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A los amigos que conoćı durante mi estancia en el Colegio de España. En
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Chapter 1

Introduction

There is plenty of room at the bottom.

Richard Feynman.

Magnetorheological fluids are colloidal dispersions of micron sized magnetic
particles suspended in a nonmagnetic fluid. Due to their magnetic character
the particles present an anisotropic interaction that is tuneable through the
strength of an applied magnetic field. When the field is present, the parti-
cles experience an attractive force along the field direction and a repulsive
force normal to it. If the particles are allowed to aggregate, linear particle
aggregates or filaments form due to the anisotropic character of the magnetic
interaction. The final aggregate structure depends mainly on the particle
volume fraction and the magnetic field strength. At high field strength and
low particle concentrations, regular one particle-thick chainlike aggregates are
formed. At higher particle concentrations, the chains experience additional
lateral attractions and assemble in column like structures [1].

Formation of magnetic particle filaments is not only of great interest for
pure science but also very important for the assembly of new materials. Dis-
persions of magnetic particles and chainlike aggregates immersed in different
fluids have special physicochemical properties that make them very suitable
for a growing number of applications in different fields such as microfluids,
liquid crystals, DNA separation, rheology, biomedical applications, magnetic
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colloidal crystals, etc. [2, 3, 4, 5, 6].

The microstructure of magnetorheological fluids plays a significant role
for their physicochemical properties, and evidently, an adequate modelling of
chain formation processes is of practical importance for the control of tech-
nological applications. So far, however, only a relatively small number of
experimental and simulation studies address this topic, i.e. the formation of
linear aggregates through field-induced aggregation processes in dipolar col-
loidal dispersions. In their pioneer work, Promislow and Gast determined the
mean cluster size S(t) as a function of the exposure time to the magnetic field
by means of optical microscopy [7]. They found a power-law time dependency
S ∝ tz that was in good agreement with the theoretical predictions made by
Miyazima et al. for aggregation of oriented anisotropic particles [8]. The values
of the kinetic exponents z measured by Promislow and Gast, however, differ
noticeably from the ones reported by Miyazima et al.

Several papers published from then on report a variety of values for the
kinetic exponent at different experimental conditions. Even alternative theo-
retical dependencies have been proposed [9, 10]. However, only Miyazima et
al. proposed an analytical aggregation kernel capable to predict the observed
power-law dependency for the time evolution of the average cluster size. Their
kernel assumes that the cross section of a chain-like aggregate should not de-
pend on its total length. Nevertheless, it does not consider other important
parameters such as the diffusion coefficient of the chains, or the range of the
interactions. On the other hand, most of these works focus on structural and
scaling aspects. The kinetic information given is commonly limited to the
asymptotic behaviour of the average cluster size that usually shows a power
law dependency at long aggregation times. However, a detailed study of the
aggregation kinetics and the time evolution of the cluster size distribution is
usually not performed. The influence of different phenomena and parameters
are still quite unclear. Some of the particular weak points of the experimental
and theoretical description established so far are sedimentation effects, elec-
trostatic inter-particle interactions, or the degree of magnetic saturation of the
particles:

• Repulsive electrostatic interactions are usually not considered for mag-
netic filament formation since they are, in general, much weaker than
dipolar magnetic attractions. Nevertheless, this is not necessarily true
for charged magnetic particles [11, 12, 13]. Especially at low electrolyte
concentrations, the strength of electrostatic repulsions may be at least of
the order of the magnetic interactions. Thus, the growth processes and
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the structure of the aggregates formed are expected to depend mainly
on the relative strength of the electrostatic and magnetic interactions.

• The magnetic rheological fluids are suspension of small particles con-
taining different quantities of iron oxides. This increases the relative
density of the particles with respect to the surrounding fluid. Hence,
particle sedimentation can not be avoided by the Brownian motion in
a effective way [14]. Since particles and linear aggregates are usually
settling as they aggregate, the effect of the differential settling must also
be considered in order to describe field induced aggregation processes.

• A further effect that should not be neglected a priori is the mutual
induction of the chain forming particles. At weak field strengths, the
degree of magnetization of the particles is proportional to the local field
strength and so, the net magnetization of the particles contained within
a chain is enhanced by the presence of neighbouring particles [15]. This
effect leads to an increased range of the magnetic interaction between
the aggregates as they gain in size.

Hence, the kinetics of magnetic chain formation processes is still not com-
pletely understood and remains an open question. One of the steps to go would
be to improve the theoretical description proposing an aggregation kernel that
includes those physical parameters explicitly. The corresponding solutions of
Smoluchowski’s aggregation equation would then allow the time evolution of
the cluster size distribution to be predicted more reliably. The main aim of
this work has been to deepen our knowledge about chain formation processes
and to improve the theoretical description of field-induced aggregation phe-
nomena. For that purpose, we measured the time evolution of the cluster
size distribution and the average cluster size arising in aggregating magnetic
particle dispersions. We propose theoretical models based on Smoluchowski’s
approach and use the experimental results to test and validate them. There-
fore, it was essential to determine an aggregation kernel that included all the
effects mentioned above.

On the other hand, magnetic filaments able to survive in the absence of
an applied magnetic field have been observed by several authors over the
latter years [16, 17]. Such permanent chains are formed due to field induced
aggregation in a deep primary energy minimum that is mainly determined by
attractive short-range interactions. The chain-like aggregates that are able
to survive in absence of the applied field have led to new applications like
”artificial swimmers”, microfluidic mixers, etc [18, 19, 20, 21]. The stiffness
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and magnetorheological properties of these chains have been the subject of
several works during the last years [22, 23, 24, 25]. In this work, we tried to
deeper our knowledge in this field and studied the influence of isotropic electric
and anisotropic magnetic particle interactions on the formation and growth of
permanent magnetic particle filaments. We focused our attention on the role
of the electrolyte concentration on the stability of the chains. Therefore, we
designed an accurate experimental protocol that allowed the final length of the
linear aggregates to be controlled by tuning the exposure time to the magnetic
field and the relative strength of the different interparticle interactions.

An additional purpose of this work has been to demonstrate that light
scattering techniques, widely used for the study of the structure and the ki-
netics of colloidal aggregation, can be also employed to obtain valuable data
regarding magnetic colloidal aggregation. Throughout the Thesis, we will al-
ways focus our attention on the magnetic character of the colloidal particles
employed and the effect of an uniaxial magnetic field on the light scattering
experiments. We will show that the final filament size as well as the chain
structure may be reliably monitored by light scattering techniques, when the
filaments are either aligned due to the action of the magnetic field, or freely
diffusing once the magnetic field has been removed. Large diffusing rods are
complicated to describe because the coupling of translational and rotational
diffusion modes has to be taken into account. This point requires a rather so-
phisticated theoretical background. Nevertheless, light scattering techniques
give rise to much better statistics, and shorter measuring times if compared
with most of the well stablished imaging methods. We will show that these ad-
vantages can make light scattering a highly valuable tool for the development
and standardization of materials made of magnetic filaments. An improved
understanding of the complex properties of magnetorheological fluids and the
interactions of the particles contained therein, will undoubtedly help scientists
to improve industrial processes and devices that are based on such fluids.

The outline of this Thesis is as follows:

• Chapter II gives a brief overview of magnetic fluids, focusing on their
magnetic characteristics, the diffusive motion of the particles, and the
particle-particle interactions.

• Chapter III presents the main theoretical tools that are required for
an adequate descritpion of field induced aggregation processes and the
morphology of the aggregates formed.
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• Chapter IV deals with the light scattering techniques that were used to
determine the average size and the fractal geometry of the field induced
aggregates.

• The materials and methods are presented in Chapter V.

• The main results are detailed in Chapters VI and VII. Chapter VI studies
the kinetics of field induced aggregation processes. Chapter VII deals
with the stability and the morphology of the aggregates formed.

• This Thesis ends with a brief summary and a list detailing the main
conclusions.
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Chapter 2

Physical Phenomena in

Magnetic Colloids

...eso es lo que se llama movimiento brownoideo, ¿ahora entendés?, un ángulo

recto, una ĺınea que sube, de aqúı para allá, del fondo al frente, hacia arriba,

hacia abajo, espasmódicamente, frenando en seco y arrancando en el mismo

instante en otra dirección, y todo eso va tejiendo un dibujo, una figura, algo

inexistente como vos y como yo...

Julio Cortázar, de Rayuela.

2.1 Colloids

Colloidal systems are mixtures of at least two phases: a dispersed phase made
of micro-sized particles distributed throughout a continuous phase or disper-
sion medium. Both, the colloidal particles as well as the continuous medium
may be solid, liquid, or gaseous, forming different materials like foams (gas
dispersed in liquid), emulsions (liquid in liquid), aerosols (solid in gas), dis-
persions1 (solid in liquid), etc. However, all these colloidal systems present
one common characteristic: a large surface area with respect to the volume.

1The colloidal dispersions are so-called colloidal suspensions, since the colloidal material
is dispersed or suspended in a liquid phase.

7



8 2.1. Colloids

Indeed, it is better to define a colloid as a system in which surface effects are
predominant, rather than simply in terms of particle size. The range of size of
the colloidal particles is more or less defined by the importance of Brownian

motion, i.e., the endless translational diffusion of the particles resulting from
the random impacts of the molecules of the medium. In broad terms, col-
loidal particles can be considered as effective large molecules, and be treated
according to the theories of Statistical Mechanics [26].

Colloidal systems have applications in many industrial areas. In fact, col-
loidal particles are the major components of familiar products such as foods,
inks, paints, coatings, papers, cosmetics, photographic films, etc. They are also
frequently studied in materials science, pharmacy, nanotechnology, chemistry,
or biotechnology. Notable examples include silica colloids, polymer latexes,
magnetic colloids, clays, minerals, macromolecules, aggregates of surfactant
molecules, proteins, viruses, bacteria, cells, etc. Biological cells are typically
10 µm across, which is approximately the size of biggest colloidal particles.
On the other hand, their components are in the sub-micron size domain. The
proteins, for example, have a typical size of just 5 nm, which is comparable
with the dimensions of smallest nanoparticles. Colloidal systems have already
found a broad range of amazing applications in fields such as drug delivery,
biodiagnostics, and combinatorial synthesis, and they allow experimenting at
the cellular scale [27].

Colloidal systems present particular optical, rheological, or statistical prop-
erties (among others). These properties are determined not only by their spe-
cific chemical composition, but also by the nature and strength of the interac-
tions among the constituent particles. One characteristic property of colloid
systems that distinguishes them from true solutions is that colloidal particles
scatter light (as we will see in Chapter 4).

When two colloidal particles collide there are chances that particles will
attach to each other, if it is energetically favourable. There are three major
physical mechanisms to bring the particles together: Brownian motion, fluid
shear and differential settling. Furthermore, aggregation processes can be in-
duced by the attractive interactions between the particles. Both, the colloidal
stability as well as the growth mechanism depend on the interaction between
the particles and their motion. The structure of the resulting aggregates as
well as the kinetics of the agregation processes are usually determinated by
them. Aggregation processes are very important for understanding many in-
dustrial and natural phenomena. Aggregation and gelation processes are of
paramount importance in many applications when aggregates of desired size
and structure are to be produced [28].
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Colloids are of considerable interest also from a fundamental point of view
because in physics colloids are an interesting model system for atoms. Many of
the forces that govern the structure and behaviour of matter, such as excluded
volume interactions or long range electrostatic forces, also govern the structure
and behaviour of colloidal suspensions. For example, the same theoretical
techniques used to model ideal gases can also be used to model the behaviour
of a hard sphere colloidal suspension. These systems take advantage of the
colloidal particle scales. Colloidal particles, though microscopic, are still very
large from an atomic point of view, and the phase transitions in colloidal
suspensions, which are analogous to atomic phase transitions, can be studied
in real time using optical or light scattering techniques [29].

2.2 Magnetic Colloids

Magnetic colloids are colloidal dispersions of small magnetic particles that
present a dipolar interaction when an external magnetic field is applied. When
the field is present, the particles experience an attractive force along the field
direction and a repulsive force normal to it. The magnetic interaction is tune-
able through the strength of an external magnetic field. If the particles are
allowed to aggregate then linear aggregates, aligned along the field direction,
are formed due to the anisotropic character of the dipolar interaction. At rel-
atively high particle concentrations, even more complex structures may arise
[1].

Analogous behaviour can be observed in a suspension of dielectric spheres
in a dielectric medium, so called electrorheological fluids (ER). In fact, most
of the concepts and fundamental ideas developed in magnetic colloid research
can be directly applied to ER suspensions [10, 30]. However, there are some
complicating factors, such as surface charge or electrode polarization, which
have limited the range of their applications up to now. Unlike electric ma-
nipulation, the magnetic interactions are generally not affected by surface pH,
surface charges, or ionic concentrations. For a brief discussion regarding the
limitations of ER fluids see the paper of Promislow et al. [7].

Magnetic colloidal dispersion are usually classified as Ferrofluids and Mag-

netorheological Fluids, meanly depending on the particle size:

• Ferrofluids (FF) are composed of nanoscale magnetic particles of a di-
ameter of 10 nanometers or less suspended in a carrier fluid, usually an
organic solvent or water. In these systems, the fluid magnetization is
limited by the domain magnetization of the magnetic grains. FF are at-
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tracted by the external magnetic fields adopting its shape to the applied
magnetic field, and forming regular patterns of corrugations on the sur-
face fo the medium. FF, however, remain liquid even in the presence of
strong magnetic fields. Steric repulsions prevent the nanoparticles from
aggregation, ensuring that the magnetic domains do not form clusters
that become too heavy to be held in suspension by Brownian motion.
Therefore, FF can be stable for years: they do not settle with time, not
even when a magnetic field is applied [31].

Figure 2.1: TEM images of a diluted ferrofluid synthesized by Vereda et al.
[32]. Small magnetic grains roughly 10 nm in size appear as dark spots in
both images.

• Magnetorheological Fluids (MR) are similar to ferrofluids. However,
magnetorheological fluids contain micrometre scale magnetic particles
that are one to three orders of magnitude larger than those of ferroflu-
ids. These micron-size magnetic particles are usually composite ma-
terials. The small magnetic grains are often contained within micro-
scopic colloids like emulsions, latexes, or liposomes (please, see Figure
2.2) [2, 33, 34, 35]. When MR are subject to a magnetic field, linear ag-
gregates of particles form and restrict the movement of the fluid perpen-
dicular to the direction of the magnetic field, increasing its viscosity to
the point of becoming a viscoelastic solid. Therefore, reversible changes
in the medium viscosity can be achieved very quickly. Although these
smart fluids are rightly seen as having many potential applications, they
are of limited commercial use. High density, due to presence of magnetic
grains, makes them heavy, and favours the sedimentation.

Due to their response to external fields, dispersions of dipolar particles and
linear aggregates thereof have special physicochemical properties that make
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Figure 2.2: TEM pictures of magnetic polystyrene particles (R0039, Merck).
The small magnetic grains randomly distributed within polystyrene spheres
appear as dark spots in the images. Linear aggregates have been previously
formed under the presence of a uniaxial magnetic field. In this particular case,
the linear aggregates formed are stable enough to withstand the absence of
the magnetic field.

them very suitable for a growing number of applications in different fields such
as rheology, micro-fluids, light transmission devices, etc. These applications
take advantage of the magnetic response, the optical response (the dispersion
becomes birefrigent) [36], or the rheological response (the medium becomes
structured) [37].

Magnetic colloidal particles are also used in medicine, both in diagnostic
as well as in therapeutic biomedical applications like:

• Hyperthermia, where the magnetic particles are heated selectively by
application of an high frequency magnetic field. Hyperthermia may be
used as a cancer treatment to kill or weaken tumor cells, with negligible
effects on healthy cells [6, 27, 38].

• Magnetic carriers for drug vectorization, where the particles are directed
by means of a magnetic field gradient towards a certain location [6, 27].

• Magnetic contrast agents in magnetic resonance imaging (MRI) [6, 39].

On the other hand, different applications like isolation and purification of
biomolecules, separation of biochemical products, or cell labelling and sorting,
have been performed with magnetic microparticles [40].
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Magnetic particles have also been employed to directly determine the
force-distance profile between tiny colloidal particles [41]. Other authors have
prepared stabilized pickering emulsions using magnetic colloids that undergo
phase separation under the action of an external magnetic field [42]. Para-
magnetic colloidal particles dispersed in water and deposited above magnetic
bubble domains of a uniaxial ferrimagnetic garnet film are used as microscopic
stirrer when subjected to external rotating magnetic fields [43].

”Bottom up techniques”, where nanomaterials are fabricated from atoms
or molecules in a controlled manner, are investigated to obtain more and more
complex colloidal architectures. Within this framework, the preparation of
particles arrays is very interesting for the design of novel nanostructured de-
vices. These linear nano-structures can be easily obtained by applying an
external magnetic field to a colloidal suspension of magnetic nanoparticles.
Therefore, over the last years magnetic filaments have been built using col-
loidal magnetic particles, and chain-like aggregates able to survive in absence
of the applied field have given rise to new applications like ”artificial swim-
mers”, microfluidic mixers, or instruments for proving the kinetics of adhesive
processes [18, 19, 20].

Nature also has taked advantage of these systems. Cluster of superpara-
magnetic magnetite particles have been found in the beak skin of homing
pigeons [44, 45], where the particles could work as magnetic field receptors.
Single-domain magnetic colloids are also synthesized by magnetotactic bacte-
ria (see the Apendix C for further information). The magnetic domains allow
the bacterias to orient themselves along the lines of the Earth’s magnetic field.

Magnetic Properties of Fine Particles

In ferro-ferrimagnetic materials, the atomic magnetic dipoles tend to align
spontaneously, without any applied field. However, the order of the oriented
atomic dipoles leads to a high magnetostatic energy. Hence, the bulk material
is splited in different volumes, known as magnetic domains, in order to reduce
this energy. These domains are small (several hundred nanometer), but much
larger that atomic distances. The transition between two domains, where
the magnetization flips, is called a domain wall. In zero field, the dipoles of
each domain have the magnetic moments orientated along their easy axis of

magnetization in order to minimize the magnetostatic energy, and the dipoles
in the whole material are on average not aligned. Hence, the ferromagnetic
materials have little or no net magnetic moment at zero field. On the other
hand, if a strong enough external magnetic field is applied, the numbers of the
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domains oriented along the field direction will increase at the expense of the
others. This configuration will partially remain once the field is turned off,
thus creating a permanent magnet2. Hence, the magnetization as a function
of the external field is described by a magnetization curve with a hysteresis
loop.

The magnetic character of ferrofluids and magnetorheological fluids is usu-
ally due to the presence of small magnetic grains of roughly 10 nm in size.
Since the size of the magnetic grains is often smaller than a magnetic domain,
each one can be considered as a magnetic monodomain. Hence, each grain has
a magnetic moment having an intensity that depends on the grain’s size and
the magnetic material. Because more magnetic materials are easily oxidized,
most of the magnetic grains employed consist of iron oxides. For small enough
nano-grains, the magnetic moment fluctuates around the easy axis of magne-
tization when no external magnetic field is applied. This magnetic behaviour
is known as superparamagnetism [2].

Superparamagetism

Moving the dipoles away from an easy axis of magnetization costs a given
amount of energy called energy of anisotropy. This energy, however, decreases
when the grain size decreases. If the magnetic grain size reaches a minimum
value then the energy of anisotropy becomes of the same order of magnitude
as the thermal energy kBT . Consequently, even when the temperature drops
below the Curie temperature3, the thermal energy is sufficient to change the
direction of magnetization of the entire grain, and the magnetization vector
fluctuates around the easy axis of magnetization with a characteristc relax-
ation time [2]. Hence, in zero field the magnetic moment direction fluctuates
around the easy axis of magnetization, so that each grain’s time averaged
magnetization is zero. When the field is switched on, in average, the dipole
moment of each grain still align along a direction parallel to the easy axis of
magnetization, although it will point for a longer time in the direction that
maximizes the dipole’s projection on the external field direction. As a result,
a net magnetization will be induced in the magnetic grain [46]. The size be-
low which these fluctuations are observed depends on the material and the

2Although this state is not a minimal-energy configuration, it is extremely stable and has
been observed to persist for millions of years.

3At temperatures above the Curie temperature, the thermal energy is sufficient to over-
come the coupling forces, causing the atomic magnetic moments to fluctuate randomly.
Because there is no longer any magnetic order, the internal magnetic field no longer exists
and the magnetic materials exhibit paramagnetic behaviour.
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temperature.

The superparamagnetic behaviour of the magnetic grains can be transmit-
ted to more complex systems in which the iron oxides grains are dispersed. In
composite particles the easy axis of magnetization of the grains are often ran-
domly oriented in the absence of an external magnetic field, and their dipoles
fluctuate around their easy axes of magnetization. Consequently the randomly
distributed oscillating dipoles do not contribute to a net moment of the en-
tire particle. By applying a magnetic field, however, one of the two easy axis
directions is favoured in each magnetic grain, and the particles acquire a net
magnetic moment ~m (see Figure 2.3). The magnetization processes are usually
completely reversible. The dipoles oscilate again on the easy axis of magneti-
zation as soon as the magnetic field is turned off. Macroscopically the material
behaves in a manner similar to paramagnetism, and the magnetization curve
does not present any hysteresis.

Figure 2.3: In the absence of an external magnetic field, the easy axis of
magnetization are randomly oriented within the polystyrene matrix, and the
magnetic moment of the grains ~mi fluctuate between the two possible orienta-
tions with a characteristic relaxation time τN (Figure a). Once the magnetic
field is applied one of the two directions is favoured in each magnetic grain,
and the particle acquires a net moment ~m (Figure b).
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2.3 Brownian Motion

Small particles suspended in a thermally equilibrated fluid present a perpet-
ual random movement. The botanist Robert Brown was the first person to
detect this erratic movement in 1827, while he observed the irregular motion
of pollen grains immersed in a fluid. However, it wasn’t until 1905 that Albert
Einstein’s described the physics behind this erratic motion. Einstein showed
that the so called Brownian motion, in honor of Robert Brown, is due to the
thermal collision with solvent molecules [47]. During a short period of time a
random number of solvent molecules collide with the colloidal particles. These
impacts of random strength and from random directions cause a sufficiently
small particle to move in exactly the way described by Brown. The new the-
oretical frame described the experiments observed, representing an additional
validation of the Molecular Theory.

Brownian motion is only relevant when the thermal displacements are com-
parable with the particle dimension. Hence, the maximum size of a colloidal
particle is usually defined as 10 µm approximately. For these sufficiently
small particles, the upward diffusion produced by the Brownian movement
overcomes the gravitational fall, and an equilibrium is reached. On the other
hand, the size of a colloidal particle has to be big enough if compared with the
solvent molecules4, i.e., approximately 1 nm in at least one dimension. The
large difference in relevant length and time scales between the fluid and the
assembly of Brownian particles allows as a continuous phase the fluid to be
considered.

In the study of the diffusive motion of the magnetic particles we will mainly
follow the formulation given in the book of Dhont [26]. For further details
about light scattering topics the interested reader should consult this excellent
book.

Langevin Equation

The separation between the molecular and atomic time scales allows the ran-
dom motion of the colloidal particles to be described on the basis of Newton’s
equations

d~p

dt
= −γ̂

~p(t)

m
+ ~f(t), (2.1)

4The pollen particles observed by Brown were roughly 10,000 times larger than a water
molecule.
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where ~p is the momentum of the particle, m its mass, and the constant matrix
γ̂ is the friction coefficient or the Stoke’s friction coefficient. In the previous
Equation, the interaction of the Brownian particles with the solvent is sepa-
rated into two terms. A friction force, directly proportional to the velocity
of the particles, and a random force which arises from the random impacts
of solvent molecules (the first and the second term on the right-hand side of
Equation 2.1 respectively). The random force ~f(t) accelerate and decelerate
the colloidal particles in random directions. Therefore, the ensamble average
of the fluctuating force is equal to zero

〈

~f(t)
〉

= ~0. (2.2)

On the other hand, each impact is practically instantaneous, and the suc-
cessive collisions are uncorrelated, so

〈

~f(t)f(t′)
〉

= 2Î γ̂kBTδ(t − t′), (2.3)

where δ is the delta distribution, and Î is the unit matrix. The strength of
the fluctuating force is given by 2Î γ̂kBT . Here, the Equipartition Theorem

was implicitly used. The Equipartition Theorem states that the total kinetic
energy of a system is shared equally among all the independent components
of motion once the system has reached thermal equilibrium5.

Equation 2.1, together with the properties described by Equations 2.2 and
2.3, are referred as Langevin’s Equation. This Equation is a stochastic differ-
ential equation in the sense that the position of the particles as well as their
velocity are now stochastic variables.

Successive integrations of Equation 2.1 yield [26]

~p(t) = ~p(0) exp (− γ̂t

m
)

+

∫ t

0
dt′ ~f(t′) exp (− γ̂(t − t′)

m
), (2.4)

and

~r(t) = ~r(0) + ~p(0)γ̂−1

[

1 − exp (− γ̂t

m
)

]

+γ̂−1

∫ t

0
dt′ ~f(t′)

[

1 − exp (− γ̂(t − t′)

m
)

]

. (2.5)

5Further information can be found in [26].
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Mean Squared Displacement

Using Equations 2.2, 2.3, and 2.5 the mean squared displacement is determi-
nated to be

〈(~r(t) − ~r(0))(~r(t) − ~r(0))〉 = ~p(0)~p(0)γ̂−2

[

exp (− γ̂

m
t) − 1

]2

+Î2mkBT γ̂−2

(

γ̂t

m
− 1

2

[

exp (−2γ̂t

m
) − 1

]

− 2

[

1 − exp (− γ̂t

m
)

])

. (2.6)

For times t >> mγ̂−1, the previous equation becomes

〈(~r(t) − ~r(0))(~r(t) − ~r(0))〉 = 2ÎkBT γ̂−1t, (2.7)

and the mean squared displacement varies linearly with time. The non-
linear evolution of Equation 2.7 can reflect such effects as caging in dense
colloidal suspensions, non-Newtonian behaviour in the suspending fluid, or
two-dimensional corrections for geometrically confined suspensions [48]. On
a time scale longer than the Brownian time τB = mγ̂−1, the particles move
diffusively. Notice the difference for ballistic motion where the mean squared
displacement is proportional to t2. The reason is that the particles suffer many
random impacts with the solvent molecules in their motion, decreasing their
mean squared displacement with time. The quantity that determines the ex-
tension of the Brownian motion in Equation 2.7 is its self-diffusion coefficient

D̂0 ≡ kBT γ̂−1. (2.8)

Here, we describe the phenomenon of self-diffusion, assuming the particle
movement to be independent at ”infinite dilution”. Equation 2.8, commonly
referred to as Einstein Relation, relates the diffusion coefficient with the fric-
tion coefficient, and clarifies the physical meaning of the self-diffusion constant
D̂0: it sets the time required for significant displacements of the Brownian par-
ticles. The above-mentioned mechanism connects the macroscopic magnitude
D̂0 with the microscopic jumps of the particle.

It takes, however, a finite amount of time for the molecules to alter the
motion of a particle. Indeed, for times t << mγ̂−1 Equation 2.6 becomes

〈(~r(t) − ~r(0))(~r(t) − ~r(0))〉 =
~p(0)~p(0)

m
t2, (2.9)

and a ballistic behaviour is observed.
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Rotational Langevin Equation

Thermal collisions of solvent molecules with the particles also lead to rotational
random motions. In this case, the Langevin equation can be generalized by
replacing the lineal moment ~p by the angular momentum vector ~L, the linear
velocity ~v by the angular velocity ~Ω, the friction matrix γ̂ by the rotational
friction coefficient γ̂r, and the random force ~f by the fluctuating torque ~τ

d~L

dt
= −γ̂r

~Ω(t) + ~τ(t). (2.10)

Analogous to the stochastic force ~f , the ensamble average of the random
torque is equal to zero

〈~τ(t)〉 = ~0, (2.11)

while

〈

~τ(t)~τ(t′)
〉

= 2Î γ̂rkBTδ(t − t′). (2.12)

The rotational Brownian motion may be visualized as the random motion
of the tip of a unit vector û on the surface of a unit sphere6. Hence, the mean
squared rotational displacement on a time scale t >> M̂γ̂−1

r is equal to

〈|û(t) − û(0)|)〉 = 2(1 − exp
(

−2kBT γ̂−1
r t

)

). (2.13)

where M̂ is the inertia matrix. Analogously to translation, the rotational

diffusion coefficient D̂r is given by

D̂r ≡ kBT γ̂−1
r (2.14)

2.4 Diffusion Equations

In Section 2.3 we have seen that Brownian particles have a range of differ-
ent velocities, orientations, and displacements during their random motion.
These quantities constantly change due to collisions with solvent molecules.
Therefore, a deterministic description of the Brownian motion is impracticable
due to the great number of particles as well as to their stochastic behaviour.
The fraction of a large number of particles within a particular velocity range,

6Here the caret indicates that the vector is a unit vector.
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however, is nearly constant. Hence, it is quite useful to have probabilistic
equations to describe the particle motion.

The probability density function Gs(~R, t)d3R can be regarded as the prob-
ability of finding a particle in the neighborhood d3R of the position ~R at time
t, given that its position at time t = 0 was in the neighborhood of the ori-
gin. Since the system is assumed to be spatially homogeneous, the probability
density depends only on ~R = ~rj(t) − ~rj(0), and since the net displacement of
the Brownian particles is the sum of many independent stochastic displace-
ments, the probability density should be a Gaussian distribution function. The
Central Limit Theorem states that the sum of many stochastic variables is a
stochastic variable with a Gaussian probability distribution [49]. Indeed, on
the diffusive time scale the probabilistic density function yields [26]

Gs(~R, t) =
1

(4πD̂0t)3/2
exp

[

−|~r(t) − ~r(0)|2

4D̂0t

]

, (2.15)

where D̂0 is the coefficient of self-diffusion previously defined.

This probability density function can also be regarded as the solution to
the diffusion equation

∂

∂t
Gs(~R, t) = D̂0∇2Gs(~R, t), (2.16)

subject to the initial condition Gs(~R, 0) = δ(~R). Similar arguments are suit-
able for the angular displacements. Throughout this Thesis we are interested
in the diffusive motion of sperical particles and the motion of relatively stiff
chains made of individual beads. When a chain moves there is not only a
translational and rotational displacement of the entity as a whole. There may
also be small internal vibrational modes that may affect the dynamics of the
system. Hence, an accurate description of this diffusive motion is not straight-
forward. Hereafter, we will simplify the problem by assessing the diffusion of
the linear aggregates as the diffusion of a simple but important model: the
rigid rod.

Spherical Particles

In the following, we are going to study the diffusive behaviour of spherical
particles.

• Translational Diffusion Equation
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Due to spherical symmetry, the translational diffusion tensor is given by
[50]

D̂0 = D0Î , (2.17)

where D0 is the isotropic translational diffusion coefficient. Hence, the
diffusion Equation 2.16 becomes

∂

∂t
Gs(~R, t) = D0∇2Gs(~R, t). (2.18)

• Rotational Diffusion Equation

In addition to the translational diffusive motion, spherical colloidal par-
ticle also present a rotational motion due to fluctuating forces exerted
on the particle by the medium. If c(û, t)d2û is the number of particles
found with orientation û in d2û at time t, then the diffusion equation is
given by

∂

∂t
c(û, t) =

(

~L · D̂r · ~L
)

c(û, t). (2.19)

Due to spherical symmetry, the rotational diffusion tensor can also be
considered as a scalar Dr.

• Combined Rotational-Translational Diffusion Equation

If now c(û, ~R, t)d3 ~R, d2û represents the number of particles found at ~R
in d3 ~R with orientation û in d2û at time t, then the diffusion equation
is given by

∂

∂t
c(û, ~R, t) = D0∇2c − Dr

~L2c(û, ~R, t), (2.20)

which is separable in a rotation and translational part.

Rigid Rod Particles

In the following, we are going to study the diffusive behaviour of long and thin
rods.

• Translational Diffusion Equation

If û is redefined as a unit vector aligned along the rod axis, then trans-
lational diffusion tensor is given by [50]
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D̂0 = D̄Î + (D‖ − D⊥)

[

ûû − 1

3
Î

]

, (2.21)

where D‖ is the diffusion coefficient for motion parallel to the princi-

pal axis, D⊥ is the diffusion coefficient perpendicular to this axis, and
D̄ = 1/3(D‖ + 2D⊥) is the isotropic translational diffusion coefficient.
Hence, translational diffusion of a linear particle is described by the two
diffusion coefficients D‖ and D⊥. According to Equation 2.21 the diffu-
sion equation 2.16 becomes

∂

∂t
Gs(~R, t) = D̄∇2Gs(~R, t)+(D‖−D⊥)[(û ·∇)2− 1

3
∇2]Gs(~R, t). (2.22)

• Rotational Diffusion Equation

If c(û, t)d2û is the number of rods found with orientation û in d2û at
time t, then the diffusion equation is given by

∂

∂t
c(û, t) =

(

~L · D̂r · ~L
)

c(û, t). (2.23)

Hereafter, we will ignore the rotation around the rod axis. Hence, D̂r

only assesses the rotational around the direction perpendicular to the
rod axis.

• Combined Rotational-Translational Diffusion Equation

If c(û, ~R, t)d3 ~R, d2û represent the number of particles found at ~R in d3 ~R
with orientation û in d2û at time t, the diffusion equation is given by

∂

∂t
c(û, ~R, t) = D∇2c(û, ~R, t) − D̂r

~L2c(û, ~R, t)

+(D‖ − D⊥)[(û · ∇)2 − 1

3
∇2]c(û, ~R, t). (2.24)

If the particle suffers a translational displacement, the rotational diffu-
sion will be harder in a plane perpendicular than in a plane parallel to its
displacement. That means that the rotational diffusion should depend
on the relative orientation between ~R and ~u [26]. Hereafter, however, we
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will ignore a possible anisotropy in the rotational diffusion coefficient,
and Dr will be assumed to be a scalar.

If the difference (D‖ −D⊥) is small, as would be the case for short rods
or spherical particles, the last term in Equation 2.24 can be ignored,
and the previous Equation would be separable in the rotation and trans-
lational contributions. However, if (D‖ − D⊥) is sufficiently large, the
full Equation 2.24 must be apply, and there would be coupling between
translational and rotational diffusive modes.

As we will see in Section 2.5, all the diffusion coefficients described through-
out this Section can be related to the size of brownian particles by solving the
corresponding hydrodynamic equations.

2.5 Diffusion Coefficients

The diffusion coefficient of a Brownian particle is given by the Einstein rela-
tion D̂0 = kBT γ̂−1 (Equation 2.8), where the friction coefficient γ̂ has been
introduced as the ratio between the force that the fluid exerts on the particle
and the particle’s velocity. In the case of finite dilution, the friction coefficient
of each particle depends on the positions and velocities of the others. Since
the fluid flow velocity induced by the motion of a brownian particle affects the
motion of the remaining particles, the friction coefficient γ̂ is a matrix which
depends on the positions of the Brownian particles. In the case of infinite
dilution, however, the particles are independent, and the friction coefficient of
each particle only depends on its geometry.

As we have seen in Section 2.3, the time scale on which colloidal parti-
cles move is much larger than those of the solvent. Hence, it is sufficient to
consider the interaction of the solvent molecules with the colloidal particle
only in an averaged way. Consequently, Brownian motion can be described
through macroscopic equations and macroscopic properties of the solvent, i.e.
its temperature and viscosity. For the calculation of the friction coefficients
we have to resolve the Navier-Stokes equation7. It allows us to assess the
fuild flow as a result of traslation or rotation of the Brownian particles. For
incompressible fluids, and assuming constant temperature and mass density,
the Navier-Stokes equation reduces to

ρ0
∂~u(~r, t)

∂t
+ ρ0~u(~r, t) · ∇~u(~r, t) = η∇2~u(~r, t) −∇p(~r, t), (2.25)

7The Navier-Stoke equation is Newton’s equation of motion for the fluid flow.
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where ρ0 is the constant mass density of the fluid, ~u(~r, t) is the fluid flow
velocity, and p(~r, t) the pressure. The constant η, which is a scalar quantity for
isotropic fluids, is the shear viscosity. Together with the Continuity Equation8,
Equation 2.25 determines the fluid flow once the boundary conditions are
specified.

In this work, however, only an outline of the derivation is provided. A
detailed dicussion about this complicated hydrodynamic problem, however,
falls outside the scope of this work.

2.5.1 Spheres

For the calculation of the friction coefficient of spherical brownian particles
we have to solve the Navier-Stokes equation and to assess the fluid flow as a
result of their traslation or rotational movement. The boundary conditions
employed, so called Stick Boundary Conditions, assume that the velocity of
the fluid on the surface of the Brownian particles is equal to the velocity of
the particle’s surface.

Translational Diffusion Coefficients

If we consider a spherical particle moving with a constant velocity ~v in a fluid,
then the stick boundary conditions reads [26]

~u(~r) = ~v, ∀~r ∈ particle surface. (2.26)

On the other hand

~u(~r) → 0, r → ∞, (2.27)

Once the velocity of the Brownian particles is determinated, forces which
the particles exert on the fluid can be calculated from Equation 2.25, together
with the previous boundary contitions. Finally, the relation between the force
and the particle velocity is given by [26]:

~f = γ̂~v = 6πηa~v. (2.28)

This is the Stokes friction law for translational motion of a sphere. According
to Equations 2.8, 2.17, and 2.28 the translational diffusion coefficient of a
sphere is given by

8The continuity equation expresses the conservation of mass.
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D0 =
kBT

6πηa
, (2.29)

which is known as Stokes-Einstein equation. For colloidal monomeric particles
in water at laboratory temperatures, D0 ≈ 1013 − 1012m2s−1.

Rotational Diffusion Coefficient

Analogous to the calculation of the translational friction coefficient described
in the previous Subsection, we now consider a spherical particle rotating with
a contant angular velocity ~Ω in a fluid. In this case, the stick boundary
conditions read [26]

~u(~r) = ~Ω × ~r, ∀~r ∈ particle surface, (2.30)

and

~u(~r) → 0, r → ∞. (2.31)

Once the angular velocity of the Brownian particles is determinated, torques
which the particles exert on the fluid can be calculated from Equation 2.25,
together with the previous boundary contitions. Hence, the relation between
the torque and the angular velocity is given by [26]:

~τ = γ̂r
~Ω = 8πηa3~Ω. (2.32)

This is the Stokes friction law for rotational motion of a sphere. According to
Equations 2.8 and 2.32 the rotational diffusion coefficient of a sphere is given
by

Dr =
kBT

8πηa3
. (2.33)

2.5.2 Rods

For the calculation of the friction coefficients of a rodlike Brownian particle
we have to assess the fluid flow as a result of traslation and rotation. This
treatment, however, is by far more complicated than that of a brownian sphere.
Since there are no analytical expression for the friction coefficient of a rod
with arbitrary length L and radius a, a general method have been developed
by several authors [51, 52]. In this method, the rod is modeled as a rigid array
of N connected spherical particles. This array model allows us to resolve
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the Navier-Stokes equation, applying the results previously obtained for the
spherical objects.

Translational Diffusion Coefficients

Hydrodynamic interactions play a significant role for a single rod even at infi-
nite dilution. The reason is that a moving rod segment induces a flow at the
position of a neighbouring segment. In case of rigid arrays of N connected
spherical particles, the hydrodynamic forces are approximately equal for each
bead. Only the beads near the ends of the rod experience differing hydrody-
namic forces. Hence, for very long rods the end effects can be neglected, and
the Navier-Stokes equation has an analytical solution given by [26]

~fh
⊥ = γ̂⊥~v⊥ =

8πηNa

lnN
~v⊥ (2.34)

~fh
|| = γ̂||~v|| =

4πηNa

lnN
~v||,

where the forces ~fh
||,⊥ parallel and perpendicular to the rod axis include hy-

drodynamics effects, and N = L/(2a) is the number of particles per rod. As
we have seen in Section 2.4, the translational diffusion of a linear particle is
described by the diffusion coefficients D‖ and D⊥. As a result of the hydro-
dynamic interactions, the diffusion coefficient D|| in the direction parallel to
the rod axis is about twice as large as the one for perpendicular diffusion D⊥.

M. Tirado et al. included end effects to assess the friction coefficient of finite
rigid cylinders [51, 52]. These authors solved the hydrodynamic equations in
cylindrical coordinates, and found that the translational friction coefficients
are given by

γ⊥(N) =
8πηNa

lnN + γend
⊥ (N)

(2.35)

γ||(N) =
4πηNa

lnN + γend
|| (N)

,

where the cylinder length function γend(N) accounts for the so-called end of
chain effects. In their theoretical approach, these authors modeled the circular
cylinder as a stack of Nr rings, each composed of s touching spheres of radius
σ. Hence, for a perfectly smooth cylinder, the ratio of the number of frictional
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elements sNr to the area of the cylindrical surface approaching infinity, the
end functions are given by

γend
⊥ (N) = 0.84 +

0.18

N
+

0.24

N2
(2.36)

γend
|| (N) = −0.21 +

0.90

N
,

and the diffusion coefficients are finally given by

D⊥(L) =
kBT

4πηL

(

ln (
L

2a
) + γend

⊥ (L)

)

(2.37)

D||(L) =
kBT

2πηL

(

ln (
L

2a
) + γend

|| (L)

)

.

So far, other treatments have been proposed in order to assess the friction
coefficients of finite rigid cylinders. However, all embody certain degrees of
approximation, and lead to a variety of values for the end-effects corrections
[53, 54].

Rotational Diffusion Coefficients

As translational diffusion, the rotational diffusion coefficient of finite rods can
be obtained by solving the Navier-Stokes equations

Dr(L) =
3kBT

πηL3

(

ln (
L

2a
) + γend

r (L)

)

. (2.38)

M. Tirado et al. have also included end effects to describe the rotational
friction coefficient of finite rigid cylinders. According to these authors the
chain end effect functions may be written as

γend
r (L) = −0.66 +

0.92

N
− 0.05

N2
. (2.39)

Figure 2.4 shows the size dependence of the different diffusion coefficients
defined so far.
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Figure 2.4: Perpendicular (continuous line −) and parallel (dashed line −)
translational diffusion coefficients of rod-like particles as function of N , ra-
tio between the length L and the width of the cylinders 2a. The rotational
diffusion coefficient multiplied by the factor Na2/3 is also represented (dotted-
dashed line − · −). On the other hand, the translational diffusion coefficient
of a sphere is given by the dotted line (··). In the latter case N represent the
ratio between the sphere diameter and the cylinder width. All the calculations
were performed for d = 170 nm, and T = 298K.

2.6 Interactions in Magnetic Colloids

The stability and the aggregation kinetics of a colloidal suspension are con-
trolled by the total particle–particle interaction energy. According to the
classical DLVO9 approach the total interaction energy ET of charged particles
dispersed in water may be expressed as the sum of a repulsive electrostatic
term EEl and an attractive London-van der Waals interaction ELvdW . In the
case of magnetic fluids, magnetic adittional dipole-dipole EDD interaction has
to be added as soon as an external magnetic field is applied [57].

There are interactions which are special for colloidal systems. As a particle

9DLVO stands for Derjaguin-Landau, and Verwey-Overbeek, the scientists who estab-
lished the theory concerning these kind of interactions [55, 56].
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traslates or rotates it induces a fluid flow in the solvent which indirectly affects
other particles in their motion. Brownian particles thus exhibit hydrodynamic
interactions. In dilute colloidal suspensions, however, the movements of the
particles do not affect the rest of particles significately in their motion. Since in
the experiments we always have worked at very diluted conditions, hereafter
we will neglect the effects of hydrodynamic interactions on the stability of
colloidal suspensions.

2.6.1 DLVO Theory

A considerable advance in the quantitative understanding of colloidal stability
was achieved when the DLVO theory of the interaction of two colloidal particles
was developed [55, 56]. Using this theory, colloid stability could be explained
as a consequence of the balance of two interactions: an attractive London-van
der Waals interaction, ELvdW , and an electrostatic repulsive interaction, EEl.
Assuming that these two components are independent, the total potential
energy ET could be expressed as

ET = EEl + ELvdW . (2.40)

In the next subsections, the results of what is commonly referred as DLVO
theory will be briefly reviewed.

London-van der Waals Interaction

The destabilizing attractive London-van der Waals interaction arises from
molecular interactions between the particles. London-van der Waals inter-
actions are of a relatively short range and can lead to irreversible aggregation
of the colloidal particles. These attractive forces, however, may be masked by
long range repulsive interactions arising from charges adhered on the surface
of the particles, polymer chains grafted on the surface, or solvation layers.

For what follows, we consider two spherical particles of radius a whose
centers are separated by a distance r. Even when we assume that the spheres
are neutral, the particles suffer a mutual attraction10. The molecules which
make up the particles are attracted to one another by London-van der Waal’s
interactions. The interaction arises from the attractive force for transient
dipoles in molecules without permanent multipole moments. By adding up all
the pairs of interactions between the molecules in one particle, with those in

10In some unusual cases the London-van der Waals interaction can be repulsive [58].
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the other particle, one can calculate the total attractive potential between the
two spheres. This interaction is isotropic, and for two equally sized spherical
particles of radius a given by

ELvdW (r) = −A

6
[

2a2

r2 − 4a2
+

2a2

r2
+ ln (1 +

4a2

r2
)], (2.41)

where A is the Hamaker constant of the particles within a given medium.
The concentration of colloidal particles is assumed to be sufficiently diluted to
consider only the interaction between pairs of particles. In this work, a typical
value of A = 10−20J for the Hamaker constant of aqueous suspensions of
polystyrene particles has been used. For metallic oxides, the Hamaker constant
is of the order of A = 10−19J [2]. Since for large distances ELvdW ∝ r−6, the
London-van der Waals interaction is relatively unimportant except at very
small particle-particle distances.

Electrostatic Interaction

The surface of a colloidal particles may carry ionized chemical groups, or
charged polymers can be chemically attached to the surface of the particles.
The charged surfaces of such colloidal particles repel each other. However, in a
polar solvent the pair repulsion is not a Coulomb repulsion proportional to 1/r,
where r is the distance between the centres of the particles. The electrostatic
repulsion is screened to some extent by the free ions in the solvent. Since
the particles are inmersed in an electrolyte solution, there will be on average
an excess of ions of the opposite charge around the colloidal particles which
tend to screen the charges on the particles. On the other hand, the charged
surface of a colloidal particle expells the free ions whose charge is of the same
sign from the region around the particle. Therefore, a charge distribution
referred as double layer is formed around the particles, partly screening the
surface charge. The asymptotic form of the pair interaction potential for
large distances, where the potential energy is not too large, is a screened
Coulomb potential, or equivalently, a Yukawa type potential proportional to
(exp−(κr))/r. The electrostatic interaction arises from the overlapping of the
electrical double layers. For like-charged particles this interaction gives rise to
a repulsion between the particles.

If the colloidal suspension is considered to consist of spheres of radius a in
a monovalent aqueous electrolyte solution, the ions are approximated as point
charges ±e, and the electrostatic potential on the surface of the particles is
taken to be ψ0 with respect to the bulk electrolyte, the electrostatic potential
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is given by the Poisson-Boltzmann equation which reads

∇2ψ(~r) = − e

εkBT

N
∑

i

ziniexp(
zieψ(~r)

kBT
), (2.42)

where ε = εrε0 is the dielectric constant of the solvent. The dielectric con-
stant of the vacuum is ε0 = 8.85× 10−12C2J−1m−1, and the solvent is usually
approximated as a uniform dielectric medium with a relative dielectric con-
stant εr

11. In Equation 2.42, N ionics species are considered, whose bulk
concentrations and electric charges are ni and zie, respectively.

In order to determine EEl, it is necessary to solve Equation 2.42 numeri-
cally for a two-sphere geometry. Using a moderate potential (ψ ≤ kBT/e ≈
25.4 mV ), the Poisson-Boltzmann equation 2.42 can be linearized

∇2ψ(~r) = κ2ψ(~r). (2.43)

The screening parameter κ is defined as

κ =

√

√

√

√

e2

εkBT

N
∑

i

z2
i ni, (2.44)

and the lenght scale of the electric double layer interaction is given by the De-

bye length κ−1, which depends on the ionic strength of the suspension medium.
If we assume the surface potential remains constant when the particle approach
each other, a reasonable expression for the repulsive electrostatic term EEl(H)
is given by

EEl(H) = 2πaεrε0ψ
2
0 ln (1 + exp (−κH)), (2.45)

where H = r − 2a is the distance between the particle surfaces. Equation
2.45 was derived by applying the Derjaguin approach of infinitesimally small,
parallel rings in each particle that contribute to the net electrostatic poten-
tial of particles with thin double layers [28]. The Stern potential ψδ is the
effective potential in the thin region, or Stern layer, where the counter-ions,
i.e. the electrolyte ions whose charge is opposite in sign to the particle charge,
are strongly bound to the particle surface. The absorbed ions neutralize part
of the particle surface charge, giving rise to |ψδ| < |ψ0|. Unfortunately, the
Stern potential is non trivially related to the surface potential ψ0. As fre-
quently found in colloid stability, the Stern potential is identified with the

11εr = 78.5 for water at 25oC.
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experimental available zeta potential, which can be obtained directly from
electrophoretic mobility measurements. When surface potentials are not low
enough to allow the linear approximation of the Poisson-Boltzmann equation
to be used, the electrostatic interaction is usually given by the linear super-
position approximation

EEl(H) = 2πaεrε0ψ
2
0 exp (−κH). (2.46)

In practice, the net interaction between charged colloidal particles sus-
pended in aqueous media can be easily controlled by changing the electrolyte
concentration. The electrolyte compresses the electric double layers around
the particles and so varyies the electrostatic interaction due to electric double
layers overlap.

2.6.2 Magnetic Dipolar Interaction

For the specific case of magnetic colloids, the DLVO theory of colloidal stability
has to be extended in order to include magnetic dipole-dipole interactions and
the corresponding interaction potential EDD. In the presence of induced or
permanent magnetic dipoles, the total interaction potential energy is assumed
to be

ET = EEl + ELvdW + EDD. (2.47)

In order to estimate the long-range magnetic interactions, the magnetized
spheres are usually approximated as point dipoles of a well-defined magnetic
moment. The magnetic moment ~m may be estimated using the relationship

~m =
4

3
πa3 ~M, (2.48)

where ~M = χ ~H is the magnetization, ~H is the strength of the external mag-
netic field, and χ is the magnetic susceptibility of the particles.

Dipole-Dipole Interaction

For a given dipole orientation, the magnetic dipolar interaction between two
identical dipoles ~m is given by12

EDD(~r) =
µ0µs

4πr3
[( ~mi · ~mj) − 3( ~mi · r̂)( ~mi · r̂)] , (2.49)

12Neglecting higher order dipolar interactions.
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where r is the distance between the dipoles, µ0 is the magnetic permeability of
the vacuum, and µs is the relative magnetic permeability of the medium. The
dipole-dipole interaction is anisotropic, and depends on the relative orientation
between the magnetic moments ~m and the position vector ~r.

Under the presence of an external magnetic field the magnetic moments
are aligned by a torque that is given by

~τ ∝ ~m × ~H. (2.50)

For two identical magnetic moments aligned along the field direction the po-
tential energy becomes

EDD(r, ϕ) =
µ0µsm

2

4πr3
(1 − 3 cos2 ϕ), (2.51)

where ϕ is the angle between the field direction and the center-to-center vector.

The interaction may be either attractive or repulsive and its range depends
on the angle ϕ. The interaction is attractive when the dipoles are head-to-tail
and repulsive when they are side-by-side. According to magnetic theory, the
interaction range h(ϕ) is proportional to 3

√

|3 cos2 ϕ − 1|, and the attractive
region has a dumbbell like shape and fits in a symmetric double cone with
an aperture angle of ϕc ≈ 55o with respect to the field direction (please,
see Figures 2.5 and 2.6). Hence, the magnetic interaction is cylindrically
symmetric, while London van der Waals and electrostatic interactions are
spherically symmetric.

When the maximum attraction energy, at r = 2a and ϕ = 0 rad, is
gauged with respect to the thermal energy, we obtain the diemensionless dipole
strength λ

λ = −EDD(r = 2a, ϕ = 0 rad)

kBT
=

πµ0µsa
3χ2H2

9kBT
. (2.52)

For λ < 1 the thermal fluctuations overcome the dipole-dipole interactions,
preventing the aggregation process. For λ > 1 the aggregation is irreversible
as long as the magnetic field is present.

Mutual Induction

When two magnetic particles are under the influence of an external magnetic
field, each generates an aditional magnetic field at the position of the other
particle. If the particles are modeled as identical dipoles ~m placed at the
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Figure 2.5: Schematic picture for the total potential energy between two mag-
netic spheres of radius a. The magnetic particles are approximated as point
dipoles, symbolyzed by the arrows in the image. For two aligned dipoles the
potential energy is attractive when the dipoles are head-to-tail, and repulsive
when they are side-by-side.

center of the spheres, and separated a distance r, then the total external field
acting on each particle is given by

~Htot = ~Hext + ~H1, (2.53)

where

~H1 =
3(~mr̂)r̂ − ~m

4πr3
(2.54)

is the field generated by each magnetic moment at the center of the other. If
the magnetic moments are aligned parallel to the external field, then ~H1 =
~m/2πr3 [59].
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Figure 2.6: For two dipoles aligned along the field direction the interaction
range h(ϕ) depends on the angle ϕ between the external magnetic field and
the line joining the particle centers.

Zhang and Widom studied the magnetic forces acting within a field induced
linear aggregate as a function of the external applied field ~Hext and the particle
separation r [15]. Combining Equation 2.48 with Equations 2.53 and 2.54, the
magnetic moment ~m in terms of the external applied field is

~m =
4π
3 a3χ

1 − 2π
3 (a

r )3χ
~Hext, (2.55)

when the two dipole moments are aligned parallel to the field direction. For
a particle within an infitely long chain of particles with equal spacing r, the
total field from all other particles is

~H1 = 2
∞

∑

n=1

~m

2π(nr)3
= ζ(3)

~m

2πr3
, (2.56)

where ζ(3) =
∑∞

n=1
1

(n)3
= 1.202 is the Riemann function. Hence, according

to the Equation 2.56, the magnetic moment is given by
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~m =
4π
3 a3χ

1 − 4ζ(3)
3 (a

r )3χ
~Hext, (2.57)

and the mutual induction increases dramatically the magnetic moment of the
particles. If the particles are in contact and χ ∼ 1, then a particle in an infinite
linear aggregate is about 20% more magnetized than an isolated particle. On
the other hand, mutual induction also increases the aperture angle of the
attractive zone ϕc. Considering χ ∼ 1, the aperture angle ϕc increases by 8%
[46]. The finite size of the linear aggregates reduces the ζ(3) function, as we
will see in the Section 3.5.4.

Grain-Grain Interaction

Suspensions of composite magnetic nano-particles are frequently employed.
The magnetic character of these particles often is due to the presence of small
grains of iron oxide distributed within the organic matrix. Since the magnetic
grains embedded within the polystyrene are very small (1-20 nm), these mag-
netized spheres are usually treated as point dipoles of a well-defined magnetic
moment for which the dipole model is applicable. However, due to the r−3

dependence of the magnetic interaction neighbouring grains will contribute
more on the total energy than the grains which are more separated, and a de-
pendence on the spatial distribution of the grains could be expected. Trying
to describe the influence of the grain size, the number of grains, or the spatial
distribution of the grains on the total magnetic interaction, we have calculated
EDD as the sum of all the interactions between pairs of embedded grains.

Lateral Interactions between Chains

In this Subsection we will briefly summarize several theories about the lateral
interaction of dipolar chains, including the interaction of rigid chains and the
effects of thermal flutuations and chain deffects:

• Rigid Chains

The total dipolar potential energy can be determined as the sum of
all the interactions between pairs of dipoles. Hence, aligned chains of
rigid dipoles exhibits short range interactions perpendicular to their axis.
Furst and Gast derived a model in which the dipoles form two parallel
chains of 50 particles [1]. The authors take into account the mutual
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induction between particles due to the induced field from all other par-
ticles, and calculate the interaction energy as function of the lateral
separation between the chains. The sum of all the interaction between
the pairs dipoles give rise to either attractive or repulsive configurations
depending on the lateral separation, and the relative position of the
neighbouring chains along the chain axis direction.

• Thermal Fluctuations

According to the previously mentioned authors, two straight chains do
not attract unless they are almost in contact. In a real system, however,
the chains present thermal fluctuations (as we will see in Section 4.5.3,
and in Chapter 6). These effects cause variations in the field around the
dipoles, and thus in the lateral interaction that the chains experience.
In order to explain this, Halsey and Toor (HT) determinated that these
fluctuations may give rise to a long-range attraction between the chains
(Landau-Peierls interactions)13 [1, 61]. This long-range interaction was
predicted to be independent of the applied field strength. Later, Martin
et al. proposed an extension of the HT model that takes into account
the field strength dependency [62].

• Chain defects

In a real system the chains also may present configurational defects (as
we will see in Section 3.7.2). Likewise, chain defects also create local
variations in the dipole moment density and variations in the field around
the dipoles. Martin et al. used computer simulations to study this defect-
driven lateral aggregation [63].

Field divergence

A net magnetic force on a dipole exists only in the presence of a field diver-
gence. It is given by

~F (~r) = −~∇U = µsµ0
~∇

(

~m · ~Hext(~r)
)

= µsµ0

(

~m · ~∇
)

~Hext(~r). (2.58)

Hence, the spatial field homogeneity will be crucial for the experiments
since it avoids particle migration and, consequently, particle concentration
heterogeneities.

13This kind of interactions are not new in Colloidal Science. London-van der Waals inter-
actions are also due to the thermal fluctuations of molecular dipoles [60].
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2.7 Aggregate Stability

In addition to the magnetic content, most of the magnetic particles bear elec-
tric surface charge. The corresponding electrostatic repulsion helps to ensure
the stability of the system with regard to aggregation when no magnetic field
is applied. However, when a uniaxial magnetic field is applied to a suspension
of magnetic particles, a magnetic moment is induced in each bead and an
anisotropic dipolar interaction arises. Consequently the particles self-organize
due to the action of the field, and aggregates of particles aligned along the
field direction are formed.

The potential energy corresponding to two approaching particles presents
in general a secondary minimum due to the interplay between the electrostatic
repulsion and the dipolar magnetic attraction [57, 64, 65]. A schematic plot
of the total potential energy (Equation 2.47, which includes van der Waals,
electrostatic and magnetic dipole interactions), versus the separation distance
between two particles is shown in Figure 2.7. In the scheme, we represented a
representative attractive configuration, where the angle between the external
magnetic field direction and the line joining the particle centres is smaller than
ϕc ≈ 55o.

Figure 2.7: Scheme of a typical potential energy curve (solid line) which in-
cludes van der Waals, electrostatic (dashed line) and magnetic dipole inter-
actions (dotted line). In the Figure ns, np and nf denote the number of
secondary bonds, primary bonds, and not yet established bonds, respectively.
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The total energy curve shows a deep primary minimum at short distance
and a shallower secondary minimum separated by an energy barrier. There-
fore, particle aggregation may occur in the primary minimum, where the par-
ticles are in contact with each other, or in the secondary minimum, where the
neighbouring particles within the linear aggregates are a short distance apart
from each other. The height of the energy barrier is mainly determined by the
electrostatic repulsion between the particles.

Secondary minimum aggregation is reversible, since the secondary min-
ima disappear when the magnetic field is turned off. Then, the electrostatic
repulsion controls the stability of the system and pushes the particles away
from each other, giving rise to a complete break up of the linear aggregates
[64, 65, 66]. On the other hand, primary minimum aggregation is irreversible.
At close contact, the short range attractive London van der Waals interaction
is capable to keep the particles together even when the external field is re-
moved [21, 67, 68]14. The linear aggregates formed in this way have an almost
infinite lifetime. The bonds in these chains are strong enough to withstand
not only the absence of the magnetic field but also the drying process that
is necessary for taking TEM images, as we observed in Figure 2.2. Hence,
the magnetic particles can be found in three different configurations when the
magnetic field is applied:

1. Aggregated in the primary-minimum (close contact).

2. Aggregated in the secondary-minimum (short distance).

3. Unlinked (large distance).

In Figure 2.7, np, ns and nf denote the number of primary bonds, sec-
ondary bonds, and open bonds (not yet established bonds), respectively. n =
ns + np is the total number of links. The neighbouring particles within the
linear aggregates must overcome the energy barrier in order to go from a
metastable secondary bond to a stable primary bond. Therefore, we propose
the following rate equations for field induced reactions15:

dns

dt
= −dnf

dt
− kspns(t) (2.59)

dnp

dt
= kspns(t).

14Permanent chains have also been obtained using absorbing polymers as particle linkers
[20, 21, 22, 69]

15We thank Dr. José Manuel López López for the useful discussions.
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Secondary bonds may turn into primary bonds when the corresponding
particles overcome the potential barrier. The rate constant ksp parametrizes
the probability per unit time that a secondary bond turns into a primary bond.
The rate coefficient includes all the factors that affect the reaction rate, except
for number of secondary bonds, which is explicitly accounted for. The primary
bonds, formed due to short range van der Waals interactions, are stable enough
so that the back rate constant kps may be neglected completely. The equa-
tions proposed also assume that the bond formation between particles can be
considered as independent events. Moreover, all the particles initially heading
from the free unbounded state towards the primary minimum will indeed pass
through a secondary bond for at least a short time. This assumption is only
correct when the energy barrier between the primary and the secondary mini-
mums is high enough, i.e. at not too high electrolyte concentration. Since the
rupture of the linear aggregates is forbidden in these equations, it adequately
describes the experimental observations only as long as the magnetic field is
applied.

The primary bonds formed are found to be thermally activated, and so,
the corresponding rate constant should be given by an Arrhenius law [21]

ksp = τ−1
0 exp

(

− Ea

kBT

)

. (2.60)

The Arrhenius equation determines the dependence of the rate constant ksp on
the temperature T and the activation energy Ea, i.e. the height of the energy
barrier. The rate constant ksp depends on temperature and also on the ionic
strength [21]. The particles are supposed to stick when they collide along their
line-of-centers with a relative kinetic energy that exceeds Ea. At an absolute
temperature T , the fraction of particles that have a kinetic energy greater than
Ea can be calculated from the Maxwell-Boltzmann distribution, and turns out

to be proportional to exp
(

− Ea

kBT

)

. The units of the pre-exponential factor τ−1
0

are identical to those of the rate constant (s−1). Hence, it is referred to as an
attempt frequency of the reaction [70].

2.8 Sedimentation

Sedimentation of colloidal particles is a topic that has been studied extensively.
Efforts have been made to adress coupled aggregation and sedimentation pro-
cesses, at moderate particle concentrations and taking into account different
interparticle interactions such as van der Waals attraction, electrostatic re-
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pulsion, steric repulsion, etc. [26, 71, 72]. However, only a few studies on
sedimentation of magnetic particles have been reported so far [14, 73, 74, 75].
Repulsive interactions decelerate the sedimentation processes, since the brow-
nian particles tend to keep a maximum distance [26]. The magnetic interac-
tion, on the contrary, accelerates the settling of the magnetic particles. As we
will see, linear aggregates sediment more quickly than monomeric particles, so
sedimentation is even enhanced when an external magnetic field is applied.

Usually, the sedimentation processes are characterized with the help of
the so-called Pèclet number Pe =

vs
1
a

D0
that quantifies the relative strength of

sedimentation and diffusion effects. Here, vs
1 is the monomer sedimentation

velocity, and D0 is the monomer diffusion coefficient.
During sedimentation, the gravitational force is balanced by the drag force.

Hence, at low Reynolds number the sedimentation velocity of a chain of length
2aN that is settling with its main axes oriented parallel to the ground, is given
by

vs
N =

N 4
3πa3∆ρg

γ⊥(N)
, (2.61)

where ∆ρ = ρp − ρm is the density mismatch between the chain forming
particles and the continuous medium [59]. Including the friction coefficient
γ⊥(N) given by the Equation 2.35, the sedimentation velocity can be expressed
as

vs
N =

ln (N) + γend
⊥ (N)

6η
a2∆ρg. (2.62)

The sedimentation velocity of linear aggregates, however, can be affected sig-
nificantly by convection and back flow effects. Furthermore, the fluid flow
pattern may suffer a distortion due to the limited container size. The con-
tainer walls that may also affect the sedimentation of the particles placed
close to them [14, 76].



Chapter 3

Micro-Structural Evolution

... estos átomos se mueven en el vaćıo infinito, separados unos de otros y

diferentes entre śı en figuras, tamaños, posición y orden; al sorprenderse

unos a otros colisionan y algunos son expulsados mediante sacudidas al azar

en cualquier dirección, mientras que otros, entrelazándose mutuamente en

consonancia con la congruencia de sus figuras, tamaños, posiciones y

ordenamientos, se mantienen unidos y aśı originan el nacimiento de los

cuerpos compuestos.

Simplicio de Cilicia, comentando a Demócrito. S VI d.J.C.

.

The formation of complex structures from small subunits like atoms or
colloidal particles have been investigated for decades [28, 77, 78]. In these
processes the sub-units diffuse due to Brownian motion and eventually en-
conter each other. Bonding reactions may then lead to monomer-monomer,
monomer-cluster, and cluster-cluster aggregation. Unlike equilibrium states
in which a partition function may be determinated, aggregation is a kinetic
process far from equilibrium, in which the states of the system are intricately
entangled in their history. Therefore, the familiar theorems of Statistical Me-
chanics are not applicable here, and the corresponding processes are difficult
to describe theoretically.

41
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Several theoretical and simulations approach have been developed to de-
scribe the behaviour of aggregating systems: Smoluchowski’s coagulation equa-
tion, and the numerical simulations [77, 79]. Furthermore, scaling concepts
and fractal geometry have shown to be useful tools for an adequate under-
standing of those processes. Based on these methods, the relationship between
structural and kinetic aspects of aggregate formation and the underlying ag-
gregation mechanism has been studied quite in detail [77], and the well-known
Diffusion and Reaction Limited Aggregation regimes have been established.

• Diffusion Limited Colloid Aggregation (DLCA) occurs when long range
interactions between the freely diffusing sticky particles are negligible,
and the predominant term in the total interaction energy is an attractive
short range interaction. Hence, two approaching particles will adhere
upon contact, as soon as they are sufficiently close to feel this attractive
force. In these processes, every collision between particles results in the
formation of an aggregate. The aggregation rate is then limited by the
time the clusters need to encounter each other by diffusion. This explains
why relatively open and ramified structures, characterized by a fractal
dimension1 close to 1.75, have been found experimentally.

• Reaction Limited Colloid Aggregation (RLCA) occurs when there is a
substantial, but not insurmountable, repulsive energy barrier beween
the particles. Thus the aggregation rate is limited by the diffusion time
and the time taken for two clusters to overcome this repulsive barrier by
thermal activation. In these processes only a very small fraction of clus-
ter collision leads to the formation of an aggregate. This situation gives
rise to more densely packed clusters and explains why the experimentally
observed cluster fractal dimensions are close to 2.10.

These regimes correspond to the limiting cases of rapid and slow colloid
aggregation that are well-known in Colloid Science.

3.1 Introduction

Although systems with isotropic interactions are fairly well understood, our
knowledge of aggregation processes dominated by dipolar interactions is far
from complete. When a field is present, the particles experience an attractive
force along the field direction and a repulsive force normal to it. On the other

1Fractal dimension concept will be described in the Section 3.7.1.
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hand, cluster diffusion ceases to be isotropic due to the linear geometry of
the formed aggregates. The breakdown of the spherical symmetry gives rise
to a rather complicated theoretical description of field induced aggregation
process.

Thus far, the principal approach to these processes has been done within
the framework of Smoluchowski’s equation. In the case of aggregation of dipo-
lar particles that are aligned under the influence of an external field, Miyazima
et al. proposed a theoretical description based on the DLCA model, assuming
that during field induced aggregation the cluster cross section must be inde-
pendent of the cluster size [8]. However, these authors neglect not only the
anisotropic character of chain diffusion but also the long range of magnetic
interactions (Section 3.5.1). An alternative procedure, including logarithmic
corrections to the diffusion coefficient of the linear aggregates, has been pro-
posed by Miguel et al. [9] (see Section 3.6).

The aim of this Chapter is twofold: (a) to deepen our knowledge about
chain formation processes deriving an aggregation kernel for a improved the-
oretical description of the experimental results; (b) to study the influence of
different phenomena such as electrostatic interactions between the particles,
or differential settling on field-induced aggregation. The proposed aggregation
kernel will consider an effective aggregation cross section and will depend ex-
plicitly on the average range of the interactions. It will allow us to understand
the influence of sedimentation, electrostatic interactions, or the strength of the
magnetic field on field induced aggregation processes. On the other hand, the
theoretical background that is necessary to deal with the geometry of the ag-
gregates is briefly provided towards the end of this Chapter in order to achieve
that this Thesis is selfcontained. In writting this Chapter, we tried to balance
mathematical rigor with intuitive arguments.

3.2 Smoluchowski’s Equation

The most frequently used theoretical description of irreversible aggregation is
the set of Smoluchowski’s rate equations which describe the time evolution of
the average number of clusters2 made of n identical monomers per unit volume
of solution cn(t). Within the framework of this theory, the cluster number
concentration cn(t) changes in time when two clusters coagulate and form a
single cluster. Hence, the irreversible aggregation of two clusters forming a

2Throughout this Thesis the set of adjacent particles that keep approximatly constant
their relative positions will be referred indistinctly as ”cluster” or ”aggregate”.
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larger cluster can be written in terms of the following reaction scheme:

(i − mer) + (j − mer)
kij→ (i + j = n) − mer, (3.1)

where i−mer denotes a cluster of mass i, and kij = kji ≥ 0 is a set of concentra-
tion independent coefficients named kernel that parametrizes the probability
per unit time for aggregation of i cluster and j cluster. The assumption that
there are only binary collisions limits the applicability of this deterministic
description to dilute systems3. At low volume fraction the probability of three
or more cluster collisions is small.

All the physics of these processes is entirely contained in kij . The aggrega-
tion rate constants contain information regarding the transport mechanisms
that give rise to cluster-cluster contact, and the interactions that determine
the probability of cluster-cluster attachment. Thus, the aggregation kernel
will depend on the physical and chemical conditions of the aggregating system
and, in general, on the size of the reacting clusters i and j. However, since
there are no spatial variables in the Equation 3.1, neither the aggregation
kernel kij nor the cluster size distribution cn(t) take into account the spatial
arrangement of the monomers within of the aggregates. Hence, the aggrega-
tion kernel is necessarily a mean-field approach, and the kernel itself has to
be understood as an orientational and configurational average of the exact
aggregation rates for two specific clusters of size i and j that collide under a
particular orientation. Since the kernel has dimensions of volume per unit of
time it can be understood as a flux. In fact, throughout Section 3.4 we will
see that the aggregation kernel kij can be calculated as the flux of clusters of
size i colliding with a sink cluster of size j.

In order to formulate an equation which describes the temporal evolution
of the entire distribution of clusters-sizes (c1, c2..., c∞), one must account for
all the pairs of collisions which generate or deplete a given cluster size. Hence,
the clusters of size n appear as a product of the reaction between i − mers
and j−mers, but may also disappear when they are involved in the formation
of n + m species, by reacting with a m − mer. Since in diluted suspension
we are only dealing with binary reactions, we can assume that the reaction
rate is proportional to the concentration of the reacting clusters. For instance,
the changes in the concentration of monomers are due to collisions with other
monomers and aggregates (dimers, trimers, etc.), and the total change in
monomer concentration can be expressed as

3Volume fraction less than 1% [78].
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dc1

dt
= −c1

∞
∑

i=1

k1ici. (3.2)

The changes of the concentration of dimers is given by

dc2

dt
=

1

2
k11c1c1 − c2

∞
∑

i=1

k2ici, (3.3)

and in general, the change of the concentration of aggregates of kind n is given
by

dcn

dt
=

1

2

∑

i+j=n

kijcicj − cn

∞
∑

i=1

knici, (3.4)

where n = 1, 2, ...∞. This equation is the sum of two terms. The first term,
or gain term, represents the rate at which n − mers are generated due to
the aggregation of i − mers and j − mers for which i + j = n. The second
term, or loss term, represents the rate at which n − mers are depleted when
they themselves aggregate with any other i − mer. This infinite set of cou-
pled deterministic differencial equations was developed by von Smoluchowski
at the beginning of the last century [79]. It has a unique solution cn(t) that
is determined by the initial conditions, cn(0). Thus, if we consider the matrix
elements kij to be known quantities we may predict how the cluster size distri-
bution cn(t) evolves in time. The time evolution of the cluster size distribution
characterizes the kinetic properties of a coagulating system.

The time evolution of the aggregation process is usually featured in global
terms using the number average cluster size given by

N(t) =
Σ∞

i=1ici(t)

Σ∞
i=1ci(t)

, (3.5)

and the weight-average cluster size defined as

S(t) =
Σ∞

i=1i
2ci(t)

Σ∞
i=1ici(t)

. (3.6)

Since the Smoluchowski’s equation does not allow for cluster fragmenta-
tion, the average cluster size must grow monotonously in time. Therefore,
as t → ∞, this unrestrained growth results in the formation of a single huge
cluster which contains all the sub-units.

It is useful to rewrite this equation in a dimensionless form
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dXn

dT
=

1

2

∑

i+j=n

KijXiXj − Xn

∞
∑

i=1

KniXi, (3.7)

where Xn is the concentration of clusters cn containing n primary particles
normalized by the initial monomer concentration c0, and the aggregation ker-
nel Kij = kij/ks. The normalized aggregation time T = t/tagg is scaled by
the characteristic aggregation time tagg = 2

c0k11
for pure diffusion controlled

aggregation where ks is the dimer formation rate constant. In aqueous media
at 298 K, ks = 12.3 × 10−18m3s−1.

3.3 Kernel Classification

Smoluchowski’s equation is quadratic in ci. Thus, the techniques used to solve
linear equations are not applicable, and not surprisingly, a closed form solution
for arbitrary kij is not always possible4. Despite of the mathematical complex-
ity of the Smoluchowski’s equation, some general conclusions concerning the
behaviour of the solutions can be established from a much coarser knowledge
of the kernel. According to van Dongen and Ernst [80, 81], kij can be analyzed
in terms of two exponents λhom and µhom:

kaiaj ≈ Cλhomkij (λhom ≤ 2) (3.8)

ki<<j ≈ k0i
µhomj(λhom−µhom) (λhom − µhom ≤ 1),

Here C is some positive constant, and k0 is a scale factor. The restictions
imposed in Equation 3.8 are required due to physical grounds and garantee
that clusters can never be more reactive than if they fully interpenetrate [28].
The homogeneity exponent λhom indicates whether the reactivity between ag-
gregates of the same size increases or decreases with aggegate size:

kbig−big > ksmall−small for λhom > 0 (3.9)

kbig−big = ksmall−small for λhom = 0

kbig−big < ksmall−small for λhom < 0.

The exponent µhom parametrizes whether large aggregates preferentially react
with small aggregates or coagulation among large aggregates predominates.

4Only certain mathematical forms for kij allow Equation 3.4 to be solved exactly [28].
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kbig−big > kbig−small for µhom > 0 (3.10)

kbig−big = kbig−small for µhom = 0

kbig−big < kbig−small for µhom < 0.

Though few real kernels obey Equations 3.8 exactly, many kernels can be well
approximated by these equations for large i and j.

3.4 The Brownian Kernel

For pure diffusion-limited aggregation processes, the so called Brownian kernel

(hereafter referred to as BK)

kBK
ij = 4π(Di + Dj)(ai + aj) (3.11)

is known to describe the corresponding aggregation kinetics quite satisfactorily
[28, 78, 79]. The BK is strictly valid only for solid spheres of radius ai and aj

that undergo isotropic Brownian motion and aggregate as soon as they come
into contact, i.e. when the distance between their centers becomes ai + aj . Di

is the diffusion coefficient, which for spherical particles of radius ai is given by
the Stokes-Einstein relation (Equation 2.29)

Di =
kBT

6πηai
.

The BK was derived considering a particle of size j, placed at the origin
of the coordinate system, that is surrounded by initialing uniform field of
freely diffusing spheres of radius ai (please, see the Figure 3.1). The density
of diffusing spheres ci(~r, t) obeys the diffusion equation (see Equation 2.18)

∂ci(~r, t)

∂t
= Di∇2ci(~r, t).

Under spherical symmetry, Equation 3.12 is given by

∂ci(r, t)

∂t
= Di

(

∂2ci(r, t)

∂r2
+

2

r

∂ci(r, t)

∂r

)

. (3.12)

The aj particle is acting as a perfect sink when all the particles of radius
ai that come into contact with it will form aggregates of size i + j. Hence,
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there are no individual particles of radius ai at the contact surface and the
corresponding boundary condition becomes ci(r = ai + aj , t) = 0, where the
distance r points from the center of the sink particle to the centers of the
diffusing spheres. Far from the origin, ci(~r, t) becomes spatially uniform and
ci(r = ∞, t) = ci0, where ci0 is the initial density of diffusing spheres of size i.
Solving the diffusion equation for this initial configuration, the radial particle
flux density jr(t) may be determined. The total flux of diffusing i spheres is
given by

ji(r, t) = −Di
∂ci(r, t)

∂r
. (3.13)

Using the solution of the Equation 3.12, subject to the previously defined
boundary conditions, Equation 3.13 yields [28]

ji(ai + aj , t) = −Di

[

1

ai + aj
+

1√
πDit

]

ci0. (3.14)

As stated above, the hypothesis of isotropic diffusion and spherical symmetry
is implicitly contained in Equation 3.14. Assuming that the motions of the
diffusing spheres are totally uncorrelated, and allowing sphere j also to diffuse,
then Di 7−→ (Di + Dj), and so

ji(ai + aj , t) = −(Di + Dj)

[

1

ai + aj
+

1
√

π(Di + Dj)t

]

ci0. (3.15)

The number of particles of radius ai that aggregate with the sink particle
per unit time is simply the number of particles that diffuse towards the sink
particle and get in contact with it. Evidently, this number can be obtained
by multiplying the radial flux density with the area of the contact surface, i.e.
with 4π(ai + aj)

2. This yields

Jr(t) = 4π(ai + aj)
2ji(ai + aj , t) = (3.16)

4π(Di + Dj)(ai + aj)(1 +
ai + aj

√

π(Di + Dj)t
)ci0.

Apparently the flux is time dependent. However, for colloidal aggregation
in three dimensions the steady state is usually reached very fast

t >>
(ai + aj)

2

π(Di + Dj)
≡ trelax, (3.17)
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and the time dependent term is usually neglected [28, 78].
Finally, if the sphere of size j are presenting with an average density cj0,

the rates of spheres of radius aj colliding with spheres of radius ai is achieved
by multiplying the net particle flux Jr(t) for one central particle by the con-
centration of sink particles cj0. The result obtained reads:

dcj

dt
= Jr(t)cj0 = (3.18)

−4π(Di + Dj)(ai + aj)ci0cj0 = −kijci0(t)cj0(t).

This expression has the typical form of a kinetic rate equation with an
aggregation rate constant kij given by the BK (see Equation 3.11).

Figure 3.1: Schematic illustration of the space around a sink particle consid-
ered for deriving a diffusion induced aggregation kernel. The arrows symbolize
the radial flux Jr of ai size particles towards the sink particle aj .

3.5 Field Induced Aggregation

Several authors suggested that a kernel for aggregation of magnetic particle
dispersions should be based on the BK. At low concentrations, chain-like ag-
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gregates of dipolar magnetic particles also undergo free diffusive motion until
they reach the area of influence of another aggregate. If the interaction is at-
tractive, the particle motion becomes ballistic and the linear aggregate snaps
into position at the end of the other chain. Otherwise, the chains repel each
other and diffuse away, or eventually reach the attractive zone.

3.5.1 Miyazima’s Kernel

Miyazima et al. used the BK for describing the time evolution of the aver-
age cluster size arising in aggregating dispersions of dipolar particles aligned
under the influence of an external field [8]. They assumed the linear aggre-
gates of dipolar particles at not too high concentrations to behave as rod-like
clusters that aggregate tip to tip. Supposing the chain ends to be the only
active aggregation sites, they conclude that the collision cross section and the
corresponding term in the BK should be constant. On the other hand, the
cluster diffusion coefficients, were considered to depend on the cluster size as
a power law, i.e. as Di ∝ iγ , where γ is a positive constant in the range from
0 to 1. Based on these assumptions, they proposed the following power-law
type aggregation kernel that can be written in terms of i and j

kij = C(iγ + jγ). (3.19)

where C is an arbitrary positive constant. This kernel is a homogeneous
function of the cluster size i and j, being γ = λhom = µhom the corresponding
homogeneity exponents. Hence, Miyazima’s kernel can be analyzed in terms
of the two previously mentioned parameters λhom, and µhom (Section 3.3).

For these kernels, dynamic scaling theory predicts the average cluster size
to diverge as a power of time, i.e. as 〈S(t)〉 ∝ tz . The kinetic exponent z is
directly related to the homogeneity exponent through the expression [8]

z =
1

1 − γ
. (3.20)

Based on the analogy with the Stokes-Einstein approximation relation for a
single spherical particle where D1 ∝ a−1, Miyazima et al. proposed a particular
value of γ = −1, which according to Equation 3.20 corresponds to z = 1/2.
Montecarlo simulations incorporating these assumptions predicted a crossover
from two or three dimensions to one-dimensional behaviour, for high enough
particle concentrations.
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3.5.2 Field induced aggregation Kernel

It should be noted that the kernel proposed by Miyazima et al. implicitly in-
cludes the hypothesis of isotropic diffusion and spherical symmetry that was
used for deriving the BK. During field induced aggregation processes, however,
spherical symmetry is lost and cluster diffusion ceases to be isotropic. More-
over, the net interaction between two approaching chains becomes long range.
All theses effects are not accounted for in the Miyazima kernel. Hence, it is
not clear at all why this kernel should be employed for describing the aggre-
gation behaviour of magnetic chains. In what follows, we will use physical yet
somewhat heuristic arguments for deriving a kernel for field induced aggrega-
tion, that considers not only the long-range character but also the anisotropic
nature of the magnetic dipole-dipole interactions among the particles.

For this purpose, we consider the same configuration that was used for
deriving the BK, i.e., freely diffusing particles of radius ai that aggregate as
soon as they come into contact with a sink particle of radius aj . In order to
include the long range character of the net interaction among the approaching
particles, we define an effective interaction range h such that the particles will,
on average, aggregate as soon as the distance between the particle surfaces
becomes smaller than h. This means that the sink particle behaves as if it
were a sphere with an effective radius of aj + h (please, see Figure 3.2).

Modifying the BK accordingly yields

kBK
ij = 4π(Di + Dj)(ai + aj + h). (3.21)

For interacting magnetic particles, however, the interaction may be either
attractive or repulsive and its range depends on the angle ϕ between the ex-
ternal magnetic field and the line joining the particle centers. Figure 3.3 shows
a 3-dimensional plot of the interaction range h(ϕ), which is proportional to
3
√

|3cos2ϕ − 1|, according to magnetic theory (Section 2.6.2). The attractive
and repulsive regions are indicated as zone I and II, respectively. As can be
seen, the attractive region has a dumbbell like shape and fits in a symmetric
double cone with an aperture angle of ϕc ≈ 55o with respect to the field direc-
tion. Evidently, all the particles flowing into the dumbbell shaped attractive
region will aggregate while those trying to enter zone II will be repelled. The
corresponding aggregation kernel could, in principle, be derived by solving the
diffusion equation for this configuration. Due to the missing spherical sym-
metry, however, this is not straight forward. Hence, we propose to simplify
the problem somewhat further and to consider an angle independent effec-
tive interaction range h maintaining the aperture angle of the attractive zone
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Figure 3.2: Schematic illustration of the space around a sink particle consid-
ered for deriving an aggregation kernel for field induced aggregation. In order
to include the long range character of the net interaction among the approach-
ing particles, we define an effective interaction range h. The arrows symbolize
the radial flux of i size particles towards the sink particle.

(please, see Figure 3.4). This means that the particles of radius ai will be
diffusing freely until the center to center distance to the sink particle becomes
ai + h + aj . Hence, the spherical shape of the contact surface is recovered
and the sink particle will again behave as a sphere with an effective radius
of aj + h. Evidently, only the particles diffusing through the attractive pole
caps of the effective spherical contact surface will aggregate while the parti-
cles approaching the lateral regions will be repelled. Hence, only the fraction
Apc/A0 = (1 − cosϕc) of the total flux of particles towards the sink particle
will be effective. Here, Apc is the total area of the pole caps while A0 is the
area of the entire sphere. Based on these approximations, the corresponding
aggregation kernel becomes

kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h). (3.22)

This aggregation kernel should provide a reasonable description for the
aggregation behaviour of spherical particles of radii ai and aj that interact
like aligned magnetic dipoles.



3. Micro-Structural Evolution 53

Figure 3.3: Schematic illustration of the space around a sink particle con-
sidered for deriving an aggregation kernel for field induced aggregation. In
the plots, the attractive and repulsive regions are indicated as zone I and II,
respectively.

Figure 3.4: Schematic illustration of the space around a sink particle con-
sidered for deriving an aggregation kernel for field induced aggregation. In
the plots, the attractive and repulsive regions are indicated as zone I and II,
respectively.
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The final step to go is to extend the validity of the kernel given by Equa-
tion 3.22 to field induced aggregation process where chain-like clusters are
formed. Figure 3.5 shows a schematic view of a chain-like aggregate consisting
of aligned magnetic particles of identical radius a. At not too high concentra-
tions laterally approaching particles or chain-like clusters are repelled while
those arriving at the chain ends will be attracted. In other words, there is an
attractive zone at the chain tips and a repulsive region at the lateral chain
side. If one accepts that the effective range h of the net magnetic interaction
and the aperture angle of the attractive zone are not affected too much by the
presence of further chain forming particles, the area of the attractive zone at
the chain tips will be approximately the same as the one of individual parti-
cles5. Consequently, the net flux of clusters that diffuse through that surface
and aggregate with the cluster must also be very similar. This means that
the kernel derived for individual particles, Equation 3.22, should also be able
to describe the aggregation behaviour of chain-like aggregates if the diffusion
behaviour of the chains were not affected by the presence of further particles in
the chain. The latter is, of course, not the case and so, we propose to replace
the diffusion coefficients in the aggregation kernel by the average translational
diffusion coefficient D of rods mentioned in Section 2.4. This expression de-
scribes rod diffusion quite exactly when the difference (D‖ − D⊥) is small
(Equation 2.24), as would be the case for short rods. Based on these assump-
tions, the kernel for field induced aggregation processes arising in magnetic
particle dispersions becomes

kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h). (3.23)

This aggregation kernel should be understood as a mean field approxima-
tion using effective quantities such as the effective interaction range h and the
effective diffusion coefficients Di and Dj .

It should be noted that the only one freely adjustable parameter is the
effective interaction range h. To the best of our knowledge, Equation 3.23 is
the first analytical expression for an aggregation kernel for field induced ag-
gregation process that is explicitly expressed in terms of physically meaningful
quantities [82].

5As we have seen in Section 2.6.2, the angle of the attractive cone will increase somewhat
due to mutual induction between the particles making up the linear aggregates.
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Figure 3.5: Schematic illustration of the space around a linear aggregate con-
sidered for deriving an aggregation kernel for field induced aggregation. In
the plots, the attractive and repulsive regions are indicated as zone I and II,
respectively.

3.5.3 Coupled Sedimentation and Field Induced Aggregation

Kernel

For the additional contribution to the aggregation kernel due to differential
sedimentation, the following kernel has been proposed in the literature [83]:

ks
ij = Aij |(vs

i + vs
j )|. (3.24)

Here, Aij is the combined cross section for aggregates of size i and j that settle
with an average velocity of vs

i and vs
j , respectively. For two spherical particles

of radii ai and aj , the combined cross section Aij is given by Aij = π(ai +aj)
2.

For linear magnetic clusters, however, the cross section does not depend on
the cluster size since the chains essentially aggregate end to end. Considering
the previously defined effective attractive zone of range h and aperture angle
ϕc, the combined cross section becomes approximately (please, see Figure 3.6)

Aij = 2ϕc(a + h + a)2. (3.25)

The sum kernel kBdip−s
ij = kBdip

ij +ks
ij allows coupled aggregation-sedimentation

processes to be described theoretically within the framework of Smoluchowski’s
equation [84].
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Figure 3.6: Schematic view of the attractive zone around a linear aggregate.
Only clusters that are swept by the shaded circular sectors will aggregate due
to differential settling.

3.5.4 Mutual Induction Kernel

For a particle contained within an infinite chain of identical particles, we have
seen that the magnetic moment normalized by the magnetic moment of an
isolated particle m0 becomes (please, see Section 2.6.2)

m/m0 =
1

1 − 16πζ(3)
3

(

a
r

)3
χsphere

, (3.26)

where ζ(3) =
∑∞

n=1 1/n3 = 1.202 is the Riemann function, r is the distance
between the particle centers, and χsphere is the magnetic susceptibility.

However, Equation 3.26 must be adapted to finite chains before it may be
applied in aggregation theory. The magnetic moment of the particles placed at
the chain ends may be assessed imposing the following three approximations:

1. The chain forming particles are in close contact, i.e. r = 2a.

2. All the chain forming particles have an identical magnetic moment.

3. The infinite sum in the Riemann function ζi may be truncated at n =
N − 1.

Since the range of the magnetic dipole interaction scales as h ∝ m
2

3 , it is
straight forward to deduce the following approximation for h
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hij

h11

=
1

(1 − πζj(3)
3 )2/3

j > i, (3.27)

where ζj(3) =
∑j−1

n=1 1/n3. This means that the effective range h of the net
interaction between the particles depends on the aggregate size (see Figure
3.7)[84].

Figure 3.7: Dependence of the effective range hii of the net interaction, nor-
malized by the effective range h11, on the aggregate size i. See Equation 3.27.

3.6 An Alternative Scenario

The hydrodynamic interactions increase the effective mobility of a cluster of
mass s, making it larger than the mobility of a collection of s independent
particles. The translational motion of field induced aggregates is anisotropic,
and the dragg coefficients depend on the orientation of the linear aggregate
(please, see Section 2.5.2). Hence, the approximation made by Miyazima et al.
, Di ∝ iγ , is a too strong assumption in the case of linear aggregates. Miguel
and Pastor-Satorras proposed an alternative approach, based on heuristic ar-
guments, which includes logarithmic corrections to the standard power-law
behaviour [9].
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Firstly, they assume that the linear aggregates have the average length S.
Thus, the averaged distance R between closer aggregates is given by

R ≈
(

S

φ

)1/Dim

, (3.28)

where φ is the initial density, and Dim is the spatial dimension. Since the
movement of the cluster is essentially diffusive, in three dimensions, the char-
acteristic time T requeried by the aggregates to cover a unitary distance such
that the clusters will encounter n(t) aggregates is

T ∝ 1

n

1

DS
∝ 1

φ

S2

ln(S)
, (3.29)

where the diffusion coefficient DS ∝ ln(S)
S takes into account the logarithmic

correction due to hydrodynamic interactions. Using similar arguments these
authors propose a different characteristic time for low-dimensional systems
(Dim = 1, 2)

T ∝ R
2

DS
∝ 1

φ2/Dim

S
2+Dim

Dim

ln(S)
. (3.30)

Therefore, the functional dependence of the mean cluster size S with time can
be expressed as

S

[ln(S)]
Dim

2+Dim

∝ t
Dim

2+Dim Dim ≤ 2 (3.31)

S

[ln(S)]
1

2

∝ t
1

2 Dim ≥ 2.

Within this approach, the authors obtained logarithmic corrections to the
power-law dependence proposed by Miyazima et al. for γ = −1. Monte Carlo
simulations making use of this assumption provide a different kinetic expo-
nent z = 0.6, and predict a crossover to a quasi-one dimensional regime for
high particle concentrations [9]. These simulations have been confirmed by
experimental results [36, 85].

3.7 Aggregate Morphology

A detailed analysis of colloidal aggregation involves two main aspects: the
cluster morphology and the kinetics of aggregate formation. The cluster mor-
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phology is usually characterized by means of the fractal dimension, df , that is
understood as a measure on how the particles fill the three-dimensional space.

3.7.1 Fractal Dimension

The fractal dimension was introduced in the seventies by B. Mandelbrot. It
allows for a quantitative description of the structure of the aggregates that
was generally considered as too complicated in the past [86, 87]. The more
general definitions of the fractal dimension is due to Hausdorff [88]. If we
define the embedding dimension d as the smallest Euclidean dimension of the
space an object can be embedded in, the ”volume” of such object V (r) can be
measured by covering it with d dimensional balls or boxes of length r0

V (r) = N(r)rd
0 , (3.32)

where N(r) is the smallest number of balls of radius r0 with which the object
can be covered completly. For usual geometrical objects (line, sphere, triangle,
etc.) V (r) attains a constant value as r0 decreases6. However, there are some
objects which V (r) 7−→ 0 as r0 7−→ 0. For instance, the measured ”area” of
the shore goes to zero if we determine it by using squares of decreasing width.
On the other hand, if we measure the ”volume” V (r) of this kind of objects
by covering it with d − 1 boxes of length r0 we will find that V (r) 7−→ ∞ as
the unit of lenght r0 decreases. If we want to measure a section of coastline
with a ruler, we would get a different result depending on the ruler length.
The measured length will increase as the length of the ruler decreases. This
is due to the fact that with the smaller ruler we would be laying it along a
more curvilinear route than that followed by the longer one (see Figure 3.8).
This empirical evidence suggests that the measured length increases without
limit as the measurement scale decreases towards zero. Therefore, the costline
is neither a one- nor a two-dimensional object. It seems to be ”wider” than
a line but having an infinitelly small surface. Hence, there are objects that
have no integer dimension. Such objects have a fractal dimension, that does
not have special reason to be an integer.

If we suppose an aggregate to be a set of a characteristic fractal dimension
df , the density ρ in a df -dimensional space of such an aggregate is

ρ(r) ∝ M(r)

rdf
, (3.33)

6That is the method generally employed to measure a distance, an area or a volume.
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Figure 3.8: How long is the coast of Great Britain? If we want to measure
a section of coastline with a ruler, we would get a different result depending
on the ruler length. This means that the coast line of Great Bretain is not
a linear object of 1 dimension. It must rather have a non integer dimension.
Mandelbrot found a fractal dimension of 1.25 for the West coast of Britain,
using empirical dates measured by Lewis Fry Richardson [86].

where M(r) is the mass contained in a sphere of radius r centered at some
point within the cluster [86]. If the spheres density of radius r0 is normalized,

the mass contained in a sphere of radius r is given by N(r) × r
df

0 × 1. Hence,
the density is

ρ(r) ∝ M(r)

rdf
∝ N(r)

(r0

r

)df

. (3.34)

For r >> r0, N(r) has to be proportional to rdf . Hence, the fractal dimension
df is given by

df ≡ lim
r→∞

lnN(r)

ln r
. (3.35)

On the other hand, the spatial correlations between particles of a structure
are usually accounted in terms of a spatial correlation function c(r)

c(r) ≡ 1

V
Σr′

[

ρ(r + r′)ρ(r′)
]

, (3.36)

where V is the structure volume and ρ(r) the local particle density. The struc-
ture of some fractal objects are invariant under change of scale. Such fractals
are called self-similar fractals. In this case, the previously defined spatial cor-



3. Micro-Structural Evolution 61

relation function remains unchanged when the length scale is changed by an
arbitrary factor b

c(br) ≈ b−αc(r), (3.37)

where α is a positive number smaller than the embedding dimension d. It can
be shown that

c(r) ≈ r−α (3.38)

is the only function which satisfies the Equation 3.37 [28]. The number of
boxes within a sphere of radius r from the 3 D correlation function, according
to Equation 3.38, is given by

N(r) ∼
∫ r

0
c(r)d3r ∼ L3−α. (3.39)

In a fractal object, N(r) grows asymptotically as rdf . Hence, the parameter
α = 3 − df is related to the fractal dimension, and Equation 3.38 becomes

c(r) ∼ rdf−3. (3.40)

When we consider real physical objects, the objects can be described as a
fractal only between two well defined length scales. In particular the natural
lower cut off size of colloidal aggregates is the diameter of the particles, whereas
the higher cut off is the mean size of the aggregates. For instance, the reader
can observe the aggregates depicted in Figure 3.9. Therefore, we have to
introduce a cut-off function f(r/R) to take care of the finite character of the
aggregate. This function is such that f(x) ∼ 0 for x > 1, and f(x) ∼ constant
for x < 1.

3.7.2 Morphology of Field Induced Aggregates

When the magnetic particles are allowed to aggregate7, linear particle aggre-
gates or filaments are formed. The final aggregate structure depends mainly
on the particle volume fraction.

7Supposing that the dipolar magnetic potential is sufficiently larger than the thermal
energy and the possible repulsive interactions between the particles.
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Figure 3.9: Aggregates obtained by Molecular Dynamics simulation. Their
fractal dimension is df ≈ 1.2. The particles aggregate under the action of a
long range repulsive Yukawa potential that is small enough to be overcome by
thermal activation. This plot has been taken from Fernández-Toledano et al.
[89].

Pearl-Chain Like Clusters

At low particle concentrations, regular one-particle-thick chainlike aggregates
are formed aligned along the field direction. Electrostatic repulsion helps to
ensure the stability of the magnetic colloidal particles with regard to aggre-
gation when no magnetic field is applied. However, once the magnetic field is
applied, a deep primary minimum appears at short distances, and a shallower
secondary minimum at further distances. As we have shown in the Section
2.7, both energy minimum are separated by an energy barrier. Hence, parti-
cle aggregation may occur either in the primary minimum where the particles
are in contact, or in the secondary minimum where the neighbouring particles
within the linear aggregates are separated by a short distance. In that lat-
ter case, relative positional particle fluctuations inside the linear aggregates
may take place due the competition between Brownian motion and magnetic
dipole-dipole interactions, as we will see in Section 6.2.

When the chain-forming particles aggregate in the primary minimum, the
filaments or at least parts of them will remain assembled even in absence of
the magnetic field (see Figure 3.10) [64, 65, 66]. The deformation and magne-
torheological properties of these ”permanent” chains have been the subject of
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several works during the last years [22, 23, 24, 25]. As we will see in Chapter
4, light scattering allows the fractal dimension df to be measured using the
known theoretical relationship between the mean scattered light intensity I(q)
and the scattering wave vector q. Therefore, the light scattering data will be
employed to confirm the linear character of the permanent filaments and to
asses chain deformation due to the interaction with the surrounding medium.

Columns and networks

At higher particle concentrations, long chains experience additional lateral at-
tractions and aggregate, forming columns or networks that are also aligned in
the direction of the magnetic field. The lateral aggregation is due to a short
range attraction between the chains (Section 2.6.2). Furthermore, thermal
fluctuations and topological defects due to polydisperisty can also be respon-
sible for lateral aggregation at lower volume fractions (see Figure 3.11).
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Figure 3.10: Transmission electron microscopy images of magnetic particles
aggregated in an electrolyte solution under the presence of a constant magnetic
field (Figure a). The added electrolyte allows the particles to come close so
that van der Waals interactions dominate and ”permanent” aggregates are
formed. Once the magnetic field is turned off these aggregates rotate freely,
and the linear aggregates lose part of their linear character. (Figures b and c).
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Figure 3.11: Branching defect observed at low volume fraction. Thermal fluc-
tuations, polydispersity, or chain defects create local variations in the dipole
moment density along a chain.
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Chapter 4

Light Scattering

La luz es sepultada por cadenas y ruidos

en impúdico reto de ciencia sin raices.

Federico Garćıa Lorca, de Poeta en Nueva York.

.

4.1 Introduction

Light is electromagnetic radiation of a wavelength of approximately 400–700
nm that is visible to the human eye. In light waves the electric and magnetic
fields oscillate in perpendicular directions, and in directions perpendicular to
the direction of propagation of the wave. In general, absorption and scattering
are the two ways in which electromagnetic radiation can interact with colloidal
particles. Scattering is a general physical process whereby some forms of radi-
ation, such as light, sound, or subatomic particles, for example, are forced to
deviate from a straight trajectory by one or more localized non-uniformities in
the medium through which it passes. The types of non-uniformities that can
cause scattering, sometimes known as scatterers or scattering centers, are too
numerous to list, but a small sample includes colloidal particles, density fluc-
tuations in fluids, bubbles, surface roughness, droplets, defects in crystalline

67
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solids, cells in organisms, etc. The effects of such objects on the path of a
propagating wave are described in the framework of scattering theory.

When light impinges on matter, the electric field of the light induces an
oscillating polarization in the molecules. The incident light beam then is said
to polarize the medium. The charges in the illuminated volume subject to
this electric field experience a force and are accelerated. According to classical
electromagnetic theory an accelerating charge radiates light, and consequently
the charges serve as secondary sources and scatter light.

All the charges in a subregion that is small if compared with the incident
light wavelength, see almost the same incident electric field. If the incident
light illuminates many small subregions, then the total electric field that is
scattered in a certain direction is the sum of the electric fields scattered in
the same direction by the individual subregions. The phase difference of the
scattered light from two different subregions depends on their relative posi-
tions, as well as on the direction in which the scattered light is detected. If all
these subregions have the same refractive index, there will no scattered light
in other than the forward direction. This is because the waves scattered from
each subregions are identical except for this phase difference, and a complete
cancellation will then take place. However, in colloidal suspensions where the
particles have a refractive index different to the medium, the amplitudes of
the field scattered from the different subregions are not identical, and there
will be scattered light in other than the forward direction. Thus, in this
semi-macroscopic view, light scattering is a result of local fluctuations in the
refractive index of the medium [90]. When a beam of light passes through a
solution there is so little scattering of the light that the path of the light can-
not be seen. However, if a beam of light passes through a colloidal suspension
then the colloidal particles, which size is comparable to the light wavelength,
reflect or scatter the light and its path can therefore be observed. This partic-
ular property of the colloidal suspensions is known as the Tyndall effect (see
Figure 4.1).

The particles in colloidal suspensions are perpetually moving due to the
Brownian motion. As the particles change their positions, the phase difference
of the scattered field from the particles changes, so that the total scattered
electric field measured at the detector will fluctuate in time. The scattered
light by the particles then undergoes either constructive or destructive interfer-
ence, and the intensity fluctuation contains information about the time scale of
the particle movement. In other words, there is implicit important statistical
information about the positions and orientations of the scatters. The angular
distribution of the scattered light intensity, the fluctuation of the scattered
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electric field, or the polarization are determined by the size, shape, and mo-
tion of the particles within the scattering volume. From the light scattering
characteristics of a given system it is possible, with the aid of electrodynamics
and the theory of time-dependent statistical mechanics, to obtain information
about the structure and dynamics of the scattering medium. In summary, light
scattering is a useful experimental tool in order for studying the structural and
dynamical properties of colloidal systems.

Figure 4.1: He-Ne laser passing through a colloidal suspension during a typical
light scattering experiment. The colloidal particles, which size is comparable
to the light wavelength, scatter the light and the path of the light can therefore
be observed (Tyndall effect).

The dynamics of a dilute colloidal suspension of spherical particles is well-
understood; physics or chemistry students, during their practical training,
sometimes perform light scattering experiments which determines the diam-
eter of monodisperse charged polystyrene spheres through the fluctuation of
the scattered electric field. However, there are few studies on the dynamics of
rodlike particles1. This is due to the fact that their dynamics is more complex.
When a chain or rod moves, there is not only a translational and rotational
displacement of the entity as a whole; there may also be small internal vi-
brational modes that may affect the dynamics of the system. On the other
hand, if the incident light is linearly polarized, the scattered light will also be
linearly polarized. However, if the scatters are nonspherical or if they have
anisotropic polarizabilities along different directions, there will be a compo-
nent of the scattered light with a polarization perpendicular to the direction
defined by the incident electric field. Hence, an accurate description of this
diffusive motion is not straightforward.

1Among them are works dealing with tobacco mosaic viruses [91, 92], gold particles [93],
or carbon nanotubes [94].
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Scattering experiments also give access to the position correlations be-
tween particles. For aggregating particles light scattering is a useful tool to
measure their fractal dimension, which quantitatively determines the degree
of compactness of the clusters.

In this Chapter we develop the theoretical background for describing the
experiment in which the light is scattered by spherical particles, anisotropic
particles, or linear aggregates. Moreover, we will focus our attention on the
magnetic character of the colloidal particles and on the effect that an uniaxial
magnetic field might have on the light scattering experiments. We mainly
follow the molecular formulation given in the book of Berne and Pecora [50].
For further details about light scattering topics the interested reader should
consult this excellent book.

4.2 Electromagnetic Light Scattering Theory

If the wavelength of the light is comparable to the principal dimensions of the
system, and if the photon energies are small compared with the characteristic
energy of the system, a very useful approximation is to disregard Quantum
Mechanics effects. This method is based on the Classical Theory of Electro-

magnetic Radiation, which will be discussed throughout this Chapter.

Let the incident electric field ~Ei(r, t) at point ~r and time t be given by a
plane electromagnetic wave

~Ei(~r, t) = ~niE0 exp i[~ki · ~r − ωit] (4.1)

of wavelength λ, frequency ωi, and amplitude E0. Here, ~ni is a unit vector
pointing in the polarization direction of the incident electric field. The incident

wave vector ~ki is

~ki = (
2π

λ
)k̂i, (4.2)

where k̂i is a unit vector pointing in the propagation direction of the incident
wave.

The surrounding medium is assumed to behave as a nonmagnetic, noncon-
ducting, and nonabsorbing medium with average dielectric constant ε and a
magnetic permeability equal to that of vacuum µ0. Fluctuations of the re-
fractive index

√
εµ0 of the medium, resulting from density fluctuations, are

neglected here.
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When this incident electric field impinges on a single molecule, which has
a polarizability given by a polarizability tensor α̂, it induces an electric dipole
moment which varies with time

~µ(t) = α̂ · ~E(t). (4.3)

According to Electro-Magnetic theory, a time varing dipole emits electromag-
netic radiation [60]. The radiated electric field ~Es is proportional to the ac-
celeration of the dipole moment ~̈µ(t′)), where the retarded time t′ is the time
it takes, at speed of light c, to get from the dipole to the detector [95, 96].
Therefore, the scattered light from a molecule can be considered as the radi-
ation from an induced dipole. Maxwell’s equations may be used to show that
the component of the scattered electric field at a large distance r from the
scattering volume with polarization ~nf , propagation vector ~kf , and frequency
ωi, is proportional to [50]

~Es(~r, t) ∝ αif (t) exp (i~q · ~r(t)) , (4.4)

where
αif (t) = ~nf · ˆα(t) · ~ni (4.5)

is the component of the molecular polarizability tensor along ~ni and ~nf . Here,
~r(t) is the position of the center of mass of the molecule at time t. The mul-

tiple scattering, i.e. when light is scattered many times within the molecule
or between distint molecules, was enterly neglected during the operations. In
literature on scattering such an approximation is usually referred to as a first

Born approximation. The molecules are supposed not to exhibit magnetic
properties which affect the scattering process. Although the light scattering
by colloidal particles of different optical properties is a well-documented topic,
little attention has been paid to the case of light scattering by magnetic parti-
cles. Some remarks about light scattering by magnetic particles will be given
in Section 4.4.1 on the basis of the Mie theory.

The vector ~q, shown in Equation 4.4, is defined as

~q = ~ki − ~kf , (4.6)

where ~ki and ~kf are in the directions of propagation of the incident wave and

the wave that reaches the detector, respectively. The angle between ~ki and ~kf

is called the scattering angle θ. All the geometry is illustrated in the Figure
4.2. The magnitudes of ~ki and ~kf are respectively 2πn

λi
and 2πn

λf
, where λi and

λf are the wavelengths in vacuo of the incident and the scattered light, and n
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is the refractive index of the scattering medium. Usually the interaction of the
electric field with the material of the molecules is such that the wavelength is
not affected and so

∣

∣

∣

~ki

∣

∣

∣

∼=
∣

∣

∣

~kf

∣

∣

∣
. (4.7)

Thus, the triangle shown in Figure 4.2 is an isosceles triangle and the magni-
tude of ~q can be found from the law of cosines

q = 2kisin
θ

2
=

4πn

λi
sin

θ

2
. (4.8)

Since the wavelength (and therefore the energy) of the incident photon is
conserved and only its direction is changed, such a scattering event is called
elastic light scattering. The photon is bounced off the scattering material
without any transfer of energy to the material. The scattering vector ~q has
the units of 1/length. Thus, essentially, q−1 gives the ”spatial resolution” of
a scattering experiment.

4.3 Scattering from Small Particles

The polarizability of the colloidal particles (or macromolecules) is enormous
by comparison to the polarizability of the solvent molecules. Therefore the
colloidal particles will be far more efficient scatteres of light than individual
molecules, and only the scattered field due to the presence of the colloidal
particles will be considered. If the charges of the particles are not perturbed
too much by the presence of their neighbours, we can assume that the field
scattered from the assembly of particles will be the superposition of amplitudes
scattered from each of the particles in the illuminated volume. In fact, many
of the scattered light properties are easily explained using the rule that when
two or more light beams impinge on the same surface, the resulting intensity is
obtained by first adding the electric fields due to the individual beams and then
squaring the sum to obtain the average light intensity. This is an example of
what is called the Principle of Superposition for linear systems. This principle
states that the total field due to all the sources is the sum of the fields due to
each source. As far as we know today, for the electricity this is an absolutely
garanteed law, which is true even when the force law is complicated because
the motions of the charges. According to Equation 4.4, the total scattered
field will be proportional to
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Figure 4.2: Light of polarization ~ni and wave vector ~ki is scattered in all
directions. Only scattered light of wave vector ~kf and polarization ~nf arrives
at detector. The scattering vector ~q is defined by the wavelength, as well as
by the direction in which the scattered light is detected.

~Es(~R, t) ∝
N

∑

j=1

′

αif (t) exp(i~q · ~rj(t)), (4.9)

where the vector ~rj(t) is the centre of mass possition of particle j at time
t, and the prime on the sum indicates that the sum is only over particles
within the scattering volume. The phase difference of the scattered electric
field under a scattering angle θ by two particles is equal to 2π∆

λ , where ∆ is the
path difference between two light beams (Figure 4.2). It is straight forward
to show that this phase difference is equal to ~q · (~ri − ~rj) [26]. Therefore, we
can associate a phase equal to ~q · ~rj to every particle j, and the total scattered
electric field is the sum of exp(i~q · ~rj(t)) over all particles of the scattering
volume.
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According to Equation 4.9, ~Es depends on time via the position (through
the exponential contains the positions) and the orientation of the Brownian
particles (through the polarization tensors). A change in the configuration of
the brownian particles (reorientation or translation) changes the interference
pattern of the scattered electric field. The electric field thus fluctuates ran-
domly around a mean value, as depicted in Figure 4.3. The time required for
a fluctuation between extremes will depend on the scattering angle as well as
the size of the particle2.

The simplest way to characterize the fluctuations of the electric field is by
means of a field autocorrelation function, defined as

gE(t) ≡ 〈E∗
s (R, 0)Es(R, t)〉 ≡ lim

T→∞

1

T

∫ T

0
E∗

s (R, 0)Es(R, t)dt, (4.10)

where ∗ denotes complex conjugation, and T is the time over which the electric
field is averaged. The average becomes meaningful only if T is large compared
to the period of fluctuation. If the random process is stationary, then the
autocorrelation function depends only on the time difference and not on the
particular values 0 and t.

Time-dependent correlation functions have been used for a long time in
the theory of noise and stochastic processes, and nowadays they are easily
measured using digital techniques, as we will see in the Chapter 5. However,
the time-correlation functions measured in light scattering experiments are
time averages, whereas in most theoretical calculations what is calculated is
the ensemble-averaged correlation function. According to Birkhoff’s ergodic

theorem, these two correlation functions will be identical if the system is er-
godic. The idea that we observe the ensemble average arises from the view
in which measurements are performed over a long time, and that due to the
flow of the system through state space, the time average is the same as the
ensemble average. The equivalence of a time average and an ensemble average,
while sounding reasonable, is not at all trivial [49]. This assumption seems
reasonable if the observation is carried out over a very long time3 or if the
observation is the average over many independent observations.

2Typical values range from a few µs for small molecules to many ms for objects as large
as a cell. Brownian motion is slow enough, so that many photons are scattered in a time
interval during which the configuration of the particles did not change to an extent that the
phases of the scattered fields are seriously affected.

3”Long time” refers to a duration much longer than any relaxation time for the system.
After this relaxation time the system will lose all memory of its initial conditions.
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Correlation functions provide concise method for expressing the degree to
which dynamical properties are correlated over a period of time. At short
times the correlation will be high because the particles do not have a chance
to move to a great extent from the initial state that they were in. Thus, the
signal is essentially unchanged when compared after only a very short time
interval. Then

gE(t) →
〈

|E(0)|2
〉

for t → 0. (4.11)

As the time delays become longer, the correlation starts to exponentially
fall off. This means that there is no correlation between the scattered inten-
sities by the initial and the final states after a long time period4 has elapsed
(please, see the Figure 4.3). Then,

gE(t) → 〈|E(t)|〉2 for t → ∞. (4.12)

The exponential decay will then be obviously related to the motion and the size
of the scatter particles. The time-correlation function of Es can be evaluated
from Equation 4.9

gE(t) ∝
〈

δα∗
if (~q, 0)δαif (~q, t)

〉

, (4.13)

where

δαif (~q, t) ≡
N

∑

j=1

′

αj
if (t) exp(i~q · ~r(t)) (4.14)

is the spatial Fourier component of the polarizability density

δαif (~r, t) =
N

∑

j=1

′

αj
if (t)δ(~r − ~rj(t)). (4.15)

The time dependence of the polarizability component αj
if can be regarded

as the product of two contributions: the movement of the rigid molecular po-
larizability, and the internal vibracional displacements, which gives rise to the
vibration-rotation Raman spectrum. In this study we are concerned only with
the part of the scattered light that depends on pure rotations and transla-
tions of particles. No further discussion of the vibrational Raman scattering
is given. This scattering is refered as ”Rayleigh-Brillouin” scattering.

4Relative to the motion of the particles.
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Figure 4.3: Typical fluctuating scattered electric field as function of time in
arbitrary units (left), and a normalized autocorrelation function of the scat-
tered light intensity (right). Here, the continuous line represents a second
order cumulant fit (see Section 4.4.2).

As can be seen in Equation 4.15, the scattered electric field is proportional
to a certain Fourier component of the instantaneous density

∑N
j=1

′

δ(~r−~rj(t)).
This makes light scattering such an important experimental tool because it al-
lows studing of density fluctuations. These fluctuations are the determined by
the Brownian motion of the colloidal particles. Different Fourier components
of the density can be set by the wavelength of the light and the scattering
angle.

4.3.1 Spherical Particles

The simplest case to treat in light scattering is that of optically spherical
particles. In this case α̂ is proportional to the unit matrix Î and the induced
dipole moment is always parallel to the applied field so that

~µ(t) = α(t) ~E(t). (4.16)

The dipoles induced in the scattering particles oscillate with the same polar-
ization as the incident light beam, and the oscillating dipoles then radiate light
with the same polarization.

Spatial Distribution of Scattered Light Intensity

According to the Electromagnetic theory, the intensity of a beam of light is
proportional to the square of the electric field amplitude. This theory allows
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us to predict quite easily the intensity of the scattered light at any angle for
the spherical particles. As we have mentioned before, small spherical particles
behave like oscillating dipoles, since the polarization direction of the incident
field is in the same direction as the induced dipoles for optically isotropic par-
ticles. If the detector is looking ”right on top of the heads of the dipoles”, the
amplitude of the reradiated light is at a maximum in any direction perpendic-
ular to the dipole axis, and the mean intensity collected by a detector in the
plane perpendicular to the dipole axis will be almos constant [60]. Such small
spherical scatters are frequently refered to as Rayleigh Scatters.

Time Correlation Function

The time-correlation function arising in light scattering involves the molecular
polarizability through the quantity given by the Equations 4.13 and 4.14. For
spherical particles, this reads (see Equation 4.5)

αif (t) = (~ni · ~nf )α(t). (4.17)

It inmediately follows from Equations 4.9 and 4.17 that for identical spherical
particles the scattered field is proportional to

~Es ∝ (~ni · ~nf )α(t)
N

∑

j=1

′

exp(i~q · ~rj(t)), (4.18)

and the time-correlation function of ~Es is proportional to

gE(t) ∝ F1(~q, t) ≡ 〈ψ∗(~q, 0)ψ(~q, t)〉 , (4.19)

where ψ is simply

ψ(~q, t) ≡
N

∑

j=1

′

exp(i~q · ~rj(t)). (4.20)

If all the particles are identical the contributions to the scattered electric field
due to the individual particles have the same magnitude. The phases, however,
are different.

Diluted Solutions

In sufficiently diluted solutions the distance between the particles is much
larger than their own dimensions, and the interactions among them can be
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neglected. Hence, we can assume their positions to be statistically indepen-
dent. Therefore, the cross terms i 6= j vanish for non-interacting particles,
and Equation 4.19 becomes

F1(~q, t) =

〈

N
∑

j=1

′

exp [i~q · (~rj(t) − ~rj(0))]

〉

. (4.21)

This is an example of a self-correlation function where only properties of the
same particle are correlated. We only treat the self part of the intermediate
scattering funtion, as a consequence of no having included the interactions
between the particles. The quantity

Fs(~q, t) ≡ 〈exp[i~q · (~rj(t) − ~rj(0))]〉 (4.22)

should be identical for each particle j, because it represents an ensemble av-
erage. Fs(~q, t) can therefore be factored out of the above sum, so that F1(~q, t)
becomes

F1(~q, t) = 〈N〉Fs(~q, t). (4.23)

The quantity Fs(~q, t) is called the self-intermediate scattering function. Fs(~q, t)
is the Fourier transform of the probability distribution Gs(~r, t) for a particle
to suffer a displacement ~R in the time t

Gs(~R, t) =
〈

δ
(

~R − (~rj(t) − ~rj(0))
)〉

. (4.24)

This function was described in Section 2.4. Since particle j is not unique, any
particle could have been chosen, and the same Gs(~R, t) would result.

Brownian Particles

As we defined in the Section 2.4, for non-interacting Brownian particles Gs(~R, t)
denotes the probability density for the Brownian particle position ~R at time
t, given that the particle was initially at the origin. In the approximation
of infinite dilution, Gs(~R, t) can be regarded as the solution of the diffusion
equation (Equation 2.18)

∂

∂t
Gs(~R, t) = D0∇2Gs(~R, t), (4.25)

subject to the initial condition Gs(~R, 0) = δ ~R, where D0 is the self-diffusion
coefficient.
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Since Fs(~q, t) is the Fourier transform of the probability distribution Gs(~r, t),
the spatial Fourier transform of Equation 4.25 is

∂

∂t
Fs(~q, t) = −q2D0Fs(~q, t), (4.26)

and the solution of this equation, subject to the boundary condiction Fs(~q, 0) =
1, is easily obtained

Fs(~q, t) = exp(−q2D0t). (4.27)

According to Equations 4.19, 4.23 and 4.27, we obtain for the field autocorre-
lation function

gE(t) ∝ exp(−q2D0t). (4.28)

This allows a characteristical relaxation time to be deffined as τq ≡ (q2D0)
−1.

In order to determine the average sphere diameter from the self-diffusion
coefficient, a hydrodinamic relation has to be known which describes the re-
action force of the viscous medium to the movement of the particle. For an
isolated sphere, this is the well known Stokes-Einstein equation (Equation
2.29)

D0 =
kBT

6πηa
,

Hence, the autocorrelation function can be used to measure the diffusion co-
efficient of a spherical particle and to determine the particle radius there-
from. The DLS measured radius, by definition, is the radius of a hypothetical
hard sphere that diffuses with the same speed as the scatters under examina-
tion. This definition is somewhat problematic since hypothetical hard spheres
are non-existent. In practice, macromolecules in solution are non-spherical,
polydisperse, and solvated. Hence, the radius calculated from the diffusional
properties of the particle is indicative of the apparent size of the dynamic
hydrated/solvated particle. A radius determined in this way is commonly re-
ferred to as the hydrodynamic radius. For charged particles it is important to
note that electroviscous effects are usually neglected [97].

4.3.2 Linear Particles

In the previous Section we have discusses the general features of the scattered
light by spherical Brownian particles. In a more general case, however, par-
ticles could be anisotropic. In this case the magnitude and direction of the
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induced dipole moment depend on the orientation of the particle with respect
to the electric field vector of the incident light.

The previously defined component of the molecular polarizability tensor
αif (t) (Equation 4.5) is the projection of the polarizability tensor αj of molec-
ula j onto the inicial and final polarization directions of the light wave. Due
to the optical anisotropy of the particles, the polarizability tensor generally
has off-diagonal elements. This means that the components of the dipole mo-
ment induced by the field ~µf (t) = α̂if (t) ~Ei(t), will generally not be parallel

to the applied field ~Ei. Since the particles continuosly reorient, the magnitud
and direction of its induced moment fluctuates. This leads to a change in the
polarization and the electric field strength of the light emitted by the fluctu-
ating induced dipole moment. Therefore, diffusive rods are more complicated
to describe than diffusing spheres. The light scattered from an assembly of
particles contains information about molecular tumbling. For linear particles
the orientational variables play a fundamental role.

Time Correlation Function of Diluted Suspension of Linear Particles

According to Equation 4.13 the time-correlation function of Es is determined
by the autocorrelation of δαif (~q, t) =

∑N
j=1

′

αj
if (t) exp[(i~q · ~r(t))]. In this Sec-

tion the experimental system is assumed to be diluted, and so again only
self-correlations need be considered. According to Equation 4.19, the autocor-
relation function becomes

gE(t) ∝
N

∑

j=1

′

〈

αj
if (0)αj

if (t) exp[i~q · (~rj(t) − ~rj(0))]
〉

, (4.29)

where the αj
if (t) changes with time due to translational and rotational particle

movement.

In what follows we will assume that the center of mass position and the
orientation of the particles are statistically independent. This means that
translational diffusion is isotropic and not coupled with rotational diffusive
modes. Furthermore, the diffusion coefficient for translational motion should
be a scalar quantity. This is, however, not a good assumption for highly
anisotropic or long rods. In these cases, a strong coupling between transla-
tional and rotational modes is expected and, as we will see in the Section 4.4.2,
a no-trivial coupled diffusion equation has to be solved.

According the assumption of statistical independence of particle transla-
tion and rotation, the previous Equation 4.29 becomes
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gE(t) ∝
N

∑

j=1

′

〈

αj
if (0)αj

if (t)
〉

Fs(~q, t). (4.30)

The only ~q dependence on the right-hand side of Equation 4.30 is in the trans-
lational factor Fs(~q, t). The rods reorient many times while diffusing a distance

comparable to q−1, and the expression
〈

αj
if (0)αj

if (t)
〉

can be considered as

purely local in character, and consequently does not depend on ~q.

The linear particles are assumed to be identical, so that the correlation

function
〈

αj
if (0)αj

if (t)
〉

is the same for every equivalent particle in the sys-

tem. Moreover, the autocorrelation function involves an ensamble average.
Consequantly, Equation 4.29 becomes

gE(t) ∝ 〈N〉 〈αif (0)αif (t)〉Fs(~q, t). (4.31)

Until now, all the equations have been written in general tensor nota-
tion and hence are independent of any specific coordinate system employed.
However, in order to calculate the autocorrelation function according to the
Equation 4.31, the components of the molecular polarizability tensor must be
defined with regard to the scattering geometry. The geometry used in our
experiments is indicated in Figure 4.4. In this geometry the XY plane is the
scattering plane, which is the plane defined by the incident and scattered wave
vectors. θ is the scattering angle. The subscripts V and H correspond to di-
rections that are vertical and horizontal with respect to the scattering plane.
In typical light scattering experiments, laser light passes through a polarizer
in order to set the polarization of the incident beam. In our geometry, the
incident electric field is polarized along the z axis, and so, ~ni = ẑ.

This means that the dipole moment is ~µ(t) = E(t)(α̂(t) · ẑ) and ~µz(t) =
ẑ · ~µ = E(t)(ẑ · α̂ · ẑ). Thus, the laboratory-fixed quantity αzz may be con-
sidered as the z component of the dipole moment induced in the particles
by a unit field in the z direction. A similar interpretation holds for αyz(t).
The vertical component of the initially vertically polarizated scattered electric
field, is known as the polarized component ~EV V , and the horizontal component
~EV H as the depolarized component. Thus, using the definition of αif and the
polarization directions, we obtain

gE(t)V V ∝ 〈N〉
〈

αj
zz(0)αj

zz(t)
〉

Fs(~q, t), (4.32)

and
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Figure 4.4: Schematic plot of the scattering geometry. The incident electric
field is polarized along the z axis, and the XY plane is the scattering plane.
θ is the scattering angle. Due to the anysotropy of the non-spherical scatters,
the scattered electric field may have two different polarization directions, ~nV V

and ~nV H .

gE(t)V H ∝ 〈N〉
〈

αj
yz(0)αj

yz(t)
〉

Fs(~q, t). (4.33)

The elements αif of the molecular polarizability tensor have been defined
with regard to the laboratory coordinate system. The induced dipole moment,
however, depends on the orientation of the linear particles and so, the molec-
ular polarizability tensor must be expressed in terms of the coordinate system
fixed in the molecules. Let the particle have particle-fixed polarizability com-
ponent α‖ parallel to its symmetry axis, and α⊥ in a direction perpendicular
to this axis. The polar coordinates specifying the orientation of the molec-
ular symmetry axis in the laboratory-fixed coordinate system are (ϕ,φ), as
defined in Figure 4.5. In this new coordinate system, the polarizability may
be expressed as

αzz = α + (
16π

45
)

1

2 βY2,0(ϕ, φ), (4.34)

and
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Figure 4.5: The laboratory-fixed axes are XY Z and the particle-fixed axes
are X ′Y ′Z ′. The orientation angles of the symmetry axis of the cylindrical
particle are given by ϕ and φ.

αyz = i(
2π

15
)

1

2 β(Y2,1(ϕ, φ) + Y2,−1(ϕ, φ)), (4.35)

where Y2,m(ϕ, φ) are the second order spherical harmonics [50]. The only
molecular parameters that appear in the laboratory-fixed polarizabilities given
in Equations 4.34 and 4.35 are

α ≡ 1

3
(α‖ + 2α⊥), (4.36)

and

β ≡ (α‖ − α⊥), (4.37)

where α is called the isotropic part of the polarizability tensor. This is in-
dependent of the molecular orientation. The parameter β is related to the
optical anisotropy of the particle, and it is known as the anisotropic part of
the polarizability. For optically spherical particles α⊥ = α‖ and consequently
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β = 0. The parameters α and β determine the intensities of the different
components of the scattered light.

Substituting Equations 4.34 and 4.35 in Equations 4.32 and 4.33, we obtain

gE(t)V V ∝ 〈N〉 [α2Fs(~q, t) + (
16π

45
)β2F 2

2,0(t)Fs(~q, t)], (4.38)

and

gE(t)V H ∝

〈N〉 (
2π

15
)β2[F 2

1,1(t) + F 2
1,−1(t) + F 2

−1,−1(t) + F 2
−1,−1(t)]Fs(~q, t), (4.39)

where
F l

m,m′(t) ≡
〈

Y ∗
l,m′(ϕ(0), φ(0))Yl,m(ϕ(t), φ(t))

〉

(4.40)

are orientational correlation functions which reflect how the angles ϕ(t) and
φ(t) change in time. The first term on the right-hand side of the Equation
4.38 is independent of rotations since it involves only the isotropic part of the
polarizability tensor.

Linear Brownian Particles

During all the Section 4.3 we have assumed that the center of the mass posi-
tion and the orientation of the linear aggregates are statistically independent.
Hence, the diffusion equation given in Section 2.4 for short rods would be sep-
arable in rotational and translational parts. Hence, the motion of the linear
particles is described by the diffusion equation (see Equation 2.24)

∂

∂t
c = Dt∇2c − DrL̂

2
c,

This theory assumes that translational diffusion is isotropic. In other words,
the diffusion constant parallel and perpendicular to the long molecular axis
are the same in a molecular fixed frame.

Keeping constant the spatial position of the cylinder R = 1, Equation 2.24
becomes the rotational diffusion equation

∂

∂t
c = −DrL̂

2
c.

The particular solution of this diffusion equation can be interpreted as the
probability density for a rod to have orientation û at time t given that it
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had orientation û0 at time 0. As is well known, the spherical harmonics

Yl,m(θ, φ) ≡ Yl,m(û) are eigenfunctions of L̂
2

and L̂z corresponding to the
eigenvalues l(l + 1) and ml respectively, and form a complete orthonormal set
spanning the space of functions of û. The particular solution of Equation 4.41
subject to the initial condition

c(û, 0) = δ(û − û0) =
∑

lm

Yl,m(û0)Y
∗
l,m(û) (4.41)

is therefore

c(û, t) =
∑

lm

exp(−l(l + 1)Dr Î
2
)Y ∗

l,m(û)Yl,m(û0). (4.42)

According to the previous definition, the solution of the diffusion equation can
be interpreted as the transition probability of finding a cylinder pointing at
the direction û, given that the orientation of its mean axis at time t = 0 was
aligned along û0

Ks(û, t|û0, 0) =
∑

lm

exp(−l(l + 1)Dr Î
2
)Y ∗

l,m(û)Yl,m(û0). (4.43)

The correlation functions required in light scattering (please, see Equations

from 4.32 to 4.35) are of the form
〈

Y ∗
l,m′(û(0))Yl,m(û(t))

〉

. These may be

written as

〈

Y ∗
l′,m′(û(0))Yl,m(û(t))

〉

=

∫

d2u0

∫

d2uYl,m(û)Gs(û, t; û0, 0)Y ∗
l′,m′(û0),

(4.44)
where

Gs(û, t|û0, 0) = Ks(û, t|û0, 0)p(û0) (4.45)

is the probability of finding a rod in the neighborhood d2u of the orientation
û at time t given that the particle was initially in the neighborhood of the
origin. In an equilibrium ensemble of rods, we expected a uniform distribution
of molecular orientations, so that the probability distribution function p(û0)
of the initial orientation p(û0) = 1

4π . Combining Equations from 4.43 to 4.45,
and returning to the Equation 4.40, it is observed that the correlation required
orientation functions become
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F 2
mm′ =

1

4π
exp(−6Drt)δmm′ (4.46)

In Section 4.3.1, we found for the spatial Fourier component Fs(~q, t) =
exp(−q2Dt) for translational diffusion. Combining this result with Equations
4.38, 4.39 and 4.46 gives for rotational and translational diffusion

gE(t)V V ∝ 〈N〉 [α2 + (
4

45
)β2 exp(−6Drt)] exp(−q2Dtt), (4.47)

and

gE(t)V H ∝ 1

15
〈N〉β2 exp(−6Drt) exp(−q2Dtt). (4.48)

Equations 4.47 and 4.48 are valid for very diluted solutions of symmetric
cylindrically particles, when the particles satisfy the following assumptions:
molecular rotation and translation are independent, the translational motions
are described by the translational diffusion equation, and the rotational mo-
tions are described by the rotational diffusion equation.

Depolarized scattered light can provide dynamic and structural informa-
tion that is often not obtained by other techniques [98, 91]. Despite these
advantages, depolarized scattering has so far played a relatively minor role
in the study of particles in solution. The difficulties stem from the fact that
macromolecular optical anisotropies are usually small relative to the average
molecular polarizabilities. Thus, unless the polarizers in the experiment are
extremely good, the experiment results are for the most part unrealizable. The
polarized scattering (very large) usually ”leak through” the polarizers and is
measured as part of the depolarized component. Another difficulty is that
since the depolarized intensity is very weak, the solution must be relatively
concentrated to obtain measurable depolarized signal. Moreover, these high
concentrations results in multiple scattering of the isotropic signal. Since po-
larizations change in multiple scattering (even for optically isotropic particles),
this multiply scattered light could easily be mistaken for the single scattered
depolarized signal5.

4.4 Scattering from Large Particles

So far, we have considered only light scattering from small particles. When
particles are very large, however, the wavelets scattered from different subre-

5On the other hand, at high particle concentrations the linear aggregates formed by
magnetic particles experience additional lateral attractions and aggregate, forming columns.
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gions of the same particle are not always in phase and hence do not necessarily
interfere constructively at the detector. Therefore, intraparticle interference
must be taken into account in the calculations of the scattered intensity. The
latter depends enterly on the optical properties of the particles and, for non
spherical particles, on their orientation. Hence, the scattered light intensity
contains information about particle translation and rotation, particle shape,
and internal particle fluctuations. We present here a short discussion of these
effects for large particles in diluted solutions.

In the optically isotropic case the polarizability αi
l is a scalar quantity α,

and the induced dipole moment is always parallel to the applied field. Most
of the work on intramolecular interference has been concerned with isotropic
scattering, because the depolarized signal is usually much weaker to the polar-
ized signal, and is hence relatively more hard to measure. Thus, throughout
this Section we will focus on the isotropic scattering.

4.4.1 Form Factor

First, we will divide the particle in different subregions, such that its maximum
size l is small compared to q−1. This ensures that each subregion can be
considered as a point scatter, that is, that there is no significant intrasubregion
interference. Each large particle contains n subregions and the scattering
volume contains N particles. Then, according to Equation 4.18, the scattered

field zero-time correlation function is

gE(q, 0) ∝ (~ni · ~nf )2

〈

∑

i,j,l,m

αi
l(0)αj

m(0) exp(i~q · (~ri
l(0) − ~rj

m(0)))

〉

, (4.49)

where ~ri
l is the position and αi

l(0) the polarizability of the lth subregion of the
ith particle.

If the solution is dilute enough, the subregions on different particles are
uncorrelated so that the i 6= j sum gives zero6. Moreover, if all the subregions
and particles have identical optical properties the zero autocorrelation function
may be written as

gE(q, 0) ∝ (~ni · ~nf )2 〈N〉α2
MP (q), (4.50)

where αM ≡ nα is the particle polarizability, and

6Assuming that there are no correlations between the particles. The spatial interparticles
correlations will be discussed in Section 4.5.1.
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P (q) ≡ 1

n2

〈

∑

l,m

exp(i~q · (~rl(0) − ~rm(0)))

〉

(4.51)

is the form factor, or interparticle structure factor. In Equation 4.51, the
double sum is only over pairs of segments belonging to the same particle.

On the other hand, the scattered field zero-time correlation function given
by Equation 4.50 can be expressed as

gE(q, 0) ≡ 〈E∗
s (q, 0)Es(q, 0)〉 ∝ 〈I(q)〉 , (4.52)

where 〈I(q)〉 is the average scattered intensity7. Combining Equations 4.50
and 4.52, yields

〈I(q)〉 ∝ P (q). (4.53)

Form Factor of Large Rigid Spheres

In this case, P (q) is easily evaluated. For calculations it is convenient to
express the positions of the different subregions ~ri

l in terms of the position

of the particle’s center of mass ~R(t) and a vector giving the position of the
subregion relative to the center of mass ~bj(t)

~rj(t) = ~R(t) + ~bj(t). (4.54)

Thus, the form factor for a spherical particle becomes

P (q) ≡ 1

n2

〈

∑

l,m

exp(i~q · (~bl(0) −~bm(0)))

〉

. (4.55)

Equation 4.55 may be written as

P (q) =
1

n2

∣

∣

∣

∣

∣

n
∑

i=1

exp(i~q ·~bi)

∣

∣

∣

∣

∣

2

, (4.56)

and the sum may then be replaced by an integral

P (q) =

∣

∣

∣

∣

3

4πr3

∫ a

0
exp(i~q ·~b)4πb2db

∣

∣

∣

∣

2

, (4.57)

7The equivalence between the ensemble-averaged correlation function and the time-
corelation functions was discussed in Section 4.3.
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where a is the radius of the spherical particle. Now, the integral in Equation
4.57 is easily performed, and the result becomes [26]

P (q) =

[

3

(qa)3
(sin qa − qa cos qa)

]2

. (4.58)

Form Factor

Let us consider a long thin rod, i.e. a particle with a diameter that is small
if compared to its length. If the rod diameter is small enough, the light
scattered from two points contained in the same cross section does not have
any significant phase difference. Thus, as far as light scattering is concerned,
the rod is a distribution of polarizable segments along a straight line. We may
then apply Equation 4.51 written in the form

P (q) =

〈

|
∑

l

1

n2
exp(i~q · ûrl)|2

〉

, (4.59)

where û is a unit vector aligned along the cylindrical axis of the rod. The sum
is, as before, over all rod segments and the brackets denote an averave over
all û. By making n very large while keeping the length L of the rod constant,
the sum in Equation 4.59 may be replaced by an integral

lim
n→∞

∑

l

1

n2
exp(i~q · (ûrl)) =

1

L

∫ L/2

−L/2
exp(i~q · ûrdr) = j0(~q · û

L

2
), (4.60)

where j0(w) is the spherical Bessel function of order zero. Choosing a co-
ordinate system such that ~q is aligned along the z axis, and expressing û in
spherical coordinates we find that ~q · û = qcosθ and so,

P (q) =
〈

|j0(
x

2
cosθ)|2

〉

, (4.61)

where x ≡ qL. In an equilibrium ensemble, all possible rod orientations
are equally probable so that the orientation distribution function becomes
p(θ, φ) = 1

4π . The brackets in Equation 4.61 denote an average over all possi-
ble rod orientation. Therefore,

P (q) =
1

4π

∫ 2π

0
dφ

∫ π

0
dθsinθ|j0(

x

2
cosθ)|2. (4.62)

This formula can be evaluated numerically in order to determine how P (q)
depends on q.
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Mie Solution of Maxwell’s equations

All the theories previously described in this chapter are valid only in what
is called Rayleigh-Gans-Debye approximation (RGD). This approximation as-
sumes that each segment of scattering particles ”sees” the same (or nearly the
same) incident light wave. However, since part of the incident light passes
through the particles and part traverses through the fluid there are phase dif-
ferences in the incident field. The phase difference is equal to is 4π

λ a|m − 1|
[26], and therefore a rough criterion of the validity of the RGD approximation
is

4π

λ
a|m − 1| << 1, (4.63)

where a is a the radius of the colloidal particle and m is the ratio of the refrac-
tive index inside the particle to that outside. The RGD approximation breaks
down when the particles become very large and have a size that is of the order
of the wavelength of the incident light. Now, the particle interior is optically
very different from the surrounding medium. The problem of electromagnetic
scattering by large spheres was first solved by Gustav Mie (1869-1957). Mie
theory is a complete analytical solution of Maxwell’s equations for the scatter-
ing of electromagnetic radiation by spherical particles of any size (see Figure
4.6). A detailed dicussion about this complicated optic problem, however,
surpasses the scope of this work. For further details, the interested reader is
referrd to the excellent book written by Kerker [99]8.

Considering the configuration described in Figure 4.4, where XY is the
horizontal plane and the incident field is vertically polarized, we obtain

P (q) ∝ |S1|2, (4.64)

where the amplitude function S1 is

S1 ≡
∞

∑

n=1

2n + 1

n(n + 1)
[anπn(cosθ) + bnτn(cosθ)](−1n+1), (4.65)

and the angular functions are

πn(cosθ) ≡ P 1
n(cosθ)

senθ
(4.66)

8Different programs to compute the Mie solution for a sphere can be found in
http://www.iwt-bremen.de/vt/laser/wriedt/ in several programming lenguages.
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τn(cosθ) ≡ d

dθ
P 1

n(cosθ). (4.67)

Here, the function Pm
n (cosθ) are the associated Legendre polynomials. The

scattering coefficients, an and bn, contain all the physical parameters that
describe the particle. They are given by

an ≡ ψn(α)ψ′
n(β) − mψn(β)ψ′

n(α)

ζn(α)ψ′
n(β) − mψn(β)ζ ′n(α)

(4.68)

bn ≡ mψn(α)ψ′
n(β) − ψn(β)ψ′

n(α)

mζn(α)ψ′
n(β) − ψn(β)ζ ′n(α)

,

where α ≡ 2πa/λ, and β ≡ mα. The radial functions ψn(x) and ζn(x) are the
Ricatti-Bessel and Hankel functions.

In the Mie regime, the shape of the scattering center becomes much more
significant and the theory only works well for spheres. Applying reasonable
modifications, infinitely long cylinders and ellipsoidal particles may also be
approximated [99, 100, 101]. These theories, however, are not applicable for
finite cylinders. To account for scattering that arises from inhomogeneous
objects of arbitrary shape, a more complicated model is needed9.

Until now, we have studied non-magnetic materials. However, for magnetic
particles the relative magnetic permeability µ 6= 1, m =

√
εµ, and

an ≡ µψn(α)ψ′
n(β) − mψn(β)ψ′

n(α)

µζn(α)ψ′
n(β) − mψn(β)ζ ′n(α)

(4.69)

bn ≡ mψn(α)ψ′
n(β) − µψn(β)ψ′

n(α)

mζn(α)ψ′
n(β) − µψn(β)ζ ′n(α)

.

Some unusual electromagnetic scattering effects have been theoretically
described for spheres composed of magnetic materials (please, see Figure 4.7
and the references [103, 104]). Moreover, µ and ε are usually complex. The
imaginary part is called the extinction coefficient. It determined the amount of
light that is absorbed when the electromagnetic wave propagates through the
material. Indeed, even reversible light-induced cluster formation of magnetic
colloids has been observed, when kerosene-based magnetite ferrofluids were
illuminated with visible light within their optical absorption band [105, 106].

9For instance, the finite-difference-time-domain (FDTD) technique is a powerful compu-
tational method that provides a full solution of Maxwell’s equations. Complex objects of
any dielectric structure can be modeled using this method [102].
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Figure 4.6: Experimental normalized Form Factor for a stable sample of
polystyrene particles. The particles are highly monodisperse spheres with an
average diameter of (540±10) nm (AS1). The experimental data are shown as
points ◦. The continuous curve was calculated according to Mie’s theory for
spheres with an average diameter of 540 nm and a refractive index of n = 1.49.
The dashed curve was calculated according to the RGD theory for spheres with
an average diameter of 600 nm and with a refractive index n = 1.49. In both
cases the particle radius was choose as fitting parameter.

4.4.2 Time Correlation Function

The measurement of the diffusion coefficients of spherical and linear particles
through the autocorrelation function has already been described in Section
4.3. When particles are very large, however, other dynamic properties may
also affect the correlation function of the scattered light.

Let us consider a dilute solution of identical particles which may be subdi-
vided into identical segments. Similarly to Equation 4.50, the scattered field
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Figure 4.7: Form factor of spherical particles calculated according to Mie’s
theory for spheres with an average diameter of 85 nm, a refractive index n =
1.49. Solid and dashed lines correspond to particles with a relative magnetic
permeability of µr = 1 and µr = 2, respectively.

time correlation function is proportional to

gE(~q, t) ∝ (~ni · ~nf )2 〈N〉α2
MS(~q, t), (4.70)

where

S(~q, t) ≡ 1

n2

〈

∑

l,m

exp(i~q · (~rl(t) − ~rm(0)))

〉

(4.71)

is the dynamic structure factor for a single particle. The sum in Equation 4.71
is only over segments belonging to a single particle.
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Uniform Large Spherical Particles

If we express the positions of the different subregions ~ri
l in terms of the position

of the particle center of mass ~R(t) and a vector bj(t) pointing from there to
the position of the subregion, Equation 4.71 may be written as

S(~q, t) ≡ 1

n2

〈

exp (i~q · ~Rt)
∑

l,m

exp(i~q · (~bl(t) −~bm(0)))

〉

. (4.72)

Here the sum over segments is not time dependent since the only relative
segmental motion allowed is rotation, and the sum is invariant to any rotation
of the sphere [50]. Thus, Equation 4.72 becomes

S(~q, t) =
〈

exp (i~q · ~Rt)
〉

S(~q), (4.73)

where

S(~q) ≡ 1

n2

〈

∑

l,m

exp(i~q · (~bl(t) −~bm(0)))

〉

(4.74)

If we further assume that the particles move due to translational diffusion, it
was already shown in Subsection 4.3.1 that

gE(~q, t) ∝ S(~q, t) ∝ exp−(q2D0t). (4.75)

Thus, only the translational diffusion coefficient may be measured under these
conditions.

Polydispersity

For monodisperse samples the decay of the correlation function is given by
a single exponential. For polydisperse systems, however, the autocorrelation
function can no longer be represented as a single exponential and the equation
4.28 must be represented as a sum over a distribution of decay rates. This
yields

gE(t) ∝
∑

n

an(q) exp(−q2Dnt), (4.76)

where an contains the relative number frequency of spherical particles with
translational diffusion coefficient Dn. Once the autocorrelation curve has been
generated, different mathematical approaches can be employed to fit the curve
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and thus to determine the average translational diffusion coefficient. One
of the most common fitting methods is the cumulant method, in which the
experimental autocorrelation function is treated as an expansion in powers of
t (please, see the right-hand side of the Figure 4.3) [107]. The expression for
its logarithm gives

ln[gE(t)] ∝ −µ1t +
1

2
µ2t

2 + ... (4.77)

where the numbers µi, known as the ith-order cumulant, are interpreted in
terms of the average diffusion coefficient, the width of the distribution of dif-
fusion coefficients, skewness of the distribution, etc. The relationship between
the cumulants and the moments of the distribution of decay rates Γ is

µ1 = 〈Γ〉 (4.78)

µ2 =
〈

(Γ − 〈Γ〉)2
〉

µ3 =
〈

(Γ − 〈Γ〉)4
〉

− 3
〈

(Γ − 〈Γ〉)2
〉

.

Thus, the first cumulant describes the average decay rate of the distribution.
It is directly related to the mean diffusion coefficient of the aggregates, and
according to µ1 = q2Deff , also to the mean particle size. On the other hand,
the mean diffusion coefficient is given by [108]

µ1

q2
= Deff =

∑

n

an(q)Dn

an(q)
. (4.79)

Depending on the anisotropy and polydispersity of the system, a resulting plot
of Deff vs. q may or may not show an angular dependence. Monodisperse
spherical particles will show no anisotropy, hence no angular dependence is
expected and a plot of µ1

q2 vs. q will result in a horizontal line. Particles with
a shape other than a sphere will show anisotropy and thus may present an
angular dependence when plotting of µ1

q2 vs. q.

The second cumulant µ2 contains the standard deviation. It is directly
related to the second order polydispersity index

p.i. ≡ µ2

µ2
1

(4.80)

and gives an indication of the variance [109].
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Long Rigid Rods

In this section, we treat the rigid rod model. This model illustrates the condi-
tions under which rotational motions of rigid, nonspherical particles affect the
field autocorrelation function. The rod are considered to consist in n identical,
optically isotropic segments that are arranged along a line of length L.

As stated above, the previous theories assume that translational diffusion
is isotropic. Hence, the diffusion Equation described in the Equation 2.24 is
separable in rotation and translational contributions. In fact, the vast major-
ity of experimental results exclude the coupling effects. However, if one wants
to study very long rods this is probably not a good assumption, and one has
to take the coupling effect into account. Large diffusing rods are complicated
to describe, because a rod will have two independent components in the trans-
lational diffusion tensor. One component stands for translations parallel to
the long rod axis (D‖) and one perpendicular to it (D⊥). Furthermore, the
coupling of translational and rotational diffusion modes has also to be taken
into account. This general case yields rather complicated results.

Since all segments are arranged along a line, all ~bj are either parallel or
antiparallel to a given vector pointing along the rod. All we have to determine
to describe the segmental motion is the joint probability distribution function
c(~R, ~Ω, t|~0, ~Ω0, 0) of the cylinder to be at position ~R = ~0 with an orientation
~Ω = ~Ω0 at time t = 0, and at position ~R and orientation ~Ω at time t. In
Section 4.3.2 (Equation 4.45) we showed that this probability distribution is
given by

c(~R, ~Ω, t|~0, ~Ω0, 0) =
1

4π
Ks(~R, ~Ω, t|~0, ~Ω0, 0). (4.81)

The suspension is again assumed to be homogeneous with respect to the cen-
ter of gravity of the rods, but also concerning their orientation with respect
to the reference frame. The following probability distribution satisfies the
translation-rotation diffusion Equation 2.24

∂

∂t
c(~R, ~Ω, t|~0, ~Ω0, 0) =

D∇2 − Dr Î
2
+ (D‖ − D⊥)[(û · ∇)2 − 1

3∇2)]c(~R, ~Ω, t|~0, ~Ω0, 0).

Maeda and Fujime included in their calculations the coupling of transla-
tional and rotational motion implicity [97, 110]. However, their calculations
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are rather complex, and will not be described here. These authors showed
that a complete expression for the autocorrelation function is only numeri-
cally possible. However, without solving the diffusion equation, Maeda and
Fujime derive an analytical expression for the first cumulant of the field auto-
correlation function. They obtained

µ1

q2
= [D − 1

3
(D‖ − D⊥)] + (

L2

12
)Drf1(K) + (D‖ − D⊥)f2(K), (4.82)

where f1(K) and f2(K) are funtions that depend only on K ≡ qL/2 (please,
see the Figure 4.8)

f1(K) =
3

K2

∑

n n(n + 1)(2n + 1)bn(K)2
∑

n(2n + 1)bn(K)2
(4.83)

f2(K) =

∑

even n(2n + 3)( jn+1(K)
K )2

∑

n(2n + 1)bn(K)2
,

bn(K) =
1

K

∫ ∞

0
jn(z)dz (even n) (4.84)

bn(K) = 0 (odd n),

and jn(z) is the n-th order spherical Bessel function.

Since f1(K) → 0 and f2(K) → 1/3 as K → 0, and f1(K) → 1 and
f2(K) → 0 as K → ∞, we have the limiting values of

µ1

q2
→ D (K << 1) (4.85)

µ1

q2
→ [D − 1

3
(D‖ − D⊥)] + (

L2

12
)Dr (K >> 1)

All these paremeters can be used together with hydrodynamic theories to
access information about the size and shape of the cylinders in solution [97].

The theoretical model proposed by Maeda and Fujime takes into account
the effect of the anisotropic translational diffusion on the polarized field cor-
relation funtion. However, this model is only quantitatively correct for the
case of large qL [110]. Moreover, the RGD condition is assumed to be valid by
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Figure 4.8: Functions f1(K) (continuous line) and f2(K) (dotted line) vs K.

assuming small beads, which restrict the theory to thin rods10. Even if linear
aggregates formed by magnetic particles seems to be rigid, they might still be
somewhat flexible, as we will see in Chapter 7, when they become very long.
Thus, one would have to take account also the effect of filament flexibility on
the correlation function [112, 113]. In this work, however, the flexibility effect
was not considered. All these assumptions were assumed in the derivation of
the previous equations and so the dynamics might be influenced if one of these
did not hold. The characteristic features of their model may serve as a guide
for the analysis of experimental data for any pair of L and q values.

10Several authors have studied the range of validity of the RGD approximation for the
light scattered by cylindrical particles [111].
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4.5 Scattering from Aggregates

Fractal colloid aggregates are frequently studied with light scattering tech-
niques. Light scattering is used to measure the average diffusion coefficient
and the fractal dimension, df , which gives information about the average clus-
ter size and the internal structure of the aggregates, respectively.

4.5.1 Structure Factor

Aggregate structure information may be obtained using standard fractal anal-
ysis techniques. If we assume the particles to be optically identical spheres,
the instantaneous intensity impinging on the detector is (see Equation 4.18)

I(t) ∝ E∗
s (t)Es(t) ∝

N
∑

i=1

′

N
∑

j=1

′

exp(i~q · (~ri(t) − ~rj(t))). (4.86)

The experimentally accesible quantity is, however, the intensity averaged over
a great number of cluster configurations, i.e.

Imean ∝ 〈E∗
s (t)Es(t)〉 ∝

〈

N
∑

i=1

′

N
∑

j=1

′

exp(i~q · (~ri(t) − ~rj(t)))

〉

. (4.87)

In this expression, it is useful to distinguish between the contribution for i = j
and i 6= j. The first contribution is due to all individual particles of the cluster,
and the second contribution is the intensity variation due to the interference
of waves scattered by all pairs of particles. Both effects can be factorized, so
that the scattered intensity I(q) can be written as [99]

I(q) = KP (q)S(q), (4.88)

where K is a scattering constant related to the measuring device and the
optical properties of the particles, P (q) is the previously defined form factor
(please, see the Subsection 4.4.1), and S(q) is the interparticle structure factor

which describes the spatial correlations between the centers of the individual
particles.

Let us now study the structure factor in the case of fractal aggregates
of a characteristic mean size R. As we have already mentioned in Section
4.2, the scattering vector ~q has the units of 1/length. Therefore, when a >>
q−1 we will observe interference patterns from the primary particles. For
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Figure 4.9: The structure factor S(q) describes the spatial correlations between
the centers of the individual particles contained within the aggregates.

a << q−1 the scattering pattern will mainly come the interference deriving
from from different particles. When qa >> 1, S(q) ∼ 1 and the observed
scattering essentially comes from the individual particles only, i.e. I(q) ∼
KP (q). However, within the range 1/R << q << 1/a we see that I(q) ∼
KP (q)S(q). Finally, if qR << 1, the aggregates essentially behave as point
particles and thus scatter isotropically, independent of q, and S(q) ∼ 111.

The structure factor can be defined as

S(q) =
1

N

〈

N
∑

i,j

exp(i~q · (~ri(t) − ~rj(t)))

〉

i 6= j, (4.89)

where ~ri(t) and ~rj(t) are the center of mass position of particles i and j at
time t. This function is the Fourier transform of the correlation function c(r)
between the centers of the particles. Assuming a spherical symmetry12, the
structure factor can be written as

S(q) ∝
∫ ∞

o

sin(qr)

qr
c(r)r2dr. (4.90)

As we have described previously, it is possible to probe structural correlations
at increasing separations within the aggregateby observing a certain range of

11Assuming that there are no spatial correlations between the aggregates
12This is true if one deals with a collection of randomly oriented aggregates. Since the

magnetic field impose a privileged direction for the linear aggregates formed by magnetic
particles, the fractal dimension can be only measured in absence of any applied magnetic
field.
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q. In the intermediate q regime, 1/R << q << 1/a, the fractal character of
the structure must show up in the scattered intensity.

For colloidal aggregates, self-similarity occurs only over a limited range of
length scales. The upper limit for the scaling form of c(r) is reached when r
come close to the characteristic mean size R. The lower limit of the scaling
is given by the primary particle radius a. Hence, we have to introduce a
cut-off function f(r/R) in order to take care of the finite character of the
aggregate. This function is such that f(x) ∼ 0 for x > 1, and f(x) ∼ const.
for x < 1. Finally, by introducing the expression for c(r) given by Equation
3.40 in Equation 4.90, one finds

S(q) ∝
∫ ∞

o

sin(qr)

qr
rdf−1f(

r

R
)dr. (4.91)

In the intermediate q-regime, the cut-off function f(x) remains almost con-
stant. Thus, the integral in Equation 4.91 converges [114], and one finally
finds

I(q) ∝ S(q) ∝ q−df . (4.92)

Hence, by recording the scattered intensity as function of scattering vector q
we are able to determine the aggregate fractal dimension.

4.5.2 Time Correlation Function

The first cumulant of the measured field autocorrelation function divided by q2

yields an average effective diffusion coefficient (see Section 4.4.2, and Equation
4.79). According to the current light scattering theory, the average diffusion
coefficient Deff is related to the diffusion coefficients of the different clusters
of size N through the expression [115]

Deff =

∑Nc

N=1 nN (t)N2S(qRg)D(N)
∑Nc

N=1 nN (t)N2S(qRg)
, (4.93)

where nN (t) is the cluster size distribution, S(qRg) is the structure factor
that accounts for the spatial distribution of the individual particles within
the aggregates, and D(N) is the diffusion coefficient of a cluster formed by N
monomeric particles. Hence, the effective diffusion coefficients are weighted by
the scattering intensity and the number of cluster of each mass. The cut-off size
Nc is the size of the largest aggregate in the system. Rg is the aggregate radius
of gyration. The geometry of the aggregates only is included in Equation 4.93
through D(N) and S(qRg).
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4.5.3 Linear Magnetic Aggregates in Uniaxial Fields

The presence of an external magnetic field introduces a preferential orientation
in space and impedes the rotational diffusion of the linear aggregates formed
by magnetic particles.

Bragg Difraction

William Lawrence Bragg and William Henry Bragg found intense peaks of
reflected radiation reflected from crystalline solids at certain wavelengths and
incident angles. W. L. Bragg explained this result by modeling the crystal as
a set of discrete parallel planes separated by a constant parameter d. They
proposed that the incident X-ray radiation would produce a Bragg peak if the
reflections from the different planes interfered constructively. For constructive
interference, the separately reflected waves must remain in phase and the
difference in the path length of each wave must be equal to an integer multiple
of the wavelength [116]. The concept of Bragg diffraction may be applied
equally to light diffraction processes.

As we have seen in Section 2.7, field induced aggregation may occur in a
primary minimum of energy, where the particles are in contact with each other
or in a secondary energy minimum, where the neighbouring particles within
the linear aggregates are a short distance apart from each other. Hence, for
perfectly aligned particles with a separation d, illuminated by a white light
source, the first order Bragg condition reduces to

d =
λ

n(1 − cosθ)
, (4.94)

where n is the refractive index of the suspension medium, λ is the wavelength
of the light, and θ is the angle between the incident and the scattered light
beams (see Figure 4.10). Because field induced aggregates formed by magnetic
particles give rise to a strong Bragg diffraction, the interparticle spacing is
accurately measurable. Since repulsive forces between the colloidal particles
are balanced by attractive forces (magnetic dipole-dipole and van der Waals
interactions), the interparticle force profile between colloidal particles may be
obtained as a function of the interparticle spacing d (see the work of Leal-
Calderon et al. [41]).



4. Light Scattering 103

Figure 4.10: The scheme represents the Bragg difraction of the light scattered
by a field induced aggregate of magnetic particles. The incident light direction
is parallel to the applied magnetic field.

Internal Fluctuations

Linear aggregates of magnetic particles may bend and twist slightly due to
Brownian motion. Such internal fluctuations may give rise to an additional
contribution to the measured average diffusion coefficient. Dynamic light scat-
tering is sensitive to movement at different spatial scales, as we have shown
in the Subsection 4.5.1. When the characteristic length q−1 is higher than the
particle radius a, then the centre of mass diffusion of the filaments is detected.
For q−1 values close to the particle radius a, however, dynamic light scattering
reflects mainly the internal movement of the particles contained within the ag-
gregates. Using surfactant coated kerosene-based ferrofluid droplet particles,
Cutillas et al. have shown experimentally that such positional fluctuations of
the particles within the chains cause a linear dependency of the mean diffu-
sion coefficient mesured by light scattering on q [117]. Their experiments also
verified that the chains become more rigid and the fluctuations disappear as
the field strength increases.

Birefrigency and Dichroism

Since the linear aggregates have a preferential orientation once the constant
magnetic field is applied, the colloidal suspensions of magnetic particles present
optical anisotropy by means of a complex refractive index. The optical anisotropy
leads to birefrigence effects (different phase velocity for each polarization com-
ponent of the scattered wave) and dichroism effects (different attenuation for
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each polarization component of the scattered wave). These optical effects can
be described in terms of anisotropies in the real and imaginary part, respec-
tively, of the refractive index [100]. Several authors have taken advantage of
these optical effects to study the aggregation kinetics in magnetorheological
fluids subject to a constant magnetic field [118]. In these works the scattering
dichroism was larger than the scattering birefrigence13. On the other hand,
both dichroism and birefrigence effects are negligible as the ratio between the
radius and the wavelength becomes smaller [46].

Other authors have been analyzed the birefrigence effect on the measure-
ments of the autocorrelation function [119]. These authors suggest that bire-
frigency effects are negligible if the difference between the refractive index of
the cylinder and the refractive index of the solvent is small, which is also a
requirement for the accuracy of the RGD approximation.

13In general, if the radius of the linear aggregates is comparable or bigger than the wave-
length, then the dichroism is larger than the birefrigence.



Chapter 5

Materials and Methods

La técnica es el esfuerzo para ahorrar esfuerzo.

José Ortega y Gasset

.
One of the aim of this work has been to demonstrate that some light scat-

tering techniques widely used on the study of the structure and the kinetics of
colloidal aggregates, can be used to get valuable data on magnetic colloidal ag-
gregation. With respect to imaging techniques, the statistics is better and the
measurements are performed much faster. We believe that these advantages
can make light scattering a highly valuable technique for the development and
standardization of materials made of magnetic filaments.

5.1 Experimental Systems

Various strategies have been developed for synthesizing composite magnetic
nanoparticles. These particles must fulfil different requeriments, such as sta-
bility in different media, a uniform size distribution, superparamagnetism, a
certain iron oxide content, etc1.

5.1.1 Magnetic Polystyrene Particles

Magnetic polystyrene particles are known for their almost monodisperse size
distribution and perfect spherical shape. Polymer stabilizes the magnetic par-

1Different suppliers of magnetic particles and related materials can be found in
http://www.magneticmicrosphere.com

105
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ticles and decreases the particle mass density. In some applications the poly-
mer coating is required in order to provide selective functionality and interac-
tion with target solutes. More detailed information about the synthesis and
properties of magnetic polymer microspheres of the size ranging from 50 nm
to several microns can be found in the literature [35, 120, 121].

The superparamagnetic latex particles used for the light scattering exper-
iments were purchased from Merck Laboratories S.A. (Ref:R0039) The parti-
cles are roughly monodisperse polystyrene spheres with an average diameter
of (165 ± 5) nm.

Figure 5.1: Transmission Electron Microscopy images of several individual
magnetic polystyrene particles R0039 observed with different magnifications.
Magnetic grains appear as dark spots in trasmission electron micrographs and
do appear to be randomly distributed within the polystyrene matrix.

Their magnetic character derives from magnetite grains of approximately
10 nm in size. The magnetic grains appear as dark spots in trasmission elec-
tron micrographs (TEM) (see Figure 5.1). They seem to be quite randomly
distributed within the polystyrene matrix. However, the TEM images also
reveal that the iron oxide distribution within particles is not always homoge-
neous. Sometimes, the magnetic grains show significant clustering within the
polystyrene matrix2.

2Unusual rotational effects have been observed by other authors when the magnetic grains
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According to the manufacturer, the magnetic polystyrene particles have a
ferrite mass content of approximately 53.2% and a saturation magnetization
Ms of approximately 36 kA/m. The sample was dried, and the magnetiza-
tion of the resulting powder was measured at 298K. The particles reach the
saturation magnetization for external magnetic field above 200 kA/m. The
magnetization curve shown in Figure 5.2 reveals the super-paramagnetic char-
acter of the EDLMP. Consequently, the dipolar magnetic interactions between
the particles only appear in presence of an applied magnetic field. At the field
strengths employed, we are in the linear regime of the magnetization curve,
where the magnetization M is proportional to the external magnetic field H,
i.e. M = χH. From the curve, the magnetic susceptibility of our particles was
estimated to be χ = 0.6.

Figure 5.2: Magnetization curve of the polystyrene particles employed for the
experiments acquired at room temperature. The measurements were obtained
using a MPMS-XL magnetometer (Quantum Design). A detailed view of the
low field region is given in the inset. The field strength employed for the
aggregation experiments is indicated by a dashed line.

The particles are dispersed in water. The stability of the system is en-

present a nonsymmetric distribution within the polystyrene matrix. Since mass density
of magnetite greatly exceeds that of polystyrene, the rotation of these magnetic particles
resembles more a ”wobble” than a ”spin” like behaviour [98].
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sured by repulsive forces due to charged carboxylic surface groups and anionic
sodium dodecyl sulphate (SDS) surfactant molecules adsorbed on the particle
surface. The particle surface potential of approximately −50 mV was deter-
minated by means of electrophoretic mobility measurements. Due to their
relatively low density of 1.2 g/cm3, particle sedimentation was found to be
negligible during the experiments. Indeed, the light intensity scattered by the
sample remains almost constant for 2 days. Prior to the aggregation experi-
ments, the diluted samples were filtered through a 450 nm pore size membrane
filter in order to eliminate primary clusters.

5.1.2 Silica Particles

Inorganic magnetic silica spheres are highly stable, even in organic solvent.
The nonmagnetic silica serves as a steric barrier which reduces magnetic at-
traction between particles. Up to now, however, magnetic silica particles are
not available with a small size distribution nor a perfect spherical shape.

The samples used for the video-microscopy experiments were aqueous sus-
pensions of core shell particles. The particles were synthesized by the Dr.
Abdeslam El-Harrak of the Laboratoire de Colloides et Materiaux Divises
(ESPCI, Paris). The particles were produced starting from an octane-based
ferrofluid containing 80% by weight of oleic acid covered Fe2O3 nanoparticles.
To this, tetraethylortosilicate (TEOS) was added (8% by weight). In the next
step, 80 g of ferrofluid/TEOS mixture was added dropwise to 15 g of an aque-
ous solution of sodium alginate (2% by weight) and SDS (2% by weight). The
pre-mix was scanty sheared during its preparation. The resulting brownish
paste was transferred to a Couette cell where it was sheared at 600 rpm in
a 100 µm gap with a maximum injection rate of 7 mm/min. The solution
obtained was then placed in a rota-vapor at 50 ◦C under vacuum conditions in
order to eliminate the octane content from the emulsion droplets. Afterwards,
50 ml of a 50/50 mixture of ammoniac and isopropanol were added dropwise
in order to hydrolyze the TEOS. After 3 hours of mechanical stirring, the
particles were separated from the suspension medium by means of a magnet
and washed several times with pure water. Finally, the particle surface was
reinforced by increasing the thickness of the silica shell. This was achieved
using Stoeber’s method.

Image analysis revealed that the particles are polydisperse in size (ranging
from 300 nm to 2 µm) with an average diameter of approximately 500 nm
(Figure 5.3). Prior to the aggregation experiments, the samples were passed
through a sucrose density gradient column in order to obtain more monodis-
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perse spheres. The average hydrodynamic particle size was determined by
means of dynamic light scattering, using a ALV-5000/E correlator. The mea-
surements showed a final size distribution with an average diameter of 0.58 µm
and a polydispersity index of 0.12. The particle mass density was measured by
equilibrium centrifugation in sucrose obtaining approximately ρ ≈ 3.6 g/cm3.
Charged surface silanol groups prevent particle aggregation through repulsive
electrostatic interactions. The particle surface potential of approximately −10
mV was obtained by means of electrophoretic mobility measurements.

Figure 5.3: Scanning Electron Microscopy images of the magnetic silica sample
exposed to a magnetic field. The particles assemble in field-orientated chains.
Please, note that the images were taken at different magnifications.

The resulting particles may be considered as a nano-composite material:
the inner components, roughly 10 nm in size maghemite particles, are ex-
tremely confined inside the silica spheres (almost close-packed). The magnetic
character of the particles arises from iron oxide content of 65% in weight. The
sample was dried, and the magnetization of the resulting powder was mea-
sured at 298K. The particles reached a saturation magnetization Ms of ap-
proximately 125 kA/m for applied magnetic fields stronger than 200 kA/m.
In the linear regime of the magnetization curve, where the magnetization M
is proportional to the external magnetic field H, the magnetic susceptibility of
our particles was estimated to be χ ≈ 2.6. The magnetization measurements
confirm that the particles are superparamagnetic (Figure 5.4).
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Figure 5.4: Magnetization curves of the silica particles. The sample was dried,
and the magnetization of the resulting powder was measured at 298 K. A
detailed view of the low field region is given in the inset.

5.2 Experimental Devices

5.2.1 Light Scattering

The light scattering experiments were performed using a commercial Malvern
4700C System (UK) (Figure 5.5). In general terms, all light scattering devices
contain the same basic components. In our light-scattering device, a laser light

source generates a beam of electromagnetic radiation. The monochromatic
laser beam passes through a polarizer in order to define the polarization plane
of the incident beam. Then the beam is focused on the sample. The scattered
light enters a detector. The position of the detector defines the scattering angle.
The intersection of the incident beam and the field of view of the detector
defines the scattering volume. The detected signal is analyzed by a correlator

and finally, a computer is used to recover information from the correlation
function obtained by the signal analyzer [122]. The main components of the
light scattering devices are:

A Light source: The main difficulties in performing light-scattering exper-



5. Materials and Methods 111

Figure 5.5: Scheme of the major components of a photon spectroscopy set-up.

iments encountered in the past were eliminated when laser are used.
For this work two different vertically polarized laseres, a 488 nm wave-
length Argon and a 632.8 nm wavelength Helium-Neon laser, have been
employed. The wavelenght of the impinging electromagnetic radiation
should be of the order of the typical size of the studied object. This
means that sructures ranging from 1 nm to 1 µm can be studied. The
lasers may have up to 200 mW , and they have a life time of more than
10000 hours. The laser beams were approximately vertically polarizated.

B Entrance Optics: Standard entrance optics consists of filters, some focusing
lenses, and a set of pinholes that eliminate stray light. It focuses the laser
beam and bundles as much intensity as possible in a single coherence area
within the sample.

C Sample Cell: Sample cells may have a wide variety of shapes and sizes. For
angle-dependent measurements, however, cylindrical cells are used. The
sample cell is inmersed in a thermostatized bath, in order to control the
temperature during the experiment.

D Detection Optics: Just like the entrance optics, the detection optics is made
of a system of pinholes and lenses, which define the scattering volume
and the number of coherence areas seen by the detector. Its task is to
focus the scattered light on the detector.

E Detector: Detection systems usually consist of a photomultiplier tube with
a pulse amplifier-discriminator. The photomultiplier contains a alkali
metal cathode which emit an electron when a photon is absorbed. The
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electron is accelerated by an electric field and collides with a sheet of
metal knocking out several electrons. The group of electrons is again
accelerated, collides with a second dynode, and so forth until after 9 to
14 dynodes the single electron has been multiplied into 105 to 107 or
more electrons. This group of electrons originating from the capture of
a single photon forms the output of a photomultiplier.

The thermostated sample cell is placed on a motor-driven presicion
goniometer (±0, 1◦) which enables the photomultiplier detector to be
moved accurately from 10◦ to 150◦ in steps of 1◦.

F Signal Processing Unit: Correlators are instruments that determine the
correlation function of an electrical signal. Mathematically the auto-
correlation function is defined in the Section 4.3 (Equation 4.10). The
timing and operation of the correlator is controlled by the sample time

generator, which divides time into intervals of equal duration ∆τ . At
the end of each sample time the number of counts is entered into the first
register counter of the correlator, the number that was in the the first
counter is shifted to the second, the number that was in the second stage
is shifted to the third, etc. Hence, the first counter contains n(t − ∆τ),
the second n(t−2∆τ), the third n(t−3∆τ), and the kth counter contains
n(t−k∆τ) counts. Thus, the correlator will acumulate in the kth channel

G(kτ) =
N−1
∑

i=0

nkñi+k, (5.1)

where the number ni represents the number of times the content of each
stage of the register is added to its respective correlation function mem-
ory channel and the number ñi+k is the number stored in the register.
That is a good approximation to the true correlation function whenever
the change in the value of the correlation function during the time ∆τ
is small [123].

As we have seen in Section 4.3.1, small optically spherical scatters reradiate
light with a maximum and constant intensity in any direction perpendicular to
the light polarization. Hence, the calibration of the light scattering instrument
can be done using toluene (refractive index n = 1.496) as a reference sample.
Before the measurements, toluene is passed through a 0.2 µm membrane filter
in order to remove dust particles. The filtered toluene was also centrifuged to
remove any other contaminants. Figure 5.6 shows the angular dependence of
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Figure 5.6: Scattering intensity profile for toluene.

the scattered intensity from toluene. It can be seen that the scattering profile
is very flat with a deviation of less that 5% from the mean value over the
angular range from 10 to 150 degrees.

Magnetic Field

A non-uniform magnetic field gives rise to a magnetic force (see Equation
2.58). This means that the clusters tend to move out of the scattering volume
in direction towards the magnet, where the field strength and its divergence
are strongest. The spatial field homogeneity, hence, is crucial for the ex-
periments since it avoids particle migration and, consequently, concentration
heterogeneities within the reaction vessel.

The magnetic field needed to achieve field-induced aggregation was applied
to the sample by placing different number of neodymium disk magnets (Halde
Gac, Barcelona, Spain)3 on top of the sample cell. The magnetic flux was
leaded to the scattering volume by an iron cylinder. If a magnetic material,
such as soft iron, is placed in a magnetic field, the magnetic lines are redirected
through the material, taking adventage of its greater permeability. Another

3http://www.halde-gac.com/
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iron disc was placed at the bottom of the cell in order to collect the magnetic
flux and reduce the magnetic field divergence (please, see Figure 5.7 b)).

Figure 5.7: a) Magnetic field achieved in the scattering volume by means of N
neodymium disk magnets (o). The magnetic field increases when an extra iron
disc is placed at the bottom of the cell. The iron disc collects the magnetic flux
and reduces the magnetic field divergence (∆). b) Scheme that shows how the
magnets were placed on the measurement cell. The laser passes through the
colloidal suspension, between the two iron pieces. Hence, the applied magnetic
field is perpendicular to the scattering plane.

The magnetic field is contolled by changing the number of magnets placed
on top of the cell. At the field strength range 0− 23.9 kA/m employed in our
work, we are in the linear regime of the magnetization curve of the magnetic
polystyrene particles (R0039), where the magnetization M is proportional to
the external magnetic field H. The magnetic field was always perpendicular
to the scattering plane.

5.2.2 Video Microscopy

Optical microscopy has been widely used for monitoring the structure and
the time evolution of the mean cluster size through a detailed analysis of
sequences of photographs [7, 124]. In our work, the aggregation processes have
been monitored directly with an inverted microscope (Leica DM IL) equipped
with a Scion CCD video camera and a set of lenses for magnifications of
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Figure 5.8: Inverted microscope (Leica DM IL) equipped with a Scion CCD
video camera and a set of lenses for magnifications of 10, 20, 40 and 100.

10, 20, 40 and 100 (Figure 5.8). The particle suspensions were contained in
sealed rectangular capillars with a cross section of 1.0 mm × 0.1 mm. At
10x magnification, the field of view of the microscope was 768 × 512 pixels,
corresponding to an area of 620 × 420µm2 and an observed sample volume of
2.64×10−5cm3 (see Figure 5.9). The relatively large depth of field available at
low magnification (10x) helped to keep the particles in focus despite of their
random Brownian motion.

Magnetic Field

Aggregation was induced applying an uniaxial magnetic field of approximately
5 mT . The magnetic field vector was oriented parallel to the ground. The
field divergence was small enough so that significant particle migration was
not observed during the experiments. In this configuration, the aggregates
settle with their longer axis orientated perpendicular to the gravitational field.
Typical examples of what could be seen in the microscope are shown in the
Figures 5.11 and 5.12. As expected, the video camera images reveal tip-to-tip
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Figure 5.9: The field of view of the microscope was 768 × 512 pixels. A
ruler was used to calibrate the microscope image resolution. Each subdivision
corresponds to 10 µm.

aggregation when the field is applied.

Due to the mass density mismatch, the particles used for our experiments
settle due to gravity. If we had monitored the aggregation processes from
above, the particles and linear aggregates might have reached the bottom of the
sample chamber where they could have continued to aggregate but essentially
in two dimensions. In order to study the pure three-dimensional case, we used
the same experimental set-up previously employed by Promislow et al. [7] who
placed the microscope with its optical axes parallel to the ground. The longer
axis of the sample tube is orientated parallel to the gravitational field vector.
In this configuration, the aggregates can diffuse in all directions long before
they can reach the bottom surface. Hence, aggregation takes place in the bulk
where the diffusive particle motion is not restricted in any direction.

5.2.3 Machine de Force

As we have seen in Section 4.5.3, the distance between neighbouring particles
aligned along the field direction can be assessed by the spectral distribution of
the scattered light intensity at a constant angle. For this purpose, the sample
was introduced by capillarity in a cell formed by two parallel squared glass
sheets. The sheets were separated by fishing lines of 100 µm in size, which
allow us to control the distance between the walls (see Figure 5.10). Then,
the cell was sealed by means of ultraviolet glue. The final sample volume
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Figure 5.10: a) Photograph of the Machine de Force and the sample cell
constituted by two parallel squared glass sheets. b) Scheme of the major
components of the Machine de Force.

was approximately 40 µL. The sample was illuminated using a Xenon gas-
discharge lamp. The emergent light was led by an optical fiber. The incident
beam was perpendicular to the cell walls containing the colloidal suspension.
The scattered light was collected by a second optical fiber which was conected
to a spectrometer. This optical fiber was placed at θ = 17o. A sufficiently
large scattering angle is necessary in order to avoid detection of the light
reflected by the cell walls. However, if the angle were too large then the spatial
resolution measured would worsen. Further information about the device and
its characteristics as well as the calibration procedure can be found in [59].

Magnetic Field

The magnetic field was applied by means of a coil. The inner and outer
diameter of the coil was 9 cm and 28 cm respectively . The coil is made of a
compactly coilled, of 2 mm diameter wire of 1000 m in length. The applied
magnetic field was directly proportional to the supplied electric current, that
was provided by a 1 kW power source. The achieved uniaxial magnetic field
was between 0 mT and 100 mT .

5.3 Methods

5.3.1 Light Scattering Techniques

The aggregation behaviour of our experimental system has been monitored
using non intrusive light scattering (LS) techniques, that are quite suitable for
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studying of the structure and kinetics of colloidal aggregates [28]. In the liter-
ature, however, there are only a few papers that describe how light scattering
techniques may be used for studying aggregation phenomena in magnetic flu-
ids [36, 125, 126, 127, 128]. To employ these techniques for an experimental
study of aggregation processes arising in magnetic colloids is not straight for-
ward due to light adsorption, anisotropy, multiple scattering effects, relatively
high particle concentrations etc. Mainly, the high volume fractions used in
most studies give rise to adsorption and multiple scattering that impede light
scattering experiments be performed reliably. Furthermore, the large polydis-
persity of the employed samples make the interpretation of light scattering
data a difficult task.

Static Light Scattering

When the average scattered intensity I(q) is measured as function of the scat-
tering wave vector q, the experiment is usually called Static Light Scattering

(SLS). The collected light intensity I(q) depends mainly on the particle form
factor P (q) and the aggregate structure factor S(q) (please, see Section 4.5.1).
In these terms, I(q) reads (Equation 4.88)

I(q) = KP (q)S(q).

The particle form factor P (q) contains information on the optical prop-
erties of the individual particles, whereas the structure factor S(q) quantifies
mass correlations within the aggregates. The proportionality constant K de-
pends on the optical properties of the light scattering device. In stable systems
without any spatial correlation between the monomer positions, the structure
factor becomes S(q) ≈ 1. In this case, the particle form factor can be deter-
mined easily from direct measurements of the scattered light intensity, since
I(q) ∝ P (q). For an aggregated system, however, the structure factor S(q)
is directly related to the fractal dimension of the clusters formed. SLS char-
acterizes the aggregate morphology in terms of the cluster fractal dimension.
Therefore, the SLS data will be employed to confirm the linear character of
filaments and to study chain deformation due to the interaction with the sur-
rounding medium. For structures havig a fractal dimension df , S(q) becomes
(Equation 4.92)

S(q) ∝ q−df .
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This relationship is valid for R−1
h < q < a−1, where a is the particle radius and

Rh is the average hydrodynamic radius of the aggregates. Equation 4.92 im-
plies that the scattered intensity has reached an asymptotic time-independent
behaviour once the fractal structure of the clusters is fully developed. The clus-
ter fractal dimension can then be easily determined from the slope of these
asymptotic curves in a logarithmic plot of I(q). According to its definition, df

quantifies how mass varies with length scale. It provides a convincing measure
for the compactness of fractal aggregates. After a sufficiently long aggrega-
tion time, the structure factor S(q) showed the theoretically predicted time
independent behaviour for fully developed fractal clusters. From the slope of
these asymptotic curves, the fractal dimensions were determined according to
Equations 4.88 and 4.92.

After removing the field, linear aggregates may or not remain in the sample.
Partial cluster break-up also may take place. In any case, SLS will confirme
the chainlike cluster morphology. All the fractal dimension measurements
reported in this work have been performed in the absence of any applied
external magnetic field. This avoids the optical anisotropy that could bias the
SLS measurements when the polarized light beam passes through a dispersion
of aggregates aligned in the field direction [36].

Dynamic Light Scattering

There are several ways to determine dynamic information about the particle
movement in solution by Brownian motion. One of such methods is Dynamic
Light Scattering (DLS). In DLS, the fluctuations of scattered light intensity
are analyzed at a fixed scattering angle, and the dynamic information of the
particles is derived from an autocorrelation of the intensity trace recorded
during the experiment. DLS assesses the scattered intensity autocorrelation
function as the product of the photon counts at times t and t + τ such that
G(τ) = 〈I(t)I(t + τ)〉. Then, from the normalized intensity autocorrelation
function

ĝI(τ) =
〈I(t)I(t + τ)〉
〈I(t)I(t)〉 (5.2)

was calculated and converted into the scattered field autocorrelation function
by the aid of the Siegert relationship. The Siegert equation, relates the field
autocorrelation function with the intensity autocorrelation function as follows

gI(τ) = 1 + Ce−2Deff q2τ , (5.3)



120 5.3. Methods

where C is a constant which depends on the optics of the instrument [28].
For deriving the Siegert relation, no assumption was made concerning the
nature of the Brownian particles. Hence, the Siegert relation is equally valid
for spherical and for rigid rod like Brownian particles.

Once the autocorrelation curve has been measured, different mathematical
approaches can be employed to fit the curve and thus determine the averaged
diffusion coefficient. For this purpose, the well-established cumulant method

was used for expanding the logarithm of the field autocorrelation function
as a power series in τ (see Section 4.4.2). Linear fits were done between
the correlation times that minimized the regression coefficients. DLS gives
direct access to an effective mean diffusion coefficient Deff of the scatters
within the scattering volume. The averaged diffusion coefficient depends on
the different diffusive modes that the aggregates may undergo. Since this
quantity is related to the average aggregate size, it will allow the state of
aggregation to be monitored. DLS studies about aggregation of isotropically
interacting particles that lead to more or less compact fractal clusters are
profuse. Nevertheless, DLS studies on linear aggregates are scarce [125, 126].
The main reason for this lies in the difficulty to extract the mean filament size
from the average diffusion coefficient. The dificulties found in the description
of the chain diffusive motion were discussed in the previous Chapter 4.

Linear Aggregates Under Uniaxial Constant Magnetic Field

In our work the external magnetic field was always applied perpendicularly to
the scattering plane forcing the filaments to align in the same direction. Hence,
the measurements were only sensitive to transversal motion perpendicular to
the chains axis. These facts have two important consequences:

• The structure factor S(q) may be approximated by the form factor of
cylindrical rods with their axis aligned perpendicular to the scattering
plane. Hence, it is sufficient to consider θ = π/2 in Equation 4.62.

• Rotational chain diffusion is not possible when the field is applied. Due
to this geometry, the measurements are only sensitive to the transver-
sal motion of the linear aggregates, and the parallel diffusion coefficient
D‖(N) may also be neglected. Consequently, only the mean transla-
tional diffusion coefficient perpendicular to the rod axis D⊥(N) must be
considered when equation 4.93 is used.

Moreover, linear aggregates of magnetic particles may also bend and twist
slightly due to Brownian motion . In an experimental study, Cutillas and
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Liu confirmed that the dependency of Deff on q increases when the magnetic
interaction decreases, i.e. the chains become more rigid for higher values of λ,
which represents the ratio between the maximum attractive magnetic dipole-
dipole energy and the thermal energy (see Section 2.6.2). If the magnetic field
are strong enough then significant relative motion within the filaments are
avoided, and the filament diffusion coefficient should not depend on q. In this
case, Liu et al. were able to describe the q-dependency of the mean diffusion
coefficient Deff for their experimental system by the following empiric linear
approximation [117, 126].

Deff (q) ∝ (
2√
λ

)qaD⊥, (5.4)

where a is the particle radius. The slope in this relationship depends on the
magnetic field strength through the dimensionless parameter λ. Therefore,
when the magnetic field is strong enough to avoid significant relative motion
within the filaments, then the filament diffusion coefficient should not depend
on q.

Linear Aggregates in Absence of Magnetic Field

In presence of an external magnetic field, the filaments are forced to align in
the field direction and so, rotational chain diffusion is forbidden. However,
rotational Brownian motion becomes possible when the magnetic field is re-
moved. At first sight, depolarized dynamic light scattering (DDLS) seems to
be the technique of choice for measuring translational and rotational diffusion
coefficients since a system of freely diffusing monodisperse non-flexible cylin-
ders is characterized by a depolarized decay rate of µ1 = 2(Dtq

2+6Dr). DDLS,
however, presents some drawbacks. The depolarized VH signal is weak and
blended with the polarized VV component. Furthermore, the solution must be
relatively concentrated and high laser power is required in order to achieve a
measurable depolarized signal [50]. In our experiments, however, DDLS could
not be employed since the available laser power was only about 20mW and
the samples were so dilute, that no VH component could be detected.

The previously light scattering theory assumes that translational diffusion
is isotropic and not coupled with rotational diffusive modes. This means that
the diffusion coefficients for motion parallel and perpendicular to the rod axis
should be similar and the rods must reorient many times while diffusing a
distance comparable to q−1. For long rods, however a strong coupling be-
tween translational and rotational modes is expected and a no-trivial coupled
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diffusion equation has to be solved. Neglecting relative motion of the parti-
cles inside the linear aggregates, Maeda and Fujime [110] derived the effective
diffusion coefficient given by the Equation 4.82.

5.3.2 Image Analysis

When the aggregation processes were monitored by videomicroscopy, digital
images were taken in regular time intervals. As can be seen in Figures 5.11 and
5.12, the individual silica particles and chain-like aggregates appear as dark
spots and thin lines on a clear background. The length of individual clusters
was analyzed using the public domain software Image-J4. After subtracting the
smooth continuous background (Figure 5.11 b), the images were thresholded
in order to identify the particles and aggregates (Figure 5.11 c). The threshold
level was automatically set by the Image-J program based on an analysis of the
gray level histogram of the image. Then, the program determined the Feret’s
length of all the clusters detected on the image. Feret’s length, also known
as the capillary length, is the longest distance between any two points along
the aggregate boundaries, and it is directly related to the length of the linear
aggregates. ImageJ offers also other parameters that are directly related with
the length of the linear aggregates: the perimeter, the primary or secondary
axis of the best fitting ellipse, the area, etc. There were no special reasons to
choose the Feret’s length in order to asses the length of the linear aggregates.
For the case of long linear clusters, Feret’s length corresponds to the length of
the aggregate axes. The program ignored aggregates touching the edge of the
image since their total length is unknowable. Evidently, this effect introduced
some extra but unavoidable noise in the cluster length histogram.

In order to correlate the Feret’s length with the number of chain-forming
particles, we compared different images obtained just before and after turn-
ing off the magnetic field. When the field is present, the clusters remain
aligned along the field direction and the Feret’s length of the clusters can be
determined (Figure 5.12). Once the field is removed, the magnetic interaction
vanishes due to the super-paramagnetic character of our magnetic colloids. If
aggregation has taken place in a secondary energy minimum the particles redis-
perse immediately, i.e. a complete rupture of the chains is observed (please,
see Section 2.7). Since the clusters disassemble completely, the number of
chain-forming particles can be counted quite easily (Figure 5.13).

Figure 5.14 plots the Feret’s length measured in pixels as a function of the
number of particles per chain. For not too short chain lengths, a clear linear

4”Image-J” is available on the Internet at http://rsb.info.nih.gov/ij/index.html
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Figure 5.11: a) The individual particles and chain-like aggregates appear as
dark spots and thin lines on a continuous background. b) After subtracting
the smooth continuous background, c) the images were thresholded in order
to identify the particles and aggregates. d) The particles are clearly visible,
but also some tiny spots appear on the images that may be caused by dust
particles or noise.

relationship was found. The best linear fit was obtained for

LFer = 1.84N + 0.01, (5.5)

where LFer is the Feret’s length expressed in number of pixels and N is the
number of particles in the corresponding chain. For aggregates smaller than
N = 4, the linear relationship is lost and the Feret’s length is somewhat larger
than what would be expected from the fit. This effect is probably due to
the slightly blurred and consequently, so not clearly detectable border of the
particles. In addition, digitalization effects may also play an important role.
Evidently, these uncertainties are most pronounced for smaller chains when
the cluster length comes close to the pixel size. We fitted this part of the curve
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Figure 5.12: Low magnification (10x) images taken at 495 s after having turned
on the magnetic field. The linear aggregates of different length aligned along
the field direction are clearly visible.

by a second order polynomial. The best fit was obtained for

LFer = 0.09N2 + 0.98N + 2.01 (5.6)

Using both fitting equations, the cluster size distribution and the average
cluster size could be calculated for each image.

It should be noted that sometimes tiny spots appear on the image that
may be caused by dust particles or noise (see Figure 5.11 d). Since these spots
are too small for being individual monomeric particles, they had to be deleted
from the cluster size distribution. Therefore, we established a minimum Feret’s
length below which a detected particle was not taken into account. After a
manual examination of the images, we established this level at 2.85 pixels or
N = 0.8, and kept it constant throughout the experiments. Nevertheless,
particles and clusters that are about to drift out of the focal plane, e.g., may
either not be detected or counted as smaller clusters. This effect introduces
an extra error that makes an exact and univocal determination of the cluster
size even more difficult.
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Figure 5.13: Low magnification image (10x) of the situation shown in Figure
5.12 at 5 s after turning the field off. The chains disassemble into individual
monomers.

5.3.3 Solving Smoluchowski’s Equation

The theoretical time evolution of the cluster size distributions Xn(t) was al-
ways obtained solving Smoluchowski’s equation. For this purpose, a fast and
reliable Stochastic Algorithm was employed5. The algorithm solves the master
equation equivalent of Smoluchowski’s equation for a given aggregation kernel.
It involves the calculation of the reaction probability density function. The
stochastic description of the aggregation process takes into account the finite
size of the system. Further information regarding this method can be found
in references [129, 130].

5We express our gratitude to Dr. Gerardo Odriozola for kindly providing the code of the
corresponding computer programme.
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Figure 5.14: Average Feret’s length of the clusters as a function of the chain
size (data points). The continuous line shows linear fit for clusters larger than
N = 3. The quadratic fit for the shorter clusters is indicated by the broken
line.



Chapter 6

Kinetics of Field Induced

Aggregation

A detailed analysis of colloidal aggregation involves two main aspects: the
cluster morphology and the kinetics of aggregate formation. The kinetics
of the processes is frequently studied by means of the temporal evolution
of the concentration of aggregates cn(t) containing n monomers, and several
statistical variables that can be calculated from cn(t), such as the mean number
of particles per aggregate N(t), or the average aggregate size S(t).

In this Chapter, the kinetics of field induced aggregation processes arising
in magnetic fluids has been studied. Experimental results will be compared
with the theoretical predictions obtained using the proposed kernel described
throughout Chapter 3.

6.1 Field Induced Aggregation

Studies concerning aggregation phenomena in magnetic fluids have attracted
great interest of the the scientific community over the past decades. So far,
most of the experimental and numerical studies that focus on field-induced
aggregation processes seem to indicate the same type of power law for the
asymptotic behaviour of the mean cluster size S(t) ∝ tz, and for the average
length of the linear aggregates N(t) ∝ tz

′

. Both scaling exponents z and
z′ are parameters that classify the growth process, and both depend on the
dimension of space.

Experiments have shown that under specific conditions the scaling expo-
nents are significantly different than the value of z = 0.5 predicted theoretically
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by Miyazima et al. [8]. Fermigier and Gast, reported a z of approximately 0.5,
for diluted suspensions of micron-diameter superparamagnetic spheres aggre-
gating due to a constant magnetic field [131]. Promislow and Gast, however,
reported a z values between 0.5 and 0.75 under similar experimental condi-
tions. Furthermore, these authors suggest a dependence of the z value to
depend on the volume fraction and the field strength [7]. More recently a
z value close to unity was observed by Shon for field induced magnetic latex
aggregation [98]. S. Relle et al. reported z values between 0.54 and 0.32 for su-
perparamagnetic particles aggregating under the action of a external magnetic
field [132]. In the latter work, however, the magnet was placed directly above
the measuring cell containing the colloidal dispersion, which implies that the
field strength was not uniform. The field divergence may give rise to particle
migration, affecting seriously the field induced aggregation process.

Two dimensional field induced aggregation processes have also been stud-
ied. Fraden et al. reported a kinetic exponent of z′ = 0.6 for a diluted suspen-
sion of micron-diameter dielectric spheres confined in two dimensions when a
constant electric field was applied [30]. On the other hand, Helgesen et al.
measured a kinetic exponent of z = 1.7 for two dimension field induced ag-
gregation processes [133]. In this work, the experimental system was also
a diluted suspension of superparamagnetic micron-diameter spheres. Also
Dominguez-Garćıa et al. studied field induced aggregation using superpara-
magnetic latex particles, working in a wide range of experimental conditions
[124]. However, they did not find a direct dependence of the kinetic exponents
with the strength of the external field or the particle concentration. They ob-
tained z = 0.57 and z′ = 0.47 as the average values of the kinetic parameters.
These authors corroborated the predictions of the anisotropic diffusion model
of Miguel et al. described in Section 3.6. Experimental studies of field induced
aggregation processes have also been carried out by Cernak et al. using a two
dimensional magnetic hole system, i.e. nonmagnetic microspheres dispersed
in a thin layer of ferrofluid. Values of z = 0.40 and z′ = 0.43 were reported
for microspheres with a diameter of d = 1.9 µm. For larger particles with
diameter d = 4.0 µm these authors observed a broader range of z values, and
for particles with a diameter of d = 14 µm described a strong dependence
between z and the strength of the applied magnetic field [85]. In their exper-
iments the predictions of the anisotropic diffusion model of Miguel et al. were
confirmed once more.

All the results summarized so far were obtained by videomicroscopy. A de-
tailed description of the image analysis, however, was only given in the studies
of Dominguez-Garcia et al. [124] and Fermigier et al. [131]. Other techniques
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have been used for studying field induced aggregation processes. Light scatter-
ing methods, for instance, have been used in order to study three dimensional
aggregation processes [126]. Cutillas et al. monitored the aggregation kinetic
by means of DLS, obtaining for the kinetic parameter a value of z′ = 0.47.
Scattering dichroism studies have also been performed [36].

Irreversible aggregation of particles has been the subject of computer sim-
ulations using scaling concepts. Miguel et al. [9] developed a model using the
Monte Carlo method in order to simulate two and three dimensional aggre-
gation of magnetic particles. They obtained an exponent of z = 0.61 for two
dimensional process in accordance with the experimental results reported in
reference [30]. Later, Dominguez-Garćıa et al. [124] compared their experi-
mental results with 2D Brownian dynamics simulations. They found that the
kinetic exponents obtained from simulations do not depend on the external
field or the surface fraction. They determinated z = 0.62 and z′ = 0.59.
These values differ slightly from the average values obtained in their video
microscopy experiments.

In spite of the large number of studies addressing field induced aggrega-
tion processes, the influence of phenomena and parameters such as sedimenta-
tion effects, electrostatic inter-particle interactions, the strength of the applied
field, or the degree of magnetic saturation of the particles, are still not un-
derstood. The main aim of this Thesis has been to deepen our knowledge
about chain formation processes and to improve the theoretical description
of field-induced aggregation phenomena when the electrolyte concentration or
sedimentation play a significant role. Therefore, we determined the time evo-
lution of the cluster size distribution and the average cluster size arising in
aggregating magnetic particle dispersions. We used the experimental data to
test several theoretical models based on Smoluchowski’s approach. For this
purpose, it was be essential to determine an aggregation kernel that includes
all the effects mentioned above.

6.2 Magnetic Field Effects

As we have seen so far, there is not consensus about the influence of the field
strength on the aggregation kinetics. Dominguez-Garcia et al. [124] did not
find a direct dependency of the kinetic parameters z and z′ on the dimension-
less parameter λ (Equation 2.52). Cernak et al. [85] studied the field induced
aggregation arising in a two dimensional magnetic hole system. They reported
on the relationship between the strength parameter λ and the scaling exponent



130 6.2. Magnetic Field Effects

z. For λ < 50, the z parameter does not depend on the field strength. For
λ > 50, however, these authors found an apparent weak increase of z, which
is just the opposite of what observed by Promislow et al. [7], who reported a
decrease of z for larger λ. On the other hand, the latter authors proposed a
characteristic time scale that is proportional to 1/λ, and so, seems to suggest
that the aggregation mechanism as well as the kinetic parameters do not de-
pend on the field strength. In fact, a time scale is usually used to normalize
time so that all plots of S(t) as function of the reduced time collapse together,
regardless of the experimental conditions.

In order to study the influence of the field strength on the aggregation be-
haviour, light scattering experiments were performed using a Malvern 4700C
instrument working with a vertically polarized 632.8 nm wavelength argon
laser. The DLS mode was used for monitoring the average diffusion coefficient
of the magnetic filaments formed. The light scattering experiments were per-
formed using small magnetic polystyrene particles of 165 nm in size. Hence,
sedimentation was found to be negligible during the experiments due to the
relatively small size and low mass density of the choosen particles. The par-
ticle number concentration was adjusted to ≈ 1.0 × 1010cm−3, corresponding
to a volume fraction φ = 2.6 × 10−5. The relative low particle concentra-
tion avoids multiple light scattering and lateral chain-chain aggregation. The
DLS measurements were always performed at a scattering angle of θ = 60o

corresponding to q−1 = 75.7 nm.

Aggregation was not observed for the electrolyte free sample. Hence, the
experiments were performed at 5 mM of KBr. Electrolyte addition screens
the electrostatic repulsion between the particles, allowing for field induced
aggregation of the particles. The added electrolyte, however, was too low to
affect the stability of the samples when the magnetic field is absent. The effect
of the electrolyte concentration on the field induced aggregation kinetics will
be described later on in more detail.

The strength of the magnetic field applied to the sample was controlled
by changing the number of neodymium disk magnets placed on top of the
sample cell, as we described in the Section 5.2.1. The spatial divergence of the
applied magnetic field was small enough so that significant particle migration
was not observed during the experiments. Since the external magnetic field
was applied perpendicularly to the scattering plane, the linear aggregates were
forced to align in the same direction. Hence, the measurements were mainly
sensitive to transversal diffusion perpendicular to the chains axis.

Figure 6.1 shows the time evolution of the effective aggregate diffusion co-
efficient Deff for several applied magnetic field strengths. The data are the
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average of at least five measurements that were carried out. The correspond-
ing errors bars are not shown for the sake of clarity. A decrease of Deff as
time proceeds is observed in all cases. This means that the length of the lin-
ear aggregates grows with exposure time to the magnetic field under all the
experimental conditions reported.

Figure 6.1: Effective diffusion coefficient Deff normalized by the single particle
diffusion coefficient D0 versus the exposure time to the external magnetic
field for different interaction parameters: (O) λ = 2.9, (◦) λ = 5.5, and (¤)
λ = 11.6.

As was mentioned previously (please, see Sections 4.5.3 and 5.3.1), the
linear aggregates formed may be treated as rigid cylinders when the magnetic
field is present. However, at low magnetic field strengths relative positional
particle fluctuations inside the linear aggregates may take place due the com-
petition between Brownian motion and magnetic dipole-dipole interactions.
DLS measurements are sensitive to brownian movement of the particles con-
tained within the linear aggregates, since the internal spatial fluctuations of
the particles give rise to a dependency of the measured diffusion coefficient
with the scattering vector q. In Figure 6.2 the diffusion coefficient of the lin-
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ear aggregates is depicted as function of q. At low magnetic field strengths,
the effective diffusion coefficient measured by DLS depends linearly on q, ac-
cording to the Equation 5.4 which reads

Deff ∝ (
2√
λ

)qaD⊥.

However, when the magnetic field is strong enough to avoid significant relative
motion within the filaments, the diffusion coefficient does not depend on q.
This is just what we observed when we applied higher magnetic fields. As can
be seen in Figure 6.2, for λ = 5.5 the magnetic filaments behave as rigid rods.

Figure 6.2: Effective diffusion coefficient Deff normalized by the single par-
ticle diffusion coefficient D0 versus the normalized scattering vector q at an
advanced stage of aggregation in presence of the external magnetic field. The
values of the interaction parameter were (4) λ = 0.9, (O) λ = 2.9, and (◦)
λ = 5.5. The dashed lines are drawn as a guide to the eye.

From the data for the perpendicular diffusion coefficient, the average chain
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length expressed in number of particles per aggregate N was extracted, ac-
cording to the hydrodynamic Equation 2.37 proposed by Tirado et al. :

D⊥(L) =
kBT

4πηL

(

ln (
L

2a
) + γend

⊥ (L)

)

.

Hence, the mean number of particles per chain could be obtained from the
mean diffusion coefficient for all the applied magnetic fields. However, only for
λ > 2.9 we may safely assume that the effective diffusion coefficient measured
by DLS contains a single contribution due to perpendicular translational chain
diffusion. Figure 6.3 shows the mean number of particles per aggregate N as
a function of the exposure time to the magnetic field.

According to Figure 6.3 the data show a similar asymptotic behaviour
with a slope of z′ = 0.69 ± 0.61 for all the experimental conditions. Linear
fits were done between the experimental points that minimized the regression
coefficient. Such a power law dependence has been reported by most of the
experimental and numerical studies. The values obtained for the slope z′ are
again given in Table 6.1. As can be seen, we do not find a direct dependence
of the kinetic exponents with the interaction parameter λ.

λ 0.9 2.9 5.5 11.6

z′ 0.74 0.61 0.71 0.69

h̄/a -0.8 1.0 3.5

Table 6.1: The kinetic parameter z′ and the average range h̄ as function of
the dimensionless parameter λ.

The similarity in shape, and the almost identical kinetic exponents ob-
tained from the slope of the curves shown in the previous figure seem to
indicate that the underlying aggregation mechanism does not depend on the
magnetic field strength. Gast et al. studied the influence of the magnetic field
strength on aggregation kinetics. In their experiments, they found that the
time evolution of the average cluster size S(t) collapsed on a single master
curve when the time axis was rescaled using the characteristic time [7, 131]:

τ∗
Br =

a2

D0φeff
. (6.1)

From a physical point of view, this characteristic time may be interpreted
as a modified Brownian time scale that accounts for the attractive nature of
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Figure 6.3: Average number of constituent particles per aggregate N as func-
tion of the exposure time to the external magnetic field. The values of the
dimensionless parameter λ were (4) λ = 0.9, (O) λ = 2.9, and (◦) λ = 5.5,
and (¤) λ = 11.6. Straight lines show asymptotic behaviour according to
N ∝ tz

′

.

the magnetic interaction in terms of an effective particle volume fraction given
by

φeff = 24[(1/3)1/2 − (1/3)3/2]λφ. (6.2)

In other words, the capture volume of the aggregates scales as a3λ due to the
long range character of the magnetic interaction. We will now confirm their
experimental results by means of our own Dynamic Light Scattering (DLS)
experiments.

As is shown in Figure 6.4, the time evolution of the mean number of
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Figure 6.4: Average number of constituent particles per aggregate N as func-
tion of the scaled time t/τ∗

Br. The values of the dimensionless parameter λ
were (4) λ = 0.9, (O) λ = 2.9, and (◦) λ = 5.5, and (¤) λ = 11.6.

particles per chain N align along a single master curve and so, follows the
scaling behaviour described by Promislow et al. for the average cluster size
S(t). The alignment is observed even for the lowest applied field of λ = 0.9,
where the mean number of particles per chain has been directly determinated
from the Equation 6.1, neglecting the contribution of the internal fluctuations
on the assessed diffusion.

The increase of the external field gives rise to an enhanced filament growth
rate. Nevertheless, the kinetic exponent seems to no depend on the magnetic
field strength. This seems to indicate that the aggregation mechanism may be
described by the same aggregation kernel. Figure 6.5 shows the time evolu-
tion of the measured effective diffusion coefficients in presence of the applied
magnetic field together with the theoretical predictions. The continuous lines
show the fits that were obtained using the proposed kernel for field induced
aggregation (Equation 3.23)
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kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h),

for the numerical solutions of Smoluchowski’s aggregation equation.

According to light scattering theory, the average diffusion coefficient Deff

measured by DLS is related to the diffusion coefficients of the different clusters
of size N through Equation 4.93:

Deff =

∑Nc

N=1 nN (t)N2S(qRg)D(N)
∑Nc

N=1 nN (t)N2S(qRg)

In our case, the structure factor S(qRg) may be approximated by the form
factor of cylindrical rods with their axis aligned perpendicular to the scattering
plane. Hence, it is sufficient to consider θ = π/2 in Equation 4.62. On the
other hand, only the mean translational diffusion coefficient perpendicular to
the rod axis D⊥(N) must be considered when Equation 4.93 is used.

The effective interaction range h̄ defined by Equation 3.23 was the only
adjustable parameter. The agreement between experiments and theory can
be considered satisfactory. This means that the time evolution of the mean
diffusion coefficient of the linear agrgegates can be described using the same
aggregation kernel at different magnetic field strengths. The proposed aggre-
gation kernel explicitly includes the range of the effective inter-particle inter-
action as a control parameter. The higher the magnetic field is, the longer
the effective range of the total interaction becomes. As stated in the theory
section, the fitting parameter h has to be understood as an effective range of
the net interaction between the aggregates. The real interaction range, how-
ever, depends on the angle between the magnetic field direction and the vector
indicating the relative position of the interacting species. Moreover, the elec-
trostatic repulsion also modifies the effective interaction range especially at
low electrolyte concentrations. The average character of the fitting parameter
h may explain the negative value obtained for the lowest value of the applied
magnetic field. At this field strength, most of the angular configurations are
in fact repulsive due to the remaining electrostatic repulsion between the par-
ticles, even within the theoretically attractive zone I defined in Section 3.5.2.
In addition, the reversibility of the field induced aggregation process may also
play an important role. The values obtained for the fitting parameter h are
included in Table 6.1.
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Figure 6.5: Effective diffusion coefficient D⊥ normalized by the single particle
diffusion coefficient D0 versus the exposure time to the external magnetic field.
The applied magnetic field strength was (O) 11.1 kA/m (λ = 2.9), (◦) 15.3
kA/m (λ = 5.5), and (¤) 22.2 kA/m (λ = 11.6). The continuous lines show
the best fits using to the proposed kernel (Equation 3.23) for the numerical
solutions of Smoluchowski’s aggregation equation.

6.3 Electrolyte Effects

When the magnetic particles are suspended in aqueous media they usually
bear a non vanishing net surface charge that gives rise to isotropic electro-
static interactions. The interplay between these isotropic electrostatic and the
anisotropic magnetic interactions is of interest not only from an applied but
also from a theoretical point of view. So far, most of the research works dealing
with magnetic colloidal particles only consider magnetic forces. Nevertheless,
electrostatic forces play also an important role and should, as we will show,
not be neglected.
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6.3.1 Light Scattering Experiments: Polystyrene Particles

Figure 6.6 shows the measured effective aggregate diffusion coefficient Deff as
a function of the exposure time to the applied magnetic field for all electrolyte
concentrations used in this study. The data are the average of at least five
measurements that were carried out. The corresponding error bars are not
shown for the sake of clarity. The magnetic field strength was measured to
be 23.9 kA/m, corresponding to λ = 13.5, throughout the scattering volume.
At the field strength employed, the absence of significant internal fluctuations
within the linear agregates is guaranteed. Excluding the electrolyte free sam-
ple, a decrease of Deff (t) is observed in all cases. This means that the average
filament size increases with the exposure time to the magnetic field. It should
be noted that chain formation takes place even at relatively low electrolyte
concentrations. Although such electrolyte concentrations are too low to affect
the stability of the samples when the magnetic field is absent, linear aggre-
gates start to grow once the field is applied. The growth behaviour depends
strongly on small variations of the electrolyte concentration. For increasing
electrolyte concentrations, the growth rate rises and reaches a limiting value
already at about 50 mM KBr. This shows clearly that the electrostatic repul-
sion between the particles at lower electrolyte concentrations is strong enough
to slow down aggregation at least partially. At high electrolyte concentration,
however, the electrostatic repulsion is overcome completely by the magnetic
interaction. For higher electrolyte concentrations, the results superimpose and
follow the curve observed at 50 mM .

From the data obtained for the perpendicular diffusion coefficient, the av-
erage chain length, expressed in number of particles per aggregate N , was ex-
tracted according to Equation 2.37. The obtained results are shown in Figure
6.7 in logarithmic scale only for the most representative cases, i.e. at elec-
trolyte concentrations of 0.10, 0.25, 1.0 and 50 mM . According to Figures 6.7
and 6.8, the data show a similar asymptotic behaviour and follow well-defined
straight lines with a slope of z = (0.67± 0.40) at all the electrolyte concentra-
tions used. The similarity in shape and the almost identical kinetic exponents
of the curves shown seem to indicate that the underlying aggregation mech-
anism does not depend on the electrolyte concentration. Electrolyte addition
screens the electrostatic repulsion and so, increases the effective range of the
total interaction. This gives rise to an increased aggregation rate. Neverthe-
less, the kinetic exponent does not depend on the electrolyte concentration,
and is very similar to the value z = 0.69 ± 0.61 obtained in the previous
Section. This indicates that the aggregation mechanism is controlled by the
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Figure 6.6: Effective diffusion coefficient of the aggregated samples versus
exposure time to the applied magnetic field. The electrolyte concentrations in
the samples were: (+) 0.0 mM , (¤) 0.10 mM , (O) 0.25 mM , (¨) 0.50 mM ,
(4) 1.0 mM , (¦) 2.0 mM , (H) 5.0 mM , (N) 10 mM , (¥) 20 mM , (•) 25 mM
and (◦) 50 mM .

dipolar magnetic interaction rather than the electrostatic interactions.

Neglecting electrostatic interactions, Promislow et al. found the time evo-
lution of the average chain length in pure field induced aggregation processes
to collapse on a single master curve when the time axis is rescaled using the
previously defined characteristic time (Equation 6.1). In our experimental
systems, however, electrostatic interactions are present at almost all the elec-
trolyte concentrations employed while the strength of the external magnetic
field and consequently λ remains constant. Since similar kinetic exponents
were obtained for all the curves shown in Figure 6.7, it should be possible
to use scaling methods also in our case. Therefore, a characteristic scaling
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Figure 6.7: Average number of constituent particles per aggregate N as func-
tion of the exposure time to the external magnetic field at electrolyte con-
centrations of (¤) 0.10 mM , (O) 0.25 mM , (4) 1.0 mM and (◦) 50 mM .
Straight lines show asymptotic behaviour according to N ∝ tz

′

.

time for the average cluster size has to be found. This scaling time should
take into account that the effective capture volume is sensitive to both, the
electrostatic and the magnetic interactions. Hence, we redefine the effective
volume of Equation 6.2

φeff = 24[(1/3)1/2 − (1/3)3/2]Γelλφ, (6.3)

so that it accounts for the effect of the electrostatic interactions through a
dimensionless parameter Γel. This coefficient reflects the influence of the elec-
trolyte concentration on the range of the total interaction and is used here as
a freely adjustable fitting parameter for making the data superimpose. In our
experimental systems, the repulsive electrostatic interaction is already suffi-
ciently screened and negligible with respect to the magnetic forces at 50 mM .
Therefore we assume Γel = 1 at this electrolyte concentration and take the
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Figure 6.8: Kinetic exponents obtained for all the curves shown in Figure 6.6
as a function of the electrolyte concentration.

50 mM curve as reference curve onto which the rest of the curves should col-
lapse. Figure 6.9 shows the average chain length as a function of the scaled
time t/τ∗

Br at all the electrolyte concentrations employed.

As can be seen, the experimental data align almost perfectly along a single
master curve. The values obtained for Γel are shown in Figure 6.10 as a func-
tion of the electrolyte concentration. As expected, Γel decreases for decreasing
electrolyte concentration, i.e. it are the smaller the stronger the electrostatic
repulsions become. A fit to a linear relationship between Γel and the elec-
trolyte concentration for [KBr] < 50 mM gives Γel = 0.3 log[KBr] + 0.48.

Figure 6.11 shows once more the time evolution of the measured effective
diffusion coefficients in presence of the applied magnetic field. The time is
scaled by the characteristic aggregation time for purely diffusion controlled
aggregation tagg = 2/(n0ks), where ks = 12.3×10−18m3s−1 is Smoluchowski’s
kinetic rate constant (Equation 3.7). The continuous lines show the fits that
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Figure 6.9: Average number of constituent particles per aggregate as function
of the scaled exposure time at electrolyte concentrations of (¤) 0.10 mM , (O)
0.25 mM , (4) 1.0 mM and (◦) 50 mM .

were obtained using again the proposed kernel (Equation 3.23)

kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h),

for the numerical solutions of Smoluchowski´s aggregation equation. The ef-
fective interaction range h was the only adjustable parameter again. The
agreement between experiment and theory can again be considered as very
satisfactorily. The values obtained for the fitting parameter h are included in
Table 6.2.

The effective interaction range and the effective particle volume fraction
increase for increasing electrolyte concentration. These observations may be
understood in terms of the enhanced shielding of the repulsive electrostatic in-
teraction caused by the added electrolyte. Since the total interaction potential
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Figure 6.10: Γel values obtained for all the curves shown in Figure 6.6 as a
function of the electrolyte concentration. The straight line is a fit to a linear
relationship between Γel and the electrolyte concentration for [KBr] < 50
mM .

between double layered magnetic particles usually shows a primary minimum
due to strong short range attractive interactions and a shallow secondary min-
imum that is mainly due to the long range magnetic interactions, electrolyte
addition plays two important roles for linear aggregate formation. Firstly, it
increases the effective range of the total interaction and secondly, it lowers
the height of the energy barrier between both minima [64]. The latter will
eventually allow the particles to aggregate in the primary minimum. Only
particle-particle bonds in the primary energy minimum are able to persist
when the magnetic field is removed. As we will see in the next Chapter, the
relative strength of the electrostatic and magnetic interactions is a fundamen-
tal parameter which controls not only the kinetics of chain growth but also
their stability once the magnetic field is turned off. Once again, the average
character of the fitting parameter h explains the negative value obtained for
the lowest electrolyte concentration of 0.10 mM .

For the sake of completeness, we would like to compare the fits reported so
far using the proposed kernel (Equation 3.23) with fits that could be achieved
employing the Miyazima kernel given by kij = C(iγ + jγ). The latter kernel
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Figure 6.11: Time dependence of the normalized average diffusion coefficient
Deff/D0, obtained for electrolyte concentrations of (¤) 0.10 mM , (O) 0.25
mM , (4) 1.0 mM and (◦) 50 mM . The continuous and dotted lines show the
best fits using to the proposed kernel (Equation 3.23) and the Miyazima kernel
(Equation 3.19) for the numerical solutions of Smoluchowski’s aggregation
equation, respectively.

has

λhom = µhom = γ (6.4)

and

z =
1

1 − γ
(6.5)

Hence, if we determined the homogeneity exponent from the experimental
kinetic exponent z′ = 0.671 then we obtain γ = λhom = µhom = −0.5. A

1Here, we have assumed that z = z′. However, some differences between z and z′ have
been observed by other authors [85, 124].
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[KBr](mM) 50 1.0 0.25 0.10

Γel 1.00 0.66 0.28 0.10
h̄
a 3.78 2.72 0.85 -0.42

C(10−17m3s−1) 2.34 1.23 0.49 0.15

Table 6.2: The dimensionless parameter Γel, the effective interaction range h̄,
and the cross sectional parameter C assessed for different electrolyte concen-
trations.

negative value of λhom indicates that the reactivity between linear aggregates
of the same length declines with chain length. On the other hand, a negative
value of µhom indicates that large aggregates preferentially react with small
aggregates. The above-mentioned is qualitatively consistent with the theoret-
ical frame that states: As aggregates grow in size, their mobility decreases
whereas their cross section remains constant [134].

For the Miyazima kernel, we have used the proportionality constant C as
fitting parameter. The fitting constants obtained are shown in Table 6.2 and
the corresponding fits are included in Figure 6.11. At first sight, the compa-
rable quality of both fits is quite striking. In order to understand the reason
thereof, we plotted the normalized rate constants kii/k11 for both kernels ver-
sus the aggregate size in Figure 6.12. For cluster sizes smaller than i ∼= 10,
both kernels are virtually identical. For larger aggregates, however, the Miyaz-
ima kernel starts to overestimate the aggregation rate constants with respect
to the proposed kernel. Since the largest average chain lengths reported in
this paper do not surpass the value of i ∼= 15 (see Figure 6.12), it is not sur-
prising that both kernels lead to similar fits. According to the size dependence
of both kernels, we expect the fits based on the Miyazima kernel to worsen
for larger aggregates and longer aggregation times. Unfortunately, our experi-
mental data do not reach out so far and so, we cannot unequivocally state that
the Miyazima kernel cannot predict the long time behaviour of field induced
aggregation processes. Hence, further investigation in this direction is needed
before this question could be solved.

Finally, we would like to point out that the parameters in the Miyazima
kernel have no clearly defined physical meaning. Especially, the meaning of
the cross sectional parameter C remains unclear. For the proposed kernel,
however, the anisotropy of magnetic interaction as well as the long range
character of the net particle interaction are explicitly taken into account. Both
characteristics are included on average in terms of the distinction between the
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Figure 6.12: Size dependence of the normalized aggregation rate constant
kii/k11 for the proposed kernel (solid line −) and the Miyazima kernel with
γ = −0.5 (dashed line −−).

attractive zone I and the repulsive zone II defined in Section 3.5.2, and the
effective interaction range h. In this sense, the proposed kernel helps to achieve
a deeper insight in the kinetics of aggregating magnetic filaments in presence
of magnetic and electrostatic interactions [82].

6.3.2 Video Microscopy Experiments: Silica Particles

In the previous Section we have observed that the growth behaviour of small
polystyrene particles depended even on small variations of the electrolyte con-
centration. In the present Section we will study the field induced aggregation
of larger silica particles. Since the magnetic moment of the particles is pro-
portional to their volume, larger particles allow us to study processes where
the electrostatic repulsion between the particles may be completely overcome
by magnetic dipolar interactions.

We have used direct visualization via video microscopy and digital im-
age processing to study the kinetics of the field induced aggregation. Video-
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microscopoy experiments allows not only the time evolution of the mean clus-
ter size but also the time evolution of the cluster size distribution to be as-
sessed. Solving the corresponding Smoluchowski equation, the experimental
cluster size distributions may be compared with theoretical predictions. Such
a comparation is essential in order to test the quality of the proposed aggrega-
tion kernel, since different aggregation kernels may give rise to the same time
evolution of the mean cluster size. To the best of our knowledge, there are
no previous studies that contrast experimental cluster size distribution with
theoretical predictions for magnetorheological fluids.

The silica particles used were synthesized by Dr. Abdeslam El-Harrak (see
Section 5.1.2). Charged surface silanol groups prevented particle aggregation
through repulsive electrostatic interactions. A particle surface potential of
∼ −10mV was obtained by means of electrophoretic mobility measurements,
as was stated in the Section 5.1.2. Several series of experiments have been
performed at different salt concentrations using KBr as indifferent 1:1 elec-
trolyte. The electrolyte was always added to the colloidal dispersion before
exposing the samples to the magnetic field. The electrolyte concentrations
used for reducing the repulsive electrostatic interactions were 0.0 mM , 0.5
mM , and 1.0 mM . Under these electrolyte concentrations the systems re-
mained stable when they were not exposed to the magnetic field. For higher
electrolyte concentrations the particles started to aggregate to the glass inter-
face. This is not surprising since reported surface charge densities for glass
interfaces in aqueous solutions are usually smaller than the charge density of
colloidal particles [135]. In fact, the particle concentration was determined
adding KBr electrolyte at 20 mM to the samples. At this salt concentration,
the electrolyte screens the electrostatic repulsion between the particles and
the glass walls. In this way, all the particles appear stuck to the walls and
monomer counting becomes quite straight forward.

Some exploratory experiments were performed at different particle concen-
trations. However, high concentrations made the images difficult to analyse
during the first stages of aggregation, and low concentrations worsed the statis-
tics of the cluster size distribution. Therefore, the employed concentration
was finally chosen such that image analysis process was optimized. Prior the
measurements, the particles were diluted in water to a final concentration of
2.65×107particles/cm3, corresponding to a volume fraction of φ = 2.74×10−6.
According to the theoretical background the aggregation kernel does not de-
pend on the particle concentration as long as the particle concentration is
within the range where the Smoluchowksi’s equation is applicable, and the
lateral chain-chain aggregation is avoided [9].
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Figure 6.13: Time evolution of the normalized cluster-size distribution. The
curves correspond to a) monomers, b) dimers, c) trimers, d) tetramers, and e)
pentamers. The dotted lines show the best fits using the aggregation kernel
given by Equation 3.23. The continuous lines show the same fit when differen-
tial sedimentation is taken into account. Figure f) shows the time evolution
of the weight-average chain-length S(t) as a function of the exposure time to
the magnetic field. The experiments were performed at different electrolyte
concentrations: • 0 mM , ¤ 0.5 mM , and O 1.0 mM .
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Some authors, however, have argued that the aggregation kinetics of field
induced aggregation processes may depend on the volume fraction [7]. Dur-
ing the experiments, typically about 700 particles could be observed in the
field of view. A large number of initial monomeric particles is essential for
maintaining a reasonable statistics for larger aggregates at long aggregation
times. The relatively large depth of field available at low magnification (10x)
helped us to keep the particles in focus despite of their random Brownian mo-
tion. According to the experimental method described in the Section 5.3.2,
we monitored the aggregation processes that were induced in the sample due
to the applied external magnetic field at different concentrations of KBr.
Therefore, pictures were captured every 5 seconds during a total time interval
of 495 seconds. The field strength of 3.9 kA/m employed in this experiment
corresponds to λ = 278.

Figure 6.13 (a-e) shows the normalized cluster-size distribution for clusters
formed by 1, 2, 3, 4 and 5 monomeric particles in logarithmic scale at different
electrolyte concentrations (0.0 mM , 0.5 mM and 1.0 mM). The data shown
in the Figure represent an average over four experiments. They are normalized
by the initial number of particles. Errors bars are not included for the sake
of clarity. In order to improve the data statistics and to reduce the number
of data points to be plotted at longer aggregation times, several consecutive
measurements were grouped and averaged accordingly. The number of clusters
larger than pentamers became so low that statistical uncertainties and fluc-
tuations prevailed and no meaningful curve could be drawn. For electrolyte
concentrations of 0.5 mM and 1.0 mM the results superimpose and follow the
curve observed at 0.0 mM . Contrary to the results reported in the previous
section, where we observed that the growth behaviour depends strongly on
small variations of the electrolyte concentration, in this case the electrolyte
does not affect the rate of the process.

Figure 6.13 (f) shows the weight-average chain-length S(t) as a function of
the exposure time to the magnetic field at different electrolyte concentrations.
The clusters of all sizes detected on the photos were taken into account for
the average. Once more, the growth behaviour does not depend on variations
of the electrolyte concentration. In this logarithmic plot, S(t) shows a clear
linear asymptotic behaviour at long aggregation times and so, confirms the
typical power law behaviour for the kinetics of aggregation. From the slope
at long times, the kinetic exponent z could be estimated to be z = 0.72. This
value agrees quite well with the value of z′ = 0.67 reported previously.

Before comparing the fits with experimental data, we would like to discuss
the reason for not having imposed monomeric initial conditions at t = 0 s.
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When no magnetic field is present, our superparamagnetic particles diffuse al-
most without any interaction. Only at relatively short interparticle distances,
electrostatic repulsive forces avoid aggregation. Hence, a small fraction of
monomeric particles may be so close to each other that they will be located
within the attractive zone of the magnetic dipole interaction that appears as
soon as the magnetic field is turned on. Due to the strong attractive mag-
netic forces, these particles will aggregate almost immediately when the field
is turned on. An example of the result of such ballistic initial aggregation is
shown in Figure 6.14. Since such a transient effect is not described by Smolu-
chowski’s equation, we were forced to impose as boundary conditions for the
fits a cluster size distribution that was measured after a sufficiently long time
when the aggregation process becomes purely diffusion controlled [36]. More-
over, some small aggregates might initially be present before the magnetic field
is applied. Digitalization effects may also play an important role.

In order to fit the experimental results theoretically, we solved Smolu-
chowski’s equation numerically using the aggregation kernel given by Equa-
tion 3.23 and we imposed as boundary conditions the cluster-size distribution
obtained at t = 5 s. On the other hand, an affine transformation between
the time in the simulation tsim into the experimental one texp has been done
tsim = 60texp. The transformation does not affect the curve shape at all in a
log-log plot. It only introduces a horizontal shift of the data set as a whole.
Hence, we can conclude that experimental and simulated times are function-
ally identical [129].

The theoretical results are plotted together with the experimental data in
Figure 6.13. The best fits for the experimental data shown in these figures
were obtained for an average interaction range of h̄ = 4.35µm. This value is
about 7.5 times the monomer diameter and is in good agreement with the long
range character of the dipolar magnetic interaction. It is, however, much larger
than the values ranging from 1.89 to -0.21 times the monomer diameter that
were previously reported for the magnetic polystyrene particles. The kinetic
exponent obtained for the theoretical curves is z = 0.58 which is very close to
the value of z = 0.6 deduced by the model of Miguel et al. [9]. Nevertheless,
the theoretical predictions fit the experimental results acceptably well only
during the first aggregation stages. After about 20 s, however, the fit and the
experimental data start to differ noticeably.

The relatively large range of the interactions observed now could explain
why the growth processes do not depend significantly on the electrolyte con-
centration. The range of the total interaction between the particles may be
controlled by varying the electrolyte concentration only when the outreach of



6. Kinetics of Field Induced Aggregation 151

Figure 6.14: High magnification (20x) image taken at 1s after application of
the magnetic field. The circled dimers have formed mainly due to immediate
ballistic aggregation of two initially close monomers.

the repulsive electrostatic interaction is sufficiently large and overcomes the
range of the magnetic interactions substantially. Otherwise, the electrostatic
part of the total interaction is negligible at large distances, and an effect of the
electrolyte concentration on the aggregation kinetics is not expected. The mea-
sured magnetic moments and surface potentials of the particles agree clearly
with the latter scenario. The surface potential of the silica particles is approx-
imately 5 times lower than the surface potential of the polystyrene particles.
At the employed magnetic field strengths, however, their magnetic moment is
approximately 30 times larger than that achieved by the polystyrene particles
in the previous Section. Consequently, the corresponding λ value of 278 is
much higher compared with the previously reported value of 11.6 [84].

6.4 Sedimentation Effects

For typical practical applications, suspensions of composite magnetic nano-
particles are frequently employed. These particles often contain small grains of
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iron oxides which increase their relative density with regard to the dispersion
medium. The relatively high particle mass density and the increased size
due to chain formation, favour differential sedimentation, i.e. small magnetic
particles remain suspended while the large aggregates settle. Therefore, the
study of MR fluids in the Earth’s gravitational field is not straight forward.
In order to overcome this difficulty, some studies have even been performed
at the International Space Station (please, see Apendix B). Sedimentation
is a serious problem for many manufacturers of technological applications,
and gravitational effects must not be omitted for a correct description and
modelling of this type of aggregation processes.

In our previous studies we have used small magnetic polystyrene particles
of 170 nm in size. Hence, sedimentation was found to be negligible during the
experiments due to the relatively small size and low mass density of only 1.2
g cm−3 of those particles, and the time evolution of the average chain diffusion
coefficient at different electrolyte concentrations was successfully described by
the aggregation kernel given by Equation 3.23.

However, when we employed silica particles of increased size and mass
density, the theoretical predictions fit the experimental results acceptably well
only during the first aggregation stages. After about 20 s the fit and the exper-
imental data start to differ noticeably (see Figure 6.13). One possible reason
for the mismatch between the theoretical predictions and the experimental
results may be the influence of sedimentation. On the sequence of photos, it
was clearly observable that the linear aggregates settle the faster the larger
they grow (Figure 6.15). This means that the larger aggregates sweep a larger
area than the smaller clusters and so, the collision frequency with other clus-
ters is enhanced. During the first aggregation stages, this effect is negligible
since there are only individual monomers and some smaller aggregates that
settle at a relatively similar low average velocity. At longer aggregation stages,
however, the differential sedimentation becomes more and more important.

Since the aggregation kernel given by Equation 3.23 does not account for
this effect, it is not surprising that its predictions start to fail as the aggre-
gates become larger. The silica particles will allows us to study coupled field
induced aggregation and sedimentation process. Particles of an even higher
mass density could have been employed. In this case, however, the Brown-
ian movement would be negligible with respect to the expected sedimentation
velocities.
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Figure 6.15: Successive images taken after the application of the magnetic
field. The circled linear aggregates shown that the larger aggregates sweep a
larger area than the smaller clusters and so, the collision frequency with other
clusters is enhanced.

In order to account for differential sedimentation, we determined the av-
erage settling velocities for monomers and aggregates using video-microscopy
and image processing. During the sedimentation velocity measurements, the
magnetic field was present in order to maintain the linear structure and orien-
tation of the chains. Figure 6.16 shows the measured average sedimentation
velocities vs

N as a function of the cluster size N . As can be seen, the monomer
sedimentation velocity was vs

1 ≈ 0.5µm/s . This leads to a Pèclet number of
Pe ≈ 0.17. Since this number quantifies the relative strength of sedimentation
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and diffusion effects, we can conclude that thermal diffusion still dominates
over sedimentation for the smaller particles. Nevertheless, Pe is not so small
that sedimentation effects even for the monomeric particles may be neglected
a priori.

Figure 6.16: Measured sedimentation velocities as a function of the chain
length (data points). The continuous line shows the theoretical fit according
to Equation 2.62.

We measured the sedimentation velocities of the clusters and compared
them with the theoretical predictions given by Equation 2.62:

vs
N =

ln (N) + γend
⊥ (N)

6η
a2∆ρg.

In spite of the fact that all the parameters in the analytic expression for
the sedimentation velocity are fixed, we employed the average particle mass
density ρp as fitting parameter for the curve shown in Figure 6.16. As can be
seen, the theoretical curve fits the data satisfactorily and so, the theoretical
expression given by Equation 2.62 may be considered as a valid description
for the sedimentation velocities of our chains. The best fit was obtained for
ρp = 4.4g/cm3. This value differs quite significantly from the value of ρp =
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3.6g/cm3 measured by equilibrium centrifugation in sucrose. Nevertheless,
both values lie within the interval defined by the pure silica and iron oxide
densities of 2.2g/cm3 and 5.6g/cm3, respectively. The observed discrepancy,
however, could be caused by convective motion and back flow of the water.
Previous studies have reported that the liquid induced motion of the particles
for a similar geometry is of the order of v ≈ 1.0µm/s [14]. Moreover, the fluid
flow pattern suffers a distortion due to the presence of the container walls that
will also affect the particles. Even when the cell width were large enough to
avoid corrections due to wall effects, the sedimentation velocity of the linear
aggregates could still be affected significantly due to convection and water
back flow effects [14, 76].

For the additional contribution to the aggregation kernel due to differential
sedimentation, the expression

kBdip−s
ij = ks

ij + kBdip
ij , (6.6)

together with the term ks
ij = Aij |(vs

i + vs
j )|, was proposed in Section 3.5.3.

Using these expressions as aggregation kernel in Smoluchowski’s equation, the
cluster size distribution arising in coupled aggregation-sedimentation processes
was obtained theoretically.

Also here, the experimental cluster-size distribution measured at t = 5 s
was imposed as a boundary condition for the calculations. The sedimentation
velocities were determined according to Equation 2.62. The value of the effec-
tive range h obtained in the last Section was kept. The calculated theoretical
time evolution of the cluster-size distribution is shown in Figure 6.13 (a-e).
The weight-average chain-length, S(t), was also determined and included in
Figure 6.13 (f). As can be seen in the figures, the theoretical fits improve
quite substantially when sedimentation effects are considered. Especially the
fit for the weight-average chain-length, S(t), is now very satisfactory if one
takes into account that no additional fitting parameter was introduced.

According to Figure 6.13, the main differences between the fits and the
experimental data are observed for the monomer population. Such an under-
estimation of the number of monomers was already reported by Fraden et al.
[30] for dilute suspensions of micron-diameter particles confined to two dimen-
sions. These authors attributed this effect to the two-dimensional nature of
their sample. In this case, larger aggregates partition space and isolate smaller
clusters on either side from each other. Hence, there will be more monomers
left in the sample than predicted theoretically and a crossover from a two to
a one-dimensional behaviour will take place. In our three dimensional exper-
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iment, however, a transition of this nature is not expected. The relatively
large number of monomers determined experimentally may, however, be due
to detection problems since the size of these particles is just of the order of
one image pixel. This implies that dust particles or aggregates that are not
in the focal plane may erroneously be counted as monomers. Nevertheless,
our data make clear that the agreement between the theoretical predictions
calculated according to Smoluchowski’s theory and the experimental results
improve substantially when sedimentation effects are considered. Especially,
the asymptotic behaviour of the weight-average chain-length could be repro-
duced and the theoretically assessed kinetic exponent of z = 0.77 comes quite
close to the experimental value of z = 0.72. This means that higher z values
may be a sign of additional aggregation due to differential sedimentation [84].

6.5 Mutual Induction Effects

The relatively large number of monomers that apparently are left behind in the
aggregation process seems to indicate that larger chains are more reactive than
predicted by theory. One possible effect that could cause such a behaviour is
mutual induction between the chain forming particles. At weak field strengths,
the degree of magnetization of the particles is proportional to the local field
strength and so, the net magnetization of the particles contained within a
chain is enhanced by the presence of neighbouring particles. Zhang et al.
have shown that mutual induction in the weak field regime may enhance the
magnetization of a particle by up to 34% beyond the magnetization that it
would have as an isolated single particle [15]. This effect leads to an increased
range of the magnetic interaction between the aggregates as they gain in size
(see Section 3.5.4).

In order to check the influence that mutual induction may have on the
aggregation kinetics, we solved Smoluchowski’s equation using the Equation
3.27 for the size dependency of the range of the magnetic dipole interaction

hij

h11

=
1

(1 − πζj(3)
3 )2/3

j > i

As before, the same boundary conditions and aggregation kernel kBdip−s
ij =

ks
ij + kBdip

ij were imposed. The best fits for the experimental data were now

obtained for an average interaction range of h = 2.61µm. Nevertheless, the fits
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Figure 6.17: a) Time evolution of the normalized cluster-size distribution.
The data points correspond to (◦) monomers, (4) dimmers, (O) trimers, (¦)
tetramers, and (/) pentamers at 0 mM of electrolyte concentration. The
continuous lines show the theoretical fit when both the sedimentation as well
as the mutual induction are considered. b) Time evolution of the weight-
average chain-length as a function of the exposure time to the magnetic field
(data points) at 0 mM of electrolyte concentration. The continuous lines
show the theoretical fit when the sedimentation as well as mutual induction
are taken into account.

remain almost unchanged and do not improve significantly with respect to the
curves obtained before (see Figure 6.17). This means that mutual induction
within the chain-like aggregates increases the average range of the particle
interaction with the chain length, but it has no perceptible influence on the
aggregation kinetics and cannot explain why such a large number of monomers
is left over [84].
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Chapter 7

Stability and Structure of

Magnetic Filaments

In this Chapter we study the morphology and the stability of permanent
chains, and focus our attention mainly on the role of the electrolyte concen-
tration. The aim of the research work described in this Chapter was twofold:
On the one hand, we wanted to design an accurate experimental protocol that
allows the final mean length of the linear aggregates to be controlled by tun-
ing the different interparticle interactions. On the other hand, we tried to
show that the final filament size as well as the chain structure may be reliably
monitored by light scattering techniques, both when the filaments are either
aligned due to the action of the magnetic field, or freely diffusing once the
magnetic field is removed. A further purpose of the present Chapter was to
calculate the probability that a particle that is caught in a secondary bond
escapes to a primary bond and to determine its dependency on the height of
the energy barrier between the primary and secondary minima. A suitable
system of differential equations for calculating the reaction probability will be
proposed. The results obtained for different conditions will be compared with
experimental results.

7.1 Magnetic Filaments

Field induced aggregation is irreversible as long as the magnetic field is ap-
plied. When the fied is removed, the linear aggregates break due to the thermal
energy, and the magnetic particles return to their original monomeric state.
When the magnetic particles are linked together permanently by means of
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strong short range attractive interactions, the linear geometry of the aggre-
gates is preserved even in absence of the field. Adhesion may be induced by
van der Waals attraction [20], or by adsorbed molecules that form a strong
”bridge” between the particles surfaces [20, 22, 69]. There are a variety of
linking molecules that have been used to create permanently linked chains.
The length of the linear aggregates can be controlled by forming the chains
in microchannels of a given height [16]. The chains may be anchored on sur-
faces to prevent migration in flow processes. Magnetic colloids patterned on
a surface can serve as templates for chain growth from the fixed particles
[17, 136]. Both Biswal and Gast [19] as well as Goubault et al. [22] employed
a variety of optical trapping experiments to measure the flexural rigidity of
the magnetic filaments, and to probe bending rigidity at a molecular scale.
Both authors agree that the flexibility of the resulting magnetic nanowires is
usually controlled by the molecular weight of the linker molecule and their
diameter by the bead size. Using similar experimental protocols, more rigid
magnetic chains were obtained by other authors [137]. When the synthesis
of the magnetic nanoparticles is dominated by aggregation of primary units,
an applied magnetic field has been shown to have a dramatic effect on the
morphology. In this case extremely rigid rodlike particles may be formed [32].
One dimensional structures have been also obtained for cobalt nanoparticles
that undergo a superparamagnetic to ferromagnetic transition, as their size
increases during the synthesis process [138]. Magnetic nanowires have also
been prepared by electrochemical growth in alumina templates [139].

One-dimensional nanocolloids have received considerable attention over
the last years due to their potential for specialized applications. Permanent
linear aggregates can be used as micromechanical sensors [20, 22], micromixers
[23] and for DNA molecule separation, as obstacles to impede the convective
transport of biological species [4]. Linear chains of colloidal magnetic particles
linked by DNA and attached to a red blood cell have even been used as flexible
artificial flagellum [18].

7.2 Formation of Permanent Magnetic Chains

Initially stable samples of monodisperse superparamagnetic polystyrene parti-
cles were aggregated in the presence of an external magnetic field and different
amounts of electrolyte. The aggregation process was monitored using dynamic
light scattering (DLS), as we have discussed in the previous Chapter. When
the magnetic field was turned off, a significant change of the effective diffu-
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sion coefficient was observed at all electrolyte concentrations. This jump was
interpreted in terms of filament break-up and additional rotational diffusive
modes. Therefore, the length of the magnetic filaments was determined from
the measured average diffusion coefficients applying an adequate theoretical
approach. The results prove that the magnetic filaments disassemble com-
pletely at low electrolyte concentrations. At intermediate amounts of added
electrolyte, a partial cluster break-up is observed. Only at high salt concen-
trations, the chains withstand the absence of the magnetic field. The results
show that the average filament size can be predicted and controlled by tuning
the relative strength of the magnetic and electric interactions.

7.2.1 Changes in the Mean Diffusion Coefficient

Several series of DLS experiments have been performed at different concen-
trations of an indifferent 1:1 electrolyte (KBr). The final electrolyte con-
centrations used for reducing the repulsive electrostatic energy barrier were
0.0, 0.10, 0.25, 0.50, 1.0, 2.0, 5.0, 10, 20, 25 and 50 mM . The electrolyte
was always added to the colloidal dispersion before exposing the samples to
the magnetic field. Afterwards, the magnetic field was applied. The strength
of the magnetic field was measured to be H = 23.9 kA/m throughout the
scattering volume. Figure 7.1 shows the measured mean effective diffusion
coefficient Deff as a function of time for different electrolyte concentrations.
During the first 30 minutes of the experiments (zone I), the magnetic field
was applied. Thereafter, the field was turned off but the DLS measurements
were still performed for some additional time (zone II). The data shown are
always the average of five measurements. The corresponding errors bars are
not shown for the sake of clarity. At first glance, two different behaviours can
be clearly distinguished.

When the magnetic polystyrene particles are exposed to the magnetic field
(zone I), a decrease of Deff is observed in almost all the cases. This means
that the average filament size increases with the exposure time to the mag-
netic field. In presence of an external magnetic field, the filaments are forced
to align in the field direction and so, rotational chain diffusion was forbidden.
Consequently, only the translational diffusion coefficients D⊥ and D|| have to
be considered for the theoretical analysis. In our experimental setup, however,
the magnetic field vector is aligned perpendicular to the scattering plane. Due
to this geometry, the measurements were only sensitive to the transversal mo-
tion of the linear aggregates and so, the measured effective diffusion coefficient
corresponds to
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Deff = D⊥ =
µ1

q2
. (7.1)

Evidently, the parallel diffusion coefficient D|| could be neglected [117].
As can be observed in Figure 7.1, for increasing electrolyte concentrations
the growth rate rises and reaches a limiting value at about 50 mM KBr.
This interesting kinetic behaviour has been widely extensively in the previous
Chapter.

Figure 7.1: Time evolution of the effective diffusion coefficient of the aggre-
gating samples. During the first 30 minutes (zone I), the magnetic field was
applied. Thereafter, the field was turned off (zone II). The electrolyte con-
centrations were (+) 0.0 mM , (¤) 0.10 mM , (O) 0.25 mM , (¨) 0.50 mM ,
(4) 1.0 mM , (¦) 2.0 mM , (H) 5.0 mM , (N) 10 mM , (¥) 20 mM , (•) 25 mM
and (◦) 50 mM .

In this Chapter, we will focus our attention on what happens when the
magnetic field is turned off. In this case, the effective diffusion coefficient
suddenly increases for all electrolyte concentrations and then remains more
o less constant. At electrolyte concentrations larger than 2 mM , the mean
diffusion coefficient does not return to its initial monomeric state. Hence, we
can conclude that stable linear aggregates remain in the sample. These aggre-
gates may rearrange and lose their linear morphology once the magnetic field
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is turned off. However, chainlike aggregates were observed in videomicroscopy
experiments as well as in all TEM images (as an example the Figure 7.2 shows
images of different samples aggregated in the presence of an applied magnetic
field). This means that the bonds contained in the linear aggregates are strong
enough to withstand not only the absence of the magnetic field but also the
drying step that was necessary for taking TEM images.

Figure 7.2: Transmission electron microscopy images of different samples ag-
gregated at 20 mM KBr in the presence of an applied magnetic field. The
homogeneous magnetic field was measured to be (411 ± 2) mT . The images
correspond to exposure times of 10 min, 30 min, and 60 min (form left to
right).

If we neglect the influence of possible rearrangements of the particles within
the clusters, the increment observed in the mean diffusion coefficient could
principally be due to two different effects: to a break-up of the magnetic
filaments, or to changes in their diffusive behaviour. Filament break-up is
expected to depend on the electrolyte concentration. Indeed, our experiments
show that the increment of the diffusion coefficient after removing the field
becomes smaller for increasing electrolyte concentrations. This means that
the degree of filament breaking is less pronounced at high electrolyte con-
centration. The fact that the observed effective diffusion coefficients do not
increase further in time in zone II allows us to affirm that most of the mag-
netic filaments do not suffer any additional rupture. On the other hand, the
filaments are forced to align in the field direction and rotational diffusion is
not possible as long as the external magnetic field is applied (zone I). When
the field is turned off rotation is not hindered anymore and hence, give rise
to an additional diffusive mode that may be detected as an increase in the
assessed effective diffusion coefficient. This ambiguity does not allow any fur-
ther discussion about the chain growth behaviour at this point. In order to
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overcome this uncertainty, it would be very convenient to assess the average
chain length in units of particles per chain rather than in terms of an average
diffusion coefficient [66].

7.2.2 Maeda’s Model

Most of the light scattering works for measuring the translational diffusion co-
efficient Dt and the rotational diffusion coefficient Dr of linear scatters employ
depolarized dynamic light scattering (DDLS) [13, 91, 92, 93, 94]. This tech-
nique, however, presents some drawbacks as we mentioned already in Section
5.3.1. Furthermore, most of these light scattering studies assume the transla-
tional diffusion to be isotropic, i.e. , in a reference frame fixed to the molecule,
the diffusion coefficients parallel and perpendicular to the long molecule axis
are identical, D⊥ = D|| = Dt. Hence, the field autocorrelation function is
characterized by a depolarized decay rate µ1 = 2(q2Dt +6Dr) (Equations 4.47
and 4.48).

Long rods, however, undergo anisotropic translation, and so a coupling
between the translational and rotational modes of their diffusive motion is
expected. In this case, a nontrivial coupled diffusion equation has to be re-
solved (Equation 2.24). As a first approximation, Maeda and Fujime modeled
linear aggregates as thin cylinders of length L (see Sections 4.4.2 and 5.3.1).
They derived the following theoretical expression for the effective diffusion
coefficient Deff :

µ1

q2
= Deff = [D − 1

3
(D‖ − D⊥)] + (

L2

12
)Drf1(K) + (D‖ − D⊥)f2(K), (7.2)

where both f1(K) and f2(K) are funtions depending only on K ≡ qL/2. (see
Figure 4.8). This Equation allows the average chain length L to be deter-
mined directly from the effective diffusion coefficient of the aggregates, Deff ,
measured by means of DLS.

We checked the validity of the Maeda-Fujime model for the linear aggre-
gates formed by magnetic polystyrene particles. For this purpose, we measured
the autocorrelation function as a function of the scattering angle. Figure 7.3
shows the results obtained, i.e. the effective diffusion coefficient Deff as a
function of the scattering vector q. Field induced aggregation was achieved by
placing the samples in the narrow gap of a toroidal magnet at 20 mM of KBr.
The flux density of the homogeneous magnetic field in the gap was measured
to be (411 ± 2) mT . The samples remained in the magnet during different
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time intervals. Afterwards, the samples were removed and placed in the light
scattering device. The scattering angle was varied from 20◦ to 150◦. The data
were fitted according to the Maeda-Fujime model. The average chain length L
was employed as a fitting parameter and was adjusted such that the diffusion
coefficient measured at 60◦ could be matched. As can be seen in Figure 7.3,
the fits reproduce the q dependence of the effective diffusion coefficient quite
satisfactorily, especially at long exposure times. The observed discrepancies
may be due to chain polydispersity and to an internal degree of chain flexi-
bility. The best fits were achieved for an average chain length of (3.7 ± 1.3),
(9.0±1.0), and (18±2) particles per chain for exposure time of 5 min, 10 min
and 20 min, respectively.

Figure 7.3: Effective diffusion coefficient Deff normalized by D0 as a function
of the scattering vector q. The samples were aggregated at 20 mM . The
exposure times to the magnetic field were 5 min (◦), 10 min (¤), and 20
min (4). The corresponding average chain lengths N are indicated in the
figure. The continues lines show the best theoretical fits according to the
Maeda-Fujime model. The dashed lines indicates the limits of the confidence
intervals.

It is also worthwhile to mention that the simple model, in which rotational
and translational motions are uncoupled, is not capable of fitting the previous
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experimental data. In Figure 7.4 we plot the cumulant µ1 as a function of q2,
measured under the previous experimental conditions. In the uncoupled model
the cumulant is given by µ1 = q2Dt + 6Dr, and so the slope should give the
translational diffusion coefficient, Dt, and the intercept of the cumulant data
provides the rotational diffusion coefficient Dr. In our experiments, however
we obtain Dr ≈ 0, which is an unexpected result when the magnetic field is
turned off. Furthermore, if this model were applicable then Deff was expected
to decrease monotonously with increasing scattering vector q. According to the
experimental data, this is definitely not the case (see Figure 7.3). Therefore,
translational and rotational diffusions cannot be assumed to be uncoupled.
As expected, the chains undergo an anisotropic translation that gives rise to
a coupling between translational and rotational modes [67].

Figure 7.4: The cumulant µ1 as a function of the square of the scattering
vector q. The samples were aggregated at 20 mM . The exposure times to the
magnetic field were 5 min (◦), 10 min (¤), and 20 min (4). The solid lines
through the data show the corresponding linear fits.



7. Stability and Structure of Magnetic Filaments 167

7.2.3 Magnetic Chain Rupture

In the previous Section we have shown that the Maeda-Fujime model allows
the mean particle chain length 〈N〉 to be determined from the experimentally
accessible average diffusion coefficient Deff . Hence, we are now able to mea-
sure the filament length quantitatively by means of DLS, and to extract the
average filament length, expressed in number of particles per aggregate N ,
from the measured effective diffusion coefficients. For this purpose, Equation
7.1 was used for zone I, whereas Equation 7.2 was employed for the calculations
in zone II. Equations 2.37 and 2.38 were employed for the size dependency of
the different diffusion coefficients involved D⊥, D||, and Dr. These equations
read:

D⊥(L) =
kBT

4πηL

(

ln (
L

2a
) + γend

⊥ (L)

)

D||(L) =
kBT

2πηL

(

ln (
L

2a
) + γend

|| (L)

)

Dr(L) =
3kBT

πηL3

(

ln (
L

2a
) + γend

r (L)

)

.

The results obtained are shown in Figure 7.5. At first sight, the data seem
to resemble the behaviour determined already from Figure 7.1. Nevertheless,
this is only correct for zone I. There, it can again be observed that the
cluster growth rate rises for increasing electrolyte concentrations but now, an
almost linear increase with time is observed for the average chain length at all
electrolyte concentrations. Only the electrolyte free sample remains stable. In
zone II, however, three different behaviours may now clearly be distinguished:

1. At electrolyte concentrations of less than 5 mM , the linear aggregates
formed are not able to survive the absence of the magnetic field. This
means that the repulsive electrostatic interactions are strong enough to
avoid the formation of permanently bonded filaments. Nevertheless, re-
versible aggregation may be still be possible but only in a shallow energy
minimum that disappears once the magnetic field is turned off. Such a
breaking behaviour is in good agreement with the super-paramagnetic
character of the particles.

2. At intermediate electrolyte concentrations 5, 10, 20 and 25 mM , stable
aggregates remain in the sample. Nevertheless, the average chain length
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Figure 7.5: Time evolution of the average number of constituent particles per
aggregate 〈N〉 at electrolyte concentrations of (+) 0.0 mM , (O) 0.25 mM , (¨)
0.50 mM , (4) 1.0 mM , (¦) 2.0 mM , (H) 5.0 mM , (N) 10 mM , (¥) 20 mM ,
(•) 25 mM and (◦) 50 mM .

decreases when the magnetic field is turned off. This implies that the
chains formed disassemble only partially and so, stable bonds in a deeper
primary energy minimum must exist. The theory of colloidal stability,
predicts such a deep primary energy minimum at close contact due to
attractive short range London-van der Waals forces. Nevertheless, the
particles still have to overcome the relatively large energy barrier caused
by the electrostatic repulsion before a stable bond is formed. Since the
height of the energy barrier decreases for increasing electrolyte concen-
tration, it is not surprising that the average length of the stable aggre-
gates becomes larger at higher salt concentrations.

The coexistence of secondary and primary bonds can be directly observed
by means of the Machine Force technique (please, see Section 5.2.3).
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Figure 7.6: (a) Linear aggregates formed may be treated as rigid cylinders
when the magnetic field is present. (b) At low magnetic field strengths, how-
ever, relative positional particle fluctuations inside the linear aggregates may
take place due the competition between Brownian motion and magnetic dipole-
dipole interactions. (c) At intermediate electrolyte concentrations some linear
aggregates formed are able to survive the absence of the magnetic field. This
implies that the chains formed disassemble only partially and so, stable bonds
in a deeper primary energy minimum must exist.

As we have seen in Sections 2.7 and 3.7.2, field induced aggregation
may occur in a primary minimum of energy, where the particles are in
contact with each other, or in a secondary minimum of energy, where the
neighbouring particles within the linear aggregates are a short distance
apart from each other. In the latter case, the repulsive forces between the
colloidal particles are balanced by the attractive magnetic forces. Hence,
as soon as the magnetic field is applied, the mean distance between
the aligned particles can be assessed by analyzing the Bragg scattering
patterns (see Section 4.5.3). Figure 7.7 shows the spectral distribution
of the scattered light at 0 mM and 20 mM KBr (Figures a and b,
respectively). The measurements were performed using magnetic silica
particles of 180 nm in size, synthesized by the Dr. El-Harrak, that
were illuminated by a white light source. For 0 mM KBr, the observed
spectral distributions only depictes an outstanding maximum at λ ≈ 500
nm (Figure 7.7 a). Hence, according to Equation 4.94

d =
λ

n(1 − cosθ)
,

there is a preferential distance d between neighbouring particles aligned
along the field direction which is approximately, d ≈ 195 nm. At 20
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mM , however, two smaller maxima are clearly observed in the spectral
distribution (Figure 7.7 b). One of them corresponding to d ≈ 195 nm,
and the other one corresponding to d ≈ 180 nm. Since there are two
different maxima, there should be two preferential distances. Therefore,
at 20 mM the field induced aggregation may occur in a primary or in
a secundary minimum of energy, where the neighbouring particles are
either in close contact or at a short distance, respectively.

Figure 7.7: The spectral distribution at 0 mM (a), and at 20 mM KBr
(b). The upper scheme shows that field induced aggregation may occur in
a primary or in a secundary energy minimum, depending on the electroyte
concentration.

3. At electrolyte concentrations of 50 mM or above, the magnetic filaments
don’t disassemble anymore and continue to grow even when the field is
turned off. This means that the electrostatic energy barrier that pre-
vented the particles from aggregation in the primary minimum is now
almost completely suppressed and all the bonds are stable. It should
be noted that linear aggregates will be formed when the field is present.
When the field is turned off, however, the magnetic dipole-dipole inter-
actions disappear and so, the linear chains that are already formed are
expected to aggregate further following a reaction-diffusion aggregation
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scheme. In this case fractal aggregates consisting of chain-like particle
are expected (as we will see in Section 7.3.4).

It is quite instructive to point out that the jump observed in time evolution
of the average diffusion coefficient at 50 mM (Figure 7.1) is not reproduced in
the corresponding cluster size curve shown in Figure 7.5. Hence, it is clear that
this can not be caused by cluster break-up. The increased cluster diffusivity
must be due to additional rotational diffusion that became possible once the
field was turned off. Evidently such a conclusion could not have been drawn
directly from the diffusion measurements [66].

Finally, we would like to mention that the linear aggregates formed are
of course still quite polydisperse. The Figure 7.8 shows the time evolution
of the polydispersity index (p.i.). The polydispersity index is a dimensionless
parameter calculated from a cumulants analysis of the measured intensity
autocorrelation function (Equation 4.80). It is used to characterize the relative
shapes of the cluster-size distributions. For the electrolyte free sample (0 mM),
aggregation is not observed and the polydispersity index remains constant
with an average value of 0.08, close to the value measured before for pure
monomerical samples. Roughly speaking, the p.i. becomes the larger the
larger the mean length of the linear aggregates becomes. At low electrolyte
concentrations (0.50 mM), field induced aggregation is reversible and the mean
value of the p.i. return to its initial value once the magnetic field is turned off.

The degree of monodispersity around a desired average size value might be
improved if an accurate separation method could be found. In a not too far
future, this could open an experimental way for assembling magnetic filaments
of a well determined length by simply adjusting the strength of the magnetic
field and the amount of such an added electrolyte. Evidently, further work on
this subject is needed before this goal will be achieved [16, 17].

7.2.4 Magnetic Chain Stability

In the former Section, we described how to determine the average chain length
〈N(t)〉. This allows us to monitor 〈N〉 as a function of time. Taking into
account that the mean number of bonds per chain 〈n(t)〉 is given by 〈n(t)〉 =
〈N(t)〉 − 1, we can also assess the time evolution of 〈n(t)〉. If we compare
the mean length of the linear aggregates measured just before and after of
trupture = 30 min, i.e. the moment when the magnetic field was turned off, we
may also estimate the mean number of secondary bonds per chain that existed
at that moment. All the parameters mentionated before are related by the
following expression (please, see Figure 7.9)
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Figure 7.8: Time evolution of the polydispersity index (p.i.) at electrolyte
concentrations of (+) 0.0 mM , (¨) 0.50 mM , (N) 10 mM , and (◦) 50 mM .

〈

N(30+)
〉

=
〈N(30−)〉

〈ns(30−)〉 + 1
. (7.3)

The mean number of particles constituting the linear aggregates just after
the removal of the magnetic field, 〈N(30+)〉, was assessed averaging the mean
values measured when the magnetic field was turned off. At 50 mM , the
chains continue aggregating even after removing the field, and so 〈N(30+)〉
had to be obtained by linear extrapolation of to the expected value at trupture.
Similarly, the mean value of the number of particles per chain assessed just
prior to removing the magnetic field, 〈N(30−)〉, was calculated by linearly
extrapolating from the values measured during the field induced aggregation
process to the expected value at trupture. The values obtained at the different
electrolyte concentrations used for this study are shown in Table 7.1. The
table includes the mean number of bonds per chain just before turning off the
magnetic field, and the percentage of meta-stable and stable bonds at this
time. Figure 7.10 shows the dependence of the latter parameters as a funtion
of the electrolyte concentration.
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Figure 7.9: The mean length of the linear aggregates measured just prior to
〈N(30−)〉 and after 〈N(30+)〉 removing the magnetic field are directly related
to mean number of secondary bonds per chain 〈ns(30−)〉.

On the other hand, the mean number of bonds per chain is given by
〈n(t)〉 ≈ n(t)

Naggr(t) , where Naggr(t) ≈ N0

〈N(t)〉 is the total number of aggregates

present in the suspension, and N0 is the initial number of monomers dispersed
throughout the solution. Thus, the total number of bonds is n(t) ≈ N0〈n(t)〉

〈N(t)〉 =

N0(〈N(t)〉−1)
〈N(t)〉 , and dn(t)

dt = −dnf (t)
dt ≈ −N0

d〈N(t)〉−1

dt . Hence, the differential
Equations given by 2.59 read:

dns

dt
= −N0

d 〈N(t)〉−1

dt
− kspns(t)

dnp

dt
= kspns(t).

Experimentally, we have access to the initial particle concentration c0.
Hence, we can rewrite the previous Equation in terms of particles and bond
concentrations [n(t)], [ns(t)], and [np(t)]

d[ns(t)]

dt
= −c0

d 〈N(t)〉−1

dt
− ksp[ns(t)]

d[np(t)]

dt
= ksp[ns(t)] (7.4)
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[KBr] 〈N(30−)〉 〈N(30+)〉 〈ns(30−)〉 % secondary % primary
bonds bonds

50 15.2 16.9 0 0 100
25 14.3 9.7 0.5 3.6 96.4
20 14.1 7.3 0.9 7.1 92.9
10 12.0 3.8 2.2 19.6 80.4
5.0 10.6 2.4 3.3 33.5 66.5
2.0 10.3 1.3 6.9 73.8 26.2
1.0 11.4 1.1 9.7 92.8 7.2
0.50 7.8 1.1 6.5 95.6 5.4
0.25 6.2 0.9 5.9 100 0
0.0 1.3 1.2 0.0 0 0

Table 7.1: Different parameters assessed after 30 min of exposition to the
magnetic field as a function of the electrolyte concentration KBr.

Under our experimental conditions, the concentration of metastable and
stable bonds satisfies the boundary conditions [ns(0)] = 0 and [np(0)] = 0
due to the imposed monomeric initial conditions at t = 0 s. Due to the long
range of the attractive magnetic forces, the closer magnetic particles may ag-
gregate almost immediately when the field is turned on. However, the initial

dimensionless distance between the monomers, R0 =
(

1
φ

)
1

3

= 71 is bigger

than the dimensionless distance R1 = λ
1

3 = 6.5, i.e., the average threshold
separation within which particle motion ceases to be random [36]. Therefore,

the monomeric initial conditions can be ensured. The term d〈N(t)〉−1

dt has been
assessed by fitting an arbitrary exponential decay function Ae−Bt to the ex-
perimental values previously obtained. The fitting process was done for all
the electrolyte concentrations employed during the field induced aggregation
process, as is shown in Figure 7.11.

Finally, the concentration of primary and secondary mentioned bonds,
[ns(30)] and [np(30)], can be calculated by solving the previous differential
equations (Equation 7.4). Here the only fitting parameters are the exposure
time to the magnetic field t and the rate constant ksp. Hence, keeping con-
stant one of the two parameters we can assess the remaining free parameter
comparing the theoretical predictions with the experimental results. Firstly,
the exposure time to the magnetic field, trupture = 30 min, is kept constant in
our case. From the percentage of the existing secondary and primary bonds
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Figure 7.10: Percentage of meta-stable (◦) and stable bonds (4) assessed
after 30 min of exposition to the magnetic field as function of the electrolyte
concentration KBr.

we can assess the ksp values at different electrolyte concentrations. The results
are shown in Figure 7.12.

In the case of ”barrierless” field induced reactions, observed at 50 mM ,
all the magnetic particles form stable bonds during the aggregation process.
Therefore, the stable chains aggregate following a field-induced diffusion-limited
scheme, and the time evolution of the stable bonds may be reproduced quite
satisfactorily by the corresponding solutions of the Smoluchowski equation1.
At electrolyte concentrations lower than 0.5 mM the particles disassemble
completely. In this case the exposure time to the magnetic field is not long
enough to form stable bonds due to the relatively large height of the energy
barrier.

The previously estimated rate constants ksp assess the formation frequency
of primary bonds through secondary bonds. They must be independent on

1Further details about the Smoluchowski treatment can be found in Chapter 6.
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Figure 7.11: Experimental 〈N(t)〉−1 fitted by an arbitrary exponential decay
function Ae−Bt. The fitting process was done for all the electrolyte concen-
trations employed during the field induced aggregation process: (+) 0.0 mM ,
(O) 0.25 mM , (¨) 0.50 mM , (4) 1.0 mM , (¦) 2.0 mM , (H) 5.0 mM , (N) 10
mM , (¥) 20 mM , (•) 25 mM and (◦) 50 mM .

the exposure time to the magnetic field. Hence, we should be able to predict
theoretically the degree of rupture at different incubation times if we resolve
the differential Equations 7.4 using the previously obtained rate constants.
We compared the theoretical predictions with the experimental results by fol-
lowing similar methods to the previously described. We kept the electrolyte
concentration constant at 5 mM (corresponding to ksp = 7.8× 10−4s−1), and
varied the exposure times to the external magnetic field. The exposure times
to the magnetic field were 10, 20, 30, 40, 50 and 60 min (Figure 7.13). Anal-
ogously to the previous calculations, we can assess the time evolution of the
mean number of primary and secondary bonds per chain at different exposure
times to the magnetic field by comparing the mean size of the chains just after
and before the removal of the magnetic field. The theoretical calculations and
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Figure 7.12: ksp as a function of the electrolyte concentration.

the experimental results are compared and shown in Figure 7.14. The theo-
retical predictions reproduce the measured time evolution of the percentage of
secondary and primary bonds quite satisfactorily. The results prove that, at a
given magnetic field strength, electrolyte concentration and exposure time, the
mean value of the formed bonds can be predicted. Hence, tuning the relative
strength of the magnetic and electric interactions allows the mean length of
the linear aggregates be controlled at different exposure times to the magnetic
field.

Finally we have assessed the energy barrier Ea using the Equation 2.60
that reads:

ksp = τ−1
0 exp

(

− Ea

kBT

)

.

In the calculations, we have used the attempt frequency τ−1
0 estimated by

Cohen et al.. In their work the attempt frequency was theoretically estimated
according to Kramers’theory, and experimentally assessed by studing the de-
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Figure 7.13: Time evolution of the mean number of particles per chain 〈N〉
at 5 mM (4). The mean chain length 〈N〉 was also measured, at different
exposure times to the magnetic field, once the field is turned off (◦).

pendence of ksp with T [20]. The authors worked with calibrated 800 nm
emulsion droplets of an organic ferrofluid in water. They found approximately
τ−1
0 ≈ 105s−1 as order of magnitude. Figure 7.15 shows how Ea decreases

when the electrolyte concentration increases. If we compare the energy Ea

with the height of the energy predicted by the extended DLVO theory, we find
that the latter barriers heights are much higher. Similar discrepances have
been reported by Tannoudji et al. , when these authors studied the van der
Waals adhesion of field induced linear aggregates.

7.3 Aggregate Morphology

In this Section we will comment on the three dimensional structure of the
chainlike aggregates formed by aggregation. Therefore, we measured the ag-
gregate fractal dimension of the samples aggregated. SLS data will be em-
ployed to confirm the linear character of filaments and to study chain defor-
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Figure 7.14: Percentage of meta-stable (¤) and stable bonds (◦) assessed at 5
mM KBr as a funtion of the exposure time to the magnetic field.

mation due to the interaction with the surrounding medium. The results will
be corroborated by TEM images.

7.3.1 Particle Form Factor

Our analysis of the structure of the field induced aggregates starts checking to
which extent the mean intensity of the light scattered by our colloidal particles
is affected by the increased magnetic permeability and the light adsorption
caused by the magnetic grains embedded in the polystyrene matrix. For this
purpose, the I(q) curve was measured for a stable sample. Figure 7.16 shows
the obtained results. When the particles are distributed at random this curve
gives simply the form factor P (q) of the individual particles (Equation 4.88).
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Figure 7.15: Energy barrier height Ea normalized by the thermal energy as a
function of the electrolyte concentration.

The Mie theory has been employed for calculating the theoretical form
factor for pure polystyrene latex particles (Equations 4.64-4.69) without any
magnetic content. A sphere diameter of 165 nm, a relative refractive index of
n = 1.12 corresponding to polystyrene in water, and a relative permeability
µ = 1.0 were used for the calculations. Although neither the magnetic charac-
ter of the particles nor light absorption was considered in the Mie equations the
obtained curve agrees quite well with the experimental data for the magnetic
polystyrene particles( see Figure 7.16). This suggests that the polydispersity
of this sample is low and no evidence of aggregation is found. Furthermore
it is possible to assume, at least from an experimental point of view, that
light absorption and an increased magnetic permeability do not significantly
alter the scattered light intensity at the employed wavelength and particle
concentration.

Although the Rayleigh-Gans-Debye scattering theory seems to be of quite
limited validity, Equation 4.58 also fit the scattering data of the polystyrene
magnetic particles (see Figure 7.16). In this case we used the particle diameter
as fitting parameter, obtaining d = 170 nm. The observed result is quite
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Figure 7.16: Normalized I(q) curve for a stable sample of super-paramagnetic
particle suspension. The experimental data are shown as points (o). The
continuous curve (−) was calculated according to Mie’s theory for polystyrene
particles of the same size without any magnetic content. The dashed line (−−)
was calculated according to RGD theory.

significant, since the previously employed Maeda’s model implicitly assumes
the RGD theory to be valid and so, restricts the theory to thin rods2.

7.3.2 Structure of Electrolyte Induced Aggregates

After having checked that the particles scatter light approximately like model
polystyrene particles, we will now prove that neither the magnetic content
nor the relatively high density of the particles affect the SLS measurements of
the fractal dimensions. For this purpose, we measured the fractal dimension
of aggregates formed by pure electrolyte induced aggregation. Figure 7.17
shows the aggregate structure factor S(q) determined as I(q)/P (q) for two
samples that were aggregated at 1.0 M and 0.1M KBr in the absence of any
applied magnetic field. From these curves, the aggregate fractal dimension

2The thickness of the rod should be negligible if compared with the wavelength of the
incident light (see Section 4.4.2).
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was obtained by means of Equation 4.92 that reads

S(q) ∝ q−df .

At high electrolyte concentration, a fractal dimension of (1.78± 0.05) was
found. This result is very close to the well-known value of 1.75 that is fre-
quently reported in the literature for freely diffusing sticky particles. The
fractal dimension obtained at low electrolyte concentration was (2.09± 0.05).
A fractal dimension of approximately 2.1 is usually observed when the par-
ticles have to overcome a high potential barrier before aggregation [28, 78].
Hence, our magnetic particles behave just like standard latex particles when
no magnetic field is applied. At high electrolyte concentration, they aggre-
gate in the well-established aggregation regime of diffusion limited cluster
aggregation (DLCA). At lower electrolyte concentrations, they come close to
a reaction limited cluster aggregation (RLCA)-like scheme. Consequently, the
aggregation behaviour of the particles is completely controlled by the isotropic
electrostatic and van der Waals interactions (see Section 3.1). In accordance
with the superparamagnetic character of the particles, a possible influence of
anisotropic magnetic interactions is not observed in absence of the field. Hav-
ing shown that our magnetic polystyrene particles behave as standard latex
samples when aggregation is induced by surface charge screening, we are now
able to investigate their aggregation behaviour when they are exposed to an
external magnetic field.

7.3.3 TEM Micrographs

Before studying the geometry of the field induced aggregates quantitatively,
it will be quite elucidating to discuss some transmission electron microscopy
TEM images taken of several aggregated samples. In order to study also the
influence of the relative strength of the isotropic electric and the anisotropic
magnetic interactions, different electrolyte concentrations were used. Figures
7.2 and 7.18 show TEM micrographs of samples aggregated at a KBr concen-
tration of 20 and 0 mM , respectively. In both cases, aggregation was induced
only by the applied magnetic field since an electrolyte concentration of 20 mM
KBr or less has proven to be insufficient for destabilizing the samples. The
field strength of the homogeneous magnetic field was measured to be (411±2)
mT . As can be seen, chainlike aggregates are observed in all the micrographs.
This means that the bonds in these aggregates are strong enough to with-
stand not only the absence of the magnetic field but also the drying step that
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Figure 7.17: Structure factor S(q) of the samples aggregated at 0.1 M (4)
and 1.0 M (¤) of KBr electrolyte in absence of applied magnetic field . The
continuous lines show the best fits according to Equation 4.92.

is necessary for taking TEM images. The effect of the exposure time to the
magnetic field can be observed in the series of micrographs shown in Figure
7.2. As expected, the chains become the larger the longer the samples remain
under the influence of the magnetic field. It can also be observed that the
smaller aggregates have a relatively straight and linear form, while the larger
aggregates seem to be more flexible since they look more bended and twisted.

It is also quite remarkable that a relatively large fraction of free monomeric
particles is left over in the electrolyte-free sample, while almost all the parti-
cles are forming clusters in the presence of 20 mM KBr. Hence, electrolyte
addition seems to improve chain formation in a sense that it allows a greater
fraction of particles to participate in the aggregation process. From here in
advance, we will refer to the phenomenon that some particles do take part in
the aggregation process while others do not as “selective aggregation.” Hence,
an interesting question emerges from these images: why some particles do
take part in the aggregation process while others do not? Evidently, selective
aggregation can only occur when the particles are not completely identical.
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Figure 7.18: Transmission electron microscopy images of different samples
aggregated in the presence of an applied magnetic field at 0 mM KBr.

Figure 7.18 shows the aggregated electrolyte-free sample in a smaller scale
in order to check for visible differences between the chain forming particles
and the free monomers. Smaller and larger particles with different magnetic
contents can be distinguished. Consequently, differences in particle size and
magnetic contents can be excluded as a cause for selective aggregate growth in
the electrolyte-free sample. Since the degree of selective aggregation was found
to depend mainly on the amount of added electrolyte, the origin of selective
aggregation seems to be of electric nature [67].

We will try to give an at least qualitative explanation for this behaviour
in the frame of the DLVO theory. Therefore, we determined the total par-
ticle–particle interaction energy in the presence of an external magnetic field
when no electrolyte was added. The magnetic energy produced by interactions
between the magnetic dipoles induced in the particles is also included. It is,
however, not straightforward to determine the effective magnetic moment of
the particles since neither the spatial distribution nor the orientation of the
magnetic moments of the ferrite grains contained in the polystyrene particles
are known. This problem is usually dealt with by assuming that two particles
interact as if their net magnetic moment ~m were located at the particle centre.
The general expression for the effective magnetic moment of the particles is
given by m = (4/3)3M . The magnetization, M , is defined as a function of
effective magnetic susceptibility M = χH for not too high field strength. The
linear aggregates shown in the TEM pictures were achieved by applying mag-
netic field is of the order of 400 mT . This means that the superparamagnetic
particles have also reached their saturation magnetization and the effective
magnetic moment of the particles can be calculated using the saturation mag-
netization given by the magnetization curve (Figure 5.2). The total interaction
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energy is calculated supposing that these magnetic moments are located at the
particle centre. The obtained energy curve shows a deep primary minimum at
short distance and a shallower secondary minimum at further distance sepa-
rated by an energy barrier. According to the superparamagnetic character of
the particles, the secondary minimum will disappear when the field is turned
off and the electrostatic repulsion controls the stability of the system, as it
can be seen in Figure 7.19.

Figure 7.19: Electrostatic repulsion between magnetic particles: when the sur-
face potential of the EDLMP is 50mV (dashed–dotted line −·−), when the sur-
face potential of the EDLMP is reduced to 20mV (dashed–dotted line − · −).
Total particle–particle interaction energy E(r) for the magnetic polystyrene
particles when the magnetic grains are randomly distributed through the par-
ticle volume (dashed line − −); when the total magnetization is located at the
particle centre (continuous line −), and the surface potential of the EDLMP
is reduced to 20mV (continuous line −).

Therefore, the particle chains should break apart if the particles had ag-
gregated in the secondary minimum. However, TEM images show clearly that
some of the chains do not break and, so, aggregation in the primary energy
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minimum is needed to explain these experimental findings. Only at close con-
tact the short range attractive van der Waals interaction is capable to keep the
particles together once the external field has been turned off. Trying to over-
come these difficulties, we have developed a more realistic way to calculate the
magnetic interaction which uses the direct grain–grain magnetic interactions
(Section 2.6.2).

Figure 7.20: Pair of particles containing magnetic grains that are randomly
distributed within the spherical particle volumes.

For model calculations we consider the ferrite grains of 10 nm in size ran-
domly distributed within a spherical particle volume (see Figure 7.20). Due
to their small diameter, the grains are magnetic monodomains which have a
magnetic moment of m = (4/3)πa3Ms. At the employed field strength, the
magnetic grains have reached the magnetic saturation. The saturation magne-
tization of the magnetic grains Ms = 312 (kA/m) is lower than the saturation
magnetization of bulk magnetite Ms = 470 (kA/m) due to surface effects [140].
The small ferrite grains have a superpamagnetic behaviour, and the magnetic
moment of each ferrite grain within the polystyrene matrix points along the
easy magnetization axis, which is randomly oriented. As an approach which
overestimate the magnetic energy of interaction between polystyrene particles,
we will assume that all the dipoles of the magnetic grains are aligned along
the direction of the external magnetic field, even though their easy magneti-
zation axis were randomly oriented. The employed grain number of N ≈ 500
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is estimated using the ferrite mass content given by the manufacturer and the
former mean grain size. Figure 7.19 shows a typical total interaction energy
curve calculated with the proposed method, when a particular random grain
distribution is employed. We obtained very similar results when the inter-
action energy was calculated either by using random distributions of grains
inside the particles or when it was calculated supposing that all the grains were
placed in the centre of the particles, and similar energy curves are obtained
if we change the number of magnetic grains, the mean size of the grains, the
particles size, or the value of the magnetic moments. All the obtained en-
ergy curves show a deep primary minimum at short distance and a shallower
secondary minimum at further distance separated by an energy barrier. The
comparison between these energy curves shown in Figure 7.19, and the energy
curve which is obtained through the simpler previous model, reveals that the
same behaviour is obtained and only a small shift towards a less or a more
attractive interaction between the particles is found. The particles aggregate
again in the secondary minimum, and the model is not able to explain the pres-
ence of the permanent chains. Therefore, considering a homogeneous spatial
distribution of the grains in the calculations does not improve the explanation
of the experimental findings.

As it is well-known in “classical” colloidal aggregation, the energy bar-
rier between the primary and the secondary minimum is mainly controlled by
the electrostatic repulsion. In this way, aggregation in the primary minimum
would be found when the surface potential of the particles decreases. Figure
7.19 shows the resulting curve when the Stern potential of the magnetic par-
ticles is reduced to 20 mV . Clearly, aggregation in the primary minimum is
now allowed. So, we have to suppose that in certain cases, the energy barrier
between the magnetic particles can be reduced. In order to explain why only
some particles participate in the formation of permanent chain-like aggregates
as TEM images reveal, we should ask ourselves about the possible causes of the
decrease in the electrostatic particle repulsions. The extended DLVO theory
justifies, at least qualitatively, the experimental results. However, irreversible
aggregation in a primary energy minimum is needed in order to explain the
presence of chain-like aggregates once the magnetic field is turned off. The
height of the energy barrier between the secondary and primary minima is
mainly determined by the electrostatic repulsion. In this way, the selective
field induced irreversible aggregation observed in the TEM images can only
be explained if some kind of polydispersity in the charge of the particles is
considered [68].
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7.3.4 Structure of Field Induced Aggregates

The fractal dimension of the permanent chains was measured at 20 mM by
means of SLS. We choose this electrolyte concentration because, as we have
shown, there are no free monomeric particles left in the sample at this elec-
trolyte concentration, and so all the scattered light proceeds from aggregates.

Figure 7.21: Structure factor versus scattering vector for the polystyrene parti-
cles aggregated under three different experimental conditions: in the presence
of a magnetic field (•), in absence of a magnetic field at 0.01 M NaCl (2)
and at 1.0 M NaCl (∆).

Figure 7.21 shows the S(q) curves for the polystyrene particles and mag-
netite aggregated under three different experimental conditions. All the curves
exhibit a linear behaviour in the scattering wave vector range R−1

h < q < a−1

(indicated in the plots by a vertical line), and so, the cluster fractal dimen-
sion df can be determined from the slope in all cases. The given values are
the average of six measurements with a linear regression coefficient of at least
0.99. At high electrolyte concentration, a fractal dimensions of (1.79 ± 0.05)
was found for the magnetic polystyrene particles. The fractal dimension deter-
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Figure 7.22: (a) Fractal dimension of the aggregates as a function of the
exposure time to the magnetic field. The electrolyte concentration in the
samples was 20 mM in order to ensure that all the particles participate in
the chain formation. (b) The same data plotted as function of the number of
particles per aggregate. The continuous line shows the best linear fit.

mined at low electrolyte concentration was (2.17 ± 0.05). The error intervals
given are the corresponding standard deviations. In both cases, the aggrega-
tion behaviour is controlled by the isotropic electrostatic and van der Waals
interactions. However, the main interest of this Section lies in the aggregation
taking place under the action of the anisotropic magnetic interaction. Linear
aggregates were achieved by applying magnetic field of the order of 400 mT .
In this case, a very low fractal dimension of (1.04 ± 0.14) has been found for
the magnetic polystyrene particles. It should be emphasized that the scattered
intensity curves were always measured after the external magnetic fields was
applied and once the field was turned off. In this case, some minor spatial
reorganization of the particles contained within the chain-like aggregates may
be possible.

Figure 7.22 (a) shows the aggregate fractal dimension df as a function
of the exposure time to the magnetic field. At short exposure times, fractal
dimensions close to unity are observed. This means that the short chains are
relatively stiff since they remain linear even when the field is removed. For
longer exposure time, however, the fractal dimension increases monotonously
and reaches a final value of df = 1.24 ± 0.04. The slightly higher fractal
dimension observed for the larger clusters indicates that these aggregates have
lost part of their linear structure after having been taken out of the magnet.
According to the results reported in the literature, they should be more flexible
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and more susceptible to bending caused by the surrounding fluid [69]. In
Figure 7.22 (b), we plot the aggregate fractal dimension as a function of the
average chain length. A linear dependence between the chain length and the
fractal dimension is observed. The equation of the best linear fit is df (N) =
0.004N + 0.97. It should be emphasized that similar fractal dimensions were
reported by other authors for magnetic liposomes [141], magnetite particles
coated by two layers of different surfactants [142], and simulations [133, 143].
We interpret the experimentally obtained fractal dimensions close to 1.2 as a
result of linear but somewhat bended structures present in the sample [67].

At very high electrolyte concentration, the electrostatic repulsion between
the particles is completely overcome by the magnetic interaction when the
magnetic field is present (i.e. during the first 30 minutes of the experiments).
Therefore, the growth behaviour follows the same tendency already observed
for 50 mM . At this electrolyte concentration, the system remains almost
stable when the linear aggregates are not exposed to the magnetic field. At
higher electrolyte concentrations, however, the linear aggregates formed under
the action of the external magnetic field continue to aggregate even when the
magnetic field is turned off. Due to the super-paramagnetic character of the
magnetic colloidal particles, the dipole-dipole interaction between the parti-
cles disappears once the magnetic field is turned off. Then, the linear chains
formed are expected to aggregate further following a reaction or diffusion lim-
ited aggregation scheme. In this case, fractal aggregates made of chain-like
aggregates were in fact observed. Figure 7.23 shows the fractal dimension of
the clusters as function of the time spent once the magnetic field is switched
off. As before, the fractal dimensions were measured by SLS as a function of
the time. The electrolyte concentration employed was 1.0 M . As can be seen,
the linear clusters continue to aggregate forming more and more branched
structures.
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Figure 7.23: Fractal dimension as a function of the time. The linear aggregates
continue to aggregate forming more and more branched clusters.
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Chapter 8

Summary and Conclusions

Una cosa terrible, contra muchas ventajas, tiene el aumento de la cultura por

especialización de la ciencia: que nadie sabe ya lo que se sabe, aunque

sepamos todos que de todo hay quien sepa. La conciencia de esto nos obliga

al silencio o nos convierte en pedantes, en hombres que hablan, sin saber lo

que dicen, de lo que otros saben. Aśı, la suma de saberes, aunque no sea en

totalidad poséıda por nadie, aumenta en todos y en cada uno,

abrumadoramente, el volumen de la conciencia de la propia ignorancia.

Antonio Machado, de Juan de Mairena.

.

Magnetorheological fluids are colloidal dispersions of magnetic particles
that present a dipolar interaction when an external magnetic field is applied.
The main aim of this Thesis has been to perform an analysis of the aggregation
processes arising in these fluids in the presence of a constant and uniaxial mag-
netic field. Optical videomicroscopy, transmission electron microscopy, and
light scattering techniques have been used for studying the morphology, the
cluster size distributions, and the average size of the filaments formed. Hence,
the influences of different phenomena such as sedimentation effects, electro-
static inter-particle interactions, or the strength of the applied field, have been
theoretically studied. For that purpose, we have derived an aggregation kernel
which depends explicitly on the average range of the interactions between the
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colloidal particles. Finally, the experimental results have been compared with
the theoretical predictions.

Usually, the field induced aggregation is reversible, i.e., the magnetic par-
ticles return to their original freely monomeric state once the magnetic field is
removed. However, if the bonds between the magnetic particles are reinforced
by additional linking mechanisms then linear structures able to withstand the
field absence are formed. The morphology and the stability of such ”perma-
nent” chains were also studied.

8.1 Conclusions

8.1.1 Light Scattering

In this Thesis, the aggregation behaviour of diluted magnetic fluids has been
monitored using non intrusive light scattering techniques. Unlike imaging
techniques, ligth scattering techniques have an improved statistics and are
performed faster. These advantages turn light scattering into a highly valuable
technique for the development and standardization of materials made from
magnetic filaments.

In our experiments the light was scattered by magnetic particles or linear
aggregates. Hence, we paid special attention to the influence of the magnetic
character of the colloidal particles, the effect of the uniaxial magnetic field,
and the linear geometry of the aggregates on the light scattering experiments.
All the light scattering results were obtained using small magnetic polystyrene
particles of 170 nm in size. The main results are:

• In sufficiently dilute magnetic colloidal systems, and modelling the lin-
ear aggregates as cylindrical structures, light scattering measurements
allow field induced aggregation process to be studied when an uniaxial
magnetic field is present. The average filament length can be extracted
from experimental DLS data by means of adequate theoretical models.
These models account for internal positional fluctuations of the particles
contained within the chains.

• Light scattering methods are also suitable for studying the fractal struc-
ture and stability of the permanent magnetic filaments. The average
filament length can also be extracted from experimental DLS data by
means of adequate theoretical models. These models account for the
coupling between rotational and translational diffusive modes.
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8.1.2 Kinetics of Field Induced Aggregation

We monitored the time evolution of the cluster size distribution and the av-
erage cluster size arising in aggregating magnetic particle dispersions. The
experimental data were used for testing a new proposed aggregation kernel
which is based on Smoluchowski’s approach

kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h),

where ϕc is the aperture angle of the attractive region of the magnetic interac-
tions. The aggregation kernel proposed should be understood as a mean field
approximation based on effective quantities such as the effective interaction
range h and the effective diffusion coefficients Di and Dj . It should be noted
that the only one freely adjustable parameter is the effective interaction range
h. To the best of our knowledge, the previous Equation is the first analytical
expression for an aggregation kernel for field induced aggregation process that
is explicitly expressed in terms of physically meaningful quantities. Hence,
we achieved to describe the effect of the electrostatic interaction between the
magnetic particles, the sedimentation of the linear aggregates, or the mutual
induction of the chain forming particles, theoretically in terms of an effective
interaction range. The main results obtained on this subject were:

Kinetics

• The experimental results confirm that the average chain length increases
monotonously with the exposure time to the external magnetic field. The
time evolution of the average filament size was found to follow a power
law with a kinetic parameter of z′ = 0.66.

• Taking into account the anisotropic character of the field induced ag-
gregation processes, we proposed an aggregation kernel that explicitly
includes the range of the effective inter-particle interaction as a con-
trol parameter and so, depends implicitly on the strength of the applied
magnetic field.

Magnetic Field Strength

• The strength of the applied magnetic field does not have any noticeable
effect on the kinetic parameter z′. Hence, the aggregation mechanism
seems to no depend on the intensity of the dipolar interactions. The
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time evolution of the average filament size can be rescaled such that all
the curves collapse on a single master curve.

• The cluster growth rates, however, depend on the strength of the mag-
netic field, i.e. on the range of the net interaction between the particles.

• The solutions of the Smoluchowski equation based on the proposed ag-
gregation kernel, combined with theoretical models for diffusion and light
scattering by rigid rods, reproduce the measured time evolution of the
average perpendicular aggregate diffusion coefficient quite satisfactorily.

Electrolyte Concentration

• Added electrolyte does not have any noticeable effect on the kinetic
parameters z′ and z. Hence, the aggregation mechanisms do not seem
to depend on the electrolyte concentration. The time evolution of the
average filament size can be rescaled such that all the curves collapse on
a single master curve.

• The cluster growth rates, however, may depend on the amount of elec-
trolyte added, i.e., on the range of the net interaction between the par-
ticles. In this case, the filament growth rate is monotonously related to
the amount of electrolyte added.

• The solutions of the Smoluchowski equation based on the proposed ag-
gregation kernel reproduce the experimental results quite satisfactorily.

Sedimentation

• When we worked with larger magnetic particles the experimental results
were fitted by theoretical predictions acceptably well only during the
first aggregation stages. Hence, we proposed an additional term to the
aggregation kernel that includes also sedimentation effects. In the new
aggregation kernel, the effective range of the inter-particle interaction
remains as the only control parameter. When sedimentation effects are
taken into account, the fits improve especially at long aggregation times.
Then, the kinetic exponent obtained from the fits (z = 0.77) comes quite
close to the experimentally observed value of z = 0.72.

• A relatively high value of z may be a sign of additional aggregation due
to differential settling.
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• The time evolution of the monomer concentration, however, could not be
reproduced satisfactorily. A reason for this finding may be the relatively
large uncertainties that are introduced when processing images of small
particles. Other reasons, however, cannot be excluded.

Mutual Induction

• The mutual induction within the chain-like aggregates has been theoret-
ically modelled. Our model predicts an increase of the average particle
interaction range with the aggregate size. However, this model fails to
overcome the discrepancies previously observed between the time evolu-
tion of the monomer concentration and the theoretical predicitons.

8.1.3 Stability of Magnetic Chains

The main aim of this part was twofold: On the one hand, to design an accurate
experimental protocol that allows the final main length of the linear aggregates
to be controlled by tuning the different interparticle interactions. On the other
hand, to show that the final filament size may be reliably monitored by light
scattering techniques, when the filaments are either aligned due to the action
of the magnetic field, or when they are freely diffusing. We found:

• At high enough electrolyte concentrations, stable linear aggregates re-
main in the sample once the magnetic field is turned off.

• Tuning the relative strength of the magnetic and electric interactions
allows the mean length of the linear aggregates to be controlled at fixed
exposure times to the magnetic field.

• Rate equations are proposed, which allow modeling the time evolution
of the mean number of primary and secondary bonds per chain as a
function of the exposure time.

8.1.4 Structure of Magnetic Chains

The microstructure of magnetorheological fluids plays a significant role for
their bulk rheological properties, and evidently, an adequate description of the
chain morphology is of practical importance for the control of technological
applications. With regard to this topic, we obtained:

• Magnetic particles form standard fractal aggregates when aggregation is
induced by surface charge screening only.
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• The morphology of the permanent field induced aggregates is character-
ized by a fractal dimension close to unity. For large linear aggregates,
however, the cluster fractal dimension increases to approximately 1.25.
This increase is mainly a consequence of the higher degree of internal
flexibility of the larger aggregates. These results have been corroborated
qualitatively via transmission electron microscopy.

• At high electrolyte concentrations linear aggregates continue to grow
when the magnetic field is turned off. More and more branched clusters
are formed now.

• TEM images revealed that magnetic polystyrene particles aggregated
at low and very low electrolyte concentrations contain a considerable
amount of free monomeric particles. The phenomenon that only a frac-
tion of monomeric particles participate in the permanent aggregation
process was named ”selective aggregation”. According to the TEM mi-
crographs, and theoretical energy curves, polydispersities in particle size
and magnetic content could be excluded as a possible explanation for
this behaviour. The experimental results indicated that the origin for
selective aggregation is most likely to be of electric nature. The extended
DLVO theory gives a qualitative explanation for the experimental find-
ings.



Chapter 9

Resumen y Conclusiones

Los fluidos magneto-reológicos son dispersiones de nano-part́ıculas magnéticas
suspendidas en un fluido no magnético. Los momentos magnéticos de las
part́ıculas tienden a alinearse en la dirección del campo aplicado. Aparecen
entonces fuerzas de naturaleza dipolar, atractivas en la dirección paralela al
campo y repulsivas en dirección normal. Debido al carácter anisótropo de
la interacción magnética, las part́ıculas tienden a formar agregados lineales,
paralelos a la dirección del campo magnético externo. Esto ocurre siempre que
la interacción magnética sea lo suficientemente intensa como para superar a
las interacciones que regulan la estabilidad de las part́ıculas. Por otro lado, si
existen ligaduras entre las part́ıculas que constituyen estos agregados lineales,
entonces algunas de estas estructuras lineales son ”permanentes”, es decir, que
mantienen su geometŕıa aun en ausencia del campo magnético externo.

La respuesta al campo externo de las part́ıculas magnéticas, la geometŕıa
lineal de los agregados, y la posibilidad de controlar la longitud de los agrega-
dos permanentes a través del tiempo de exposición al campo magnético avalan
el interés suscitado por estos sistemas y su uso en aplicaciones y en campos
muy diferentes como en la separación celular magnética, la conducción de
fármacos, sistemas de control śısmico, sistemas ópticos birrefrigentes, como
instrumentos adecuados para realizar mezclas a escala micrométrica, en el es-
tudio de las propiedades elásticas de ligandos utilizados en el puenteo coloidal,
etc. Sin embargo, hasta ahora sólo un número relativamente pequeño de es-
tudios experimentales y de simulaciones se han centrado en el estudio de la
formacion de estos agregados lineales. Estos trabajos describen la cinética de
la formación de agregados inducida por el campo aplicando técnicas de escal-
ado, y casi todos coinciden en reseñar la dependencia potencial del tamaño
promedio de los agregados a tiempos largos de agregación. Sin embargo, es
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dif́ıcil encontrar en ellos un estudio detallado de la cinética del proceso y de
la evolución temporal de la distribución del tamaño de los agregados. De
este modo, el proceso de agregación de part́ıculas magnéticas inducido por
un campo externo sigue siendo a d́ıa de hoy un tema abierto de discusión.
Aún no se ha descrito adecuadamente el papel que puede desempeñar en estos
procesos la interacción electrostática entre las part́ıculas, la inducción mutua
entre las part́ıculas, la intensidad del campo magnético externo o los procesos
de sedimentación.

El objetivo principal de esta Tesis ha sido el de profundizar en el estudio de
la agregación inducida en estos fluidos por un campo magnético uniaxial con-
stante, y mejorar el marco teórico que describe la cinética y la estabilidad de
este tipo de procesos. Un mejor entendimiento de la F́ısica que controla la for-
mación de los agregados lineales podŕıa ayudar a optimizar el funcionamiento
de nuevas técnicas basadas en la respuesta de estos fluidos a un campo externo.

Durante la tesis se utilizaron principalmente técnicas de videomicroscoṕıa
y de dispersión de luz. Estás técnicas permitieron estudiar durante el proceso
de agregación las distribuciones de tamaño de los agregados lineales, su tamaño
promedio y su morfoloǵıa. Los resultados experimentales fueron contrastados
por las predicciones teóricas.

9.1 Conclusiones

9.1.1 Dispersión de Luz

Las técnicas de dispersión de luz presentan algunas ventajas con respecto a las
técnicas de video-microscoṕıa: la posibilidad de acceder a sistemas de menor
tamaño, su inocuidad hacia las suspensiones coloidales durante los procesos de
medida, y la obtención de datos con una buena estad́ıstica. Durante nuestros
experimentos de dispersión de luz prestamos una especial atención a la influen-
cia que diferentes aspectos tales como el carácter magnético de las part́ıculas,
la presencia del campo, o la geometŕıa lineal de los agregados, pod́ıan tener
sobre los experimentos. Los principales resultados obtenidos fueron:

• En una suspensión diluida de part́ıculas magnéticas la dispersión de
luz es una técnica adecuada para estudiar tanto la estructura de los
agregados como la cinética del proceso de agregación. El estudio de
las principales caracteŕısticas de los agregados puede hacerse tanto en
presencia como en ausencia del campo magnético externo, siempre que
se utilicen los marcos teóricos adecuados. Estos modelos han de tener en
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cuenta los posibles acoplamientos entre los modos difusivos de rotación
y de traslación, la posible fluctuación de las part́ıculas dentro de los
agregados, y la orientación del campo aplicado con respecto al plano de
dispersión.

9.1.2 Cinética de Agregación Inducida por un Campo

En el marco de la ecuación de Smoluchowski se ha propuesto el siguiente kernel
de agregación

kBdip
ij = 4π(1 − cosϕc)(Di + Dj)(ai + aj + h),

en donde ϕc es el ángulo de apertura de la región de atracción de la interacción
dipolar magnética. Este kernel de agregación ha de entenderse como una
aproximación de campo medio, descrito en función de magnitudes efectivas:
el alcance promedio de la interacción h, como único parámetro libre de ajuste,
y los coeficientes de difusión efectivos de traslación de los agregados Di y Dj .
La resolución de la ecuación de Smoluchowski permitió comparar las predic-
ciones teóricas con los valores experimentales. Hasta donde nosotros sabemos,
no existen trabajos anteriores que contrasten distribuciones de tamaños de
los agregados lineales con las predicciones teóricas. Además el anterior es el
primer kernel de agregación que describe la formación de agregados inducidos
por un campo externo, y que está expresado en términos de magnitudes con
significado f́ısico. Los principales resultados han sido:

Cinética

• Los datos obtenidos confirman que el tamaño promedio de los agrega-
dos lineales crece monótonamente con el tiempo. A tiempos largo la
evolución temporal del tamaño promedio de los agregados siguió una ley
de potencias con un exponente cinético z′ = 0.66.

Intensidad del Campo Magnético y Concentración de Electrolito

• Ni la intensidad del campo externo aplicado ni la concentración de elec-
trolito presentaron ningún efecto apreciable sobre el parámetro cinético
z′. El mecanismo de agregación parece no depender de la intensidad
del campo aplicado, ni de la concentración de eletrolito añadido. El
tiempo de agregación pudo ser escalado de modo que todas las curvas
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de evolución temporal del tamaño de los agregados lineales, obtenidas
para los diferentes valores del campo aplicado y del electrolito añadido,
coincidieran en una única curva maestra.

• El ritmo de crecimiento de los agregados lineales, sin embargo, śı de-
pendió de la intensidad del campo aplicado, es decir, del alcance de la
interacción que sufren entre śı las part́ıculas magnéticas.

• Teniendo en cuenta el carácter anisótropo de la interacción dipolar, pro-
pusimos un kernel de agregación que incluye expĺıcitamente el alcance
efectivo de las interacciones como parámetro de ajuste, y que depende
impĺıcitamente de la intensidad del campo aplicado y de la concentración
del electrolito. Las correspondientes soluciones de la ecuación de Smolu-
chowski reprodujeron adecuadamente la evolución temporal del tamaño
medio de los agregados lineales obtenido mediante técnicas de dispersión
de luz.

• La concentración de electrolito no presentó ningún efecto apreciable so-
bre el valor del parámetro cinético z′. De este modo, el mecanismo de
agregación pareció no tener ningún efecto sobre el mecanismo de agre-
gación, que a su vez parece estar determinado por la interacción dipolar.
El tiempo de agregación pudo ser escalado de modo que todas las curvas
de evolución temporal del tamaño promedio de los agregados lineales,
obtenidas a diferentes concentraciones de electrolito, colapsaran en una
única curva maestra.

• En el caso de las part́ıculas de Śılice, el ritmo de crecimiento de los
agregados lineales no dependió de la concentración del electrolito.

• En el caso de las part́ıculas de poliestireno, sin embargo, el ritmo de crec-
imiento de los agregados lineales dependió de la concentración del elec-
trolito. Para estas part́ıculas, de menor tamaño, la interacción magnética
es comparable a la repulsión electrostática. De este modo, la concen-
tración de electrolito afecta al alcance de la interacción neta que sufren
entre śı las part́ıculas magnéticas, y el tamaño promedio de las cade-
nas crece con la concentración de electrolito para un mismo tiempo de
exposición al campo magnético.

• Teniendo en cuenta el carácter anisótropo de la interacción dipolar,
propusimos un kernel de agregación que incluye expĺıcitamente el al-
cance efectivo de las interacciones como parámetro de ajuste, por lo
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que depende impĺıcitamente de la concentración del electrolito. Las cor-
respondientes soluciones de la ecuación de Smoluchowski reprodujeron
adecuadamente la evolución temporal del tamaño medio de los agrega-
dos lineales formados por part́ıculas de poliestireno. En el caso de las
part́ıculas de śılice, las predicciones teóricas únicamente reprodujeron
los valores experimentales durante los primeros estad́ıos del proceso de
agregación.

Sedimentación

• En los experimentos de agregación realizados con las part́ıculas de śılice,
el mecanismo de agregación se vio influido por la sedimentación de las
part́ıculas y los agregados. Fue entonces necesario introducir un término
de agregación adicional que incluyera el efecto que la sedimentación de
las part́ıculas tiene sobre el proceso de agregación. El alcance efectivo
de la interacción entre las part́ıculas se mantuvo como único parámetro
de ajuste.

• Cuando los efectos de la sedimentación en el proceso de agregación fueron
incluidos en el kernel de agregación el ajuste teórico a los valores experi-
mentales mejoró apreciablemente, especialmente para tiempos largos de
agregación. El exponente cinético z = 0.77 predicho teóricamente se
acercó bastante al valor experimental z = 0.72.

• Un valor elevado del parámetro cinético z puede ser señal de la influencia
del proceso de sedimentación en el mecanismo de agregación inducido por
el campo magnético.

• La evolución temporal de la concentración de los monómeros no pudo
reproducirse satisfactoriamente por las predicciones teóricas. Pensamos
que las dificultades encontradas durante el análisis de las imágenes de
videomicroscoṕıa podŕıan explicar esta discrepancia. Sin embargo otras
razones, con un mayor significado f́ısico, no pueden ser descartadas.

Inducción Mutua

• Finalmente, intentamos reproducir el efecto que la inducción mutua entre
las part́ıculas que conforman los agregados lineales pudiera tener sobre
el proceso de agregación. La inducción mutua aumenta el alcance de
la interacción entre los agregados conforme aumenta el tamaño de los
mismos. Sin embargo, el modelo propuesto para incluir esta dependencia
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del alcance con el tamaño de los agregados no consiguió explicar las
discrepancias anteriormente observadas en la evolución temporal de la
población de monómeros.

9.1.3 Estabilidad de Cadenas Magnéticas

Recientemente se ha observado que algunos agregados lineales son capaces de
soportar la ausencia del campo magnético. La agregación permanente es obser-
vada si la agregación inducida por campo tiene lugar en un mı́nimo primario de
enerǵıa, donde las fuerzas de van der Waals de corto alcance son responsables
de la adhesión irreversible de las part́ıculas que conforman el agregado. Estas
estructuras inducidas por un campo externo, y que a partir de ahora denom-
inaremos ”cadenas permanentes”, también se obtienen cuando la agregación
irreversible es debida al puenteo de poĺımeros absorbidos en la superficie de
las part́ıculas. La posibilidad de controlar la geometŕıa y el tamaño de los
agregados se presenta como un primer acercamiento hacia la construcción y el
control de estructuras y ”arquitecturas” coloidales más complejas.

Hasta ahora las caracteŕısticas principales de las cadenas permanentes (su
geometŕıa, flexibilidad y tamaño) se han estudiado principalmente mediante
técnicas de video-microscoṕıa. Sin embargo, es dif́ıcil encontrar trabajos en
los que estas caracteŕısticas sean estudiadas mediante técnicas de dispersión
de luz. Se ha comprobado que estás técnicas también permiten caracterizar,
en presencia y en ausencia del campo aplicado, tanto la morfoloǵıa de los
agregados formados como el tamaño medio de los mismos.

Otro de los objetivos de la Tesis fue el de diseñar un protocolo experimental
que permitiera controlar el tamaño promedio de los agregados sin más que
variar la relación entre las diferentes interacciones y el tiempo de exposición
al campo. En esta dirección hemos obtenido los resultados siguientes:

• A concentraciones suficientemente elevadas de electrolito, al menos al-
gunos de los agregados lineales formados en presencia del campo fueron
capaces de subsistir una vez que el campo magnético desaparece.

• Las cadenas formadas permanecieron unidas aun en ausencia de campo,
de modo que pudo controlarse el tamaño de los agregados sin más que
variar el tiempo de aplicación del campo magnético. La relación entre las
interacciones electrostáticas y magnéticas también influyó en el tamaño
medio de los agregados lineales permanentes.

• Se ha propuesto un modelo simple que permitie predecir el tamaño de
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los agregados lineales permanentes para diferentes tiempos de exposición
al campo.

9.1.4 Estructura de Cadenas Magnéticas

Un análisis detallado de la agregación coloidal ha de tener en cuenta no sólo
la cinética sino también la morfoloǵıa de los agregados. La morfoloǵıa suele
describirse por medio de la dimensión fractal, entendiendo ésta como una
medida de cómo llenan las part́ıculas el espacio tridimensional. Las principales
conclusiones a destacar fueron:

• Al añadir electrolito, y en ausencia de campo, los agregados formados
por las part́ıculas coloidales magnéticas presentaron la clásica geometŕıa
fractal ampliamente descrita en la literatura para procesos de agregación
controlados por difusión.

• La morfoloǵıa de los agregados lineales formados en presencia de campo
fue caracterizada por una dimension fractal cercana a la unidad. Para
agregados grandes, sin embargo, la dimensión fractal aumentó hasta un
valor próximo a 1.2. Este aumento observado es consecuencia del mayor
grado de ”flexibilidad” observada en los agregados mayores. Esta pre-
sunción fue cualitativamente corroborada por las fotos de microscoṕıa
electrónica.

• Las imágenes de microscoṕıa electrónica, obtenidas a concentraciones ba-
jas de electrolito, presentaron una cantidad considerable de monómeros
libres. Este fenómeno ha sido denominado ”agregación selectiva”. En
las imágenes de TEM no se observó que las part́ıculas que partici-
pan en la agregación selectiva sean las más grandes o las de mayor
contenido magnético. La influencia de la concentración del electrolito
parece señalar que el origen de este fenómeno es de naturaleza eléctrica.
La teoŕıa DLVO extendida proporcionó una explicación cualitativa del
fenómeno.
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Appendix A

Table of Magnetic Units

207



20
8

Quantity Symbol Gaussian Conversion factor,Ca SIb

Magnetic flux φ maxwell (Mx) 10−8 weber(Wb)
Magnetic flux density B gauss (G) 10−4 tesla (T)
Magnetic potential difference U, F gilbert (Gb) 10/4π ampere (A)
Magnetic field strength H oersted (Oe) 103/4π A/mc

(Volume) magnetizationd M emu/cm3e 103 A/m
(Volume) magnetization 4πM G 103/4π A/m
Magnetic polarization J emu/cm3 4π10−4 T
(Mass) magnetization M emu/g 1 A·m2/kg
Magnetic moment m emu 10−3 A · m2

Magnetic dipole moment j emu 4π10−10 Wb · m
(Volume) susceptibility χ, κ dimensionless 4π dimensionless
(Mass) susceptibility χp, κp cm3/g 4π10−3 m3/kg
(Molar) susceptibility χmol, κmol cm3/mol 4π10−6 m3/mol
Permeability µ dimensionless 4π10−7 Wb/(A · m)
Relative permeabilityf µr not defined dimensionless
(Volume) energy density W erg/cm3 10−1 J/m3

Demagnetization factor D, N dimensionless 1/4π dimensionless

aMultiply a number in Gaussian units by C to convert it to SI (e.g. 1G × 10−4T/G = 10−4T ).
bSI is based in the definition B = µ0(H + M), where µ0 = 4π10−7N/A2.
cA/m was often expressed as ”ampere-turn per meter” when used field strength
dMagnetic moment per unit volume.
eThe designation emu is not a unit.
fµr = µ/µ0 = 1 + σ, all in SI



Appendix B

INSPACE

InSPACE (acronym for Investigating the Structure of Paramagnetic Aggre-
gates From Colloidal Emulsions) was a microgravity fluid physics experiment
operated on the International Space Station (ISS), in the Microgravity Science
Glovebox from late March 2003 through early July 2003 (Figure B.1).

Figure B.1: International Space Station where the InSpace experiments were
performed.

InSPACE provided fundamental data for the stability of magnetic fluids.
The goal of InSPACE was to determine the three-dimensional structure of a
magneto-rheological emulsion in a pulsed magnetic field in absence of sedimen-
tation effects. The crew installed a coil onto an optics assembly that included
two cameras for imaging the samples from a straight-on and right-angle view
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during test runs. A pulsed magnetic field was used to mimic the forces ap-
plied to these fluids in real applications, such as vibration damping systems.
A pulsed field also tends to produce thick intricate structures with different
properties than structures produced by a constant magnetic field.

Figure B.2: The experiments, performed in the absence of gravity, show ag-
gregate shapes that are more extended and diverse than those observed on
ground.

The experiment were performed using video-microscopy techniques similar
to the ones described in the Section 5.2.2. The goal was to study the effect
of varying magnetic field strength, pulse frequency, and particle size on the
equilibrium microstructures. The video was distributed among the scientists at
Massachusetts Institute of Technology and the Telescience Center at NASA’s
Glenn Research Center in Cleveland, Ohio, so that the scientists and engineers
could observe the microstructures as they form and change. The principal
investigator for InSPACE was Professor Alice P. Gast of the Massachusetts
Institute of Technology (MIT). As a result, Dr. Gast et al. have reported on
the formation of aggregate shapes that are more extended and diverse than
those observed on the ground (Figure B.2). The data from the experiment
should and will be used to test the theoretical models of the structure of
suspensions of small particles in applied external fields. As far as we know,
however, no results have been published so far1.

1More information can be found in
http://spaceflightsystems.grc.nasa.gov/Advanced/ISSResearch/MSG/InSPACE/



Appendix C

Magnetotactic Bacteria

Magnetotactic bacteria are a special class of bacteria that orient themselves
along the magnetic field lines of the Earth’s magnetic field. Hence, magne-
totactic bacteria tend to move along the geomagnetic field towards favorable
habitats. This behaviour is known as magnetotaxis. Quite possibly the evo-
lutionary advantage of possessing a system of magnetosomes is related to the
ability of efficiently diving within a zone of chemical gradients by simplifying
a potential three dimensional search for more favorable conditions to a single
dimension. If a bacterium restricts its movement to forwards and backwards
directions in its search for nutrient, it will tend to find nutrient rich areas at
the same speed or often faster than other bacteria that search both forwards
and backwards, to the left and to the right, up-wards and down-wards1.

1More information can be found in http://en.wikipedia.org/wiki/Magnetotacticbacteria
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Figure C.1: Different species of magnetotactic bacteria. The small aligned
magnetosomes appear as dark spot in the images.

Figure C.2: Remains of magnetosomes were found in the Martian meteorite

ALH84001. A debate whether this magnetosomes are really fossilized lifeforms
is still on going.

The sensitivity of magnetotactic bacteria to the Earth’s magnetic field
arises from magnetosomes, which are magnetic colloidal particles enclosed in
a membrane. In most cases magnetotactic bacteria synthesize their magnetic
particles forming linear aggregates, as is clearly visible in the microscopic
image (Figure C.1). The resulting net magnetic dipole moment of the cell
is sufficient to orientate the cell and overcome brownian motion. Individual
magnetite crystals in magnetotatic bacteria are of a size between 35 and 120
nm, that is, large enough to have a permanent magnetic dipole and at the
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same time small enough to remain a single magnetic domain. Bacterial mag-
netosome particles, unlike those produced chemically, have a consistent shape,
a narrow size distribution, and a membrane coating consisting of lipids and
proteins [144].

On August 6th, 1996 magnetic bacteria became newsworthy. Even prompt-
ing U.S. President Bill Clinton to make a formal televised announcement to
mark the event. It was announced that Martian meteorite ALH84001 might
contain traces of magnetotactic bacteria. This was published in an article in
Science by Dr. David McKay et al. of NASA [145]. Under the scanning elec-
tron microscope magnetic structures were revealed that may be the remains
of magnetosomes. The magnetosomes found on ALH 84001 are 20-100 nm
in diameter, similar in size to those usually observed in magnetotactic bacte-
ria (Figure C.2). If the structures were really fossilized lifeforms, they would
be the first evidence of the existence of extraterrestrial life. Several tests for
organic material have been performed on the meteorite and amino acids and
polycyclic aromatic hydrocarbons have been found. However, such claims are
been strongly questioned, and the debate whether the organic molecules could
have been created by nonbiological processes or are due to contamination from
the contact with Antarctic ice is still on going.
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netic field in the formation of magnetite particles via two precipitation
methods. Langmuir, 23(7):3581, 2007.

[33] R. Fernandez-Pacheco, M. Arruebo, C. Marquina, R. Ibarra, J. Arbio,
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En lo de citar en los márgenes los libros y autores de donde sacárades las

sentencias y dichos que pusiérades en vuestra historia, no hay más sino

hacer, de manera que venga al pelo, algunas sentencias o latines que vos

sepáis de memoria, o a lo menos que cuesten poco buscalle... y cuando no

sirva de otra cosa, por lo menos servirá aquel largo catálogo de autores a dar

de improviso autoridad al libro.

Miguel de Cervantes, de Don Quijote de la Mancha.
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