
theoretical results are perfectly checked in Monte Carlo simulations. A rele-
vant experimental observable is the structure factor. We have studied such
function in our system, due to its experimental importance. Since during the
stripe coarsening stage there is only one relevant scale, namely the mean stripe
width, then dynamical scaling, i.e. time self-similarity during the segregation
process, is expected for the structure factor. This is in fact confirmed in Monte
Carlo simulations. Furthermore, the shape of the scaling function shows the
Guinier gaussian region, followed by the anisotropic Porod’s region, } < �/ , for
large } / and a thermal tail } <3µ/ for very large } / . The shape of the structure
function, and in particular the anisotropic extension of Porod’s law and the
thermal tail, are perfectly understood from the anisotropic, striped character
of DLG clusters. Moreover, the anisotropy present in DLG is the key ingredi-
ent needed in order to understand the whole coarsening process. Two possible
extensions of the research carried out in this chapter are:7 The application of the theoretical analysis here developed to recent ex-

periments on horizontally vibrated granular materials[152] which show
striped patterns very similar to those observed in our system should shed
light on the physical mechanisms behind such morphogenesis.7 It should be also worthy to study phase separation from the field the-
oretical point of view, using a recently proposed field equation which
correctly describes the critical behavior of DLG for infinite field.

Chapter 8 is devoted to the study of an absorbing (dynamic) phase tran-
sition in a biologically inspired lattice model, called Lipowski model. Phase
transitions separating an active, fluctuating phase from a frozen one are ubiqui-
tously observed in Nature. Some examples are catalytic chemical reactions, dis-
ease and damage spreading, forest fires, pinning of surfaces, nonequilibrium
wetting, sandpiles, etc. In particular, our motivation for studying Lipowski
model is to study the anomalous critical behavior reported for this system.[179]
It has been claimed that this model shows a sort of dimensional reduction or su-
peruniversality, in such a way that both the one- and two-dimensional versions
of the model should belong to the one-dimensional directed percolation (DP)
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universality class. In this chapter we perform a finite size scaling analysis of the
critical behavior of the bidimensional system together with spreading experi-
ments in order to address this question. Using these methods we calculate up
to six different critical exponents, showing that the two-dimensional Lipowski
model does not belong to any known universality class. In particular, we do
not find any trace of dimensional reduction. Instead, a completely novel scal-
ing is observed. We identify as the relevant ingredient for the observed novel
scaling the presence of superabsorbing sites (and cluster composed by them) in
the system. A site in the lattice that cannot be activated from some direction(s)
by neighboring activity is called a superabsorbing site. A site can be superab-
sorbing in one or more directions. The presence of superabsorbing sites in the
system enormously slow down the dynamics. The relevance of superabsorbing
sites for the observed novel scaling behavior is strongly supported by two facts.
First, one-dimensional DP behavior is observed in the one-dimensional version
of Lipowski model, where no superabsorbing sites are found at criticality. On
the other hand, the two-dimensional Lipowski model defined on a honeycomb
lattice shows 2d DP behavior, while for this lattice coordination number the
probability of finding superabsorbing sites at criticality is negligible. Hence
superabsorbing sites are at the basis of the novel scaling found. Depending on
the system dimension, the lattice coordination number and other details, we
identify different phenomenology. For instance, if complete frozen superab-
sorbing clusters exist above (below) certain threshold, and not below (above)
such threshold, then a first order transition is expected just at the threshold
point. On the other hand, if almost frozen clusters of superabsorbing sites ap-
pear at criticality, we expect anomalous scaling as the one reported in this chap-
ter. Finally, if superabsorbing sites are not observed at the critical point, usual
DP scaling must be observed. There are still some open questions which might
be addressed in future works:7 We might study in more realistic systems, as for instance catalytic dimer-

dimer systems, whether effects similar to those uncovered in the present
chapter play a relevant role.7 It should be also interesting from the theoretical point of view to look for
a field theoretical Langevin equation describing from a coarse-grained
point of view (in the spirit of the Reggeon Field Theory for the DP uni-
versality class) the novel scaling emerging due to the presence of super-
absorbing sites.7 Other interesting questions are related to the relevance of the new sym-
metry induced by the presence of superabsorbing sites in the Thermody-
namic Limit.

In chapter 9 we study another nonequilibrium dynamic phenomenon, re-
lated now with transport phenomena. In particular, we investigate the mi-
croscopic foundations of normal heat conduction and Fourier’s law. In order
to do so we study a one-dimensional chain of point particles, interacting via
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elastic collisions, which are subject to a temperature gradient induced by two
deterministic heat baths at the extremes of the chain, working at different tem-
peratures. This problem is very important from the theoretical point of view,
since an understanding of the microscopic mechanisms governing heat con-
duction should shed much light on the connection between the microscopic
fundamental physics and some macroscopic properties of many nonequilib-
rium systems, as for instance Local Thermodynamic Equilibrium, that are far
from being understood. The general belief nowadays is that a one-dimensional
system as the studied here, which conserves the total momentum and has a
non-zero pressure, must exhibit an anomalous heat conductivity in the Ther-
modynamic Limit (TL). However, we show in this chapter that, on the contrary
to the popular belief, the system investigated here exhibits a finite conductiv-
ity in the TL. In order to prove such result, we analyze the problem from sev-
eral different, complementary points of view. First, we prove the existence of
a non-trivial thermal profile in the TL, indicating that Local Thermodynamic
Equilibrium (LTE) holds in the system, and thus it makes sense to ask about
the validity of Fourier’s law. The thermal profile shows a linear central region,
and gets curved near the heat reservoirs (surface resistance). In order to verify
whether Fourier’s law holds or not for this system, we measure in a first step
the heat flux Q through the system. If Fourier’s law holds, Q should decrease
as a function of the inverse number of particles in the system. However, fi-
nite size effects on Q are so strong that this analysis does not yield any definite
conclusion about the system conductivity. A different method, based on the
energy current self-correlation function g � o 
 , from which thermal conductivity
can be derived via the Green-Kubo formulae, is then used. The thermal con-
ductivity 	 should be finite in the TL if g � o 
 decays as o <0=1<3x , with

% `�� . The
long time analysis of g � o 
 shows that it presents two different asymptotic be-
haviors, namely o <0= + µ and o < ´,+ å > . However, we show that the o < ´,+ å > tail comes
from system autocorrelations due to finite size effects, and hence the o <0= + µ is
the true asymptotic one in the TL. Therefore, the thermal conductivity, as de-
rived from the Green-Kubo formula, is finite in our system, so Fourier’s law
holds in this case. The previous result depends critically on data analysis, and
due to the slow decay of correlations and the strong finite size effects observed
in this system, such analysis becomes very difficult. Hence further tests and
a global consistent vision of the problem are needed in order to ensure about
the validity of Fourier’s law in this system. For this reason we also study in
this chapter the dynamical aspects of Fourier’s law. In particular we study the
energy diffusion through the system, finding that an initially localized energy
pulse propagates in a diffusive manner through the system, thus confirming
that Fourier’s law holds even in its dynamical aspects. Moreover, the energy
diffusion study allows us ti identify the mechanism responsible of normal heat
conduction in the system. We observe that light particles tend to dynamically
absorb much more energy than heavy ones. In this way, the light degrees of
freedom acquire energy easily, but release it at very long time scales, thus giv-
ing rise to hot-cold structures. Furthermore, energy propagates in a diffusive
way when many of those hot-cold structures are formed, thus indicating the
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cooperative character of the phenomenon. Cooperative phenomena as the one
here described can do the job of local potentials, giving rise to normal heat con-
duction. In spite of our results, there are still many open question associated to
the conductivity problem. Some ideas are:7 The analysis of the energy current self-correlation function has provoked

an exciting discussion among the experts in the field. It should be desir-
able to obtain a clearer picture of the finite size effects which give rise to
the measured o < ´7+ å > spureous tail in g � o 
 .7 Even simpler models must be proposed in order to study the problem
of conductivity from a microscopic point of view. In this sense, a model
similar to the one studied here but with significant smaller finite size ef-
fects should be welcome. A good candidate is a one-dimensional ring
with charged point particles subject to an electric field.7 There are many more fundamental open question, as for instance: which
are the necessary and sufficient conditions in order to observe LTE in a
system ?, which is the relation among LTE, energy equipartition and heat
transport ?, etc.

As the reader will surely have realized, this thesis is highly heterogeneous.
We have studied here many different systems, and what is more significant, we
have used many different theoretical methods and approximations in order to
understand what is going on in each problem. This fact points out one of the
main problems of actual nonequilibrium physics: the lack of a general formal-
ism, equivalent in some sense to equilibrium Statistical Mechanics, in order
to describe in a unified way nonequilibrium phenomena. On the other hand,
we have been able to understand all the observed phenomenology in all the
nonequilibrium dynamic problems studied here using these incomplete theo-
retical approaches, many of them based on concepts derived from equilibrium
statistical physics. In order to do so, we have done many reasonable approxima-
tions, but which we are not able to prove. For these reasons we think that theo-
retical physicists must put their effort nowadays on the rigorous connection
between the microscopic physics of nonequilibrium systems and the meso-
macroscopic assumptions which allow us to develop semi-phenomenologic
theoretical approaches to nonequilibrium phenomena, such as the Local Ther-
modynamic Equilibrium hypothesis, the existence of nonequilibrium poten-
tials controlling the system dynamic and static properties, etc. I think in this
connection underlies the missing link of nonequilibrium statistical physics.

Granada, November
� ' �

, 2002
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Appendix A

Monte Carlo with Absorbing
Markov Chains Simulations
and Rejection-Free
Algorithms. Projective
Dynamics and the Slow
Forcing Approximation

In this appendix we present the foundations of Monte Carlo with Absorbing
Markov Chains (MCAMC) algorithms, as well as the method of projective dy-
namics and the slow forcing approximation.[43, 45, 46]

In general, Monte Carlo methods, first introduced by Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller[47] and mainly characterized by the use
of random numbers, are useful to study the static and dynamic properties of
stochastic systems. A Monte Carlo algorithm generates stochastic trajectories
in the system’s phase space, in such a way that the properties of the system are
derived from averages over the different trajectories. If we want to study the
static properties of a system, there is a considerable freedom to choose the way
in which we move through the phase space with the Monte Carlo algorithm.
However, if we want to study dynamic properties there is no such freedom,
since the physical meaning of the dynamics is an essential part of the model.
Since we want to understand here a dynamic process as metastability in fer-
romagnetic systems, the advanced simulation algorithms we will use must re-
spect the system dynamics. This is the case for the Monte Carlo with Absorbing
Markov Chains algorithms that we summarize in this appendix.

Let’s summarize the steps of an standard Monte Carlo algorithm for the
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Ising model with spin flip dynamics before going into the functioning of MCAMC
algorithms.[42] For a dynamics

r � > %�O�
 , which yields the transition proba-
bility per unit time between two configurations which differ in the state of a
single spin, and which depends on the inverse temperature > and the energy
increment between both configurations,

%�O
, the steps the standard algorithm

follows are:7 Increase the time from o to o9L��#5 I .7 Choose randomly a spin in the lattice.7 Calculate a random number ¯F with an homogeneous distribution in the
interval

� � � � 
 .7 Calculate, or look up in a previously stored table, the energy @ � ¹ ï of the
current configuration, and the energy @ � 9�: of the configuration of the
system if we flip the selected spin. From these values, we calculate the
energy increment

%�O
involved by this spin flip.7 Accept the configuration change, i.e. flip the selected spin, if ¯F Ì r � > %�O�
 .

Otherwise keep the same configuration.

A Monte Carlo Step per Spin (MCSS) is defined as
I

spin flip trials as the
above described, where

I
is the number of spins in the lattice. As we ex-

plained in section 2.2, a MCSS corresponds to a physical time of order �#� <0=_µ
seconds, which is roughly the inverse frequency of the associated heat bath
phonons. The fundamental problem of the previously described Monte Carlo
scheme is that, with some probability, the algorithm rejects a spin flip, which
involves a waste of computer time. Furthermore, for low enough temperatures
the probability of accepting a spin flip against the local magnetic field a spin
suffers is extremely small (the local magnetic field the spin D suffers is defined
as � B ��KQ ¯ W A W ��� , where the sum runs over the nearest neighbors of spinD ). Hence most of the trials are rejected in this case. This problem makes the
standard Monte Carlo algorithm inefficient in order to study the exit from a
metastable state at low temperatures.

The advantage of MCAMC algorithms resides in that they are rejection-free
algorithms: in this case, once we randomly select a spin in the lattice, it is
flipped with unit probability, and time is incremented by the necessary amount
for this spin flip to take place. Hence, as opposed to classic Monte Carlo algo-
rithms, in MCAMC algorithms the time increments are variable (and stochas-
tic, as we will see below).

MCAMC algorithms use the concept of absorbing Markov chains (as its
name points out). Hence it is necessary to make a brief introduction to the
most relevant properties of absorbing Markov chains. Following ref. [43], let’s
consider one of these chains, with A transient states and F absorbing states. The
generic system starts its evolution in one of the transient states, and it remains
in the transient state space up to it is trapped in one of the F absorbing states. In
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order to completely define the absorbing Markov chain we only need to write
the Markov matrix,

M
� £ � � ��;	� £ � � �  ó I £ ; £ 0 £ ; �

R � ; £ T � ; � ô (A.1)

The elements of this matrix yield the probability of evolving from the state D
to the state

l
in each clock tic, è�B.V Wúc è � Dat l½


. We must notice that here
we are using the mathematical notation, where the state vector is a row vector,
on which the Markov matrix acts from the right. It is obvious that this matrix
describes a Markov process, since the transition probabilities between states
(the elements è B1V W ) only depend on the initial state (given by D , the row index)
and the final state (

l
, the column index). Furthermore, the sum of the elements

on each row is unity.
The size of the sub-matrices defining the Markov matrix is explicitely shown

in the above expression. The matrix I is the identity, 0 is a matrix with all its
elements equal to zero, T is the transient matrix, which shows the transition
probabilities among the states belonging to the transient space, and R is the re-
current matrix, which shows the transition probabilities among the A transient
states and the F absorbing states. The matrix that governs the evolution of the
system after + time steps is,

M
) � £ � � �<;�� £ � � � bó I £ ; £ 0 £ ; ��

I L T L��h�Z�ZL T
) <:= 
 � ; � R � ; £ T

) � ; � ô (A.2)

The system must initially lie in the transient space, so the initial state is rep-
resented by a vector

� U� w �^U÷ w ¬ 
 , where the vector
U÷ w ¬ has A components and the

super-index w denotes the vector transpose, i.e. a row vector. Applying the
matrix M

)
to this initial state vector, we obtain the

� F L[A 
 -dimensional vector,� U� w U÷ w ¬ 
 M )  � U÷ w ¬ � I L T LÑ�Z�Z�CL T
) <0= 
 R U÷ w ¬ T ) 


(A.3)

The components of this vector yield the probability of being in each one of the� F L�A 
 states of the system after + time steps. If we introduce the row vectorUí , with dimension A , such the all its elements are equal to unity, the probability
of still being in the space of transient states after + time step is,�

transient  U÷ w ¬ T ) Uí (A.4)

The probability that the system has exited to each one of the F possible ab-
sorbing states is determined by the components of the following F -dimensional
vector, U�

abs. after m steps  U÷ w ¬ � I L T L��h�Z�ZL T
) <0= 
 R (A.5)

Here it is clearly observed that the probability that the system has exited to
each one of the F absorbing states after + time steps is equal to the probability
that the exit takes place in the first step (determined by the term IR), plus the
probability that the exit takes place in the second step (TR), plus the probability
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Class Central spin Number of up neighbors
%�O

1 +1 4 8J+2h
2 +1 3 4J+2h
3 +1 2 2h
4 +1 1 -4J+2h
5 +1 0 -8J+2h
6 -1 4 -8J-2h
7 -1 3 -4J-2h
8 -1 2 -2h
9 -1 1 4J-2h

10 -1 0 8J-2h

Table A.1: Spin classes for the two-dimensional isotropic Ising model with periodic
boundary conditions. The last column shows the energy increment associated to each
spin class.

that the exit takes place in the steps Z � 5 � �h�Z� � + . Thus, the probability that the
system exits to each one of the F possible absorbing states, given that the exit
takes place in the + -th time step is,U�

abs. in step m  U÷ w ¬ T ) <0= RU÷ w ¬ T ) <:= R Uí (A.6)

Eqs. (A.4) and (A.6) are the basic equations from which MCAMC algorithms
are derived.

In order to apply our knowledge about absorbing Markov chains to the
bidimensional Ising model we must introduce the concept of spin classes. For a
spin in the lattice, the spin class to which this spin belongs to is defined by the
spin orientation ( LN� or �N� ) and the number of up nearest neighbors it shows.
Hence, for the two-dimensional isotropic Ising model with periodic bound-
ary conditions there are �#� different spin classes, schematized in Table A.1.
All spins belonging to the same spin class involve the same energy increment
when flipped (see Table A.1), so the transition rate for a spin depends exclu-
sively on the class D�E�FH� � �#� J to which it belongs to,

r B9c r � > %�O B 
 , where
%�O B

is the energy increment associated to class D . On the other hand, if we have an
up (down) spin in class D¨EPFH� � < J ( D�E�F � � �#� J ), when we flip this spin its class will
change to D�LO< ( D���< ). Equivalently its four nearest neighbor spins will change
the class to which they belong to, increasing (decreasing) in one unit the class
they were before the spin flip.

Let’s assume that é B is the number of spins in class D . Then
I À¯ = ´B_^ = é B .Thus the probability of flipping in a time step any of the spins in class D will

be é B r B 5 I , since é B 5 I is the probability of selecting a spin in class D , and
r B

is the probability per unit time of flipping the spin, once it has been selected.
In order to exit from a given state in the Ising system, one of the spins in the
system, which belongs to some spin class, must be flipped. Consequently we
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can interpret this process as an absorbing Markov chain where the current state
is the only transient state, and where there are �#� different absorbing states,
each one associated to a spin flip where the flipped spin belongs to one of the�#� possible spin classes. Thus the absorbing state Z is the state to which the
system exits if we flip in the current configuration a spin belonging to class Z .

Therefore the system is governed by a Markov matrix M
� = ´ � = ��;	� = ´ � = � , withA°]� transient states and F e�#� absorbing states. The recurrent matrix R is

now a row vector with �#� components,

R  � � ,>=~,\
� ù = ù\ �Z�Z� � , m =~, m\ 


(A.7)

and the transient matrix T is now a scalar which yields the probability of re-
maining in the current configuration,

T |�9� �I = ´SBè^ = é B r B cy" (A.8)

The next step consists in determining the number of time steps the system
needs to exit the current configuration. The probability that the system is still
in the same transient state (i.e. the current state) after + time steps is " ) . This
probability does not depend on the absorbing state to which the system finally
exits. The probability that the absorption occurs in the + -th step is " ) <0= � ���ý" 
 .
Since we are speaking about probabilities, the number of time steps the system
needs to exit the current state will be a stochastic variable determined through
the inequality " ) <0= Þ ˜F ` " ) , where ˜F is a random number homogeneously
distributed in the interval

� � � � J . From this inequality we obtain,

+�@? ln � ˜F 

ln " A Lá� (A.9)

where ?�õ A is the integer part of õ . Once we determine the time the system
needs to exit the current state, we only have to decide to which absorbing state
the system exits to. In order to do so we select randomly, with probabilistic
weights determined by the elements of the recurrent matrix R, to which class
the spin to flip belongs to. We thus define �#� partial sums

ä B  ¯ B Wà^ = é W r W ,with D"EMFH� � �#� J . In order to decide the class to which the spin to flip belongs
to, we generate another random number ¯F homogeneously distributed in the
interval F � � � 
 and we determine the index }�E�FH� � �#� J that fulfills the following
condition, ä � <0= Ì ¯F ä = ´ � ä � (A.10)

The index } yields the class where we must flip the spin. If there are more than
one spin in class } , we must use another random number to decide, completely
at random, the spin to flip in this class.

Summarizing, the steps to follow in a simulation of the Ising model using
this rejection-free algorithm are,7 Calculate three random numbers ˜F , ¯F and ¯ F .
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7 Calculate the accumulated sums
ä B á¯ BWà^ = é W r W , with D¨EGF©� � �#� J .7 Using ˜F , calculate from eq. (A.9) the number of time steps + in order to

exit the current configuration.7 Using ¯F , calculate the class } which satisfies the condition
ä � <0= Ì ¯F ä = ´ �ä � .7 Using ¯ F , randomly select one of the é � spins in class } , and flip this spin.7 If the flipped spin was up (down) before the change, add one unit to the

number of spins in class }0Lý< ( }��ý< ), é � � > t é � � > La� ( é � < > t¬é � < > La� ).
In the same way, subtract one unit from the number of spins in class } ,é � t¬é � ��� .7 If the flipped spin was up (down) before the change, each one of its four
nearest neighbors changes from the class � to which it belonged to the
class �zL�� ( �T��� ). We increase the number of spins in class �TL�� ( �z��� ) in
one unit, and we decrease the number of spins in class � in one unit.7 Increase the time from o to ozL*+�5 I (we divide by

I
, the number of spins

in the lattice, because we measure time in MCSS).

This algorithm is rejection-free, because it accepts with unit probability all pro-
posed spin flips, and time increases in stochastic intervals, depending on the
system’s current state. This algorithm, which is the one we have used when
studying metastability, is called in literature s-1 Monte Carlo with Absorbing
Markov Chains algorithm. The name s-1 points out the fact that this algorithm
uses a single transient state. Using eqs. (A.4) and (A.6) it is possible to gen-
eralize this algorithm to transient subspaces with 2 (s-2 MCAMC) and 3 (s-3
MCAMC) states.[43] In general, these algorithms are many order of magni-
tude faster than standard Monte Carlo algorithms when simulating systems
with discrete state space at low temperatures. The efficiency of these algo-
rithms increments as we enlarge the transient subspace.

There is an efficient way to computationally implement MCAMC algorithms.
It is based on the creation of four different lists. The vector NCLS(k), with}� � � �h�Z� � �#� , contains the number of spins é � in each spin class. The vec-
tors ICLASS(i) and ICPOS(i) inform us about the class to which a spin
situated in a lattice site D belongs to and the place that this spin occupies in
the list of spins belonging to the same class, respectively. Finally, the ma-
trix LOC(j,k) yields the lattice position of a spin in class } situated in thel
-th position in the list of spins belonging to this class. Hence we have that
LOC(ICPOS(i),ICLASS(i))=i. Using these four vectors it is very simple to
implement MCAMC algorithms, as well as to actualize the class populations
after each spin flip.

When we want to study the problem of metastability in an Ising model
at very low temperatures and weak magnetic fields, the local stability of the
metastable state is so strong that simulations are not feasible even for MCAMC
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algorithms. Therefore it is necessary to go one step beyond MCAMC algo-
rithms and design more advanced techniques able to simulate rare events as the
exit from the metastable state in these extreme conditions. In our case the solu-
tion underlies in the so-called slow forcing approximation.[45] In this approxima-
tion the system is forced to evolve towards the stable state by a moving mag-
netization wall. That is, we define an upper bound for magnetization, which
depends on time, + ¹ B ) � o 
  ���øº:o , and such that the system magnetization
is forced to stay below this threshold at any time. This constraint imposed on
magnetization clearly modifies the system’s original dynamics. Hence, given
the dynamic character of the problem of metastability, such modification on the
dynamics would affect in principle the results of simulations performed with
a nonzero forcing º . However, it has been shown that for small enough values
of the forcing º , a slow forcing limit exists[45], such that in this limit the sys-
tem observables are independent of the applied forcing, while the simulation
is still significantly accelerated as compared to the non-forced system. In some
sense, this slow forcing limit is an adiabatic limit: although the system is forced,
if º is small enough the system has enough time to thermalize and select the
same typical configurations that a system without forcing should choose in its
evolution from the metastable state to the stable one. In this way the phase
space sampling in the slow forcing limit is almost indistinguishable from the
sampling performed with non-forced algorithms, although in the first case the
sampling can be done in a reasonable amount of time. It is important to re-
alize that the forcing is only relevant in the neighborhood of the metastable
state: once the energy barrier has been overcome, the system rapidly evolves
towards the stable state via nonequilibrium (non-thermalized) configurations,
being the magnetization wall irrelevant in this process. The combination of
the s-1 MCAMC algorithm and the slow forcing approximation constitutes the
basic computational scheme we have used to simulate our system.

If we now think, for instance, about the metastable state lifetime, it is obvi-
ous that the result obtained using the slow forcing approximation will be much
smaller than the real one. Thus we must develop a method that allows us to
extract information, as for instance the metastable state lifetime, from simula-
tions performed using the slow forcing approximation. This method is based
on the so-called projective dynamics method.[46] The idea behind the projective
dynamics method is that one expects that a one-dimensional physical picture
of the nonequilibrium potential which controls the process is valid even for a
complicated process as that of metastability in our nonequilibrium model. In
this approximation the dynamics of the (complex) system is projected on a one-
dimensional system where the relevant variable is one of the slow-evolving ob-
servables of the original system. In particular, all states with the same magne-
tization are projected on a single state, defined by the value of magnetization.
Therefore, instead of considering transitions among the

� \ possible states in
the (complex) Ising system, which are captured by a Markov matrix with di-
mension

� \ ¸Ï� \ , we only consider transitions between projected states with
well defined magnetization, giving rise in this case to a projected Markov ma-
trix with dimensions

�YI L[� 
z¸Í�YI L[� 
 . It has been mathematically proved that
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the original Markov matrix with
� \ states is not even weakly lumpable[48],

although it seems to be lumpable with respect to the states in the escape route
from the metastable state. Thus the original master equation which governs
the Ising dynamics, given by eq. (2.2) (see section 2.2) is projected on a master
equation for the

�YI Lá� 
 magnetization states,

d $ � é � 8 nuo 

d o  S� pB â

ÄDC � éRs� 8 t é � 8 
 $ � éRs� 8 nuo 
 � C � é � 8 t¬éRs� 8 
 $ � é � 8 nfo 
kÅ
(A.11)

The variable é � 8 is the number of up spins which identifies the projected state,
and it is completely equivalent to magnetization + , é � 8  IÏ� ��LG+ 
 5 � . Here
the projected transition rates between magnetization states,

C � é s� 8 t é � 8 
 ,
naturally appear. Only transitions between states which differ in one up spin
are allowed, since our dynamics is a single spin flip dynamics (see eq. 2.3).
Hence the transition rates

C � é s� 8 t é � 8 
 and
C � é � 8 t é s� 8 
 will be zero

always that é s� 8 ��é � 8 � ò � � � . This property implies that the associated pro-
jected Markov matrix is tridiagonal, and so very easy to treat analytically.

It is possible to measure these transition rates in a simple way in Monte
Carlo simulations. We only have to notice that, for instance,

C � é�� 8 t¬é � 8 �*� 

is just the probability per unit time that an up spin flips. An up spin must be in
a class }ÏEF©� � < J , and we know that the probability per unit time of changing a
spin in class } is given by é�� r ��5 I , where é�� is the number of spins belonging
to class } , and

r � is the transition rate associated to this class. Therefore we
can write, C � é � 8 t¬é � 8 ��� 
 c î � é � 8 
I  �I >S��^ = é�� r �C � é � 8 t¬é � 8 L�� 
 c A � é � 8 
I  �I = ´S��^a� é � r � (A.12)

C � é � 8 t¬é � 8 
 c �9� î � é � 8 
I � A � é � 8 
I
These equations help us to define growth rate, î � é � 8 
 , and the shrinkage rate,A � é � 8 
 , of the stable phase in the state with magnetization é � 8 . Using the s-1
MCAMC algorithm is very simple to measure both î � é � 8 
 and A � é � 8 
 , since
we know the classes populations at any time. We can obtain much informa-
tion about the metastable-stable transition from these stable phase growth and
shrinkage rates. For instance, if we perform E demagnetization experiments
with ����� from the metastable state (with positive magnetization) to the stable
one (with negative magnetization), we can write the following balance equa-
tion, valid for all values of éQ� 8 ,IÏ� é � 8 t é � 8 ��� 
 FEaL IÍ� é � 8 ����t¬é � 8 
 (A.13)

where
IÏ� é � 8 t¬é � 8 �[� 
 and

IÏ� é � 8 �[��t¬é � 8 
 are, respectively, the number
of times that, in these E experiments, we go from a state with é�� 8 up spins to
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other state with é � 8 �P� up spins, and the number of times we go from é � 8 �P�
to é � 8 . If Î � é � 8 
 is the total time we spend in a state with magnetization é � 8
in one experiment, we can write,

IÏ� é � 8 t é � 8 �|� 
 @E$Î � é � 8 
 î � é � 8 
 , andIÏ� é � 8 ���Ït é � 8 
 GE$Î � é � 8 ��� 
 A � é � 8 
 . We can now write the following
recurrence relation, Î � é � 8 
  �:L°Î � é � 8 ��� 
 A � é � 8 �Ñ� 
î � é � 8 
 (A.14)

which relates the time we spend in states with é�� 8 up spins to the time we
spend in states with éQ� 8 �À� up spins. On the other hand, we must give a
threshold in order to define the metastable state lifetime, such that the first
passage time through this threshold will yield the definition of the metastable
lifetime. For lattice spin system as the one we study this threshold is usually
defined by the zero magnetization condition. In this way we define the lifetime
of the metastable state for the ferromagnetic spin system as the first passage
time to + �� (or, equivalently, é � 8  I 5 � ). We can calculate this mean
lifetime using the above recurrence relation. In order to do so we must fix
an initial condition for the recurrence. We can think in this process as a one-
dimensional random walk, which starts at é � 8  I and finishes at é � 8  I 5 � .
Thus we have that Î �ÙI 5 ��
 �� so,

±" \S� B â ^IH ù � = Î � é � 8 
1� Î � é � 8 
  �9L°Î � é � 8 ��� 
 A � é � 8 �Ñ� 
î � é � 8 
 � Î � I � 
 ��
(A.15)

In this way we can obtain the metastable state mean lifetime from the stable
phase growth and shrinkage rates, î � é � 8 
 and A � é � 8 
 , respectively. An estima-
tion of the error for ± can be obtained by a simple quadratic error propagation
procedure, from the errors associated to the times Î � é � 8 
 , whose error derive
from the statistical errors in the measure of î � é � 8 
 and A � é � 8 
 . The mean life-
time obtained from (A.15) is exact up to statistical errors, as compared to the
mean lifetime of the real system.[43] Finally, the projected growth and shrink-
age rates, î � éQ� 8 
 and A � é � 8 
 , allow us to study the shape of the nonequilib-
rium potential (or the fee energy in the equilibrium system) during the escape
from the metastable state. Thus the points é�8� 8 for which î � é�8� 8 
 ¬A � é�8� 8 
identify the local extremes of this nonequilibrium potential. This fact allows
us to measure, as explained in Chapter 3, the magnetization of the stable and
metastable states with high precision, as well as the magnetization which de-
fines the critical droplet. We also are able to calculate from î � é � 8 
 and A � é � 8 

the system’s magnetic viscosity[31].



222 Monte Carlo with Absorbing Markov Chains Algorithms



Appendix B

Calculation of the ProbabilityJ KMLONQPSR T
of Finding an

Interfacial Spin in Class 2

In this appendix we present in detail the calculation of
� � �����à��


, the probability
of finding an interfacial spin belonging to class 2, in our generalized Solid-On-
Solid approximation for the nonequilibrium interface.

As explained in section 4.3, the probability
�ª�������	��


is defined by the aver-
age (see eq. (4.26)),

�(�������	��
  � µS· V ä ^ < µ �
��� � � � 
 ��� � � � 
 (B.1)

where ��B � � � � 
 is the probability of finding a spin of class D in an interfacial spin
column characterized by a left step with magnitude � and a right step with size� , and where

��� � � � 
 is the probability of finding an interfacial spin column in
such configuration

� � � � 
 . The two-body probability function
��� � � � 
 depends

on the relative signs (including zero) of the steps � and � . Table 4.1 shows the
different functions

��� � � � 
 for each one of the
�

possible typical configurations
for a interfacial spin column in the generalized SOS approximation. On the
other hand, as explained in section 4.3, the probability function � � � � � � 
 can be
written as, � ��� � � � 
  é � � � � � 
IÍ� � � � 
 (B.2)

where é � � � � � 
 is the number of spins in class 2 for an interfacial spin column
characterized by

� � � � 
 , and where
IÏ� � � � 
 is the total number of interfacial

spins associated to this column. Table 4.2 shows the different values of é ��� � � � 

and

IÍ� � � � 
 for each typical column configuration. Attending to the entries of
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�ª�������à��


both tables, we can write for
� � �����à��


,

�(���&���	��
  �æ Ê
� µS· ^ =

� µS ä ^ = � �9� �� 
 ã
· �Xä ¾ µµ ¾ · �ªä < �� L � µS· ^ = � �9� �� 
 ã

· ¾ · <0=� ¾ �µ
L � µS· ^ = <:=Sä ^ < µ

� �9� ø" 
 ã · �Xä ¾ µ³ ¾ ���èç <0= �µ ¾ ! < ç� L � µSä ^ = ã
ä ¾ �µ ¾ ä <0=� L$¾ �

L <0=Sä ^ < µ
� �9� �� ��� 
 ã ä ¾ �µ ¾ ½ ä3½ <0=� L <0=S· ^ < µ

� µSä ^ = ã
· �Xä ¾ µ³ ¾ �
� ç <0= �µ ¾ ! < ç�

L <0=S· ^ < µ ã
· ¾ �µ ¾ ½ · ½ <0=� L <0=S· ^ < µ

<0=Sä ^ < µ
� �9� �� ��� 
 ã · �Xä ¾ µµ ¾ ½ · ½ �X½ ä3½ < �� Ë

(B.3)

where ¾ B  e < �~þ w:ß {�àÎ�Ï0Ï and ã� e ¸ â ��¹�� . Writing the above equation we have
used the equalities ¾ · }¾ � , ¾�å"}¾ µ and ¾ é }¾ ³ , and we have defined ø[
min

� � �¶� � � ��� 
 and " max
� � � � � � ��� 
 . The factor æ is the normalization constant,

already calculated in section 4.3, see eq. (4.25).
We must use the classic results for the geometric sum and the geometric

series, as well as some other results that can be easily derived from them, see
eqs. (4.28)-(4.33), in order to perform the sums involved in the calculation of�(�������à��


. It is convenient to summarize again these results,

µS��^ ´ õ �  ��9��õ � � õ��h�|� (B.4)�S��^ ´ õ �  �9��õ � � =�9��õ � õ �|� (B.5)

µS��^ = õ
�}  ln

� ��9��õ 
 � � õ��h�|� (B.6)�S��^ = õ
�}  ln

� ��9��õ 
 �¿ÿ ´ d« « ��9�S« � � õ��Z�M� (B.7)

µS��^ = } õ �  õ� �9��õ 
 � � � õ��Z�M� (B.8)�S��^ = } õ �  õ � �9��õ � 
� �9��õ 
 � � é0õ � � =�9��õ � õ �|� (B.9)

Using these expressions we can complete satisfactorily the calculation of
� � �&���	��


.
To see in detail this calculation, let’s solve in a first step, as a simple case, the
double sum appearing in the first term of the right hand side of eq. (B.3). This
term is associated to an interfacial spin column characterized by � � �"`�� (type
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A in Table 4.1). If we denote this sum as Ø Ï , then Ø Ï is written as,Ø Ï  � µS · ^ =
� µSä ^ = � �9� �� 
 ã · �Xä ¾ µµ ¾ · �Xä < ��

 ¾ µµ¾ ��
� µSä ^ = � ¾ � ã 


ä � µS· ^ = � ��� �� 
.� ¾ � ã 
 ·
Up to now we have only re-written the sum Ø Ï . Applying eq. (B.4) to the sum
over � , decomposing the sum over � in two different sums, and using for these
sums the solutions expressed in eqs. (B.4) and (B.6), we find the solution,Ø Ï  ¾ µµ ã �� ���$¾ � ã 
 � � ¾ µµ ¾ <0=� ã�0�¿¾ � ã ln

� ��9�¿¾ � ã 
 (B.10)

In the same way we have calculate this first sum, we can calculate the rest of
terms on the right hand side of eq. (B.3), being most of the calculations as
simple as the one we have solved previously. The only sum which shows some
degree of complexity is that associated to an interfacial spin column of type
C (see Table 4.1), i.e. ��`e� and �� � . This sum, called from now on Øu¡ ,
corresponds to the third term on the right hand side of eq. (B.3),Ø ¡  � µS · ^ = <0=Sä ^ < µ

� �9� ø" 
 ã · �ªä ¾ µ³ ¾ �
�èç <0= �µ ¾Q! < ç�
where we must remember that ø� min

� � � � � � ��� 
 and "° max
� � � � � � ��� 
 . This sum

can be written as,Ø	¡  ¾9µ³¾ �µ
� µS· ^ = Ê � ¾ � ã 


· ·Sä ^ = � �9� �� 
ß� ¾
�µ¾ � ã 
 ä

L � ¾ �µ ã¾ � 
 ·
� µSä ^ · � = � �9� � � 
.� ¾

�ã 
 ä Ë (B.11)

Using eqs. (B.4)-(B.9) we can perform the sum over � , yielding,Ø	¡  ¾ µ³¾ �µ
� µS· ^ = Ê � ¾ � ã 


· q ¾ �µ ¾ <:=� ã <0=�9�¶¾ �µ ¾ <:=� ã <0= � �� ¾
�µ ¾ <0=� ã <0= � � ¾ �µ ¾ <0=� ã <0= 
 · � =� �9�$¾ �µ ¾ <:=� ã <0= 
 � v

L � ¾ �µ ã¾ � 
 · q � ¾ � ã <:= 

· � =�:�¶¾ � ã <0= ��ªÿVU ù"W f ,� d« « ·�9�O« v�Ë (B.12)

At this point we can perform easily the sums over � , taking into account that we
can interchange the sum and the integral (the Riemann integration is a linear
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application). Summing over � we arrive to,Ø�¡  ¾ µ³¾ �µ Ê ¾ �µ� �9�$¾ �µ ¾ <0=� ã <0= 
.� �9�$¾ � ã 
 L ¾ �µ ¾ <:=� ã <0=� �9�$¾ �µ ¾ <:=� ã <0= 
 � ln
� �9�¶¾ � ã�9�$¾ �µ 
L ¾ �µ ¾ � ã <0=� �9�¶¾ � ã <0= 
ß� �9�¶¾ �µ 
 �¿ÿXU ùYW

f ,
´ d« ¾ �µ ã�¾ <:=� «� �9��« 
ß� �9�¿¾ �µ ã�¾ <0=� « 
 �[Z (B.13)

In order to finish the calculation of Ø ¡ we only have to evaluate the integral.
This integral is of the type,ö�L0cÑöªÿ ´ d« «� �9�S« 
ß� ���Pö+« 
 �
where in this case öÊT¾ �µ ¾ <0=� ã and õúC¾ � ã <0= . Integrating L by parts, choosing\ ¶«�5 � �9�S« 
 and d÷ú d«�5 � �9�[ö)« 
 � , we obtain,L0 õö � �9�[õ 
ß� �9�[öhõ 
9� �ö ÿ ´ d« �� �9�[ö)« 
.� ���S« 
 � (B.14)

We call L � to the integral appearing in the second term on the right hand side
of the above equation. This last integral can be solved analytically, knowing
that generically[64],ÿ d« �� 1KL�3n« 
 � � øúLÑ>þ« 
 )  � �� +��á� 
.� 1�>"�Cø$3 
 �� 1RL�3þ« 
 � <0= � øúLÑ>þ« 
 ) <0=� � +ûL[é � ��
 3� + ��� 
ß� 1�>"�Cø$3 
 ÿ d« �� 1NL�3n« 
 � � ø"Lø>þ« 
 ) <0=
Applying this expression to L � , taking into account that in this case 1Á � ,3Í���ö , ø |� , >Í��?� , +� � and é�|� , we arrive to,L �  õ� �9��ö 
.� �9��õ 
 L ö� �9�[ö 
 � ln

� �9��õ�9�[öhõ 

where we have already analytically solved the last remaining integral. Using
this result in the expression for L , eq. (B.14), and applying the result of this sub-
stitution to the previously calculated expression for Ø ¡ , eq. (B.13), and taking
into account that öÊT¾ �µ ¾ <0=� ã and õúT¾ � ã <0= , we finally obtain the sum Ø ¡ ,Ø ¡  ¾ µ³¾ �µ Ê ¾ �µ� �9�$¾ �µ ¾ <0=� ã <0= 
.� �9�$¾ � ã 
 L ¾ �µ ¾ <:=� ã <0=� �9�$¾ �µ ¾ <:=� ã <0= 
 � ln

� �9�¶¾ � ã�9�$¾ �µ 
L ¾ �µ ¾ � ã <0=� �9�¶¾ � ã <0= 
ß� �9�¶¾ �µ 
 L ¾ � ã <0=� ���¶¾ � ã <0= 
ß� �9�$¾ �µ ¾ <:=� ã 
L ¾ �µ ¾ <0=� ã� �9�¶¾ �µ ¾ <0=� ã 
 � ln
� �9�¿¾ � ã <0=�9�$¾ �µ 
 � ¾ � ã <0=� �9�$¾ � ã <0= 
.� �9�¶¾ �µ 
 Ë (B.15)

In a similar way we are able to calculate the rest of sums involved in the ex-
pression for

� � �����	��

, finally obtaining the result shown in eq. (4.34). The cal-

culations needed in order to evaluate
� ³ �&���	��
 are even simpler, so we do not

include them in this appendix.



Appendix C

Avalanche Size Distribution
for a Flat Domain Wall

In this appendix we calculate the avalanche size distribution associated to a
flat domain wall in our nonequilibrium ferromagnetic system (see Chapter 6).
These (small) avalanches characterize the so-called extrinsic noise[88] that ap-
pears in the avalanche size distributions associated to the ferromagnetic circu-
lar nanoparticle. In order to perform the calculation we need again the concept
of spin class. Remembering from section 3.3.4, if we have a spin A in our lat-
tice, the spin class to which this spin belongs to is defined once we know the
spin orientation, A* LN� or A* �N� , and its number of up nearest neighbors,éMEáF � � 5 J . Therefore, for the two-dimensional isotropic Ising model subject to
periodic boundary conditions there are �Z� different spin classes (see Table C.1).
The last column in Table C.1 shows the Glauber transition rate, see eq. (2.3),
for each spin class once fixed the parameter values to

� ������~� � É � � � ��� � < ,� ��#� < � and �������� � . Remember also that Q:|� and >aM�#5 � .
Let us assume now that we have our nonequilibrium magnetic system de-

fined on a square lattice with size
-�¸(-

, subject to periodic boundary conditions
along the horizontal direction and open boundary conditions in the vertical di-
rection. The initial condition consists in a stripe of down spins with height

- 5 �
situated in the lower part of the system, and a complementary up spins stripe
situated in the upper part of the system. That is, the initial condition comprises
two bulk phases (up and down) and a perfectly flat interface between them.
Under the action of a negative magnetic field the interface moves upwards on
average. This system corresponds to the semi-infinite system introduced in
sections 5.3.2 and 6.3.1 when studying the interface growth velocity and the
extrinsic noise respectively. The probability per unit time of changing a spin in
class D is, F B � o 
  é9B � o 
I r B (C.1)

where é9B � o 
 is the number of spins in class D at time o , r B is the transition rate
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Class Central spin Number of up neighbors Transition rate
1 +1 4 ²Ï�#� < �
2 +1 3 ²Í�~� � 5 ¸ �#� < �
3 +1 2 ²"��� �~�
4 +1 1 ²Ï�
5 +1 0 ²Ï�
6 -1 4 ²Ï�
7 -1 3 ²Ï�
8 -1 2 ²"��� Z��
9 -1 1 ²Í�~� �=< ¸ �#� < �

10 -1 0 ²Ï�#� < �
Table C.1: Spin classes for the two-dimensional isotropic Ising model with periodic
boundary conditions. The last column shows the approximate value of the Glauber
transition rate, eq. (2.3), for b'B�D�HRJIJÑb e@fng , 4�BhJ.D3ò9� and A�B¶PQD�HRJ .
associated to class D (see section 3.3.4) and

I  - � is the total number of spins
in the system. For our initial condition the only occupied classes are class 1
(up bulk spins), class 2 (up interfacial spins), class 9 (down interfacial spins)
and class 10 (down bulk spins). For low temperatures and � � Q�Ì��¿Ì�� the

r B
values for these four spin classes are very small (see Table C.1). In fact, we have
that

r = V = ´ ² �#� < � , r � ² �~� � 5 ¸ �#� < � and
r · ² �~� �=< ¸ �#� < � . Since for the initial

condition we have that é = � é = ´ Z é ��� é · , there will be many bulk fluctuations
before a fluctuation in the interface appears.

However, when an interfacial fluctuation appears a lateral avalanche takes
place. Let us assume that an interfacial fluctuation appears in the form de-
picted in Fig. C.1.a, where one up interfacial spin has been flipped. Now this
spin belongs to class 7, and its two nearest neighbor spins in the direction of
the interface belong to class 3. Since

r µ � ��� �~� and
r é � � , in this case we

have that F µ � � ¸ ��� �~� 5 I and F é � �Z5 I . These probabilities must be com-
pared with F = �æI <:=�F �Ù- 5 � �á� 
	- �ø� J:¸ �Z��< � , F �°� �~� � 5 ¸�I <0= �Y- � ��
�¸ �#��< � ,F · � �~� �=< ¸ÏI <0= �Ù- �Ñ� 
�¸ �#� < � and F = ´ �|I <0= F �Y- 5 � �á� 
	- LÑ� J:¸ �#� < � . Hence,
for feasible system sizes as those we use in our simulations, and for our fixed
set of parameters, the probability of lateral growth of the initial fluctuation
(
�*¸ ��� ��� 5 I ) and the probability of destroying the fluctuation ( �#5 I ) are much

larger than the probability of finding any other spin flip in the system. This
argument allows us to safely assume that once the interfacial perturbation has
appeared, the system dynamics can be reduced to the growth and shrinkage
dynamics of the interfacial perturbation. Under this assumption, the most
probable process to be observed consists in the growth of the interfacial fluctu-
ation via the flipping of the lateral spins in class 3 which surround the fluctu-
ation, until one of the two spins in class 8 which delimit the lateral size of the
interfacial fluctuation flips, stopping in this way the fluctuation growth. We
call this process and avalanche, and our aim now consists in calculating the size
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Figure C.1: Schematic plot of a flat interface and the origin and growth mechanism of
a lateral interfacial avalanche, as described in the main text. Notice in (c) that during
the lateral avalanche evolution the only relevant spins are the two spins in class 8 and
the two spins in class 3.

distribution for these lateral interfacial avalanches.
Therefore we suppose that the system is in a state as that shown in Fig.

C.1.b, with two up interfacial spins flipped, and we want to know the probabil-
ity of finding a lateral avalanche as the one described above with size

% ) ���
(it is an avalanche in the direction of the magnetic field, ��À� ), where the size
of the avalanche is defined as the number of spins it involves. Following our
assumptions, the only way an avalanche can grow is through the flip of any
of the two spins in class 3 adjacent to the cluster forming the avalanche (see
Fig. C.1.c). This avalanche will stop once any of the two spins in class 8 at the
lateral border of the avalanche cluster flips. All other spin flip processes in the
system have a negligible probability of being observed as compared to these
two processes.

The restricted dynamics we propose here only involves four different spins
(two of class 3 and two of class 8). Hence the probabilities of flipping a spin in
class 3 or 8 are now, respectively,F µ  �� q � L � �9� ��
 e

� w ½ �]½�9L e
� w ½ �]½ v (C.2)F å  �� q � L � �9� ��
 e < � w ½ �]½�9L e < � w ½ �]½ v (C.3)

where we have used the general form of Glauber rate for arbitrary values of
�

,�
and � , once specified for classes 3 and 8. Since we have modified the system

original dynamics, we must normalize again these probabilities. Applying the
normalization condition, we obtain the avalanche growth and stop probabili-
ties, �)] £ � :  ��9L � q � L � ��� ��
 e

� w ½ �]½�9L e
� w ½ �:½ v (C.4)� � 'ß� 8  ��9L � q � L � ��� ��
 e < � w ½ �:½�9L e < � w ½ �]½ v (C.5)

The probability of finding a lateral avalanche of size
% ) � � is $ �&% ) 
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Figure C.2: Semilog plot of the avalanche size distributions
� ÇiÛÈ^3�D�É (dashed line)

and
� ÇiÛ³ r�D�É (continuous line) as obtained from our calculations for bSB�D�HRJUJ.b e.f�g ,4�BGJ@D ò9� and A�B�PQD�HRJ . The points are Monte Carlo results for the avalanche size

distributions
� ÇiÛ  3SD�É ( Ú ) and

� ÇiÛ  r�D�É ( Ù ) for the semi-infinite system described
in the main text with LSB K=N . The agreement between the theoretical prediction and
Monte Carlo results is excellent.� ½ x¹J ½] £ � : � � 'ß� 8 , that is,

$ �&% ) ��� 
  q � L � �9� ��
 e
f ù * e v e= � e
f ù * e v e v�9L � ¸ Ê ��9L � q � L � �9� ��
 e

� w ½ �]½�9L e
� w ½ �]½ v
Ë ½ x¹J ½ ��9L � q � L � �9� ��
 e < � w ½ �:½�9L e < � w ½ �]½ v ¸ e < ½ x¹J ½ Ç ¯x ß f àJ (C.6)

where the typical size characterizing avalanches in the field direction can be
written as,

¯% � < �)  �
ln
q � �9L ��
ß� ��L e

� w ½ �]½ 
� L e
� w ½ �]½ v (C.7)

In a similar way we can calculate the size distribution and the typical size
of positive avalanches, $ �k%() ` � 
 and ¯% �i�t�) respectively. In this case the
avalanche growth probability is given by eq. (C.5) and the avalanche stop
probability is given by eq. (C.4). The result for the typical size is,

¯% �W�X�)  �
ln
q � �9L ��
ß� �9L e < � w ½ �]½ 
� L e < � w ½ �]½ v (C.8)

Fig. C.2 shows the avalanche size probability distributions $ �&% ) � � 
 and$ �k% ) `�� 
 as obtained from the previous calculations, see eq. (C.6) and its



231

equivalent for
%() `�� , for

� M�����~� ���h� � , � ��#��< � and ��M����� � . This figure
also shows Monte Carlo results for the avalanche size distribution in the semi-
infinite system described above with size

- T<
Z . As we observe in this figure,
the agreement between the predictions and Monte Carlo results is excellent.

This agreement allows us to state the origin of the extrinsic noise in our
nonequilibrium magnetic system. As we have deduced previously in this ap-
pendix, the small avalanches which define the extrinsic noise are just local ran-
dom fluctuations of an advancing flat domain wall. The extrinsic noise is thus
an intrinsic property of the magnetic system, and it has nothing to do with
the presence of free boundaries, as opposed to large avalanches in the circu-
lar nanoparticle defined in Chapter 6, whose origin is intimately related to the
presence of free borders and its interplay with the domain wall.
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Appendix D

Variations of Lipowski Model

In this appendix we briefly discuss some variations of Lipowski model not
studied in Chapter 8. In particular, we introduce some results obtained for
Lipowski model with parallel updating dynamics, and we also comment on a
multiplicative version of this model.

D.1 Lipowski Model with Synchronous Updating

As an alternative attempt to speed up the dynamics, and examine further some
properties of the two-dimensional model, we have implemented the micro-
scopic dynamics replacing the original sequential updating by a synchronous
or parallel one, i.e. all active sites are “deactivated” simultaneously at each
Monte Carlo step, and all their associated bonds are replaced by new random
variables simultaneously. In this way, as random numbers do not have to be
extracted to sequentially select sites, the dynamics is largely accelerated. For
this modified dynamics, we have examined some relatively large system sizes,-  � < � , and concluded that the nature of the transition is changed with re-
spect to the sequential updating case: in this case the transition is first order
and critical exponents cannot be defined. To show that this is the case, in fig-
ure 9 we present the stationary activity curve. The upper curve corresponds to
simulations performed taking an initial activity-density equal to unity. On the
other hand, the lower curve is obtained by starting the system with a natural
absorbing configuration, and activating on the top of it a small percentage of
sites (about a ten percent).

For values of F in the interval F � �~� <35
< �.� ��� <�<
< J the system reaches differ-
ent states depending upon the initial condition. The presence of a hysteresis
loop is a trait of the transition first-order nature. First order absorbing state
transitions have been observed in other contexts [189]. However, we caution
the reader that, as the transition is found to occur at a value of F for which the
probability of creating superabsorbing sites is very large (much larger than in
the sequential case), and the dynamics is therefore extremely anomalous and
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Figure D.1: Order parameter as a function of � in the case of parallel updating. The
transition appears to be discontinuous in this case, exhibiting also a hysteresis loop.

slow, it could be the case that the first order character of the transition is only
apparent. Extracting clean, conclusive results in the critical zone is a computa-
tionally very expensive task, that we have not pursued.

D.2 Multiplicative Version of Lipowski Model

Very recently, Lipowski has introduced a multiplicative version of his model
on the square lattice in which sites are declared active if the product of the four
adjacent bonds is smaller than a certain value of the control parameter F [185].
Bonds take uncorrelated values in the interval F �ª��� < � ��� < J extracted from a ho-
mogeneous distribution. For values of F smaller than F �� there is a finite (not
small) probability to generate superabsorbing sites. In this case, it is not diffi-
cult to see that isolated superabsorbing sites remain frozen forever. In analogy
with the discussion of the honeycomb-lattice model, a first order transition is
expected at F �  � (as discussed also in [185]). However, in this case, as the
probability to create superabsorbing sites is not negligible, the first order tran-
sition is actually observable. Based on a numerical measurement of > Lipowski
concludes that the model shares first-order properties with second-order fea-
tures. In particular, the transition is clearly shown to be discontinuous, there
is no diverging correlation length, but > is claimed to be however in the two-
dimensional DP class. Our guess is that this apparent puzzle is simply due to
a numerical coincidence, and that in fact there is no trait of any second-order
phase transition feature (observe that the fit for beta in [185] spans for less than
half a decade in the abscise of the log-log plot).
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Resumen

En esta tesis se estudian aspectos dinámicos de algunos sistemas fuera del
equilibrio. Éstos son sistemas abiertos, que sufren histéresis, sujetos a gradi-
entes de densidad y/o temperatura, flujos de masa y/o energı́a, bajo la acción
de agentes externos y diferentes fuentes de ruido no térmico, etc. Los sistemas
fuera del equilibrio abundan en la Naturaleza, siendo los sistemas de equilibrio
una excepción bastante improbable. Podemos encontrar ejemplos de sistemas
fuera del equilibrio en biologı́a (por ejemplo, seres vivos), economı́a (dinámica
del mercado), geologı́a (terremotos), fı́sica cuántica y molecular (nanopartı́culas
magnéticas), hidrodinámica (fluidos turbulentos), astrofı́sica (estructura y evo-
lución estelar), sociologı́a (propagación de opiniones), etc. Lo que es más im-
portante, parece que las condiciones de no equilibrio son esenciales a la hora de
comprender y explicar la estructura compleja que se observa en la Naturaleza.[1]

A pesar de su importancia, hasta ahora no se ha podido formular una teorı́a
completa que conecte las propiedades microscópicas de los sistemas lejos del
equilibrio con su fenomenologı́a macroscópica. Esta conexión sólo se ha po-
dido establecer rigurosamente para los sistemas de equilibrio a partir de la
función de partición.[2] La búsqueda de una descripción mecano-estadı́stica
de los sistemas fuera del equilibrio constituye uno de los retos fundamentales
de la Fı́sica moderna. A dı́a de hoy tan solo tenemos un conjunto de técnicas
ad hoc que describen de una manera parcial y aproximada algunos problemas
particulares en fı́sica estadı́stica del no equilibrio. En particular, la mayorı́a
de los estudios y avances teóricos realizados hasta ahora en este campo se han
centrado en estados estacionarios de no equilibrio, que constituyen la situación
más simple dentro de los fenómenos de no equilibrio. Por otra parte, los aspec-
tos dinámicos de los sistemas fuera del equilibrio se han estudiado muy pobre-
mente, y el objetivo de esta tesis consiste en ampliar nuestro entendimiento de
tales procesos.

Los fenómenos dinámicos en sistemas complejos están relacionados nor-
malmente con transformaciones entre diferentes fases. Es por esto que hemos
investigado cómo las condiciones de no equilibrio afectan a tales transiciones.
En particular, hemos estudiado el efecto que las condiciones de no equilib-
rio tienen sobre el problema dinámico de la metaestabilidad, donde un sis-
tema preprarado en una fase metaestable eventualmente evoluciona hacia la
fase estable. También hemos estudiado cómo un sistema bajo condiciones
anisotrópicas de no equilibrio y que conserva el número total de particulas



248 Resumen

evoluciona desde una fase inicial desordenada a través de procesos de segre-
gación hasta la fase ordenada. Además de su interés intrı́nseco debido a su
aparición ubı́cua en la Naturaleza, estos dos ejemplos son muy interesantes
ya que tienen contrapartidas de equilibrio. Esto es, tanto la metaestabilidad
como la segregación de fases se observan en sistemas de equilibrio, habiendo
sido ampliamente investigadas. Este hecho nos permite deducir, comparando
los casos de equilibrio y fuera del equilibrio, los efectos netos que las condi-
ciones de no equilibrio inducen. Por otro lado, hay procesos dinámicos que
son intrı́nsecos a los sistemas fuera del equilibrio. Éste es el caso, por ejem-
plo, de las transiciones de fase dinámicas entre una fase activa, caracterizada
por una dinámica no trivial, y una fase absorbente, donde el sistema se en-
cuentra congelado. Esta transición de fase es irreversible, por lo que consti-
tuye un fenómeno puro de no equilibrio. En esta tésis investigamos los efec-
tos que una nueva simetrı́a oculta induce sobre la universalidad observada
en estas transiciones de fase absorbentes. Otros procesos dinámicos que no
tienen contrapartidas de equilibrio son los fenómenos de transporte en gen-
eral, y la conducción del calor en particular. En esta tesis también investig-
amos los orı́genes microscópicos de la conductividad térmica normal y la ley
de Fourier. Por supuesto, hay muchos fenómenos dinámicos fuera del equilib-
rio que no tratamos en esta tesis. Como ejemplo, tan sólo mencionar la rica,
compleja y aún no completamente entendida fenomenologı́a observada en flu-
idos: convección, corrientes turbulentas, etc.[8] Sin embargo, creemos que los
fenómenos dinámicos en sistemas fuera del equilibrio estudiados en el pre-
sente trabajo proporcionan una visión adecuada de la riqueza y diversidad de
nuevos efectos que las condiciones de no equilibrio inducen en la dinámica de
los sistemas complejos.

Este trabajo está dividido en dos partes diferentes. La primera parte, que
comprende los capı́tulos 2, 3, 4 y 5, se dedica al estudio del problema de la
metaestabilidad y su dinámica asociada en sistemas fuera del equilibrio con
interacciones de corto alcance. En particular, estudiamos un sistema ferro-
magnético de no equilibrio definido sobre una red bidimensional. Por otro
lado, en la segunda parte del trabajo, que comprende los capı́tulos 7, 8 y 9,
estudiamos respectivamente la cinética de segregación de fases en un gas retic-
ular anisotrópico y alejado del equilibrio, una transición de fase absorbente
(dinámica) en un modelo de inspiración biológica, y la fundamentación mi-
croscópica de la conducción térmica normal y la ley de Fourier en una cadena
unidimensional de partı́culas.

El concepto de metaestabilidad es crucial en muchas ramas de la Ciencia.
Se ha observado en fluidos, plasmas, teorı́a cuántica de campos, superconduc-
tores y superfluidos, sistemas magnéticos, dinámica atmosférica, cosmologı́a,
etc. Normalmente determina el comportamiento del sistema. En particular,
nosotros estamos interesados en el problema de la metaestabilidad en sistemas
fuera del equilibrio y con interacciones de corto alcance. De esta forma, es-
tudiamos en este trabajo la metaestabilidad en un sistema ferromagnético de
no equilibrio, que resulta relevante para el problema derivado del almace-
namiento magnético de información. Desde el punto de vista teórico, el es-
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tudio de la metaestabilidad en este ferromagneto impuro nos permite investi-
gar la existencia de un potencial de no equilibrio, equivalente a la energı́a libre
en sistemas de equilibrio, que controla el proceso de salida desde el estado
metaestable.

Ası́, en el Capı́tulo 2 motivamos el estudio de la metaestabilidad en sis-
temas fuera del equilibrio, presentando el modelo ferromagnético que inves-
tigamos en la primera parte de esta tesis. También discutimos ahı́ algunas de
las propiedades que caracterizan este modelo, prestando especial atención a
la forma en la que las condiciones de no equilibrio entran en la definición del
modelo.

En el Capı́tulo 3 realizamos un estudio en campo medio del fenómeno de
la metaestabilidad. En particular, aplicamos la aproximación de pares[51] a
nuestro modelo para obtener sus propiedades estáticas y dinámicas. Este estu-
dio descubre propiedades muy interesantes relacionadas con la interacción no
lineal entre el ruido térmico y las fluctuaciones no térmicas inducidas por las
condiciones de no equilibrio.

El Capı́tulo 4 se dedica al estudio de las propiedades de la interfase en nue-
stro modelo alejado del equilibrio. El carácter inhomogéneo de la transición
metaestable-estable implica que la interfase entre las fases estable y metaestable
juega un papel fundamental en este proceso dinámico. En este capı́tulo gener-
alizamos la aproximación Solid-On-Solid de Burton, Cabrera y Frank[59] para
una interfase discreta de equilibrio para tener en cuenta los efectos que las
condiciones de no equilibrio provocan. Esta generalización se basa en el con-
cepto de temperatura efectiva. Encontramos resultados muy interesantes a ba-
jas temperaturas, mostrando por ejemplo que la tensión superficial del modelo
fuera del equilibrio converge a cero en este lı́mite. En este capı́tulo también es-
tudiamos la forma de una gota de espines usando la construcción de Wulff[68].

En el Capı́tulo 5 extendemos la teorı́a de la nucleación de equilibrio[26] a
nuestro sistema fuera del equilibrio, hipotetizando la existencia de un poten-
cial de no equilibrio, similar en forma a la energı́a libre de equilibrio, que con-
trola la salida del estado metaestable en nuestro modelo. Aplicando resultados
obtenidos en los capı́tulos 3 y 4 para las propiedades de la interfase y de las
fases puras, llegamos a resultados sorprendentes para la vida media del estado
metaestable, la velocidad radial de crecimiento de una gota de la fase estable,
el tamaño de la gota crı́tica, y la morfologı́a de la transición metaestable-estable
en el caso de no equilibrio, que se confirman plenamente a través de simula-
ciones Monte Carlo. En general, observamos cómo la mayorı́a de los observ-
ables que caracterizan la transición metaestable-estable heredan el carácter no
monótono de la tesión superficial de no equilibrio a bajas temperaturas. A
parte de su importancia teórica, estos resultados pueden resultar relevantes
desde el punto de vista tecnológico.

En el Capı́tulo 6 observamos cómo, bajo la acción de bordes abiertos y las
condiciones de no equilibrio, la evolución desde la fase metaestable hacia la
estable se produce a través de avalanchas bien definidas. Estas avalanchas
presentan distribuciones de tipo ley de potencias, esto es, libres de escala.
Sin embargo, un estudio detallado de este proceso revela que de hecho este
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comportamiento libre de escala es consecuencia de una superposición finita
de escalas tı́picas bien definidas y separadas, en vez de ser consecuencia de
ningún punto crı́tico subyacente. La comparación excelente entre nuestros re-
sultados y los de algunos experimentos Barkhausen nos hacen sospechar que
el Ruido Barkhausen en particular, y el Ruido �#5�6 en general, pudieran origi-
narse también de una superposición de eventos elementales, como es nuestro
caso.

El Capı́tulo 7 lo dedicamos al estudio de la separación de fases en un gas
reticular anisotrópico y lejos del equilibrio. La segregación de fases es un
fenómeno dinámico que aparece en sistemas con conservación del número de
partı́culas que son enfriados repentinamente desde una fase desordenada a
una temperatura por debajo de la crı́tica. Este proceso se ha estudiado ampli-
amente en sistemas de equilibrio. Además de ser un reto teórico considerable,
los detalles de este proceso son de gran importancia práctica. Por tanto, de-
bido a la presencia ubı́cua de sistemas fuera del equilibrio en la Naturaleza,
es necesario extender los conceptos relacionados con el proceso de separación
de fases a estas situaciones más realistas. Este es el caso, por ejemplo, de
mezclas bajo un flujo de cizalladura, cuyo estudio ha atraido considerable
atención.[128]-[132] Por tanto, en este capı́tulo estudiamos segragación de fases
anisotrópica en un gas reticular con arrastre. Proponemos una teorı́a de di-
fusión efectiva de agregados para explicar las etapas tardı́as del proceso de sep-
aración de fases en este sistema. Esta teorı́a describe correctamente el proceso
de crecimiento de los granos y los diferentes regı́menes encontrados durante
la evolución. Además también demostramos autosimilitud temporal del factor
de estructura, y generalizamos la ley de Porod a sistemas anisotrópicos. Final-
mente, también estudiamos la dinámica de una ecuación de campos contı́nua,
mostrando cualitativamente su validez a la hora de describir la dinámica del
modelo microscópico.

En el Capı́tulo 8 estudiamos un sistema que muestra una transición de fase
entre una fase activa, caracterizada por una dinámica no trivial, y una fase
absorbente, que está completamente congelada. En este sentido, ésta es una
transición de fase dinámica. Hay muchos ejemplos en la Naturaleza de sistemas
con estados y transiciones de fase absorbentes: reacciones quı́micas en sis-
temas autocatalı́ticos de reacción-difusión y modelos de catálisis heterogénea,
problemas relacionados con percolación dirigida, propagación de fuego y epi-
demias, etc. Estados absorbentes aparecen en situaciones donde cierto observ-
able puede proliferar o morir, pero nunca puede generarse espontáneamente.
De esta forma, la fı́sica esencial de estos sistemas proviene de la competición
entre el crecimiento y la desaparición del observable relevante. Existen dos
clases de universalidad principales en sistemas con estados absorbentes: la
clase de universalidad de percolación dirigida (DP), y la de ruido multiplica-
tivo. En este capı́tulo estudiamos cómo un nueva simetrı́a oculta en un sis-
tema con estado absorbentes (conocido como el modelo de Lipowski en la
literatura[176, 179]), en concreto la presencia de los llamados estados super-
absorbentes, es relevante en el punto crı́tico, definiendo ası́ una nueva clase de
universalidad.



251

En el Capı́tulo 9 estudiamos la conducción del calor y la ley de Fourier en
un sistemas unidimensional de partı́culas. La conducción del calor es un as-
pecto particular de los fenómenos de transporte, que son procesos dinámicos
que aparecen por doquier en la Naturaleza. Algunos ejemplos clásicos son el
transporte de calor y masa en fluidos, la difusión, la conducción eléctrica, la
convección estelar, etc. A pesar de ser muy importantes, su comprensión mi-
croscópica no está nada clara. Concretamente, en este capı́tulo investigamos
las bases microscópicas de la conducción del calor. Presentamos ası́ resultados
computacionales para una cadena unidimensional de partı́culas puntuales con
masas alternantes y sujetas a un gradiente de temperatura. Encontramos, real-
izando diferentes análisis numéricos complementarios, que el sistema obedece
la ley de Fourier en el Lı́mite Termodinámico. Este resultado está en contra de
la creencia actual que afirma que sistemas unidimensionales que conserven el
momento total y con una presión no nula tienen una conductividad térmica
infinita.[196] Parece que la resistividad térmica aparece en nuestro sistema de-
bida a un comportamiento colectivo en el cual las partı́culas ligeras tienden a
absorber mucha más energı́a que las pesadas, emitiendo después esa energı́a
muy lentamente.

Finalmente, en el Capı́tulo 10 presentamos nuestras conclusiones, resum-
iendo los resultados obtenidos a lo largo de esta tesis, y apuntando las posibles
lı́neas de investigación a seguir para continuar este trabajo.
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