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Introducción General y Objetivos 
 
 

Los cambios en la abundancia y composición de la comunidad fitoplanctónica en 
lagos y embalses pueden afectar seriamente la calidad del agua y, en el caso de que el 
recurso que almacenan se destine a abastecimiento, comprometer la eficacia de los 
procesos de tratamiento aplicados en las plantas de potabilización. Por ejemplo, 
episodios de proliferación de algas azules en embalses para abastecimiento de agua 
potable pueden provocar la obstrucción de filtros, generar problemas de sabor y olor del 
agua e incluso inducir problemas de salud como consecuencia de la producción de 
substancias toxicas (Guven and Howard, 2006; Margalef, 1983). 

La composición de las comunidades fitoplanctonicas y la abundancia relativa de 
las especies que las componen están sujetas a cambios continuos a diferentes escalas 
temporales. Estas escalas varían desde frecuentes reorganizaciones de la comunidad 
existente a escalas diarias o sub-diarias, pasando por cambios estacionales que 
acompañan a las fluctuaciones cíclicas de insolación y temperatura (sucesión), hasta 
llegar a cambios a largo plazo donde patrones cíclicos recurrentes se ven remplazados 
por otros (Reynolds, 1984).  Este tipo de patrones, más bien específicos de grupos de 
especies que de especies particulares, ocurren en diferentes lagos y embalses (Evans, 
1988; Margalef, 1983) y sugieren que tiene que existir un mecanismo común en juego.  
 

En el campo de la Ecología se han dedicado considerables esfuerzos a 
comprender y predecir los mecanismos que subyacen los cambios en la comunicad 
fitoplanctónica (Morris, 1980; Reynolds, 1984; Sommer, 1988; Reynolds, 19979. 
Sommer et al., (1986) propusieron que la composición de la comunidad fitoplanctónica 
depende no solo de la estrategia de las especies o de las adaptaciones fisiológicas de los 
organismos encaminadas a explotar los recursos del hábitat (factores endógenos), sino 
también de los cambios en las condiciones ambientales que alternan las ventajas 
competitivas entre especies (factores exógenos).  Si fueran dirigidos sólo por procesos 
endógenos, los cambios en la comunidad fitoplanctónica terminarían teóricamente en un 
clímax estable o estado de equilibrio, en el cual la biodiversidad sería mínima y la 
biomasa total sería máxima (Tansley, 1939). Por lo tanto, cualquier cambio en la 
comunidad fitoplanctónica, tanto si está caracterizada a nivel de especies como a nivel 
de grupos de especies con la misma sensibilidad a los cambios ambiéntales (grupos 
funcionales, Reynolds, 1997) debería ser el resultado de cambios en las condiciones 
ambientales. En particular, estos cambios están asociados a variaciones en las 
limitaciones físicas (clima de luz) y químicas (disponibilidad de nutrientes) para el 
crecimiento algal (Margalef, 1997; Reynolds, 1997; Naselli-Flores & Barone, 2000). 
Por un lado, el clima lumínico experimentado por las células planctónicas está 
relacionado con la mezcla turbulenta, que determina el tiempo de residencia de las 
micro-algas en la capa eufótica (MacIntyre et al., 2000). Por otro lado, la distribución y 
disponibilidad de nutrientes en la capa eufótica es el resultado de procesos de transporte 
que interactúan con los procesos biológicos. Estos cambios en las condiciones 
ambientales experimentados por las algas están estrictamente ligados a las fuerzas 
físicas (hidráulica y meteorológica) que controlan los procesos de mezcla y transporte 
en el lago, y tienen la tendencia, dada la variedad de adaptaciones ambientales del 
fitoplancton, a promover el crecimiento de algunos grupos (o especies), desfavoreciendo 
otros (Huisman et al., 1999; Passarge et al., 2006; Litchman and Klausmeier, 2001). Por 
lo tanto, el conocimiento y la predictabilidad de la composición de las comunidades 
planctónicas y su evolución se ha de fundar en el conocimiento de los procesos físicos 
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de transporte y mezcla que determinan la turbulencia, la distribución de nutrientes y la 
penetración de la luz en la columna de agua. 

De acuerdo con esta percepción de sucesión en ecosistemas acuáticos, 
ampliamente aceptada, los modelos matemáticos empleados para simular la evolución 
de las comunidades fitoplanctonicas están basados en una descripción apropiada de los 
procesos físicos y de su relación con el crecimiento algal. Estos modelos matemáticos 
son un valioso instrumento heurístico de investigación para responder a cuestiones 
ecológicas, y también han recibido considerable atención en el ámbito de la gestión de 
la calidad del agua, principalmente en su vertiente predictiva. A pesar del considerable 
interés que han levantado los modelos de sucesión entre ecólogos e ingenieros, se han 
realizado pocos análisis focalizados específicamente en estos tipos de modelos. 
Reynolds (1999) es uno de los pocos autores que han revisado los planteamientos 
utilizados por los modelos de sucesión del plancton en los lagos. Sin embargo, éste 
autor se centró en la posibilidad de asistir en la toma de decisiones para la gestión. Su 
trabajo no discute los problemas singulares de los modelos de sucesión provocados por 
el hecho de que simulan de forma explícita las interacciones no lineares entre múltiples 
grupos de fitoplancton. 
 

El primer objetivo de esta tesis es revisar el estado del arte, los éxitos y los 

problemas encontrados en la modelación de la  sucesión de comunidades 

fitoplanctonicas en lagos y embalses. Primero analizamos los diferentes enfoques 

utilizados para simular los cambios en los componentes físicos, químicos y biológicos 

de los  modelos de sucesión fitoplanctónica. Examinamos las metodologías de 

evaluación adoptados por diferentes modelos de sucesión y su habilidad  predictiva. El 

objetivo de  este trabajo fue  definir un enfoque valido para desarrollar y testar un 

modelo de sucesión para el embalse de El Gergal, que pueda ser utilizado para (1) 

propósitos de investigación y (2) perdición de calidad de agua.   

 
Los modelos utilizados para comprender y predecir los cambios en la sucesión 

de las comunidades fitoplanctonicas (Griffin et al., 2001; Kuo et al., 2006) están 
basados en un enfoque funcional o mecanicista en el cual un conjunto de ecuaciones 
diferenciales, derivadas de los principios físicos de conservación de masa, momento y 
energía, representan la evolución de los diferentes elementos del ecosistema (Hamilton 
and Schaldow, 1997; Omlin et al., 2001; Reynolds et al., 2001; Arhonditsis and Brett, 
2005). Los modelos mecanicistas típicamente contienen un número elevado de 
parámetros cuyos valores son específicos del sistema y en muchas ocasiones son 
desconocidos cuando se define por primera vez un problema de predicción del 
comportamiento de un ecosistema. La combinación especifica de parámetros que mejor 
describen las tasas de los procesos en un ecosistema puede ser seleccionada a través de 
un largo y complejo proceso de experimentación en situ (see Gal et al., 2009) o, 
alternativamente, mediante calibración. Éste último es el método mas comúnmente 
utilizado en la modelación de la calidad del agua (Markensten & Pierson, 2007; Omlin 
et al., 2001; Rose et al., 2007; Mieleitner and Reichert, 2008). Es más económico que la 
experimentación pero puede ser largo dependiendo del coste computacional del modelo 
y del número de parámetros a calibrar. Por eso, cualquier avance en las estrategias de 
calibración para modelos de sucesión contribuirá a generalizar su uso para la gestión de 
la calidad del agua. Las estrategias de calibración automáticas pueden ser una 
alternativa válida (Eckardt & Arnold, 2001) a las calibraciones tradicionales basadas en 
el principio de prueba-error, eficientes solamente calibrando modelos con un número 
limitado de parámetros (Tanentzap et al., 2007; Kuo et al., 2006; Bonnet and Poulin, 
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2004) o cuando la mayoría de los valores de los parámetros han sido previamente 
aproximados por vía experimental (Hillmer et al., 2008; Gal et al., 2009).  Las 
calibraciones automáticas están diseñadas para buscar la combinación de parámetros 
que minimiza una función objetivo, que representa la norma de la diferencia entre 
variables observadas y modeladas, y se dividen en dos clases: optimizaciones de 
gradiente y globales. Los métodos de gradiente han sido ampliamente utilizados en la 
calibración de modelos de distinta complejidad (Omlin et al., 2001; Rose et al., 2007; 
Mieleitner and Reichert 2008), pero pueden converger en un mínimo local de la función 
objetivo y no en el mínimo global, comprometiendo la efectividad del método en 
modelos con un número elevado de parámetros. Las técnicas de optimización global 
evitan la convergencia en mínimos locales, introduciendo en el proceso de búsqueda un 
cierto grado de aleatoriedad (Klepper and Hendrix, 1994; Hansen et al., 2003; Duan et 
al., 1992; Eckardt & Arnold, 2001; Skahill & Doherty, 2006). Estos métodos de 
optimización global se han utilizado ampliamente en la calibración de modelos 
hidrológicos complejos (Tonkin and Doherty, 2005; Skahill & Doherty, 2006; Marcé et 
al., 2008; Gupta et al., 1998), pero pocos ejercicios de calibración global se han 
aplicado a modelos de calidad de agua (Mulligan et al., 1998; Ostfeld and Salomons, 
2005; Goktas el al., 2007). Además, la aplicabilidad de estas técnicas a la calibración de 
modelos de sucesión del fitoplancton todavía no ha sido indagada en la literatura. 

 
El segundo objetivo general de esta tesis es proponer y testar una estrategia 

para calibrar un modelo determinista físico-biológico con alto número de parámetros  

para el embalse de El Gergal, basada en un algoritmo que combina calibración de 

gradiente y global. Queremos verificar si la integración de estrategias de calibración 

automáticas es un enfoque de utilidad para modelos ecológicos complejos. 

 
El modelo calibrado de El Gergal se ha empleado para analizar el rol de las 

salidas de agua sobre el control de la sucesión fitoplanctónica. Hoyer et al. (2009) 
identificaron cambios bruscos en una sucesión general de grupos funcionales que 
coincidían con periodos de vientos fuertes o con cambios en tasas de salidas de aguas, y 
concluyeron que las extracciones de agua eran, probablemente, el factor externo más 
importante en el control de cambios de composición y abundancia de la comunidad 
planctónica en embalses mediterráneos. Su conclusión concuerda con la de Naselli 
Flores (2000), que estudió veintiún embalses de Sicilia que mostraban diferentes 
estados tróficos y concluyó que la abundancia y composición del fitoplancton está más 
influenciada por el régimen hidráulico que por la disponibilidad de nutrientes. Los 
estudios sobre la relación entre sucesión fitoplanctónica y salidas de agua son escasos 
en la bibliografía. Además, los que se han publicado son, en algunos casos, 
contradictorios (Barbiero et al., 1997; Hoyer et al. 2009). Ninguno de ellos ha 
investigado los mecanismos por los cuales las salidas de agua a diferentes niveles 
pueden afectar a la sucesión. 

 
El tercer objetivo general de esta tesis es comprender los mecanismos por los 

cuales las salidas de agua a diferentes profundidades  pueden inducir cambios en la 

composición de las comunidades fitoplanctónicas. El puntote parida fue la hipótesis de 

que cambios en los niveles de salida pueden afectar de forma distinta las condiciones 

ambientales, y favorecer el desarrollo de algunas especies y  perjudicar a otras, como 

consecuencia de sus diferentes respuestas  a las modificaciones  ambientales. Se ha 

utilizado un modelo conceptual y simplificado para evaluar los cambios en el clima de 

luz y temperatura inducidos por extracciones de agua a diferente nivel, y los 
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consecuentes cambios en grupos de fitoplancton dependiendo de su respuesta 

específica. Así mismo, se han utilizado simulaciones obtenidas con un modelo 

unidimensional  hidrodinámico-ecológico (DYRESM-CAEDYM) calibrado para el 

embalse de El Gergal  para valorar los efectos del nivel de salida de agua sobre dos 

grupos de algas con diferentes adaptaciones a las condiciones ambientales. 

 
 
Observaciones sobre la adquisición de datos y la estructura de la tesis 
 
 Durante el periodo de investigación se desarrolló un estudio preliminar en el 
embalse de Béznar (Granada). Datos físicos, químicos y biológicos fueron recopilados 
durante el año 2005 para (1) la elaboración de un modelo del embalse de Béznar 
utilizando el modelo DYRESM-CAEDYM, y (2) para analizar las fuentes de 
incertidumbre en la predicción de variables físicas y ecológicas. Los resultados de este 
estudio se presentaron en 2006 en la discusión del D.E.A. (Diploma de Estudios 
Avanzados) titulada “A physical-ecological model of lake Beznar ecosystem; 
Porpagation of uncertainty from physical to population dynamic predictions”, y no están 
incluidos en este documento. 
 Mi trabajo ha sido financiado por el Ministerio Español de Educación y Ciencia, 
a través el proyecto: CGL2005-04070/HID Coupling hydrodynamics and plankton: 

impact of exogenus perturbations in a mesotrophic reservoir in Southern Spain (El 

Gergal, Sevilla).  La Empresa Metropolitana de Abastecimiento y Saneamiento de 
Aguas de Sevilla (EMASESA) fue uno de los participantes claves en este proyecto y 
nos proporcionó su base de datos, resultado de su plan rutinario de supervisión de la 
calidad del agua. Parte de los datos utilizados han sido recopilados por investigadores 
de las Universidades de Granada, Málaga y Jaén, durante algunos experimentos de 
campo en El Gergal en 2007 y 2008. El embalse de El Gergal, por sus características 
hidro-morfológicas, se ha considerado aquí como un ejemplo prototipo de los embalses 
mediterráneos tipo cañón que ocupan valles estrechos y profundos. El embalse está 
gestionado para suministrar agua de la mejor calidad posible a una planta de tratamiento 
para el suministro de agua potable a la ciudad de Sevilla. El desarrollo y la 
implementación de un modelo ecológico para El Gergal, que pueda ser utilizado de 
forma rutinaria para predicciones de calidad de agua es el objetivo final de la 
investigación empezada con el proyecto CGL2005-04070/HID. Este trabajo representa 
el primer paso en esta dirección. 

Un primer periodo de investigación se ha dedicado a la calibración del modelo 
ecológico y a la simulación de la biomasa total del fitoplancton en El Gergal en los años 
2001 a 2005. Durante este periodo no estaban disponibles datos sobre concentración de 
clorofila-a de distintos grupos de algas, necesarios para la calibración de un modelo de 
sucesión. Los resultados para estos años no se han incluido en la tesis, que está centrada 
en la sucesión de fitoplancton, pero se han presentado en una tesis de Master en 
Hidráulica Ambiental en el 2007, titulada “Modelling thermal structure and 
phytoplankton dynamics in El Gergal Reservoir (Seville, Spain)”. 

Este documento está organizado en capítulos independientes. Cada uno es un 
articulo que ha sido enviado o será enviado próximamente a diferentes revistas 
científicas para su publicación. El primer capitulo ha sido publicado en “Environmental 
Reviews”, el segundo está siendo revisado para “Environmental Modeling and 
Software” y el tercero se enviará a “Ecological Modelling”. 
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General Introduction and Aims 
 
 

The changes in abundance and composition experienced by phytoplankton 
communities in lakes and reservoirs in the course of a year may severely affect the 
quality of the water and even compromise the effectiveness of treatment processes 
undertaken in downstream water treatment plants. For example, the occurrence of blue-
green algal blooms in water supply reservoirs may lead to severe clogging problems 
during the filtering operations; or it may lead to taste, odor and even health problems as 
a consequence of several species and stocks of blue green-algae producing toxic 
substances (Guven and Howard, 2006; Margalef, 1983). The composition of 
phytoplankton communities and the relative abundances of component species undergo 
continuous changes on varying scales.  These scales range from frequent 
reorganizations of existing community structures, through seasonal compositional 
changes that accompany cyclical fluctuations in insolation and temperature 
(succession), to longer-term floristic changes, where one recognizable recurrent cycle is 
supplanted by another (Reynolds, 1984).  Similar temporal patterns, specific to species 
groups rather than individual species, tend to occur in different lake and reservoir 
systems (Evans, 1988; Margalef, 1983) and suggest that there must be a common 
mechanism at play.   

Considerable efforts have been devoted in ecology to understand these 
mechanisms underlying phytoplankton community changes (Morris, 1980; Reynolds, 
1984; Sommer, 1988; Reynolds, 1997). Sommer et al. (1986) proposed that the 
assemblages of species in a given phytoplankton community depends on the species 
strategies or physiological adaptations to exploit habitat resources (autogenic factors), 
but, also on changes in the environment conditions that alter the competitive advantages 
among different species (allogenic factors). If it were only driven by autogenic 
processes, the changes in the phytoplankton community would theoretically culminate 
in a stable climax  or equilibrium state, in which biodiversity would be minimal and the 
overall biomass would be maximized (Tansely, 1939). Hence, any changes in 
abundance and composition experienced by any given phytoplankton community, 
whether they are characterized at species level or in terms of assemblages of species 
with similar tolerance to environmental conditions (functional groups, Reynolds, 1997), 
should be a result of changes in the environmental conditions. In particular, they are 
associated to changes in the physical (light climate) and the chemical (nutrient 
availability) constraints for algal growth (Margalef, 1997; Reynolds, 1997; Naselli-
Flores & Barone, 2000). The light environment experienced by phytoplankton cells is, 
on one hand, are related to turbulent mixing, which determines the residence time of 
micro-algae within the euphotic layer (MacIntyre et al., 2000). On the other hand, the 
distribution and bioavailability of nutrients in the euphotic layer is the result of transport 
processes interacting with biological phenomena. These changes in the physical and 
chemical environment experienced by algal cells are, in turn, tightly linked to the 
physical (hydraulic and meteorological) forcing driving mixing and transport processes 
within the lake, and they tend to promote the growth of certain groups or species in 
detriment of others, given the variety of adaptations of phytoplankton to the 
environment (Huisman et al., 1999; Passarge et al., 2006; Litchman and Klausmeier, 
2001). Hence, the knowledge and predictability of the composition of phytoplankton 
communities and its evolution needs to be grounded on the appropriate knowledge and 
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prediction of the physical processes of transport and mixing, which determine 
turbulence levels, nutrient distribution and light penetration in the water column.  

Consistent with this widely accepted perception of succession in aquatic 
ecosystems, mathematical models used to simulate the evolution of phytoplankton 
communities are based on the appropriate description of the physical processes and their 
relationship with algal growth. Not only these mathematical models are a valuable 
research tool to answer ecological questions, but they have also received considerable 
attention in the field of water quality management, mainly for their predictive abilities. 
In spite of the considerable interest drawn by succession models among ecologists and 
engineers, few works have been published that specifically focus on the analysis of this 
type of models. Reynolds (1999) is one of the few authors that have reviewed 
approaches used to model phytoplankton succession in lakes. However, he focused on 
the usefulness to assist in management decisions. He did not discuss the unique 
problems of succession models that arise from the fact that they simulate explicitly the 
non-linear interactions existing among multiple phytoplankton groups.  

 
 The first general aim of this thesis is to review the latest developments, 

achievements and problems encountered in the modeling succession of phytoplankton 

communities in lakes and reservoirs.  We first reviewed the different approaches used to 

model and simulate the changes in the physical, chemical, and biological components of 

phytoplankton succession model. We examined the type of model evaluation adopted by 

different succession models and their ability of prediction. My goal in this work was to 

define a valid approach to develop and test a succession model of El Gergal reservoir, 

which could be used both for (1) research purposes and (2) water quality prediction.  

 
Models used to predict and understand successional changes in the 

phytoplankton communities (Griffin et al., 2001; Kuo et al., 2006) are based on a 
functional or mechanistic approach to modeling natural processes, in which differential 
equations derived from the physical principles of mass, energy and/or momentum 
conservation are used to represent the evolution of the different components of the 
ecosystems (Hamilton and Schaldow, 1997; Omlin et al., 2001; Reynolds et al., 2001; 
Arhonditsis and Brett, 2005). Mechanistic models typically contain a large number of 
parameters, with values that are site-specific and typically unknown when modelers are 
first posed with the problem of predicting the behavior of a particular ecosystem. The 
particular set of parameter values that best describes the process rates in any given 
ecosystem can be selected either through a time-consuming and resource intensive 
process involving in-situ experimentation (see Gal et al., 2009) or, alternatively, through 
calibration. The latter is, by large, the most common method adopted in water quality 
modeling (Markensten & Pierson, 2007; Omlin et al., 2001; Rose et al., 2007; 
Mieleitner and Reichert, 2008). It is more economical than experimentation, but it can 
be very time consuming depending on the computational cost of the model and on the 
number of parameters to be calibrated. Thus, any progress in calibration strategies of 
coupled physical-succession models will contribute to generalize their use for water 
quality management purposes. Automatic calibration approaches may be a valid 
alternative (Eckardt & Arnold, 2001) to traditional trial and error calibration strategies, 
only efficient in calibrating models with a small number of parameters (Tanentzap et al., 
2007; Kuo et al., 2006; Bonnet and Poulin, 2004) or when most parameter values have 
been determined through experimentation (Hillmer et al., 2008; Gal et al., 2009). 
Automatic calibration are designed to search the parameter set that minimize an 
objective function, representing the norm of the difference between modeled and 
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observed variables, and can be divided in two classes: gradient and global optimization 
methods. Gradient methods have been widely applied in the calibration of 
phytoplankton models of varying complexity (Omlin et al., 2001; Rose et al., 2007; 
Mieleitner and Reichert 2008), however, they can potentially converge to a local 
minimum of the objective function, rather than global minimum, compromising its 
effectiveness in highly parameterized models. Global optimization techniques avoid the 
convergence to local minima, by introducing a certain degree of randomness in the 
search process (Klepper and Hendrix, 1994; Hansen et al., 2003; Duan et al., 1992; 
Eckardt & Arnold, 2001; Skahill & Doherty, 2006). These global optimization methods 
are extensively used to calibrate complex hydrological models (Tonkin and Doherty, 
2005; Skahill & Doherty, 2006; Marcé et al., 2008; Gupta et al., 1998), but few global 
calibration exercises applied to water quality models have been published (Mulligan et 
al., 1998; Ostfeld and Salomons, 2005; Goktas el al., 2007). Moreover, the applicability 
of these approaches to the calibration of phytoplankton succession models has not been 
explored in the literature.  

 
The second general aim of this thesis is to propose and test a strategy, based on 

an hybrid gradient-global calibration algorithm, to calibrate a highly parameterized, 

and deterministic physical-biological model for El Gergal Reservoir. We want to verify 

if the integration of automatic calibration strategies is a useful approach in complex 

deterministic ecological models. 
 
A calibrated model of El Gergal is used to analyze the role of withdrawal on the 

control of phytoplankton succession. Hoyer et al. (2009) identified abrupt changes of a 
general succession sequence of functional groups coinciding in time either with strong 
wind events or changes in withdrawal rates, and concluded that water withdrawals were, 
probably, the most important allogenic factor controlling the changes in composition 
and abundance of the phytoplankton community in Mediterranean reservoirs. Their 
conclusion agreed with that of Naselli Flores (2000), who studied twenty-one Sicilian 
reservoirs of varying trophic states, and argued that the abundance and composition of 
phytoplankton were more strongly influenced by the hydraulic regime than by nutrient 
availability. Few studies have been published that focus on the relationship between 
phytoplankton succession and withdrawals. Furthermore, those few that have been 
published are, to some extent, contradictory (Barbiero et al., 1997; Hoyer et al. 2009). 
None of them explore the mechanisms by which withdrawals may affect succession.  

 

The third general aim of this thesis is to understand the mechanisms by which 

withdrawal could induce changes in the composition of phytoplankton communities. 

Our working hypothesis is that changes in the withdrawal elevation may impact 

differently on the environmental conditions, and may favor the development of certain 

species in detriment of others, as a consequence of their different response to the 

modified environment. A conceptual and simplified model is used to evaluate the 

changes in the light and temperature fields induced by selectively withdrawing at 

different levels, and the subsequent changes in different phytoplankton groups, 

depending on their response to these changes. Simulations conducted with a one-

dimensional hydrodynamic-ecological model (DYRESM-CAEDYM) calibrated for El 

Gergal reservoir, are then used to evaluate the effects of different withdrawal levels on 

two algal groups with different adaptations to the environment interacting.  
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Remarks on data acquisition and thesis structure 
 
During the period of research a preliminary study was conducted in Beznar 

Reservoir (Granada). Physical, chemical and biological data were collected during year 
2005 in order to elaborate a Beznar Reservoir model using Dyresm-Caedym and 
analyze sources of uncertainty predicting physical and ecological variables. Results of 
this study were presented in 2006 in the dissertation of D.E.A. (“Diploma de Estudios 
Avanzados”) titled “A physical-ecological model of lake Beznar ecosystem; 
Porpagation of uncertainty from physical to population dynamic predictions” and were 
not included here. 

My work was funded by Spanish Ministry of Education and Science, through 
project CGL2005-04070/HID Coupling hydrodynamics and plankton: impact of 

exogenus perturbations in a mesotrophic reservoir in Southern Spain (El Gergal, 

Sevilla). The Seville Water Supply Company (EMASESA) was a key participant in that 
project and made their data set, collected during their routine reservoir water quality 
monitoring program, available to us. Another part of the data used was collected by 
personnel from the University of Granada, Málaga and Jaén, in the course of several 
field experiments conducted in El Gergal, during 2007 and 2008. El Gergal Reservoir, 
is taken here as a prototypical example of Mediterranean Canyon-type reservoir, 
occupying deep and narrow valleys. The reservoir is managed to deliver water with the 
best quality as possible to a Water Treatment Plant (WTP) from which drinking water is 
supplied to the city of Seville. The development and implementation of an ecological 
model for El Gergal, which can be routinely used for water quality predictions, is the 
ultimate goal of the research line initiated with project CGL2005-04070/HID. This 
work is the first step in that direction.  

A first period of research was dedicated to calibrate the ecological model and 
simulate total phytoplankton concentration in El Gergal from 2001 to 2005. No 
information of chlorophyll-a concentration separated a per-group basis needed for the 
calibration of a succession model was available for that period of time. Results for these 
years were not included in this thesis that is focused on phytoplankton succession, but 
were presented in the Master’s thesis in Environmental Hydraulics in 2007 titled 
“Modelling thermal structure and phytoplankton dynamics in El Gergal Reservoir 
(Seville, Spain)”. 

This document is organized in three independent chapters. Each one is an article 
which has been submitted or will be submitted for publication in scientific journals. The 
first chapter has been accepted to be published in “Environmental Reviews”, the second 
is under review in “Environmental Modeling and Software”, and the third will be sent to 
“Ecological Modelling”. 
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Resume 

 
Chapter n. 1 

 
Dynamic phytoplankton succession models are an essential instrument to 

improve scientific knowledge on the development of algal blooms characterized by a 
specific composition and to support water quality management decisions.  The peculiar 
structure and formulation of these models generate questions that differ from the ones 
found in modeling eutrophication and are related to simulation of multiple 
phytoplankton groups.  In this work a classification of phytoplankton models simulating 
several algal groups is provided.  Coupled succession models, explicitly describing non-
linear interactions between physical and biological processes and capturing the response 
of phytoplankton community to environmental changes, are analyzed in detail.  
Approaches, actual achievements and developments of succession models are 
examined.  In particular we discuss the level of discrimination adopted, number and 
type of algal groups simulated, biomass unit employed, type of model evaluation used 
and efficacy of prediction achieved.  Simulations of multiple phytoplankton group 
behavior still produce significant deviations over time or in magnitude compared to the 
patterns observed.  Goodness of fit estimation frequently is only graphical and statistics 
adopted do not allow a direct comparison between different models.  To facilitate 
comparisons we propose the use of a common statistic that would be applied, 
separately, to all the phytoplankton groups differentiated in each model.  Each model’s 
level of complexity in relation to prediction ability is also analyzed.  Through this work 
we aspire to orientate upcoming works and encourage others to apply mechanistic 
succession models, including the description of physical and biological relationships, 
specific phytoplankton behavior and interactions between phytoplankton groups.  
 
 
Chapter n. 2 

 
A fundamental problem in water quality modelling is adequately representing 

the changing state of aquatic ecosystems as accurately as possible, but with appropriate 
mathematical relationships without creating a highly-complex and overly-parameterized 
model.  A model more complex that necessary will require more input and result in 
unaffordable calibration times. In this work we propose and test a calibration strategy 
for a one-dimensional dynamic physical-ecological model (DYRESM-CAEDYM) to 
reproduce the seasonal changes in the functional composition of the phytoplankton 
community existing in El Gergal Reservoir (Seville, Spain). The community is 
described as a succession of functional groups with different response to environmental 
conditions. First, we performed a sensitivity analysis to identify the parameters to 
include in the calibration process, and then applied a global optimization algorithm to fit 
the model for each algal group in a sequential fashion. Finally we simulated all the 
functional groups adopting parameter values established during the group-by-group 
calibrations. Our results show that the performance of this approach is strictly related 
with: (1) the level of system description (i.e. the model structure and the number of 
functional groups simulated); (2) the level of information included in the calibration 
process (i.e. the observations); and (3) the nonlinear interactions among functional 
groups. Functional segmentation of the model should be minimized even though groups 
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with different environmental requirements must be discriminated. Although magnitudes 
of biomass peaks were not always estimated correctly, the calibrated model was able to 
predict peak sequence and timing of dominant phytoplankton groups. Thus our study 
showed that: (1) model structure and nature of observations adopted have to be in 
agreement with the level of organization in the system; (2) integration of automatic 
calibration strategies is a useful approach in complex deterministic ecological models. 
 
 
Chapter n. 3 
 

Phytoplankton composition and abundance in reservoirs are controlled to the 
greatest extent by a combination of different factors as light-nutrient availability, 
mixing regimes and biological interactions between species. Few studies, based on the 
analysis of field observations, showed a correspondence between withdrawals events 
and changes in phytoplankton community composition. In this work we want to analyse 
the specific reaction of phytoplankton groups, aggregated depending on their particular 
response to environmental conditions, to withdrawals level variation. We started from 
the idea that changes in the environmental conditions generated by withdrawals 
operations may favor the development of certain species in detriment of others. Our 
analysis was conducted first with the help of a conceptual model and then with a one-
dimensional hydrodynamic-ecological model (DYRESM-CAEDYM) evaluating effects 
induced by different withdrawal levels in a Mediterranean medium-size reservoir (El 
Gergal, Seville). Model results showed that shifting extractions from intermediate to 
surface or bottom levels had effects on phytoplankton group development while shifting 
from bottom to lower extractions do not produce variation in phytoplankton group 
concentration at short term. The response of the studied phytoplankton groups 
(Cyanobacteria group H, Chlorophytes groups J and N) was dependent on the relative 
position between the level of extraction and the depth of the phytoplankton group 
development in the water column. Magnitude of variation in phytoplankton group 
concentration was dependent on the magnitude of outflow rate and on the bathymetry of 
the reservoir. 
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Chapter 1 
 

“La variedad de las pretensiones no tiene fin.  

Hasta existe quien tiene la pretensión de no tenerlas.” 

Santiago Rusiñol i Prats   

 
 
State of the art and recent progresses in 
phytoplankton succession modeling 
 

 
 
 
 

1. Introduction  
 

The composition of phytoplankton communities and the relative abundances of 
component species undergo continuous changes on varying scales.  These scales range 
from frequent reorganizations of existing community structures, through annually 
recurrent cycles of compositional changes (succession) that accompany the underlying 
cyclical fluctuations in insolation and temperature, to longer-term floristic changes, 
where one recognizable recurrent cycle is supplanted by another (Reynolds, 1984).  
Similar temporal patterns, specific to specie groups rather than individual species, tend 
to occur in different lake and reservoir systems.  For example, the dominant species in 
phytoplankton communities in early spring and late fall are usually Diatoms; during 
summer time the phytoplankton communities may often be dominated by flagellates 
(Evans, 1988; Margalef, 1983).  These recurrent patterns suggest that there must be a 
common mechanism at play.  Considerable efforts have been devoted in ecology during 
the last few years to understand and predict these mechanisms underlying 
phytoplankton succession changes (Morris, 1980; Reynolds, 1984; Sommer, 1988; 
Reynolds, 1997).  Today, it is widely accepted that the abundance and composition 
changes experienced by phytoplankton communities in aquatic ecosystems are tightly 
linked to: (1) the hydrography of the system that affects the permanence of the water 
body and (2) the variations in the physical-chemical constraints as light climate and 
nutrient availability (Margalef, 1997; Reynolds, 1997; Naselli-Flores & Barone, 2000).  
Specie compositional changes over time have been traditionally referred as succession.  
First this term was used to define the autogenic or internally driven process where 
pioneer plants establish in a habitat, create conditions for other specie growth and are 
later replaced by others (Tansley, 1939).  However, the assembly of the community 
depends not only in specie strategies or organism physiology adaptations exploiting 
habitat resources (autogenic factors) but also on changes in the environment conditions 
that alter competitive advantages among different species.  These allogenic factors are 
externally imposed and can reverse or retard the community assemblage (Sommer et al., 
1986).  Observing the effect of changing seasons on phytoplankton composition 
changes in English lakes, Pearsall (1923; 1932) introduced the concept of seasonal 
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succession for phytoplankton species.  The theoretical culmination of a succession 
driven by autogenic processes is a stabilized climax maintaining the maximal biomass 
and interaction among species (Tansely, 1939).  Although, considering the potential 
speed of phytoplankton community assembly, external forces are often frequent or 
severe enough to ensure that progress toward climax is persistently “disturbed”.  
Frequency of physical environment change is usually greater than time-scales required 
by species to take advantage and develop a population increase before the selective 
favour is shifted elsewhere.  The idea, that maximum diversity is maintained at 
intermediate disturbance frequencies, is called intermediate disturbance hypothesis and 
was developed by Connell (1978). 

A large body of literature, still growing, has highlighted the concept of 
succession being subject to external environmental control, through the analysis of 
experimental observations either collected in the framework of field monitoring 
programs or in microcosms and mesocosms.  Antenucci et al. (2005), for example, 
report the effects of long-term artificial destratification on the abundance and 
composition of the phytoplankton community in a subtropical lake.  They show a 
reduction of total biomass (in particular, Diatom and Chlorophyte biomass), and a 
persistence of solitary filamentous Cyanobacteria dominance (Cylindrospermopsis 

raciborskii), in response to increase mixing levels in the water column.  Sommer and 
Lengfellner (2008), working with mesocosms and analyzing phytoplankton growth at 
different light and temperature regimes, demonstrated that light intensity may control 
the timing of spring blooms and that the biomass of Diatoms (Tabularia and 3avicula) 
tends to decrease with rising water temperatures and increasing insolation, probably due 
to their photoadaptive abilities that are not as well developed as other phytoplankton 
species.  Cyanobacteria Oscillatoria, for example, is extremely efficient in enhancing its 
light dependent growth efficiency (Reynolds, 1997).  Similar experiments by De 
Senerpont Domis et al. (2007) showed that artificially warming the environment may 
not change the phytoplankton succession sequence, but tends to increase the abundance 
of Cyanobacteria species (e.g., Microcystis) relative to other groups in the community 
(e.g., Diatoms Asterionella and Chlorophytes Scenedesmus).  Applying a Principal 
Component Statistical Analysis to a long-term field data set, Moustaka-Gouni et al. 
(2007) showed that Cyanobacteria (Limnotrix redekei, Microcystis aeruginosa and 
Cylindrospermopsis raciborskii) persistence in steady-state phases can be promoted by 
warm climate and smooth seasonal changes in irradiance.  Hence Cyanobacteria are 
tolerant to water temperature increases, showing superior performance over other 
groups under this particular condition.  Different responses of phytoplankton 
competition for the same limited resource were tested through experiments conducted 
under controlled environmental conditions (Huisman et al., 1999c; Passarge et al., 
2006; Litchman and Klausmeier, 2001).  Huisman et al. (1999c) showed that a green 
alga (Scenedesmus) was displaced by Cyanobacteria species (Aphanizomenon and 
Microcystis) while another green alga (Chlorella) was even more competitive at lower 
light intensities.  Passarge et al. (2006) showed that under phosphorus limited 
conditions a Cyanobacteria specie (Synechocystis) was able to displace a Chlorophyte 
specie (Chlorella). 

The vast and growing research in phytoplankton succession has been integrated 
in the form of conceptual models, which express our understanding of how the changes 
in the composition of phytoplankton communities occur.  Margalef (1983; 1997) 
developed the concept that phytoplankton succession is the result of a nutrient-
turbulence balance, a description known as Margalef’s Mandala.  Developing upon this 
idea, a conceptual model was proposed by Reynolds (1984; 1997; et al., 2002) who 
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stated that the particular phytoplankton community existing in a lake at any given time 
can be predicted from the environmental conditions prevailing in the water column.  
Reynolds characterized this in terms of two key variables: the ratio of the euphotic 
depth to the surface mixed layer depth (zeu / zmix) and phosphorus concentration, 
representing energy limitation and nutrient availability for phytoplankton growth, 
respectively.  This conceptual model states that, during the annual course of lake 
conditions, the habitat or environment for phytoplankton growth goes through three 
main stages: (1) high nutrient availability and intense turbulence, (2) high nutrient 
availability and low turbulence, and, (3) low nutrient concentrations and low turbulence.  
The first habitat stage would be colonized by ruderal phytoplankton species (i.e., 
Diatoms), the second by colonizer microalgae species (i.e., Chlorophytes) and the third 
by stress-tolerant (or climax) species (i.e., Cyanobacteria followed by Dinoflagellates) 
(Grime, 1979; Reynolds, 1984; Wetzel, 2001).  A more detailed differentiation of 
phytoplankton response to habitat conditions was proposed by Reynolds (1997; et al., 
2002), suggesting that species belonging to the same functional group occupy the same 
region within the two-dimensional (energy and nutrient limitation) habitat matrix.  
Reynolds’ conceptual model has been successfully applied to explain long-term 
seasonal patterns of phytoplankton succession observed in temperate lakes 
(Lindenschmidt and Chorus, 1998; Jaworska and Zdanowski, 2009; Tolotti et al., 2010), 
temperate rivers (Descy, 1993), subtropical ecosystems (Hambright and Zohary, 2000; 
Arfi et al., 2003) and tropical ecosystems (Figueredo and Giani, 2001). 

Mathematical models which represent conceptual models of phytoplankton 
succession and simulate more than one phytoplankton group are used to understand 
changes in quantity and composition of phytoplankton communities in lakes and 
reservoirs and the underlying mechanisms at play.  Therefore mathematical models are 
a valuable research tool in answering ecological questions.  They have also received 
considerable attention in the field of water quality management, mainly for their 
predictive abilities.  Predicting succession changes in phytoplankton communities is of 
interest to water supply managers, given that phytoplankton may severely affect the 
quality of the water and even compromise the effectiveness of treatment processes 
undertaken in downstream water treatment plants.  The occurrence of blue-green algal 
blooms in water supply reservoirs, for example, may lead to severe clogging problems 
during the filtering operations; or it may lead to taste, odor and even health problems as 
a consequence of several species and stocks of blue green-algae producing toxic 
substances (Guven and Howard, 2006; Margalef, 1983).  Furthermore succession 
patterns are indicative of the integrity of the ecosystem (Bonnet & Poulin, 2004; Gal et 

al., 2009; Mieleitner & Reichert, 2008) and any changes experienced in the normal 
succession behavior of phytoplankton can be used as a sensor of the ecological state of 
water bodies.  For example, it is commonly accepted that long-term increases in the 
supply and availability of nutrients in water bodies (cultural eutrophication) induce 
changes in the qualitative nature of algal associations, which become dominated by 
bloom-forming Cyanobacterial species (Harper, 1992, Hutchinson, 1957, 1967).  

Independent of the focus of the mathematical modeling, considerable efforts 
have been devoted in the last few years to develop and test the predictive ability of 
mathematical succession models applied as management tools in particular water 
bodies; and these models have been developed and used in ecological research, to 
understand the underlying mechanisms controlling succession.  In spite of the 
considerable interest drawn by succession models among ecologists and engineers, few 
reviews have been done that specifically focus on these types of models, and their 
specific problems and developments.  Some authors have attempted to provide general 



 26 

guidelines in developing ecological models that have then been applied and customized 
into succession models.  Jakeman et al. (2006) proposed an iterative approach for the 
development of environmental models, consisting of ten steps, starting from defining 
the model scope and contents, and concluding with its evaluation.  This iterative 
approach was critically evaluated by Robson et al. (2008), and applied in the 
development of a model of phytoplankton succession and nutrient concentrations in the 
Swan-Canning Estuary (Western Australia).  Jørgensen (1995) also provided a critical 
overview of procedures used in ecological research to set up biochemical models of 
freshwater ecosystems.  In his review, Jørgensen (1995) included a brief overview of 
existing ecological models, their evolution and their ability to generate reliable results 
once applied to different study sites.  Succession models were included as one of the 
last generation in the large family of ecological models.  The rigid structure of the 
present models that adopt a fixed parameter set to represent ecosystem processes would 
be replaced by a time-varying parameter set (Jørgensen, 1999).  Arhonditsis and Brett 
(2004) conducted an extensive review of ecological modeling practices and analyzed 
the predictive ability of biogeochemical models applied to different types of aquatic 
ecosystems.  They constructed frequency histograms of the number of models existing 
for each ecosystem type (coastal, lagoons, lakes, reservoirs and ocean), and documented 
the number of variables (e.g., temperature, dissolved oxygen, nutrients, phytoplankton, 
zooplankton, and bacteria) included in each model.  It was shown that the ability of 
ecosystem models to predict changes in nutrient concentration and phytoplankton 
biomass was low (relative error 40%) when compared with their ability to predict 
changes in physical variables.  Reynolds (1999) is one of the few authors that focuses 
on succession models, and reviews the types and general approaches used to model the 
change in composition experienced by phytoplankton communities in lakes.  In his 
work he focused on model contributions to management issues and he differentiated 
capacity models, rate models, composition and descriptive models, considering their 
main features and relating their ability to assist in management decisions.  Still, he did 
not discuss the unique problems of succession models and how they discriminate 
phytoplankton groups or how they evaluate individual group predictions.  Guven and 
Howard (2006) also presented a review of models developed to predict the growth of 
Cyanobacteria, a particular type of algae whose occurrence is typically associated with 
problems in water treatment plants.  Models that predict one algal group development, 
though, are not phytoplankton succession models, but can be associated with 
phytoplankton bloom models.  Those models, commonly adopted in oceanography, are 
not interested in reproducing the temporal evolution of phytoplankton composition 
simulating multiple groups, but in predicting algal bloom formation, dynamics and 
diffusion (e.g., Franks, 1997). 

Our goal is to review developments and achievements in succession modeling of 
phytoplankton communities in lakes and reservoirs.  Our work is structured as follows.  
First we analyze how the phytoplankton community is classified and grouped, and how 
the size of each group is defined.  Second, we discuss the level of complexity used to 
describe the physical and the biological components of phytoplankton succession 
models.  Third, we examine the type of model evaluation adopted and ability of model 
prediction.  Our ultimate aim, in reviewing, is to stimulate critical thinking among water 
utility managers, to orientate modelers’ future works and to encourage the water supply 
industry to apply fundamental principles of ecology and mass transport in stratified 
water masses.  This approach should be adopted in the process of managing water 
quality and carefully designing strategies to control succession and predict the 
occurrence of algal blooms.  
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2. Modeling paradigms  

 
Succession models consider that the phytoplankton community is integrated by 

3 groups, each of them with biomass concentration {Bi, i = 1, 3}.  The goal of 
succession models is to estimate the biomass of group i at time t (Bi,t), as a function of 
the biomass of that same group at previous times, {Bi,t-k,k > 0}, the biomass of other 
groups {Bj,t-k, j = 1, 3, j ≠ i , k > 0}, and the environmental conditions prevailing in the 
water column, i.e.,      
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where I and T, refer to light and temperature, and 3, P, C, refer to nitrogen, phosphorus 
and carbon concentrations in the water column.  Note that the growth of different algal 
groups in Eq. [1] is linked and interdependent given that the different groups compete 
for nutrient and light resources.  This makes succession models very different from 
eutrophication models, where the competitive relationship between algal species and 
sub-groups is simply ignored.  Two alternative approaches (empirical and mechanistic) 
can be followed to define the relationship expressed in Eq. [1].  In the empirical 
modeling approach (also referred to as inductive or data-based), the functions fi are 
constructed using statistical or other type of tools, from empirical observations (or data).  
In the mechanistic (deductive or theoretical) approach, the functions fi are constructed 
using theoretical relationships, in particular, the principle of conservation of mass.  
While the empirical approach focuses on the variable predictions, the process-based 
approach aims at explicitly representing the particular processes through which the state 
variables become interrelated (Fig. 1. 1).  For example, Eq. [2] represents the change of 
biomass of the phytoplankton group i, as the result of processes such as algal settling 
(fi

SET), resuspension (fi
RES), growth and mortality (Ri) (i.e., including respiration and 

zooplankton grazing).  
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Note that the growth rate is defined in terms of a group-specific maximum growth rate, 
multiplied by a limiting function that depends on the environmental conditions.  In this 
case, it is through the influence of other phytoplankton groups on environmental 
conditions that their growth influences the growth of group i.  Growth and mortality are 
modeled in Eq. [2] using first order kinetic expressions.  The empirical approach is 
preferable in cases where the modeled system is poorly known, while the mechanistic 
approach is recommended when the system knowledge is good (Jakeman et al., 2006).  

 

Empirical models  
Empirical models of succession, with a large number of physical and biological 

variables involved and interacting in a highly non-linear manner, have been constructed 
using mainly two approaches or techniques: fuzzy logic (Salski, 1992; Chen and 
Mynett, 2005) and artificial neural networks (Hsu et al., 1995).  One of the main 
differences between these approaches lies in the description of the relationship between 
inputs and outputs variables.  In fuzzy logic models this knowledge is represented in the 
form of linguistic rules, while in artificial network it assumes a numerical form 
(weights).  Linguistic rules, in fuzzy logic models, are represented by “if-then” 
sentences that connect the inputs with the outputs variables through a level of influence 
(e.g., low, middle, high) (Salski, 1992; Lilover and Laanemets, 2006).  The fuzzy model 
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build-up includes three steps: (1) fuzzification, in which the input data are translated 
through membership functions, in qualitative terms (membership sets), (2) inference, in 
which a set of knowledge rules between classes of aspects are defined, and (3) 
defuzzification where the qualitative output of the model is translated into quantitative 
value.  The defuzzification step is needed to communicate the results (Fig. 1. 2a).  
Conventional membership functions usually assume a value of one when an element 
belongs to a set and zero if not.  In the case of fuzzy models a membership function can 
assume all the values that are included in the interval [0, 1] allowing processing of 
imprecise information.  An example of the fuzzy model structure is to consider surface 
layer temperature, wind mixing and phosphate condition as model input factors and 
Cyanobacteria biomass as model output.  The selection of level of influences and the 
tuning of the knowledge rules are performed by trial and error tests. 

The architecture of artificial neural networks comprises an input and output layer 
containing neurons (or nodes) representing model variables.  Each neuron is connected 
to other neurons with an axon and the activity of each neuron is determined by the input 
received from the other neurons connected to it (Fig. 1. 2b).  Connections between 
variables (neurons) are not explicitly defined but established by a randomized back-
propagation algorithm that assigns weights (W) to each connection (Olden, 2000; 
Recknagel, 1997).  The back-propagation algorithm trains the network by iteratively 
adjusting all the connection weights among neurons, with the goal of finding a set of 
connection weights that minimizes the error of the network, i.e., sum-of-the-squares 
between the actual and predicted output (least squares error function).  Observations are 
sequentially presented to the network, and weights are adjusted after each output is 
calculated depending on the magnitude and direction of the error. 

Fuzzy models and neural networks models have been mainly applied to predict 
phytoplankton blooms particularly in the sea (Liliover and Laanemets, 2006; Lilover 
and Stips, 2008), but also in lakes (Recknagel, 1997; Chen and Mynett, 2003).  
Recknagel (1997), for example, predicted five different blue-Green algal species 
(Anabaena, Oscillatoria, Microcystis, Phormidium and Gomphosphaeria) in Lake 
Kasumigaura (Japan) for years 1986 and 1993, with contrasting environmental 
conditions (e.g., solar radiation, water temperature, Secchi depth, zooplankton density).  
He compared the simulated concentration of total Chlorophyll-a (Chla) against 
observations collected about every 40 days.  Total Chla concentration simulated with 
the model agreed very well with the observations.  The timing and magnitude of the 
observed and simulated Chla peaks agreed well in time and magnitude; in this case 
evaluation was only graphical.  Separate predictions of number of cells showed a 
maximum error of about 50% in peak predictions of Anabaena and Oscillatoria, while 
it showed good agreement for Microcystis spp.  Neural networks also were applied to 
study phytoplankton succession, in particular simulating Diatoms and Cyanobacteria 
(Recknagel et al., 2006) or phytoplankton community composition including also 
Crysophytes, Cryptophytes and Chlorophytes (Olden, 2000).  These studies 
demonstrated good forecasting abilities and attempted to evaluate relationships between 
algal abundance and chemical water quality conditions (phosphorus, nitrite, nitrate and 
ammonium concentrations).  Recknagel et al. (2006) showed that supervised artificial 
neural networks facilitate the forecasting of water quality changes while non-supervised 
artificial neural networks are useful in addressing the ecological relationships between 
seasons and phytoplankton development.  Supervised means that the algorithm is 
guided by known output patterns, while non-supervised means that it learns the patterns 
from features of the inputs.  Non-supervised artificial neural networks can be used to 
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test hypotheses on algal specific preferences for environment conditions (Recknagel et 

al., 2006).  
These empirical techniques enable users to predict rather than to explain the 

processes of the system or explain variables behavior.  The work of Olden (2000) 
illustrated how neural network models can evaluate associations between variables, for 
example correlating patterns in phytoplankton community composition with nutrient 
patterns and zooplankton (Daphnid Cladocera) biomass patterns.  Even if neural 
networks are beneficial in evaluating variable interactions, the mechanisms driving 
phytoplankton succession cannot be inferred from correlative studies.  If external 
environmental conditions would vary, these models would not be able to capture the 
response of phytoplankton behavior to these changes.  So, if the aim is to predict 
phytoplankton community response to long terms events, they are not a useful tool for 
the study of phytoplankton succession and the generation of bloom events.  However, it 
is possible that these models could be applied to analyze the link between physical and 
biological processes if the meaning of the network connections could be extracted and 
interpreted (Maier and Dandy, 2000). 

 
Mechanistic models  
The mechanistic approach remains, by far, the most frequently used method to 

modeling phytoplankton succession in aquatic ecosystems.  Mechanistic succession 
models existing in literature vary in complexity according to the discretization level 
used to describe the biogeochemical elements (kinetic segmentation) and the physical 
space (physical segmentation) (Fig. 1. 3).  The kinetic segmentation defines the level of 
description used to account for the mass existing in a given compartment into which the 
lake may have been divided (Fig. 1. 3b).  The chemical segmentation depends on the 
number of elemental cycles modeled (e.g. Carbon, Nitrogen, Phosphorus, Silica, and 
Oxygen), and whether the organic, inorganic and dissolved forms or fractions of the 
elements are included or not (e.g., Arhonditsis and Brett, 2005; Gal et al., 2009; Bonnet 
and Poulin, 2004).  Biological segmentation, in turn, refers to the number of 
phytoplankton groups simulated.  This number varies from two (Burger et al., 2008; 
Chen et al., 2002; Roué-Le Gall et al., 2009) to several phytoplankton groups (Bonnet 
and Poulin, 2002; Bonnet and Poulin, 2004; Reynolds et al., 2001).  In some cases, 
other biological groups are included in the model.  Roué-Le Gall et al. (2009), Chen et 

al. (2002) and Gal et al. (2009), for example, simulate bacteria and respectively one, 
two and three zooplankton groups.  

In food-web models that simulate more than one algal group, the physical space 
of the ecosystem is typically described as a single well-mixed compartment, with 
uniform properties (Roelke, 2000; Rose et al., 2007).  This level of physical 
segmentation, however, is not appropriate for deep or moderately deep lakes and 
reservoirs, where stratification develops on seasonal time scales, imposing severe 
restrictions to water movements in the vertical direction.  The simplest approach to 
account for stratification in succession models consists of considering the lake as 
formed by two compartments or layers (epilimnion and hypolimnion) separated through 
an interface (thermocline) (e.g., Scavia, 1980).  The vertical transport across the 
thermocline is typically described using diffusion coefficients which are derived from 
changes in the observed temperature profiles (e.g., Scavia, 1980).  The two layer 
discretization of the physical space has been used, for example, by Huisman and 
Sommeijer (2002), Arhonditsis and Brett (2005), and Mieleitner and Reichert (2008), 
among others.  A large number of succession models use multiple layers to discretize 
the physical space (Riley and Stefan, 1988; Hipsey et al., 2004; Elliott et al., 2001; 
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Elliott and Thackeray, 2004; Markensten and Pierson, 2007; Moreno Ostos et al., 2007).  
Multi-layer models present the advantage that physical, chemical and biological 
components are modeled with similar order of detail, which reduces the possibility of 
weak links in the modeling process (Riley and Stefan, 1988).  In particular they allow 
representation of the water column stratification more accurately and hence allow 
descriptions of the environment that benefits one algal group, favoured by stratified 
conditions and insolated epilimnia (e.g., Cyanobacteria Anabaena or Aphanizomenon 

sp.) versus others, favoured by mixing conditions that allow them to entrain in 
suspension (e.g., Diatoms).  Some succession models have, consequently, evolved by 
improving vertical physical resolution.  For example, the earlier versions of the generic 
model described in Reynolds et al. (2001) described the environment as if it were 
unstratified.  In later versions the model describes the physical environment using 
uniform layers (each of 10-1m), and includes a description of vertical motion of 
phytoplankton in the water column (Reynolds et al., 2005b).  Physical description is 
still simplified compared to other models (e.g., Romero et al., 2004) and not all the 
hydrodynamic and heat exchange processes are solved between layers (Reynolds et al., 
2001).  

Multi-layer models of lakes are based on a one-dimensional (1-D) assumption; 
that is, the variations in the vertical direction are more important than those in the 
horizontal direction.  The 1-D assumption is based on observations that the density 
stratification usually encountered in lakes and reservoirs inhibits vertical motions while 
horizontal variations in density are quickly relaxed by horizontal advection and 
convection.  Horizontal exchanges generated by weak temperature gradients are 
communicated over several kilometres on time scales of less than a day, suggesting that 
the 1-D model is, in general, suitable for representing the physical processes of transport 
at synoptic and larger time scales.  In some instances, such as shallow lakes, lakes with 
sheltered basins or lakes with very irregular morphology the 1-D assumption is not 
entirely adequate.  In those cases, two- or three-dimensional (2-D; 3-D) models need to 
be applied in order to correctly capture the spatial variability of the environment that 
results from the physical process of transport and mixing.  Few publications exist that 
apply succession models with a 3-D discretization of the space, given partly to the high 
computational cost that executing those codes involves, partly to the calibration efforts 
and the extent of observations required.  Some examples include, the work of Alexander 
and Imberger (2009), who studied the dispersion of Dinoflagellates during wind events 
in San Roque Reservoir; the work of Robson and Hamilton (2004) who analyze the 
occurrence of Cyanobacteria blooms in the Swan River estuary; or the work of Romero 
et al. (2004) who studied the changes in the biogeochemical fluxes occurring during 
flood events in the Lake Burragorang.  Common to those studies is the focus on the 
analysis of short-term changes that occur in the phytoplankton communities in response 
to major physical perturbations.  To the authors’ knowledge, 3-D models have not been 
applied in the study of seasonal changes experienced by the phytoplankton communities 
in response to seasonal changes or environmental conditions, but instead have been 
analyzed mainly using lower levels of physical segmentation.  

Some of the succession models described in literature require that the physical 
and chemical environment are provided as an external input (e.g., earliest version of 
PROTECH: Reynolds et al., 2001; and CE-QUAL-ICM: Cerco and Cole, 1995).  The 
CE-QUAL-ICM 3-D eutrophication model (Cerco and Cole, 1993; Cerco and Cole, 
1995), for example, incorporates multiple forms of algae but does not compute 
hydrodynamics which must be provided to the model.  Other phytoplankton models are 
grounded on predictions provided by a physical model of transport and mixing in the 
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water column, which are, algorithmically, coupled to the ecological model.  Examples 
of coupled models are the 1-D DYRESM-CAEDYM (Romero et al., 2004), DyLEM 
(Bonnet and Poulin, 2004) and PROTECH simulating thermal stratification in the 
vertical dimension (Reynolds et al., 2001); or the 3-D ELCOM-CAEDYM (Laval and 
Hodges, 2000; Robson and Hamilton, 2004).  Coupled models may be required when 
describing chemical and biological processes that closely interact with physical 
conditions.  For example suspended solids and algal concentration both affect light 
intensity distribution in the water column with a direct effect on thermal structure 
(physical environment) (Romero et al., 2004).  Thus, connections between 
hydrodynamics and biology are not always independent and a non-coupled model 
would not be successful capturing those processes.  Coupled models are extremely 
useful in analysing and understanding the ecological response of the lake to external 
forces such as meteorological conditions, management strategies, inflow nutrients 
reduction, etc. (Griffin et al., 2001; Kuo et al., 2006).  

Within the large number of models representing succession, our interest is on 
process-based (or mechanistic), coupled physical-ecological models.  Being mechanistic 
they incorporate ecological knowledge, and being coupled with a physical model they 
incorporate a widely accepted concept that the environmental conditions largely control 
succession.  With this work we do not pretend to realize an inventory of the existing 
phytoplankton models, but to analyze distinctive features, level of performance and 
limitations of coupled succession models.  Process-based coupled models that simulate 
two or more phytoplankton groups are presented in Table 1. 1.  Some of the models 
have a generic structure that can be applied to different sites while others were 
developed for specific ecosystems.  Physical and biological characterizations of the 
system are described for each model.  Most of them discretized the water column as 
multiple physical layers while a reduced number differentiate only two layers 
(epilimnion and hypolimnion).  The biological description includes from two (Chen et 

al., 2002) to eight different phytoplankton groups (Reynolds et al., 2001).   
 
3. Phytoplankton community segmentation and biomass assessment 

 
The criteria used to classify the individual species existing in the phytoplankton 

community are not unique and will vary from model to model.  Most models will 
consider the phytoplankton community as an ensemble of up to five phytoplankton 
classes:  Diatoms, Dinoflagellates, Cyanobacteria, Cryptophytes, Chlorophytes (e.g., 
Omlin et al., 2001; Chen et al., 2002; Hipsey et al., 2004).  Phytoplankton classes are 
established on phylogenic, physiological, biochemical and structural properties of algae 
that assume a considerable relevance in relation to nutritional requirements, adaptive 
behavior, productivity and dynamics.  Other criteria adopted to differentiate the 
phytoplankton community are: (1) morphology, due to the fact that size and shape can 
determine specific performances (e.g., Mieleitner and Reichert, 2008); (2) trophic 
preferences as autotrophic or mixotrophic grazed or non-grazed organisms (Roué-Le 
Gall et al., 2009), or even (3) dominant genera or functional groups (e.g., Markensten 
and Pierson, 2007; Reynolds et al., 2001) as assemblages of species that show the same 
sensitivity or tolerance to environmental changes (see Reynolds et al., 2002).  The 
criteria used to classify phytoplankton cells in groups is part of the model 
conceptualization step and depends on the purpose of the succession model (Jakeman et 

al., 2006).  For example, phytoplankton functional groups that group algal species 
depending on their response to environmental conditions is ideal when the objective is 
an understanding of the control exerted by the environment on succession.  Classifying 
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the community in trophic preference groups (e.g., edible or non-edible by zooplankton), 
in turn, is an excellent choice when the objective is an understanding of phytoplankton 
relationships with zooplankton and higher trophic levels.  The exact number of groups 
used to describe the phytoplankton community varies with the goals of the effort.  

Models also differ from each other depending on how biomass is assessed within 
each phytoplankton group (Table 1. 1).  The biomass of any given group in the 
community can be evaluated in terms of (1) Chlorophyll-a concentration, (2) carbon 
concentration (Roué-Le Gall et al., 2009 ; Bonnet and Poulin, 2004; Chen et al., 2002) 
(3) wet/dry weight (Mieleitner and Reichert, 2008 or Omlin et al., 2001) and, (4) even, 
in some cases, bio-volumes (Markensten and Pierson, 2007).  All these types of 
assessments are a kind of “analogue” for phytoplankton biomass and are not used to 
measure it explicitly.  Chla concentration is the most frequent variable used to assess 
biomass.  Four of the nine succession models adopted Chla accounting, three of them 
used carbon, two used wet/dry weight and only one included bio-volumes.  This is 
probably due to historical reasons, given that many succession models have evolved 
from eutrophication models.  In the latter, only the size of the phytoplankton community 
is of interest, and it was typically quantified in terms of Chla concentration in water; 
Chla concentration measurements are straightforward, compared to other approaches to 
quantify algal biomass, can be estimated with in situ equipment and were readily 
available in many instances.  The main difficulty of using Chla concentration as a basis 
to evaluate the biomass of separate phytoplankton groups in succession models lies in 
the fact that gathering observations of Chla concentration on a per group basis is not 
straightforward.  Recently, in vivo spectro-fluorimetric methods (Tolstoy, 1977) have 
been used to discriminate Chla concentrations of different groups of algae.  These 
methods quantify the intensity of the fluorescence signal in a number of bands of the 
spectrum.  The intensity of each band is correlated with the Chla concentration of 
different phytoplankton groups.  The spectro-fluorometer can discriminate the Chla 
concentrations of a limited number of groups.  Beutler et al. (2002) were able to 
discriminate between Green algae (Chlorophytae), grey algae (including Dinoflagellates 
and Diatoms), Cyanophyceae and Cryptophyceae.  Alternatively, one can assess the 
biomass of each functional, trophic or phylogenic group by: (1) counting the number of 
cells nc (i) pertaining to each group, i, with an optic inverted microscope, following the 
Utermohl’s method (Utermohl, 1956), and (2) converting the number of cells to 
biomass, multiplying the nc(i) by a factor which expresses the biomass per cell Bc(i).  
The Chla content per cell, though, can exhibit large variations depending on the lake, 
season, phytoplankton species, nutrient availability and light conditions (Tolstoy, 1979; 
Vörös y Padisák, 1991; Kalchev, 1996).  Phytoplankton species vary in size, and this 
partly accounts for the differences in Chla content per unit cell among species.  The bio-
volumes of each group can be estimated accurately from the shape and size of the cells 
and the enumerations.  Standardized geometric shapes and mathematical equations have 
been designed to calculate phytoplankton bio-volumes and minimize efforts of 
microscopic measurements (Sun and Liu, 2003; Hillebrand et al., 1999).  But the Chla 
content per unit cell-volume Chlav can vary significantly depending on external factors 
(light and nutrients) or on the cell position in the water column.  For example, higher 
Chlav levels tend to occur at low light availability with no limitation of nutrients 
(Chapra, 1997; Laws and Chalup, 1990).  Reynolds (1984) reports that Chlav may range 
from 1.5 to 19.7 µg Chla mm-3.  Even within the same group (e.g., Chlorophytes), the 
differences in Chlav can be of up to 13 µg Chla mm-3 (Reynolds, 1984).  Furthermore, 
the Chlav also varies with increasing water temperature and in relation to the day-night 
cycle (Margalef, 1983).  In spite of this variability, some authors assume that the Chlav 
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content of any given phytoplankton class is constant during the year (Reynolds, 1984), 
or even that the Chlav content is the same for all groups considered in the model 
(Bonnet and Poulin, 2004).  

Carbon concentration (mg of C per unit volume of the environment) is an 
alternative approach to assess biomass on a per-group basis, given that carbon content 
per cell of live biomass still displays a high variability, even if not as strong as Chla 
(Menden-Deuer and Lessard, 2000).  Carbon cell content multiplied by the number of 
cells per unit volume, obtained by counting, results in carbon concentration per unit 
volume of water in the environment.  Carbon cell content varies according to the 
photosynthetic production, but a carbon to phytoplankton cell volume relationship can 
be established as an assumption, in the same way as was done for Chlav content.  For 
example, Menden-Deuer and Lessard (2000) determined a carbon (pg C cell-1) to 
volume (µm3) relationship valid for most protist plankton (e.g., Dinoflagellates, 
Chlorophytes, Chrysophytes and Cryptophytes).  Diatoms have a smaller percentage of 
carbon and their carbon to volume relationship was defined by a separate equation 
(Menden-Deuer and Lessard, 2000).  

In order to compare Chla and C measurements in the environment a relationship 
between Chlav and carbon cell content must be defined.  The ratio of Chlav to carbon 
varies according to environmental conditions: it tends to increase under nutrient rich 
environments, while it tends to decrease under high levels of radiation.  Following this 
relationship, C/Chlav ratio variation has been modeled according to light and nutrient 
conditions (Chapra, 1997; Laws and Chalup, 1990).  Even though, field observations, 
coming from a long term data base of Chlav and primary production, showed that 
variability of C/Chlav ratios at any particular sampling can be higher than the one 
observed at a seasonal scale (Yacobi and Zohary, 2010).   

Mieleitner and Reichert (2008) and Omlin et al. (2001) use dry/wet 
phytoplankton mass to quantify the relative abundance of different phylogenic 
phytoplankton groups.  Biomass on a per-group basis was calculated in those studies 
from phytoplankton counts and bio-volume data, assuming a constant ratio of dry or wet 
weight to bio-volume.  The results of Quinones et al. (2003) and Quintana et al. (2002) 
supported the validity of this assumption.  To determine separate phylogenic group 
biomass, Gal et al. (2009) converted phytoplankton wet weight to carbon units using 
specie specific carbon/wet-weight ratios.  These ratios were, in turn, determined 
experimentally from samples taken during mono-specific blooms (or cultures) using 
mass spectrometry to determine C content (Zohary, 2004). 
 
4. Evaluation of model performance: approaches and results  

 
To evaluate the performance of succession models, simulated and observed 

values of algal biomass are compared.  Surface (Roué-Le Gall et al., 2009) or depth-
averaged values of biomass (e.g., Chen et al., 2002; Bonnet and Poulin, 2004; 
Mieleitner and Reichert, 2008) are typically compared for model evaluation purposes.  
Rarely found are comparisons of vertical profiles (Omlin et al., 2001).  In some 
instances, simulated and observed values of total biomass are compared (Chen et al., 
2002; Bonnet and Poulin, 2004).  However, this approach is not appropriate given that it 
does not assess the ability of succession models to perform the task for which they were 
designed, i.e., to represent the alternative dominance of different algal groups.  To test 
that ability, observed and simulated values of biomass should be compared group-by-
group, as is done, in other instances (Gal et al., 2009; Elliott et al., 2000; Mieleitner and 
Reichert, 2008; to mention some of them).  
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All works on succession modeling studied (Table 1. 1) compare simulated and 
observed values of biomass (or biomass related variables) in graphical form.  Graphical 
results are useful, as they provide a fast and intuitive means to assess the difference 
between simulations and observations.  From the graphics one can get rough estimates 
of model errors and whether the model follows the trends.  In particular, one can 
estimate whether the model is capable of representing accurately the magnitude of the 
peak concentrations (magnitude error) or its timing (timing error).  Only in a few cases 
is the agreement between observations and simulations also quantified using statistics 
(Arhonditsis and Brett, 2005; Gal et al., 2009; Elliott et al., 2000).  Statistics used to 
evaluate the goodness of fit between simulations and observations include (Table 1. 2): 
(1) mean error, calculated as sum of the difference between observed and simulated 
values divided by the number of observations (Arhonditsis and Brett, 2005; Elliott et 

al., 2000); (2) mean absolute error relative to observed mean (Elliott et al., 2000; Gal et 

al., 2009); (3) coefficient of determination (r2 ) (Arhonditsis and Brett, 2005; Gal et al., 
2009); (4) mean percent or absolute errors, (5) root mean squared error RMSE, (6) 
general standard deviation, (7) relative error and (8) the Theil’s inequality coefficient 
(Elliott et al., 2000).  Statistics allow one to compare objectively and accurately the 
prediction ability of different models.  However, one should be careful when comparing 
the error statistics between any two models, and one should not derive false conclusions 
on whether any given modeling approach is preferable compared to others based only 
on the values of the statistics.  This caution is required given that the magnitude of the 
statistics not only depends on the modeling approach itself, but it also depends on (1) 
the length of time simulated, (2) the number of observations used for comparison, (3) 
the variables used to evaluate biomass, and (4) the level of aggregation of the 
observations.  For example, r2 values obtained by Arhonditsis and Brett (2005) were ca. 
0.90 and r2 values obtained by Gal et al. (2009) ranged between 0.1 and 0.5.  But 
Arhonditsis and Brett (2005), calculated r2 values from observed and simulated total 
Chla concentration values during a one-year period, with peak values of 300 µg C L-1.  
Gal et al. (2009), in turn, calculated r2 values for each algal group over a six-year 
period, with maximum biomass values that were < 6 µg C L-1.  In general, one finds 
lower error measures when comparing total Chla concentration rather than Chla on a 
per-group basis.  For instance, Elliott el al. (2000), simulating the growth of two 
different algal groups, reported a standard deviation of 0.44 when comparing simulated 
and observed total Chla.  This represents, at most, 20% of the peak values observed.  
The standard deviations of the error that results from comparing simulations and 
observations of each algal group separately were at least twice as much (1.05 and 0.81).  
Also, when comparing algal biomass on a per-group basis, Markensten and Pierson 
(2007), Gal et al. (2009), or Mieleitner and Reichert (2008) report errors of more than 
40% in magnitude.  They also find that the simulated biomass peaks are often displaced 
up to one month from the time at which the values were observed. 

In evaluating the performance of any given model, one needs to take into 
consideration that the magnitude of the error depends on a large number of factors, 
including: the number of groups simulated, the level of parameterization of the 
biological growth, the variables used to assess the algal biomass or the complexity of 
the physical sub-model.  It also depends on whether the model parameters are either 
determined experimentally or calibrated, on the particular strategy used to calibrate the 
model, and on the data used for model error assessment (i.e., the length of time 
simulated, the number of observations used for comparison and their quality, and the 
level of aggregation of the observations and simulations compared).  In any case, and 
due to the high level of complexity of biological processes which we are just beginning 
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to understand, the differences encountered between simulated and observed biomass in 
succession models are not comparable with level of agreement reached with the 
physical or hydrological models (Robson et al., 2008).  For instance the normalized 
mean error of temperature simulations in Gal et al. (2009) was 0.04, while the 
normalized errors of the biological variables (including phytoplankton and zooplankton 
groups) ranged between 0.50 and 4.54. 

In general, models simulating a lower number of phytoplankton phylogenic, 
functional or morphological groups will tend to exhibit higher levels of accuracy.  The 
succession model proposed by Chen et al. (2002) for Lake Michigan, simulating two 
algal groups, exhibited errors of up to 1.5 µg Chla L-1, for maximum concentrations of 4 
µg Chla L-1 during the studied period, i.e., error of nearly 40%.  Similar or even larger 
errors have been reported for succession models simulating an intermediate number of 
groups (four to five groups).  Bonnet and Poulin (2004) compare total biomass and 
report errors of up to 50% and 60% near the surface at the times of the peaks; the timing 
of the peaks, though, were well captured by the model.  Roué-Le Gall et al. (2009), 
modeling five groups, report errors on a per-group basis.  The largest errors reported 
were close to 50% in magnitude for one of the mixotrophic algal groups.  Magnitude 
errors for two autotrophic groups were lower (about 20%).  In this case, the timing error 
was up to 45 days.  Mieleitner and Reichert (2008), studied three different sites, and 
report magnitude errors of up to 50% for two phytoplankton groups (small algae and 
Diatoms) of the four groups simulated, when comparing phytoplankton groups 
separately.  Models simulating a high number of functional groups (7-8 groups) show 
variable prediction behaviour depending on the type of groups simulated.  However, in 
general, they are not yet mature enough to be used for predictions of phytoplankton 
seasonal succession.  Markensten and Pierson (2007), for example, reported maximum 
differences between simulated and observed biomass values of up to 15µg Chla L-1 
during a period of time when peak concentrations of 30 µg Chla L-1 were observed, and 
timing errors of about one month.  When comparing simulations and observations 
group-by-group, some of them were not well characterized.  Dinoflagellates (Ceratium) 
were over-predicted with peak values of 10-15 µg Chla L-1 at times when their 
concentration should be close to zero (Markensten and Pierson, 2007).  When 
comparing the simulated biomass of five different algal groups against observations, 
Gal et al. (2009) reported timing errors lower than one month for three out of five 
groups.  The maximum magnitude error observed for Dinoflagellates, the group most 
abundant in the lake, was almost 60% of the maximum concentration. 

Due to the range of timing and magnitude errors observed when simulating 
phytoplankton groups, there are still important limitations with model predictions. 
Through the continued improvement in application and performance, models will be a 
fundamental instrument in advising water quality managers on strategies and decisions.  
Before making any management decisions, the confidence of the succession model 
results should be established through a strict uncertainty analysis. 
  
5. Model parameterization and developments on calibration  
  
 Mechanistic models typically contain a large number of parameters whose 
values are site-specific and typically unknown when modelers are first posed with the 
problem of predicting the behaviour of a particular ecosystem.  The particular set of 
parameter values that best describes the process rates in any given ecosystem can be 
selected either through a time-consuming and resource intensive process involving in 

situ experimentation (see Gal et al., 2009) or, alternatively, through calibration.  Those 
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efforts can be reduced if some of the parameters are derived from information 
previously available or easily accessible.  For example, even though highly 
parameterized to distinguish the elevated number of phytoplankton groups simulated, 
the model adopted by Reynolds et al. (2001) uses parameters where values can be 
obtained knowing the physical dimensions of a particular phytoplankton group.  
Replication rate, light dependent growth and temperature sensitivity of each species are 
calculated from their surface area and volume (Reynolds et al., 2001).  While 
determining surface areas and volumes of dominant species for one particular site 
represents important work, it also would be useful to calculate bio-volumes and obtain 
an estimate of biomass for phytoplankton groups.  In most highly parameterized models 
(e.g., Burger et al., 2008; Gal et al., 2009) the parameter values have to be defined 
independently so the information required to complete the parameters set is extensive.  
Calibration is more commonly used for defining parameters than experimentation in 
water quality modeling (Markensten and Pierson, 2007; Omlin et al., 2001; Rose et al., 
2007; Mieleitner and Reichert, 2008).  Calibration is more economical than 
experimentation, but it can be very time consuming depending on the computational 
cost of the model and on the number of parameters requiring calibration.  This should 
not dissuade managers from using these useful tools on a routine basis.  The first step in 
calibrating a set of parameters for a given ecosystem is establishing parameter ranges on 
the basis of previous works applied over a large variety of ecosystems.  Reference 
values on growth rates, mortality rates, settling velocities, nutrient uptake rates and 
others parameters can be found in Bowie et al. (1985) and in several other works (e.g., 
Jørgensen and Bendoricchio 2001; Hipsey et al.,2004; Hamilton & Schladow, 1997; 
Schladow & Hamilton,1997; Margalef, 1983).  The second step consists in selecting a 
calibration procedure.  Calibration procedures are evolving at the same time as model 
development to reduce the time required for application, to extend their use to different 
sites and to improve their predictions.  Trial and error calibration strategies, traditionally 
adopted in water quality modeling, require a lot of expertise with the model being used, 
and are only efficient in (1) calibrating models with a small number of parameters 
(Tanentzap et al., 2007; Bonnet and Poulin, 2004) or (2) calibrating a small subset of 
parameters whose values cannot be determined through experimentation (Hillmer et al., 
2008; Gal et al., 2009).  The trial and error approach has been used by Kuo et al. (2006) 
to calibrate a 2-D hydrodynamic and water quality model applied to two reservoirs, by 
Bonnet and Poulin (2004) to calibrate a 1-D Cyanobacteria model of Villerest reservoir 
and by Lewis et al. (2002) to calibrate a succession model of Myponga reservoir with 
multiple species.  

To calibrate models with a large number of parameters, automatic calibration 
approaches may be a viable alternative (Eckardt and Arnold, 2001).  They are designed 
to search the parameter set that minimizes a given objective function, representing the 
norm of the difference between modeled and observed variables.  Automatic calibration 
approaches can be divided into two classes: gradient and global optimization methods.  
Gradient methods search the parameter space using information of the local gradient of 
the objective function and, starting from an initial guess, to find the parameter set that 
minimizes the model error.  Due to their low computational cost, they have been widely 
applied to the calibration of phytoplankton models of varying complexity: a model with 
two phytoplankton groups and one zooplankton group (Omlin et al., 2001); a model 
with two phytoplankton groups and three zooplankton groups (Rose et al., 2007); and a 
model with four phytoplankton groups (Mieleitner and Reichert, 2008).  In all of these 
studies, though, the magnitude and timing error is significant, when comparing 
observed and simulated biomass on a group-by-group basis.  Gradient methods, in spite 
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of their low computational cost, can potentially converge to a local minimum of the 
objective function, compromising its effectiveness in highly parameterized models.  
Global optimization techniques avoid the convergence to local minima, by introducing a 
certain degree of randomness in the search process (Klepper and Hendrix, 1994; Hansen 
et al., 2003; Duan et al., 1992; Eckardt and Arnold, 2001; Skahill and Doherty, 2006).  
Global optimization methods have been intensively used to calibrate complex 
hydrological models (Tonkin and Doherty, 2005; Skahill and Doherty, 2006; Marcé et 

al., 2008).  However, few publications exist that apply global calibration algorithms to 
phytoplankton models (Ostfield and Salomons, 2005; Goktas and Aksoy, 2007).   
Applying global calibration algorithms to multi-parameterized phytoplankton models 
would be a way of increasing calibration efficiency and reducing efforts in determining 
site-specific parameters.  We also suggest the creation of a common data base, easily 
accessible to all ecological modelers, which would aggregate the parameter values from 
model calibrations in different ecosystems. 
 
6. Modeling stressors on phytoplankton community 

 
To analyze effects of stressors on the phytoplankton community, models 

typically make explicit assumptions (e.g., fixing a water temperature condition or an 
environment with low nutrient availability).  These models differ from ones of higher 
complexity that describe particular ecosystems and were previously presented.  In this 
case the interest is not the prediction of a particular environment but the understanding 
of main concepts.  These theoretical models, starting from previous notions on 
phytoplankton photosynthetic and buoyancy characteristics (see for example Talling, 
1957 and Morris, 1980), show the effects of external factors such as light climate, 
temperature stratification and nutrient availability on bloom development and specie 
composition.  

An early experimental approach and theoretical model was used by Tilman 
(1977) to analyze effects of limiting silicate or phosphate to different diatom species 
(Asterionella and Cyclotella).  A similar approach was also adopted to relate the 
nutrient concentration available in the environment with phytoplankton growth rate 
(Auer et al., 1986).  Sommer (1988) performed several experiments to describe algal 
competition between diatom and non-diatom algae, under nutrient limitation and 
zooplankton grazing. 

Effects of stratification and turbulence on phytoplankton blooms and specie 
composition were studied with a theoretical, simplified model that simulated 
phytoplankton growth and diffusion, neglecting buoyancy, sinking, nutrient limitation 
and photo-inhibition (Huisman et al., 1999a).  In a completely mixed system, species 
with lowest critical light intensity are favored; while in non-uniformly mixed systems, 
species that are able to move and best maintain an optimum position in the water 
column are most competitive.  For one phytoplankton specie, critical light intensity was 
a good predictor for the outcome of competition in completely mixed waters, but not in 
non-uniformly mixed waters where position in the light gradient becomes the dominant 
factor (Huisman et al., 1999b).  Consequently, changes in turbulence mixing rates 
induced shifts in specie composition.  These results also indicated that buoyancy and 
motility, which also influence algal position in the water column, are central in 
determining light, temperature and nutrient availabilities.  Thus, the potential 
advantages or disadvantages for phytoplankton cells in nutrient uptake and light 
absorption are the results of a combination of those factors.  Model results of 
competition for light between buoyant and sinking species showed that more buoyant 
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Cyanobacteria is likely to dominate at low turbulence diffusivity while sinking Diatoms 
and Green algae are likely to dominate at high turbulent diffusivity.  These results were 
supported by a lake experiment using artificial mixing.  In a year where artificial mixing 
was applied the phytoplankton composition was dominated by Diatoms, while in 
another year without mixing by Cyanobacteria (Huisman et al., 2004).   

Including both nutrient and light limitations (Huisman and Weissing, 1994), if 
two species were limited by light, the one with lowest light requirement will dominate.  
In the same way, if two species were limited by nutrients, the one with lowest nutrient 
requirement will dominate.  When two species competed for light and nutrients either 
competitive exclusion, stable coexistence or alternative dominance can theoretically 
occur.  Experimental and modeling results showed that competitive exclusion occurred 
when species that were strong competitors in phosphorus were also strong competitors 
in light.  Alternative dominance occurred when there was a tradeoff between 
competitive abilities for light and nutrients with results also dependent on initial 
conditions (Passarge et al., 2006). 

Other experimental and modeling studies analyzed phytoplankton growth and 
competition under the effects of: temperature variation between different diatom species 
(Van Donk and Kilham, 1990); nutrient limitation between Chlorophyte and 
Cyanobacterium (Ducobu et al., 1998); and different mixing regimes between diatom 
and dinoflagellate species (Diehl et al., 2002).  Van Donk and Kilham (1990) showed 
how increasing temperature resulted in higher growth rates for three different diatom 
species (Asterionella, Stephanodiscus, Fragilaria) and that Asterionella was the 
superior competitor for phosphorus. 
 The presence of some phytoplankton species can be a stress factor for other 
phytoplankton classes and influence the sequence of algal composition changes.  Hulot 
and Huisman (2004) simulated the interactions between toxin-producing phytoplankton 
species (e.g., Cyanobacteria) and toxin-sensitive phytoplankton species (e.g., 
Chlorophytes), in the presence of bacteria and under two different environmental 
conditions: completely mixed and stratified.  The prevalence of the toxin-producing or 
the toxin-sensitive phytoplankton groups may depend on the species that dominates 
first.  In presence of bacteria that degrade toxins, toxin-sensitive phytoplankton specie 
dominance was favored; however, under weak mixing conditions, toxin-producing 
species became dominant (Hulot and Huisman, 2004). 
 
7. State of art- discussion 

 
Our knowledge of quantitative relationships in ecosystems and of the link 

between ecological properties and the environment has increased significantly through 
adopting mathematical models (Jørgensen and Bendoricchio, 2001).  On one hand, 
simplified mathematical models, studying relationships between phytoplankton growth 
and external factors in a theoretical way, allowed exploration of general phytoplankton 
group behavior.  On the other hand, complex multifunctional models allowed the 
description of specific ecosystems.  From analyzing simulation results of several 
complex multifunctional models it emerged that these models often do not reproduced 
the observed phytoplankton succession pattern correctly, or do not capture, in some 
periods, the same magnitude of variation as detected by observation.  Most of the 
succession models analyzed can be adopted to reproduce the succession in time of 
different phylogenic, morphological or functional phytoplankton groups and to analyze 
their peculiar behaviour.  However, succession models should be used with great 
caution for predicting bloom episodes of specific groups because the magnitude of the 
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blooms can be underestimated and the timing error can be, in some cases, close to one 
month. 

 
 Model Complexity   

Modeling strategies that examine shifts in phytoplankton communities are not 
based on elementary approaches that frequently neglect some aspects of system 
dynamics, but include complex mathematical representations (Zhao et al., 2008).  
Dialogue between hydrodynamic modelers and biologists is needed in order to ensure a 
good representation of the biological behavior in the construction of dynamic models 
and avoid oversimplification of their structure (Flynn, 2005).  The principal strength 
and, at the same time, the weakness of mechanistic, multi-group dynamic models is 
their high level of complexity.  Their strength is that the relation between multiple 
physical and biological variables is clearly defined through mathematical equations and 
not by probabilistic connections.  Their weakness is that mathematical equations include 
a large number of parameters whose values, that characterize a particular system, are 
frequently not well-known or even unknown.  Parameter values must be determined by 
experiment or by model calibration.  Moreover, a higher number of parameters 
correspond to increased calibration complexity.  Thus, the model detail of a system 
description should be in accordance with the system complexity and reduced to this 
minimum in order to optimize its utility.  The success of the modeling and calibration 
process critically depends on the consistency between the functional structure of the 
community and the description made in the model and achieved through observations of 
that structure.  Each group included in the model should represent a specific response to 
environmental conditions.  

Another approach in optimizing complex phytoplankton model applicability 
would be to apply advanced calibration strategies to coupled, physical-succession 
models that will move toward generalized use in water quality management.  

Model applications in water quality evaluation require both simplicity to obtain 
rapid and consistent predictions of the algal blooms, and elaboration to describe 
relationships between a bloom occurrence and the external factors responsible for its 
generation.  On one hand administrators are concerned with acquiring high probability 
in predictions and on the other hand are interested in understanding the causes that 
underlie water quality problems in order to remove or at least reduce them.  The actual 
trend suggests that future phytoplankton models will be even more closely related to the 
selection and the evaluation of management strategies. 

 
 Contrasting theories  

Coupled multifunctional, mechanistic models are usually based on the theory 
that phytoplankton groups develop at different time periods, depending on 
environmental conditions and on presence-absence of other algal groups.  Under these 
assumptions, phytoplankton group development can be simulated and predicted.  
Huisman and Wessing (1999) used a well-known resource competition model to 
demonstrate that phytoplankton specie dynamics are driven, not just by external factors 
such as temperature variability, caused by fluctuating weather conditions, or spatial 
heterogeneity, but also by intrinsic dynamics of specie competition that produce chaotic 
responses.  The competition dynamics of a system with more than two limiting 
resources are different from those with only two.  Specie oscillations create an 
opportunity to increase specie diversity and allow the persistence of a great number of 
competitors, even under constant resource supply and constant physical conditions 
(Sommer, 1999).  Seasonal variation in weather conditions led to a seasonal succession 
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of species, yet specie composition varied from year to year in an irregular fashion.  
Recurrent environmental patterns generated by the seasonal cycle would interfere with 
intrinsic specie interactions and would have both stabilizing and destabilizing effects on 
the specie interannual variability (Dakos et al., 2009). 

The idea that interaction between multiple species may give rise to oscillation 
and chaos implies that phytoplankton dynamics are unpredictable in annual or longer 
time scales when viewed in detail (e.g., weekly or daily time scales).  However, on a 
higher aggregation level, as total algal biomass, phytoplankton dynamics may show 
quite regular seasonal patterns (Scheffer et al., 2003).  This concept is in accordance 
with the fact that models show greater success in predicting total algal concentration 
than concentrations of a single functional group.  As we show, model predictions of 
multiple phytoplankton groups are frequently presented in aggregated form, improving 
their results. 
 
8. Conclusions 

 
Succession models that simulate the changes of composition experienced by the 

phytoplankton community existing in lakes and reservoirs during a given period of time 
have received considerable attention in the last few years.  This interest arises both 
among ecologists and among water resource managers, given the application of 
succession models both to answer ecological questions and as tools to analyze water 
quality management strategies.  The succession of phytoplankton species (or groups of 
species aggregated on dimension, trophic preference or tolerance to environmental 
changes) is at least partly driven by changes in environmental conditions which are, in 
turn, determined or modified by the presence of algal species resulting in complex non-
linear interactions.  To model these interactions, researchers have used either 
sophisticated empirical approaches (mainly fuzzy logic and neural networks) or have 
constructed mechanistic models based on the mathematical statement of conservation of 
mass and explicit first-order differential equations describing the physical and 
biological processes occurring in the water column.  

The mechanistic succession models are the focus of this work and differ from 
the well-known and widely used eutrophication models in several aspects.  First, 
succession models need to represent the different responses among phytoplankton 
species trying to use the same pool of nutrient and light resources.  Hence, these models 
include in their formulation wildly non-linear interactions.  Second, the number of 
variables and parameters involved in the model may be very large, given that the 
number of sub-models simulating the behavior of specific phytoplankton functional or 
morphological groups is typically large.  Being different from eutrophication models, 
the problems faced by modelers working with succession models are also necessarily 
different.  For example, they are related to the limitations inherent in assessing biomass 
concentration on a group basis or establishing the level of description of the biological 
features of the model (biological segmentation).   

Several approaches have been followed to assess the biomass of different 
phylogenic, functional or morphological groups in which the phytoplankton community 
is structured.  Chla concentration is probably the most commonly used.  Other 
approaches include Carbon concentration, wet/dry weight and, in some cases, bio-
volumes; all represent an alternative proxy for phytoplankton biomass adopted by 
modelers when differentiating per group assemblages.  Obtaining observations of Chla 
concentration on a per group basis is not as straightforward as determining Chla total 
concentration that was historically used as unit in eutrophication models.  
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Concentrations can be assessed in vivo with spectro-fluorometry that only discriminates 
a limited number of groups, or counting numbers of cells of each group and multiplying 
them by a factor to convert them into biomass.  Adopting Chla or Carbon content per 
cell as a metric also results in approximated values due to the fact that they exhibit 
variations depending on site, light availability, nutrient and temperature conditions.  The 
use of conversion factors does not allow nor intend to calculate Chla or Carbon 
concentration in the water column, but is a deliberate procedure to estimate 
phytoplankton biomass per group. 

 In this work we described and compared different types of evaluations used for 
phytoplankton succession models.  Evaluation is mostly done by graphically displaying 
simulations and observations on the same plot.  The variable represented, in most cases, 
is the total algal biomass and less frequently, one finds comparisons of biomass on a 
per-group basis.  Furthermore, the length of time simulated and the quality of the 
observational data set used to assess the model performance varies considerably among 
model applications.  Hence, any inter-comparison exercise between models should be 
done with care.  In order to facilitate these inter-comparisons among modeling 
approaches it would be necessary (1) to apply the models to a common set of sites, (2) 
to use a common data set collected with the same temporal and group resolution during 
a sufficiently long period of time; and (3) to use a complete data set in which the 
biomass of different genera and groups has been discriminated and expressed in 
different units.  A one year period has been suggested (Dahl and Wilson, 2006) as the 
ideal length of time for model evaluation, given the fact that a longer term would 
require a very extensive data collection.  In our opinion, for an adequate model 
evaluation, considering the variability that one system experiences from one year to 
another, a one year period should be used for model calibration and a second year for 
model validation.  A shorter term period would not be enough to evaluate model ability 
in capturing phytoplankton succession on a seasonal basis. 

In general we conclude that succession models are not yet mature enough to 
confidently forecast the behavior of separate specific phytoplankton groups.  Errors in 
the predictions can be either in magnitude or in the timing of the peak abundance of the 
groups modeled.  Even in well-applied models, errors of up to 50% in magnitude and 
one month in timing have been reported when comparing observed and simulated 
phytoplankton biomass of separate groups.  Lower errors, of up to 20% in magnitude 
and about fifteen days in timing, are reported when comparing observed and simulated 
biomass of all algal groups existing in the community.  The predictive ability of 
succession models is still far from that of physical models, mostly due to the high level 
of complexity and non-linearity of biological processes.  To improve the current level of 
confidence in succession models, more efforts should be directed towards: (1) the 
evaluation of the model complexity required to correctly describe the dynamic 
processes of an ecosystem; (2) the development of new strategies of biomass 
measurements or assessment methodologies on a per group basis; (3) the applicability 
of model parameters at different sites, through elaboration of rapid and efficient 
calibration methods; (4) the increase of physiological research to ascertain parameter 
coefficients explaining the large variation in reported parameter values; and (5) the 
integration between model development and field sampling design.  Frequently, larger 
errors have been reported for models with a larger number of phytoplankton groups.  
Increasing the subdivision of the phytoplankton groups also involves increasing the 
number of parameters whose values need to be known, and hence, it will increase the 
cost of calibration.  Therefore, in deciding the level of group detail of a succession 
model, the simplest possible option should be preferred, as long as the complexity of the 
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ecosystem studied is adequately represented.  Also, any advances in the field of 
automated calibration of multi-parameterized models will facilitate the task of finding 
site-specific parameters for succession models, and should favor the application and 
routine use of phytoplankton succession models.  

Another advance in predicting separate phytoplankton group behaviours should 
be obtained by taking into account that intrinsic competition dynamics between multiple 
species can lead to chaotic oscillation of phytoplankton composition that interfere with 
seasonal succession patterns.  The effects of chaotic oscillations influencing model 
results should be tested at different time scales in order to develop a methodology that 
would allow including them in the modeling process.  
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TABLES 
 
Phytoplankton multifunctional groups process-based coupled models 
   

MODEL /umber 
of 
groups 

Type of groups Phytoplankton 
biomass 

Physical 
Layers 

Evaluation References 

Physical-microbial 
food web model 

5 Autotrophic grazed; autotrophic no-
grazed; mixotrophic-osmotrophic; 
mixotrophic pahotrophic grazed; 
mixotrophic pahotrophic no-grazed; 

Carbon 
concentration (µg C 
L-1) 

Multiple layers Graphical: temporal biomass 
evolution at 1m depth 

Roué-Le Gall et al., 
2009 

Lake Michigan 
model 

2 Diatoms; non-Diatoms Carbon 
concentration (g C 
L-1) 

Multiple layers Graphical: biomass vertical 
distribution; average depth 
time evolution 

Chen et al., 2002 

Protech 8 Dominant species (from a library of 
18 species) 

Chlorophyll-a 
concentration (µ 
Chla L-1)  

10 cm multiple 
layers 

Graphical: biomass temporal 
evolution (often aggregated 
into Stress-tolerant, Ruderals, 
Competitors) & Goodness of 
fit statistics (Modelling 
efficiency; Mean Absolute 
Error MAE, Root mean 
square error RMSE) 

Reynolds et al., 2001; 
Elliott & Thackeray, 
2004; Lewis et al., 
2003 ; Elliott et al., 
2000; Elliott et al., 2001; 
Moreno Ostos et al., 
2007 

Protbas 8 Dominant species (Aulacoseira; 
Stephanodiscus; Aphanizomenon; 
Anabaena; Rhodomonas; 
Cryptomonas; Microcystis; 
Ceratium) 

Chlorophyll-a 
concentration (µ 
Chla L-1 )  and 
Biovolume (mm3 L-

1 ) 

10 cm multiple 
layers 

Graphical: biomass temporal 
evolution 

Markensten and Pierson, 
2007 

 
Table 1. 1 Phytoplankton process-based coupled models that simulates more than one algal group. Resume of the characteristics of the models and type of evaluation adopted. 
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Phytoplankton multifunctional groups process-based coupled models 
   

MODEL /umber 
of 
groups 

Type of groups Phytoplankton 
biomass 

Physical 
Layers 

Evaluation References 

Dyresm-Caedym 7 Dinoflagellates; Cyanobacteria; 
Nodularia; Chlorophytes; 
Cryptophytes; Marine Diatoms; 
Freshwater Diatoms 

Chlorophyll-a 
concentration 
(µChla L-1)  Carbon 
concentration (g C 
L-1 ) 

Multiple layers; 
Sediments 

Graphical & Goodness of fit 
statistics (Root mean square 
error RMSE, Spearman 
Correlation coefficients) 

Hamilton and Schladow, 
1997;  Romero et al., 
2004; Trolle et al., 2008; 
Burger et al., 2008; Gal 
et al., 2009 

DyLEM 5 Dominant species (Microcystis; 
Cyclotella; Asterionella; 
Pediastrum; Staurastrum) 

Carbon (g C m-3 ) Multiple layers Graphical: biomass temporal 
evolution; relative abundance 

Bonnet and Poulin, 
2004; Bonnet and 
Poulin, 2002 

Lake Zurich model 2 Cyanobacteria; other algae dry mass or wet 
mass (g DM/L; g 
WM L-1 ) 

Multiple layers; 
Sediments 

Graphical: monthly vertical 
profiles 

Omlin et al., 2001 

BELAMO 4 Small algae; large Diatoms; large 
algae; Cyanobacteria 

weight (g WW m-3) Epilimnion; 
Hypolimnion; 
Sediments 

Graphical: biomass temporal 
evolution 

Mieleitner & Reichert, 
2008 

Lake Washington 3 Diatoms; Chlrophytes; 
Cyanobacteria 

Chlorophyll-a 
concentration 
(µChla L-1); Carbon 
concentration (µg C 
L-1); proportion of 
Cyanobacteria (%) 

Epilimnion; 
Hypolimnion 

Graphical & Goodness of fit 
statistics (mean error, relative 
error; coefficient of 
determination) 

Arhonditsis & Brett, 
2005a; Arhonditsis & 
Brett, 2005b; 

 
Table 1.1 cont. Phytoplankton process-based coupled models that simulate more than one algal group. Resume of the characteristics of the models and type of evaluation 
adopted. 
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STATISTICS 
Symbol /ame Formula References 

ME mean error 
Elliott et al., 2000; Arhonditsis and 

Brett, 2005b 

M%E mean percent error 

 

Elliott et al., 2000 

MSE mean square error 
 

Elliott et al., 2000 

MAE mean absolute error 
 

Elliott et al., 2000 

MA%E mean absolute percent error 
 

Elliott et al., 2000 

U 
Theil's inequality 

coefficient 
Elliott et al., 2000 

RMSE root mean square error 

 

Elliott et al., 2000 

MAE/ō or NMAE 
mean absolute error 

relative to observed mean 

 
Elliott et al., 2000; Gal et al., 2009 

RMSE/ō general standard deviation 
 

Elliott et al., 2000 

EF model efficiency Elliott et al., 2000 

RE relative error 

 

Arhonditsis and Brett, 2005b 

 
 

coefficient of 
determination 

 Arhonditsis and Brett, 2005b; Gal et al., 
2009 

 
where o is observed data, s is simulated data, SSBF is sum of squares about line of best fit and ō = 
 

 
 
Table 1. 2  Statistics used to evaluate the goodness of fit between simulations and observations. 

2r

( ) nso /)(∑ −

( )[ ] nso /2∑ −

( ) nso /∑ −

( ) noso //100 ∑ −

( )[ ]{ } 5.022 / sso∑ −

( )[ ]{ } 5.02 / nso∑ −

( )[ ] ( )[ ]nonso /// ∑∑ −

( )[ ]{ } ( )[ ]nonso ///
5.02 ∑∑ −

( ) ( )[ ]( )22
//1 ∑ ∑∑ −−− nooso

∑∑ − oso /

( ) ( )( )∑ −− 2/1 soSSBF

( ) n/o∑

( )∑ − nsso /)/)(100



 53 

 
FIGURES 
 
FIGURE 1.1 
 

 
 
Figure 1.1 Scheme representing types of phytoplankton models. 
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FIGURE 1.2 
 

 
 
Figure 1. 2. Empirical model approaches: fuzzy logic and artificial neural network structures. 
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FIGURE 1.3 
 

 
Figure 1. 3. Typical physical and kinetic segmentations of mechanistic phytoplankton succession models. 
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Chapter 2 
 

“3o entiendes realmente algo a menos que  

seas capaz de explicárselo a tu abuela.” 

Albert Einstein  

 
 
A calibration strategy for dynamic succession 
models including several phytoplankton groups  

 
 
 
 

1. Introduction 
 

The changes in abundance and composition experienced by phytoplankton 
communities in lakes and reservoirs in the course of a year may severely affect the 
quality of the water and even compromise the effectiveness of treatment processes 
undertaken in downstream water treatment plants. For example, the occurrence of blue-
green algal blooms in water supply reservoirs may lead to severe clogging problems 
during the filtering operations; or it may lead to taste, odor and even health problems as 
a consequence of several species and stocks of blue green-algae producing toxic 
substances (Guven and Howard, 2006; Margalef, 1983). Recently, considerable effort 
has been devoted to modeling algal communities with the aim of predicting and 
understanding changes in phytoplankton abundance (Di Toro et al., 1975; Kuo 
&Thomann, 1983; Cole & Buchak, 1995; Gurkan et al., 2006; among others) and 
composition (Hamilton & Schladow, 1997; Eliott et al., 1999; Omlin et al., 2001; 
Markensten & Pierson, 2007; among others).  

It is widely accepted that the changes in phytoplankton communities, whether 
they are characterized at species level or in terms of the functional structure or 
size/biomass distribution (e.g. Lindenschmidt & Chorus, 1998; Reynolds et al., 2002; 
Padisák et al., 2003), are associated with variations in the physical (light climate) and 
the chemical (nutrient availability) constraints for algal growth (Margalef, 1997; 
Reynolds, 1997). On one hand, the light environment experienced by phytoplankton 
cells is related to turbulent mixing, which determines the residence time of microalgae 
within the euphotic layer (MacIntyre et al., 2000). On the other hand, distribution and 
bioavailability of nutrients in the euphotic layer is the result of transport processes 
interacting with biological phenomena. Consequently, the knowledge and predictability 
of the composition of phytoplankton communities and its evolution needs to be 
grounded on the knowledge of the physical processes of transport and mixing, which 
determine turbulence levels, nutrient distribution and light penetration in the water 
column. Consistent with this widely accepted perception of succession in aquatic 
ecosystems, most mathematical models used to predict the evolution of phytoplankton 
communities are based on the appropriate description of the relationship between the 
physical environment (in particular, thermal stratification and mixing energy) and algal 
growth. Two general approaches have been used to model the link between the physico-
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chemical environment and the abundance and composition of phytoplankton 
communities. The first is a black-box modeling approach, in which expert knowledge 
systems are used to represent the relationship existing between the ecosystem 
components. The processes in this method are not explicitly represented (Liliover & 
Laanemets, 2006; Olden, 2000; Recknagel, 1997). The second approach is functional or 
mechanistic, which is also called deterministic or process-based modeling approach. In 
this procedure differential equations are derived from the physical principles of mass, 
energy and/or momentum conservation to represent the evolution of the different 
components of the ecosystems (Hamilton and Schaldow, 1997; Omlin et al., 2001; 
Reynolds et al., 2001; Arhonditsis and Brett, 2005). This latter approach is preferable 
when the goal is not only to predict phytoplankton community changes but also to 
understand the interactions between the physical and the ecological variables (Griffin et 
al., 2001; Kuo et al., 2006).  

Mechanistic models typically contain a large number of parameters, with values 
that are site-specific and typically unknown when modellers are first posed with the 
problem of predicting the behaviour of a particular ecosystem. The particular set of 
parameter values that best describes the process rates in any given ecosystem can be 
selected either through a time-consuming and resource intensive process involving in-
situ experimentation (see Gal et al., 2009) or, alternatively, through calibration. The 
latter is, by large, the most common method adopted in water quality modelling 
(Markensten & Pierson, 2007; Omlin et al., 2001; Rose et al., 2007; Mieleitner and 
Reichert, 2008). It is more economical than experimentation, but it can be very time 
consuming depending on the computational cost of the model and on the number of 
parameters to be calibrated. This may dissuade researchers from using these tools on a 
routine basis. Thus any progress in calibration strategies of coupled physical-succession 
models will contribute to generalize their use for water quality management purposes. 
Trial and error calibration strategies, traditionally adopted in water quality modelling, 
require a lot of expertise with the model at play, and, are only efficient in calibrating 
models with a small number of parameters (Tanentzap et al., 2007; Kuo et al., 2006; 
Bonnet and Poulin, 2004) or when most parameter values have been determined through 
experimentation (Hillmer et al., 2008; Gal et al., 2009). To calibrate models with a large 
number of parameters, automatic calibration approaches may be a valid alternative 
(Eckardt & Arnold, 2001). They are designed to search the parameter set that minimize 
an objective function, representing the norm of the difference between modeled and 
observed variables. Automatic calibration approaches can be divided in two classes: 
gradient and global optimization methods. Gradient methods search the parameter space 
using information of the local gradient of the objective function and, starting from an 
initial guess, find the parameter set that minimizes the model error. Due to their low 
computational cost, they have been widely applied in the calibration of phytoplankton 
models of varying complexity (Omlin et al., 2001; Rose et al., 2007; Mieleitner and 
Reichert 2008). However, gradient methods can potentially converge to a local 
minimum of the objective function, rather than global minimum, compromising its 
effectiveness in highly parameterized models. Global optimization techniques avoid the 
convergence to local minima, by introducing a certain degree of randomness in the 
search process (Klepper and Hendrix, 1994; Hansen et al., 2003; Duan et al., 1992; 
Eckardt & Arnold, 2001; Skahill & Doherty, 2006). Some of these global sampling 
methods evolved from the implementation of Markov Chain Monte Carlo methods 
(MCMC) (Hastings, 1970) and include the CMA-ES (Hansen et al., 2003) the shuffled 
complex evolution algorithm (SCE-UA) (Duan et al., 1992), its modification SCEM-
UA (Vrugt et al., 2003), the multiobjective complex evolution algorithm (MOCOM-
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UA) (Gupta et al., 1998) and the multialgorithm genetically adaptive multiobjective 
method (AMALGAM) (Vrugt and Robinson, 2007). These global optimization methods 
are extensively used to calibrate complex hydrological models (Tonkin and Doherty, 
2005; Skahill & Doherty, 2006; Marcé et al., 2008; Gupta et al., 1998), but few global 
calibration exercises applied to water quality models have been published (Mulligan et 
al., 1998; Ostfeld and Salomons, 2005; Goktas el al., 2007). Moreover, and to the extent 
of the authors’ knowledge, the applicability of these approaches to the calibration of 
phytoplankton succession models has not been explored in the literature. In this work 
we propose and test a strategy, based on an hybrid gradient-global calibration algorithm, 
to calibrate a highly parameterized, and deterministic physical-biological model.  
 
2. Materials and Method 
 

Study site   
El Gergal (37º 34´ 13´´ N, 6° 02´ 57´´ W)  is a small, canyon-shaped and 

eutrophic reservoir, and one of the four input-output reservoirs (Aracena, Zufre, La 
Minilla and El Gergal) existing along the Rivera de Huelva river that supply water to 
the city of Seville. The reservoir receives water from two regulated rivers (Rivera de 
Huelva and Rivera de Cala) and from two non-regulated streams (Cantalobos and 
Encinilla). Inflows from Rivera de Huelva enter the reservoir through a small stilling 
pond (Guillena). The annual inflow volume is ca. 7000 m3 with extreme oscillation on 
seasonal scales. Outflows occur from either a spillway located at 50 m.a.s.l.or from a 
deep outlet at 17 m.a.s.l. directly into the river, or from four other withdrawal structures 
located at 41.2, 39.8, 38 and 26 m.a.s.l. flowing into a water treatment plant to be 
distributed to the city of Seville. When full, the volume of water stored in the reservoir 
is 3500 m3, its surface area is 250 ha, and the maximum length is 7750 m. The 
maximum depth is 37 m, close to the dam, and the mean depth is 15.7 m (Figure 2. 1).  
 El Gergal reservoir is warm and monomictic. Water never reaches temperatures 
below 4ºC (Cruz Pizarro et al., 2005). The lake stratifies in summer from the beginning 
of March to the middle of October, and de-stratifies towards the end of the year. Algal 
blooms may develop under stratified conditions and nutrients availability posing serious 
challenges to water quality managers. The concentration of soluble phosphorous at the 
surface during the study period was on average 0.0733 mg PO4L

-1 during the studied 
period with peaks of up to 0.3 mg PO4L

-1 in winter. The algal community of the 
reservoir is mainly composed by Cyanobacteria (Aphanizomenon sp., Microcystis sp., 

Anabaena sp., Oscillatoria sp.), Chlorophytes (Scenedesmus sp., Pediastrum sp., 

Coleastrum sp., Cosmarium sp.), Cryptophytes (Rhodomonas sp., Cryptomonas sp.), 
Dinoflagellates (Ceratium hirundinella) and Diatoms (Cyclotella sp., Synedra sp.). The 
size, shape, type of aggregation, composition, mechanisms of suspension and resistance 
to reduced light-nutrient conditions vary from group to group (even among the species) 
resulting in different behaviours in the water column. 
 

Succession model  
A process based one-dimensional hydrodynamic and ecological model 

(DYRESM-CAEDYM, Imberger and Patterson, 1981; Hamilton and Schladow, 1997; 
Schladow and Hamilton, 1997) is applied to simulate phytoplankton succession in El 
Gergal reservoir. DYRESM (DYnamic REservoir Simulation Model) provides 
predictions of the physical environment which are used to drive water quality 
simulations in CAEDYM (Computational Aquatic Ecosystem DYnamics Model). Our 
choice of model is justified in that (1) it has been widely used as a management tool and 
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(2) it explicitly represents the links between physical and biogeochemical processs, 
which allow one to analyze and understand the control exerted by the physics on water 
quality. The choice of a 1-D model, instead of 2- or 3-D model is justified because the 
simulation and calibration of a succession model with several algal groups, with a 2-D 
or 3-D model would have substantially increased model run time and, consequently, the 
calibration efforts. The 1D assumption was also supported by calculations based on 
Lake and Wedderburn numbers (not shown) and the observations collected during field 
data collection campaigns in El Gergal, which demonstrate that the spatial heterogeneity 
of algal concentrations existed at the time when data was collected but it was weak 
(Vidal et al., 2010).  DYRESM includes descriptions of mixing and transport processes 
associated with river inflow, natural or man-made outflows, diffusion in the 
hypolimnion and mixed-layer dynamics, and it is used to predict the variation of water 
temperature and salinity with depth and time. These physics of the model are free of 
calibration, which implies that the level of process description, including temporal and 
spatial scales in the model, is fundamentally correct (Hamilton and Schladow, 1997). It 
has been used extensively in the existing reviewed literature to predict the vertical 
distribution of temperature, salinity and water quality parameters in a wide range of 
applications for small to medium-size reservoirs. For example, it has been successfully 
applied to Lake Burragorang - Australia (Romero et al., 2004), Lake Constance - 
Europe’s Alps (Hornung, 2002), San Roque reservoir - Argentina (Antenucci et al., 
2003) and Lake Kinneret - Israel (Gal et al., 2003). CAEDYM consists of a series of 
coupled first-order differential equations representing the major biogeochemical 
processes influencing water quality including primary and secondary production, 
nutrient and metal cycling, oxygen dynamics and the movement of sediment. It is a 
flexible model so that it can be configured with different degrees of complexity to focus 
on particular processes. In the most complex configuration, it can simulate up to seven 
phytoplankton groups, five zooplankton groups, fish and submerged macrophytes 
(Copetti et al., 2006; Trolle et al., 2008; Gal et al., 2009).  

 
Experimental data set  

The model was setup to simulate the succession of algal populations in El Gergal 
from January to September in 2007 (study period), when detailed experimental data 
were available. Water samples were collected during the morning, between 11 and 12 
am, on a weekly or bi-weekly basis at 0, 2, 5, 10, 15, 20, 25 and 30 m depths at a fixed 
location near the dam using a 5 L Van-Dorn sampler. Sub-samples for phytoplankton 
were fixed in situ using lugol. Once in the laboratory, the water samples were 
immediately filtered and analyzed for nutrient concentrations following standard 
procedures. Total phosphorus (TP), total nitrogen (TN), total carbon (TC), soluble 
reative phosphorus (PO4), nitrate (NO3), ammonium (NH4), dissolved inorganic and 
organic carbon (DIC, DOC), silica (SiO2) and suspended solids were measured 
following APHA-EPA-ISO procedures (APHA, 1992). Water pH and dissolved oxygen 
(DO) were measured using a TURO Quality Analyser Sensor (TURO T 611). 
Biological oxygen demand (BOD) was estimated from the BOD-TC correlation rate 
tables of Wilson (1997). Secchi disk depths were measured at the same location and at 
the time interval of water samples. Phytoplankton species were identified and counted 
under inverted microscope following the Utermöhl method (1958).  The genera were 
then classified into functional groups, following Reynolds (1997, 2000). Abundances of 
the different Reynold’s functional groups were estimated by adding the abundances 
corresponding to the member species at each depth. The bio-volumes of each group 
were estimated from the shape and size of the cells and from the counting data. We 
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followed the standardized geometric shapes and mathematical equations that have been 
designed by Hillebrand et al. (1999) to calculate phytoplankton bio-volumes and 
minimize efforts of microscopic measurements. 

An alternative and coarser functional description of the phytoplankton 
community was constructed with a submersible four-channel spectro-fluorometer (bbe 
Moldaenke). The spectro-fluorometer is able to discriminate the chlorophyll-a (from 
here on, Chla) concentration of four different functional groups: green algae 
(chlorophitae), grey algae (including dinoflagellates and diatoms), cyanophyceae and 
cryptophyceae. It has a resolution of 0.05 µg L-1and a measuring range of 0-200 µg L-1. 
A more detailed description of the spectro-fluorometer can be found in  Beutler et al. 
(2002) and Gregor et al. (2005). Chlorophyll-a profiles were collected with the spectro-
fluorometer every 1-2 weeks, at the same point and time that water samples were taken. 
Each profile consisted of four different values Chlorophyll-a concentration (one for 
each functional group), every ca. 50 cm from near the surface to a depth of 20-25 m.   

Hydrological data (rainfall, water levels, inflow volumes and outflow volumes 
and withdrawal depth) were provided on a daily basis by the Seville water supply 
company (EMASESA). Water levels in the reservoir ranged from 29 to 39 m a.s.l. 
during the study period, with the largest variations occurring during summer time 
(Figure 2. 2a). Inflows were mostly from Cala in winter and fall. In summer only two 
inflow events occurred, entering through non-regulated streams (Figure 2. 2b). Water 
was withdrawn mainly from the lower outlet in summer, from the intermediate outlet in 
fall, and from the upper outlets in winter and spring (Fig. 2. 2c). The reservoir was well 
mixed with a temperature of approximately 9ºC at the start of the study period. 
Maximum top-bottom temperature differences of 16ºC developed in summer.  

Meteorological information include hourly records of incoming/outgoing 
shortwave/longwave radiation, relative humidity, wind speed and direction, air 
temperature and atmospheric pressure collected on a floating device located near the 
dam (Fig. 2. 1). Water temperature profiles were recorded near the deepest point of the 
reservoir (see Fig. 2. 1) at 1-m depth intervals using a multiparameter probe (YSI-
8000UPG Environmental Monitoring System).  

A similar experimental data set, including meteorological, hydrological, 
chemical and spectro-fluorimetric data, was available from 10th March 2008 to the end 
of October 2008. Those data were used for model validation, after calibrating the model 
with year 2007 data set. 
 

Model setup  

The biogeochemical model was set up to simulate the growth of five different 
phytoplankton groups (Chlorophytes, Cyanobacteria, Cryptophytes, Diatoms and 
Dinoflagellates), with the physical environment (temperature, radiation and mixing 
energy) determining the vertical distribution and the growth of algal cells. Chemical 
conditions were, in turn, set to follow our observations. First order differential 
equations, of the form,  

{ } iiii
i ChlaRTSiCP3If

t

Chla ⋅−⋅=
∂

∂
),,,,,(max,µ      (1) 

are used to model the growth of phytoplankton cells. In Eq. 1, Chlai represents 
chlorophyll-a concentration (µg/L) of algal group i, µmax is the maximum growth rate 
that phytoplankton exhibits under optimal conditions, and f is a function representing 
the limiting effect due to non-optimal light levels I, nitrogen 3, phosphorus P, carbon C 
and silica Si concentrations and temperature T in the water column. Finally, the term R 
represents the effects of all sinks of phytoplankton biomass. Functions and parameters 
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in Eq. 1 are different for each algal group i, representing in this manner, the specific 
response of different species to environmental conditions. The limiting function 
associated with Silica concentration is used to simulate specifically the growth of 
diatoms. The concentrations of phytoplankton from the inflows were considered 
negligible because no significant variations of phytoplankton composition were detected 
after the main inflow events. Zooplankton populations were not modeled. The grazing 
of zooplankton on phytoplankton was represented through a constant algal loss term, 
which also accounts for the effects of respiration and mortality. Nutrients, suspended 
solids, dissolved oxygen and pH were not simulated. Instead, time-varying profiles of 
those variables were constructed from field data, and provided to the model to force the 
ecological model simulations. The light conditions in the water column were estimated, 
according to Romero et al. (2004b), from incoming solar radiation values, and by the 
concentration of suspended solids and the algae abundance, determining the attenuation 
of light in water. Light extinction coefficients in the water were estimated from Secchi 
disk depths observations following Martin and McCutcheon (1999).  The water 
temperature conditions are calculated in the physical model (DYRESM). The particular 
environmental conditions experienced by the algal cells depend not only on the spatial 
distribution of the environmental variables, but also on the position of the algae in the 
water column. This, in turn, is the result of a subtle interplay between mixing processes 
and the ability of cells to regulate their vertical position, which varies by group. The 
vertical movements of the algal cells are modeled through a constant settling and 
migration velocity. Further details of the model can be found in Romero et al. (2004b). 
A complete list of state variables (both modeled or supplied as field data) used in our 
model of El Gergal is presented in Table 2. 1. Model parameters are listed in Table 2. 2. 

The simulations were forced using observed hydrological and meteorological 
data. Inflow temperatures (no observed) were presumed equal to the surface temperature 
of the reservoir. This assumption was justified in that the inflows during the study 
period were mainly from the surface of the stilling pond existing upstream of El Gergal 
on the Rivera de Huelva river (see Fig. 2.1). Field data collected in Guillena and El 
Gergal during a short period of time in 2008, suggest that this assumption indeed is 
valid at least in summer time. Simulations were conducted with a 1 hour time step, and 
the state variables were output every 24 hours at 11:00 am. The minimum layer 
thickness was set to 0.5 m, and the maximum layer thickness was 4m. The base 
extinction coefficient was estimated as the minimum extinction coefficient observed 
during the studied period (1.188 m-1). The results of the physical model were checked 
by comparing simulated water levels and temperature profiles against observations. The 
results of the ecological model, in turn, were checked by comparing Chla concentrations 
for each of groups simulated by the model, against the spectro-fluorometric 
observations. Comparisons were depth and date specific for both physical and 
ecological models in order to include all the information available. 
 

Sensitivity analysis  

A screening was first conducted to isolate a small set of parameters to which the 
phytoplankton simulations were most sensitive. The first-order variance analysis 
(FOVA), as outlined by Blumberg and Georgas (2008) was adopted to quantify model 
sensitivity. The sensitivity of any model output variable F to perturbations in any given 
parameter p in FOVA, is quantified through a dimensionless sensitivity coefficient Sp 
constructed as follows 
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In Eq. 2, ∆F is the change in the output variable that results from a sufficiently small 
(<10%) change or perturbation in the parameter ∆p, from a reference or baseline value 
p0. This approach can be repeated one at a time for each parameter of any given set, 
providing a relatively simple and straightforward alternative to other techniques that 
have been proposed in the literature (Spear and Hornberger, 1980; Stow et al., 2007). 
The output variable F was set equal to the Root Mean Squared Error RMSE (as in 
Beven, 2001) of the difference between the Chla concentrations simulated by the model 
and observed in the field. The S coefficients were calculated running the model 
perturbing each parameter of the complete data set following Eq.2, first considering 
differences in Chla concentration of one algal group (Chlorophytes) and then 
considering the effect of each parameter over the total Chla concentration in the water 
column. An arbitrary threshold S value has to be defined at the end of the calculations in 
order to select the most sensitive parameters. 

 
Calibration strategy  
The values of those parameters to which the model was most sensitive were 

calibrated to minimize the RMSE of the difference between observed and simulated 
Chla concentrations. We first proceeded on a group-by-group basis. To calibrate the 
growth model of a particular functional group i, we fixed the Chla concentration of the 
other four groups to the observed values, leaving only the Chla of group i as the state 
variable. The interactions among groups in the phytoplankton community are explicitly 
accounted in this manner. After the group-by-group calibration, all groups were 
simulated simultaneously, and minor changes in the parameter values were introduced 
manually. A global and iterative optimization algorithm, referred to as the Covariance 
Matrix Adaptation Evolutionary Strategy (CMAES), implemented in the parameter 
estimation and optimization modeling software PEST (Doherty, 2004), was used in the 
calibration process. An important component of this methodology is the combination of 
a random search in the parameter space with the capacity to adapt the same search on 
the basis of knowledge gained by previous iterations (Doherty, 2004; Hansen and 
Ostermeier, 2001; Hansen et al., 2003).  

In this way the chances of being trapped in a local minimum of the objective 
function are greatly reduced. Hansen and Ostermeier (2001) showed that the local 
adaptation mechanism of CMAES improves global search properties and it was able to 
reach final parameter values in a reduced number of function evaluations. In this work 
the search of parameter combinations was iteratively repeated within the established 
parameter ranges, until the algorithm did not detected any reduction in the objective 
function or any relative change of the parameters in the last 40 iterations. Usually the 
number of iterations for each group-by-group calibration was less than 50.000. Model 
executions were done in parallel mode as implemented in PEST, in order to reduce time 
of calibration. Previous to calibration using real data, we assessed the performance of 
our calibration strategy using a synthetic algal concentration trace obtained with known 
model parameters.   

 
3. Results 
    

Biological observations  
The succession patterns observed in El Gergal in the study period, obtained by 

the spectro-fluorometer (Figure 2. 3) agrees, in general, with those proposed previously 
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for systems with limited energy and resources availability (Reynolds, 1984), and are 
largely driven by environmental changes in the water column (Hoyer et al. 2009). A 
more detailed functional description was obtained through algal abundances: in January, 
algae of group B (Diatoms, mainly Cyclotella sp.) were the most abundant and typically 
develop in well-mixed environments and tolerate low light intensities. By the end of 
that month group B was replaced by Cryptophytes (group Y) that, being tolerant to low 
nutrient concentrations, develop under a wide range of habitats (Figure 2. 4a; Table 2. 
3a and 3b). In May, under weakly stratified conditions and high nutrient availability, the 
community is characterized by the Chlorophytes of group J (mainly Coleastrum spp.), 
and after that, by Diatoms of group B (Cyclotella sp.). Aphanizomenon flos-aque 
(Cyanobacteria of group H) was the most abundant species during summer, under 
strongly stratified conditions. In September, group H was replaced by Diatoms of group 
B (Cyclotella sp.), and Dinoflagellates of group L (Ceratium hirundinella) (Fig. 2. 4a). 
The species Ceratium hirundinella (Dinoflagellates, group L) appeared at the same time 
as the Diatoms of group B. Their response to environmental factors is such that some 
authors (Pasadik et al., 2009) have proposed to include them in one unique group B. 
Note that the two maxima in the time series of Chla concentration for Chlorophytes (on 
day 150 and around day 220) correspond to two different species, which are classified 
as two different functional groups in the Reynolds classification scheme. Note also that 
two peaks of in the time series of Chla concentration of Diatoms and Dinoflagellates 
(days 170 and 230) include different combinations of species from both groups. This is 
indicative that the functional description of the phytoplankton community obtained 
from spectro-fluorometric sensors is not equivalent to that arrived at through counting 
(and later classification) (Figs. 3 and 4a).  Both, in turn, are also different from that 
arrived at by converting the counting information in bio-volumes (Fig. 2. 4b). For 
example Chlorophytes (Reynolds group J) are not visible when shifting to bio-volumes, 
due to the fact that cells belonging to this group often have a smaller dimensions 
compared to cells belonging to Cyanobacteria (Reynolds group H, Aphanizomenon and 
group M, Mycrocistis). In general dominant phytoplankton groups in term of bio-
volumes will not correspond with the most abundant group in term of cell numbers. The 
fact that use of bio-volume could mask apparition of small-sized cells, observed when 
considering counting data, was reported also by Hoyer et al. (2009). To avoid 
confusion, in the text we have used the term maximum abundance when referring to 
counting and dominance when referring to biomass concentration.   
 

Hydrodynamic model results  

Both the water balance and the thermal structure were reasonably well simulated 
(Figs. 2 and 5). For example, simulations and observations of water levels differed at 
most in 0.30 m during the study period. The root mean squared error RMSE quantifying 
the differences between observed and simulated temperatures during the study period 
was 0.48ºC. Our model, though, tended to overestimate surface water temperatures in 
summer. The level of agreement in our simulations is comparable to other studies 
conducted with 1D models. For example, Trolle (2008) report RMSE values of 1.44ºC 
and 0.87 ºC for their temperature simulations in the epilimnion and hypolimnion 
respectively; Gal (2003), reported absolute differences of up to 0.6 ºC when comparing 
simulated and observed surface temperatures in Lake Kinneret.   
 
 Sensitivity analysis  

The parameters to which the model exhibited the larger sensitivity in the First 
Order Variance Analysis were settling velocity (vs) and the half saturation constant for 
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phytoplankton phosphorus uptake (KP) (Figure 2. 6). A threshold S value of 1 was 
chosen in order to select a reduced set of parameters to be included in the calibration 
process. Seven parameters had  S >1, which were: maximum growth rate of 
phytoplankton (µmax), half saturation constant for phytoplankton phosphorus uptake 
(KP), half saturation constant for phytoplankton nitrogen uptake (KN), phytoplankton 
temperature multiplier for growth (θ), settling velocity (vs), specific extinction 
coefficient (ke) and temperature multiplier for respiration (θL). Each of these parameters 
is specific to the five functional groups. Hence, a total of 35 parameters were selected 
for the calibration process.  
 
 Cross-check of the calibration strategy  

A synthetic time-series of Chla was constructed with a known set of parameter 
values, that was used as pseudo-observations in a test calibration exercise. Different 
calibration strategies were explored. First, we conducted a group-by-group calibration. 
Then, we attempted to calibrate several groups (up to four) at the same time. The 
algorithm was able to find a set of parameters which were close to the target set, when 
we calibrated group by group (see Table 2. 4, synthetic series). However, when we tried 
to calibrate several groups at a time, the algorithm was not able to find the target set of 
parameters for every algal group. Furthermore, the computational time increased 
considerably as we increased the number of groups being calibrated. For example, 
simulation time increased from one to four days working in a parallel mode using two 
3.19 GHz processors, each one with three threads (Processor Intel Xeon T7400, RAM 
3Gb, Operative System Windows Vista 32bits). The largest deviations from the 
synthetic trace occurred for those groups with lower Chla concentrations while the 
dominant group was correctly calibrated. We tried, unsuccessfully, to use different 
weighting schemes to guarantee the same success for all groups. These results 
confirmed the need for a group-by-group calibration strategy, since the high irregularity 
of the multidimensional objective function and the presence of many local minima 
rendered the joint calibration of several phytoplankton groups numerically intractable. 
When simulating several groups at a time, using the set of parameters obtained from the 
group-by-group calibration process, it was found that the agreement between 
simulations and the synthetic series decreased as the number of phytoplankton group 
simulated increased (Table 2. 4). This result suggests that there are strong, non-linear 
interactions among sub-models representing the growth of individual groups. The 
sensitivity coefficient (S), defined as in Eq. 2, was used to quantify the level of 
interaction among sub-models (Table 2. 5). Changing the values of parameters of group 
1 by 1%, for example, the settling velocity (vs) and the specific extinction coefficient 
(ke) induced important changes in the results of group 3 simulation. The results of this 
exercise indicate a high interaction between group 1 and group3.  
 

Group-by-group calibration against field observations 
All sensitive parameters were included in the group-by-group calibration 

process. The range of possible values assigned to each parameter was taken from the 
literature (Table 2. 2). The parameters values arrived at with automatic calibration are 
consistent with those reported in other studies. For example, Cyanobacteria maximum 
growth rate (0.56 d-1) is within in the range used for Cyanobacteria Microcystis sp. and 
Aphanizomenon sp. (0.41- 0.70 d-1) by Gal (2009). Temperature multipliers for growth 
for all algal groups have ranges of variation very similar to the study by Gal et al. 
(2009): respectively 1.08 to 1.11 (no unit) and 1.07 to 1.10. Settling velocity parameter 
values also respect ranges employed in several applications of other models (Reynolds 
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et al., 2001; Elliott et al., 1999). The Chla concentrations simulated by the model after 
the sequential calibration are, in general, consistent with the observations, and 
comparable with previous modeling performances (Markensten and Pierson, 2007; Gal 
et al., 2009).The model did not reproduce accurately the magnitude of the peak of 
Cyanobacteria (close to 30µg Chla/L) towards the end of July, but it captured correctly 
the timing of this bloom (Figure 2. 7a). The RMSE for the simulations of Cyanobacteria 
was 3.62 µg Chla/L. Cryptophytes, which appeared with lower concentrations than 
Cyanobacteria, were also well represented by the model (Figure 2. 7b). For example, the 
abrupt decrease of Chla concentration that occurred at the beginning of May (ca. day 
120) was captured in the simulations. The RMSE of the model results for Cryptophytes 
was 0.55 µg Chla/L. The succession model was also able to replicate the first peak of 
Chla concentration of Chlorophytes (on days 150 and 180) but did not capture the 
second peak that occurred around day 230 (Figure 2. 7c). The RMSE of the simulations 
of Chlorophytes was 1.9 µg Chla/L. The model was not able to reproduce the observed 
values of Chla concentration of Diatoms and Dinoflagellates, which are lumped in the 
information provided by the spectro-fluorometer (Fig. 2. 7d). The RMSE in this case 
was 6.91 µg Chla/L.  
 
4. Discussion  

 
Approach   
In constructing a succession model that provides a reasonable description of the 

behavior of several phytoplankton groups it is necessary to go beyond several 
limitations, such as over-parameterization, excessive calibration times, strong 
interaction between parameters or the high non-linearity of the model leading to the 
possibility of reaching local minima during the calibration process (Beck and Halfon, 
1991). Through the calibration method used here, these problems were, in great part, 
overcome. First, through the sensitivity analysis and the group-by-group calibration 
strategy the number of parameters requiring calibration at a time was reduced 
considerably. In this manner, taking into account that the computing time of the present 
model was about 10 minutes, calibration time was reduced from several months to 
several weeks. Moreover the problems arising in the calibration process from the 
interactions among parameters that describe the behavior of different algal groups were, 
in a first term, avoided. Second of all, a global automated calibration procedure, that 
includes randomness and the ability to learn during the search process, was used which 
guarantees that the multi-dimensional parameter space was thoroughly explored and 
local minima were, to a large extent, avoided  (Doherty, 2004; Hansen et al., 2003).  

 

Effect of community segmentation on model calibration  
One of the major problems faced during the calibration process was the fact that 

the experimental spectro-fluorometric values of Chla do not differentiate between 
groups that respond differently to environmental conditions. Coelastrum spp. and 
Cosmarium spp., for example, are two green algae (or Chlorophytes) that grow under 
different nutrient conditions: Coelastrum spp. grows preferably in nutrient-rich 
environments, while Cosmarium spp. is tolerant to nutrient limitation (Padisák et al., 
2009). As a consequence, they appear in different groups in the Reynolds (2002) 
functional classification: group J (Coelastrum spp.) and group N (Cosmarium spp.). 
Each one of these green algae appeared as the most abundant during two separate 
periods of time in the data set: Coelastrum spp. was present from day 22 to 190, while 
Cosmarium spp. developed after that. The average PO4 values near the surface were 0.1 
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mg/l before day 190, and decreased to 0.05 mg/L after that time. The concentration of 
NO3 changed also from 6.10 mg/L before day 190 to 1.7 mg/L towards the end of the 
study period (days 210-240).  The model was only able to reproduce both peaks in the 
abundance of green algae if two different functional groups, representing Cosmarium 

spp. and Coelastrum spp., were simulated and calibrated separately (Fig. 2. 8). The 
RMSE of the first group (Cosmarium spp.) was 1.55 µg Chla/L and for the second 
group (Coelastrum spp.), the RMSE was 0.79 µg Chla/L. The parameter sets arrived at 
through calibration of each group independently were (KP, KN, θ, θL) = (0.0025, 0.0546, 
1.0812, 1.1) for Cosmarium spp. and (0.032, 0.0998, 1.135, 1.057) for Coelastrum spp. 
The larger nutrient half-saturation constants of the latter indicate that it is less tolerant 
than the former to nutrient limitation, which agrees with previous observations (Padisák 
et al., 2009). Cosmarium spp. was calibrated as neutrally buoyant (10-5 m s-1) while 
Coleastrum spp.was calibrated as negatively buoyant (-2.6x10-5m s-1) (see Table 2. 6). 
This is consistent with previous reports that indicate that Cosmarium spp. commonly 
appears as individual cells, while Coelastrum spp. tend to form spherical colonies of 
more than 30 cells with lower buoyancy (John et al., 2002). The volume of the 
individual cells is also different. In El Gergal, it was found that the cells’ volume of 
Coelastrum spp. were ca. 18600 µm3, while the volume of Cosmarium spp. was 5800 
µm3 (J. Blanco, personal communication).  

When including two Chlorophytes groups (representing groups J and N, in 
Reynolds notation), Cyanobacteria and Cryptophytes in the simulation (Fig. 2. 8), the 
model produced results similar to that of the sequential calibration runs, only if the 
parameters arrived at by the automatic calibration runs were manually adjusted (Table 
2. 4). Starting from the parameter set obtained by the automatic calibration, parameter 
values of each algal group were lightly increased or decreased in order to improve the 
model results. The need for the final fine-tuning when simulating all the algal groups 
probably reflects the need to account for the non-linear interactions among sub-models 
representing the growth of individual groups. Note that Diatoms and Dinoflagellates 
were not modeled in these simulations, but forced. The parameter values used in this 
simulation are shown in Table 2. 6. Only five parameters (µmax Cyano, KP Crypt, θ Crypt , 
µmax Chlor2, Ke Crypt) out of a total of 35 parameters being calibrated were manually 
adjusted (Table 2. 6). It should be stressed that this final manual calibration was a 
straightfoward and fast procedure thanks to the previous automatic calibration. The 
simulations including all four groups captured the relevant aspects of the phytoplankton 
succession. In particular, the model always reproduces the dominant group of the 
community at each time. The timing of the peaks was also captured correctly by the 
model. The magnitudes of the peaks, however, are not captured with the same precision. 
The largest differences between simulations and observations occurred in the 
Cyanobacterial prediction (up to 53% difference at the time of the second peak). The 
calibrated model provides an accurate description of the changes in abundance and 
composition of the phytoplankton community which is comparable to the results of 
previous studies that include fewer (Chen et al., 2002; Kuo et al., 2006; Elliott et al., 
2000) or similar numbers of functional groups (Markensten and Pierson, 2007; Gal et 
al., 2009). Moreover the physical bases of the current ecological model describe 
processes more in detail when compared to other phytoplankton models where not all 
the hydrodynamic and heat exchange processes are solved (Reynolds et al., 2001). 

Diatoms (mainly Cyclotella sp.) and Dinoflagellates (mainly Ceratium 

hirundinella) are also two functional groups with very different adaptations to 
environmental conditions that are not differentiated in the spectro-fluorimetric data. 
Diatoms have lower reprodution rates, ranging from 0.2 to 2.16 d-1, while 
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Dinoflagellates reprodution varies from 1.6 to 3.3 d-1 (Bowie et al., 1985). Diatoms are 
also negatively-buoyant micro algae with higher settling velocities (-2.1 x 10-4 m s-1) 
due to their heavy silica walls (Margalef, 1984). Consequently, Diatom growth is 
favored by strong mixing in the water column. Dinoflagellates, in turn, can actively 
swim in the water column exhibiting upward and downward velocities of up to 1.16x10-

5m s-1 (Reynolds et al., 2001). As a result Cyclotella sp. and Ceratium hirundinella 
appear in different groups (B and L, respectively) in the functional classification of 
Reynolds (2002). The calibration process, in which the Chla content of both groups are 
lumped into a single value that is compared with spectro-fluorometric data, was not 
successful. Generating separate estimates of Chla concentration for Diatoms and 
Dinoflagellates from the observations, to calibrate each group individually, was not 
possible for several reasons. First, Diatoms and Dinoflagellates co-existed at all times. 
Dinoflagellates of the genera Ceratium only appeared among the dominant group (in 
number of individuals per unit volume) towards the end of the study period (Table 2. 3a 
and 3b), but co-existed with the diatoms of genera Cyclotella at all times. Even though 
the number of Ceratium cells was less than the number of individuals of Cyclotella, its 
contribution to the total Chla concentration in the water column could be similar or even 
larger, given the strong differences in volume between them (e.g. Cyclotella sp. 1.593 
µm3 and Ceratium Hidrundinella 49.152 µm3

, J. Blanco, personal communication). 
Second, the content of Chla per cell changes in time during the course of a year. 
Depending on the phytoplankton group, Chla concentration per volume in 
phytoplankton cells vary from 1.5 to 19.7 µg Chl-a mm-3 and within the same group 
(e.g. Chlorophytes) the difference is up to 13µg Chl-a mm-3 (Reynolds, 1984). 
Moreover, Chloropyll-a concentration por cell in phytoplankton varies with increasing 
water temperature and in relation to the day-night cycle (Margalef, 1983). The Chla 
content per cell exhibits large variations depending on the season, phytoplankton 
species, nutrient availability and light conditions (Tolstoy, 1979; Vörös and Padisák, 
1991; Kalchev, 1996). In consequence, we could not use the phytoplankton counts or 
bio-volume information to separate the lumped spectro-fluorometric information. These 
results suggested that both the complexity (or functional segmentation) of the 
phytoplankton model and the resolution of the experimental data should all be 
consistent with the functional structure and complexity of the phytoplankton community 
in the lake that is being simulated.  

 

The validity of calibrated parameters for simulations of separate years  
The model was used to simulate phytoplankton succession in 2008, using the 

parameter set calibrated with data from 2007. The period simulated in 2008 started on 
day 70 (March 10th) and it was 232 days long, when the necessary observational data 
was available for model setup and validation. Maximum phytoplankton concentrations 
in 2008 were low (ca. 10 µg Chla/l) compared to 2007 (ca. 30 µg Chla/l) and all groups 
(Diatoms, Cryptophytes and Chlorophytes) coexisted at different concentrations at all 
times. Diatoms and Dinoflagellates were forced, as they were in 2007. The results in 
2008 indicate that phytoplankton succession was not well captured (Fig. 2. 10). A peak 
of Chlorophytes was simulated around day 130 while Chlorophytes growth was 
observed starting from day 200 (RMSE of 1.7 µg Chla/l). Cryptophytes simulated 
developed close to day 120, as observed, but two peaks of about 3 µg Chla/l (at day 90 
and 270) were not reproduced by the model (RMSE of 0.73 µg Chla/l). The model 
simulates an increase in the concentration of Cyanobacteria but the predicted timing of 
the proliferation was not correct (on day 180 instead of day 150), resulting in a RMSE 
of 3.5 µg Chla/l. The failure of the 2007-calibrated model to simulated correctly 
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succession in 2008 was something expected, given the different functional composition 
of the phytoplankton community in 2008 and in 2007. In 2008, for example, a large 
number of Reynolds groups coexisted and were classified as Chlorophytes. Until middle 
of May Chlorophytes were composed mostly by group X1 (Anykra sp.) and J (Oocystis 

sp.); in June by group J (Coleastrum sp.); and from the end of June by a combination of 
group J (Oocystis sp.), group X1 (Chlorella sp.) and group F (Sphaerocystis sp.). In 
2007, only two groups of Chlorophytes (J and N) were encountered, and they occurred 
at separate times (see section above). New groups should have been included in the 
model and, their parameters, should have been calibrated in order to simulate accurately 
the phytoplankton succession in 2008. The presence of new phytoplankton groups in 
this year invalidates the parameter set calibrated with data from 2007. The information 
available, though, was not sufficient to separate the total Chla among functional groups, 
each with a different response to environmental conditions.  

 

Uncertainty generated from the physical sub-model  

The differences between observed and simulated values of Chla can be 
explained, first, in terms of errors in the physical sub-model that propagate into the 
ecological sub-model. Any errors in the prediction of the mixing environment, or 
equivalently, the thermal structure, can potentially alter the abundance and composition 
of the phytoplankton community given that different groups respond differently to the 
environmental conditions. The growth of Cyanobacteria, for example, is favored under 
stable stratified conditions, while the Diatoms will likely become the dominant groups 
in the community in a well-mixed water column (Reynolds, 1984). From day 134 to 246 
the simulated surface mixed-layer was deeper than observed (see Figure 2. 5), and 
consequently model results reduced Diatoms potential to develop while it favored 
Cyanobacteria growth. Given that the level of process description in the physical model 
is fundamentally correct (Hipsey et al., 2004), the errors in the description of the 
physical variables (stratification and mixing) are the results of errors in the boundary 
condition assumptions. For instance, inflow temperatures were assumed to be equal to 
the surface temperatures during the simulations. This is a good assumption for inflows 
entering from Rivera de Huelva through the stilling pond of Guillena, as the field data 
suggest; but it may not be good for inflows entering through non-regulated streams 
Cantalobo and Encinilla or inflows from Cala Reservoir, immediately upstream of El 
Gergal. The stronger stratification predicted by the model after day 127 was likely due 
to the inflow event entering the reservoir from the non-regulated streams, for which we 
do not have temperatures data, and for which we assumed a temperature equal to that of 
the surface in El Gergal.   

 

Uncertainty generated by initial or boundary conditions  

Uncertainty in the results of the succession model can also be the result of 
uncertainty in model boundary or initial conditions. Moreno Ostos et al. (2007) 
demonstrated that some changes in the phytoplankton community in El Gergal occur as 
a consequence of inflows introducing species from upstream reservoirs. In the present 
study phytoplankton inoculums were considered insignificant because no changes in 
algal composition were detected after the three main inflow events (days 120, 150 and 
240). For example, the dominant Chlorophytes specie developing at day 120 was 
already observed in the reservoir one week, and even two weeks, before the inflow 
event. On the other hand, to evaluate uncertainty generated by initial conditions two 
experiments were conducted testing the sensitivity of model results when modifying 
initial phytoplankton concentration in the reservoir. In the first, the initial concentration 
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of Cyanobacteria was increased 50%, while in the second, it was the initial 
concentration of the green algae that was increased 50% (Figure 2. 10 A and B). In the 
first case, peak concentrations of Cyanobacteria decreased as well as Chlorophytes 
group N and J. In the second case, the peak concentrations of the green algae increased, 
while the concentration of Cyanobacteria decreased. In both cases, the timing of the 
peaks was not modified and temporal succession was respected. 

 

Effects of increasing number of algal groups  

Given that different groups compete among themselves for nutrient resources 
and light, any errors in the simulation of any specific phytoplankton groups may lead to 
significant errors in the simulation of other groups. Consequently, the error of the sub-
model of any functional group increased as the number of groups simulated increased. 
For example the RMSE of the Cyanobacteria sub-model increased from 3.62 µg Chla/l, 
to 4.8 µg Chla/l when simulating four groups (see Table 2. 4, field series). A similar 
effect was observed also when using synthetic series. 
  
 
5. Conclusions 
 

[1] A one-dimensional, process-based and coupled physical-ecological model is 
used to simulate the phytoplankton succession in a reservoir. The phytoplankton 
community is represented in the model as a series of functional groups, each one 
developing at different times, which respond differently to environmental conditions. 
These types of models typically contain a large number of parameters, with values that 
are site-specific and typically unknown. A global, hybrid and automated optimization 
algorithm, applied in a sequential manner, is proposed for the calibration of this 
succession model. The most sensitive parameters are first identified through First Order 
Variance Analysis. The optimization algorithm is then applied to calibrate each algal 
group separately. In these partial calibration runs, the model is set to simulate one only 
functional group while specifying the abundance of the remaining groups at observed 
values. The model is finally run, with all groups simulated, using the parameter values 
found in the group-by-group calibration.  

[2] The group by group calibration approach is shown to yield satisfactory 
results when applied to calibrate separate phytoplankton group models against synthetic 
time series of Chla. The goodness of the fit between simulations with calibrated 
parameters and synthetic runs depends, though, on the number of functional groups 
being simulated. The larger the number of groups included the larger are the differences 
between the calibrated model and the synthetic series used as a reference, which 
suggests that there exist strong and non-linear interactions among group sub-models. 
These results, altogether, suggest that the level of functional segmentation in the model 
should be minimized.  

[3] The success of the calibration process critically depends on the consistency 
between the functional structure of the community, and the description made in the 
model and achieved through observations of that structure. Each group included in the 
model should represent a specific response to environmental conditions. The 
observations should also discriminate between groups with different environmental 
requirements.  

[4] When applied to calibrate the model against the available field data in the 
reservoir, however, the sequential calibration approach did not produce the expected 
results. This is partly due to lack of resolution in the spectro-fluorometric data, used as a 
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reference in the calibration process, that did not discriminate among groups that exhibit 
different responses to environmental conditions. Non-linear interactions among 
individual group models or between ecological and physical sub-models might also be 
responsible for the lack of success. In any case, the model was capable to predict 
relevant aspects of the succession, such as the timing of the peaks, and the sequence in 
which the different groups appear as dominant in the phytoplankton community.   
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Tables 
 
 
  
Notation Description Units 

Modelled state variables 

I Light intensity µEm-2 
T Temperature ºC 
Kd Light exctintion coefficient m-1 
Chla (CHLOR) Chlorophyll-a concentration Chlorophytes mg Chla L-1 
Chla (CRYPT) Chlorophyll-a concentration Cryptophytes mg Chla L-1 
Chla (CYANO) Chlorophyll-a concentration Cyanobacteria mg Chla L-1 
Chla (FDIAT) Chlorophyll-a concentration Freshwater diatoms mg Chla L-1 
Chla (DINOF) Chlorophyll-a concentration Dinoflagellates mg Chla L-1 

Field data  

SSOL Suspended Solids mg L-1 
pH pH  
DIC Dissolved inorganic carbon mg C L-1 
DOC Dissolved organic carbon mg C L-1 
TN  Total Nitrogen mg N L-1 
NH4 Ammonium concentration mg N L-1 
NO3 Nitrate concentration mg N L-1 
TP Total Phosphorus mg P L-1 
PO4 Soluble reactive phosphorus mg P L-1 
BOD Biochemical Oxygen Demand mg O m-3 
DO Dissolved Oxygen concentration mg O L-1 
SiO2 Silica mg Si L-1 
 
Table 2. 1 List and short description of variables modelled during Dyresm-Caedym 
simulations.  
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Number Symbol Group Name Unit Range  Calibrated value 

1 µmax CHLOR Max Growth Rate  day-1 0.2 - 3.6 3.600 

   CYANO   0.2 - 1.5 5.69 E-1 

   CRYPT   0.2 - 1.5 1.480 

   DINOF   0.2 - 3.6 4.73 E-1 

   FDIAT   0.2 - 3.6 1.850 

2 kr (five groups) Respiration rate  day-1    

3 KP CHLOR Half Saturation Constant for Phytoplankton P uptake mg L-1 0.0001 - 0.04 2.54 E-3 

   CYANO   0.0003 - 0.04 3.0 E-4 

   CRYPT   0.001 - 0.04 3.99 E-2 

   DINOF   0.0001 - 0.04 1.55 E-2 

   FDIAT   0.0001 - 0.04 1.0 E-4 

4 KN CHLOR Half Saturation Constant for Phytoplankton N uptake mg L-1 0.02 - 0.2 5.47 E-2 

   CYANO   0.02 - 0.2 8.46 E-2 

   CRYPT   0.02 - 0.2 2.0 E-2 

   DINOF   0.02 - 0.2 1.21 E-1 

   FDIAT   0.02 - 0.2 2.0 E-2 

5 KC (five groups) Half saturation constant for Carbon  mg L-1    

6 KSi (five groups) Light saturation for maximum production mg L-1    

7 ϑ CHLOR phytoplankton temperature multiplier for growth (no units) 1.06 - 1.14 1.081 

   CYANO   1.06 - 1.14 1.092 

   CRYPT   1.06 - 1.14 1.062 

   DINOF   1.06 - 1.14 1.105 

   FDIAT   1.06 - 1.14 1.111 
 
Table 2. 2 List of parameters included in the ecological model relative to the different phytoplankton groups.  Parameters’ ranges adopted for the 
calibration process, using the global optimization algorithm, were indicated only for the sensitive parameters included in the calibration.  Final 
calibrated parameter values obtained during group-by-group calibration are included. 
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Number Symbol Group Name Unit Range  Calibrated value 

8 vs CHLOR Constant settling velocity ms-1 -5.83 E-4 - 1 E-5 -2.57 E-5 

   CYANO   -5.83 E-4 - 0.5 E-5 -1.12 E-6 

   CRYPT   -5.83 E-4 - 0.5 E-5 4.97 E-6 

   DINOF   -5.83 E-4 - 1 E-4 1.001 E-4 

   FDIAT   -5.83 E-4 - 1 E-4 -6.72 E-5 

9 ke CHLOR Specific extintion coefficient m2 mgChla-1 0.014 - 0.20 1.140 E-1 

   CYANO   0.014 - 0.15 1.264 E-1 

   CRYPT   0.014 - 0.15 1.497 E-1 

   DINOF   0.014 - 0.15 3.413 E-2 

   FDIAT   0.014 - 0.15 3.306 E-2 

10 ϑL  CHLOR temperature multiplier respiration, loss term (no units) 1.05 -1.10 1.095 

   CYANO   1.05 -1.10 1.069 

   CRYPT   1.05 -1.10 1.095 

   DINOF   1.05 -1.10 1.056 

   FDIAT   1.05 -1.10 1.050 

11 Ik (five groups) initial slope Phyto-irradiance curve µE m-2 s-1    

12 τcs  (five groups) typical shear stress N m-2    

13 α  unique resuspension rate constant mgChla m-2 s-1    

14 Kres  (five groups) control rate of resuspension mgChla m-2 s-1      

15 kp unique photo respiration phytoplankton DO loss (no units)    
16 fres (five groups) fraction of phytoplankton respiration relative to total 

loss rate (no units)     
TOT: 

72 
References: Hipsey et al.,2004; Hamilton & Schladow, 1997; Schladow & Hamilton,1997;  

Bowie et al., 1985; Reynolds, 1984; Margalef, 1983   
 
Table 2.2 cont.  
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Day of year 1st Abundant Genera  Cells/ml  2nd Abundant Genera Cells/ml  3rd Abundant Genera  Cells/ml  
3 Cyclotella            7.7 Cryptomonas           5.0 Aulacoseira       3.7 
8 Cyclotella            7.9 Aulacoseira       5.2 Cryptomonas           2.3 

15 Cyclotella            10.4 Cryptomonas           6.8 Aulacoseira       5.8 
22 Cyclotella            11.7 Aulacoseira        9.0 Rhodomonas   8.3 
36 Rhodomonas   198.2 Cyclotella         22.3 Aulacoseira       10.8 
43 Rhodomonas   107.8 Cyclotella         18.3 Aulacoseira       10.3 
50 Rhodomonas   144.5 Cyclotella         31.3 Cryptomonas           6.0 
57 Rhodomonas   167.9 Cyclotella         33.5 Cryptomonas           23.8 
64 Cryptomonas            128.8 Rhodomonas  68.5 Cyclotella             53.4 
78 Cryptomonas            202.2 Rhodomonas  27.8 Cyclotella             9.0 
85 Cryptomonas            19.6 Cyclotella             6.7 Sphaerocystis          6.2 
99 Cryptomonas            509.7 Rhodomonas  112.9 Cyclotella             25.6 

106 Cryptomonas            253.5 Cyclotella              84.4 Rhodomonas   72.3 
113 Aphanizomenon   39.8 Cyclotella              32.0 Cryptomonas          11.8 
127 Cyclotella              95.5 Aphanizomenon    72.9 Rhodomonas    13.1 
134 Coelastrum      380.5 Cyclotella             251.9 Aphanizomenon     62.8 
141 Coelastrum      396.8 Cyclotella             270.2 Scenedesmus     68.8 
148 Coelastrum      224.9 Cyclotella             129.1 Scenedesmus     59.7 
155 Cyclotella             182.7 Sphaerocystis           151.5 Coelastrum        147.5 
162 Cyclotella             665.5 Fragilaria      279.6 Rhodomonas  114.5 
169 Cyclotella             730.8 Fragilaria      692.1 Sphaerocystis          240.9 
176 Cyclotella             929.5 Fragilaria      215.1 Cosmarium              48.3 
183 Cyclotella             923.8 Rhodomonas    55.4 Scenedesmus     46.7 
190 Cyclotella             197 Aphanizomenon     146.6 Scenedesmus     21.3 
197 Aphanizomenon     905.7 Anabaena          307.8 Cyclotella             12.5 
204 Aphanizomenon     1627.1 Cyclotella             327.1 Anabaena        198.7 
211 Cyclotella           665.7 Aphanizomenon     378.7 Ceratium       179.6 
218 Cyclotella             415.7 Ceratium     346.6 Aulacoseira       111.0 
233 Ceratium    443.2 Cyclotella             345.9 Aphanizomenon     129.5 
246 Cyclotella           371.6 Ceratium    294.8 Aphanizomenon    217.2 
253 Cyclotella             439.5 Ceratium    148.6 Rhodomonas  46.0 

Table 2. 3a. Most abundant phytoplankton Genera observed and number of organisms counted for each Genera, during the sampling dates. 
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Phytoplankton list       
Algae class Genera Reynolds group Characteristics 

Chlorophytes Closteriopsis    P 
Tolerant to moderate light, sensitive to 
stratification, eutrophic habitat  

  Scenedesmus  J Prominent in highly enriched systems 

  Sphaerocystis          F 
Neutrally buoyant, tolerant to low 
nutrients availability  

  Coelastrum               J  
  Pediastrum           J  
  Staurastrum              P  
  Schroederia                  
  Tetraedron        J  
  Tetrachlorella              

  Cosmarium              N 
Tolerant to nutrient deficiency, 
sensitive to stratification 

  Ankyra           X1 
Tolerant to stratification, sensitive to 
nutrient deficiency 

  Chlamydomonas                
  Crucigeniella               
  Tetraedron           J  

  Volvox      G 
Tolerant to high light, sensitive to 
nutrient deficiency 

  Ankistrodesmus          X1  
  Closteriopsis     P  
  Oocystis                J  

Diatoms Aulacoseira       B 
Tolerant to light deficiency, sensitive 
to Si deficiency 

  Cyclotella               B  
  Synedra                 B  
  3itzschia                   
  Fragilaria       P  
  Cymatopleura           
  3avicula             MP Tolerant to turbidity and high light 

  Asterionella C 
Tolerant to light deficiency, sensitive 
to stratification 

Cyanobacteria Aphanizomenon    H 
Tolerant to low nitrogen, sensitive to 
mixing 

  Microcystis      M Sensitive to low light and mixing 
  Anabaena          H  
  Merismopedia            

  Gomphosphaeria          L 
Tolerant to low nutrients, sensitive to 
mixing 

Cryptophytes Cryptomonas           Y Tolerant to low light 
  Rhodomonas  Y  
Dinoflagellates Ceratium       L  
Euglenophyta Phacus                  W1 Tolerant to high organic matter, 
  Trachelomonas  W1  
  Euglena    W1  

References: Reynolds et al., 2002; Padisak et al. 2009 

 
Table 2. 3b. Phytoplankton Genera observed in El Gergal in 2007 classified in algae 
classes and related to the corresponding Reynolds group. 
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a) Synthetic series RMSE (µg Chla L-1)             

  Separate Runs               2 Groups              2 Groups              3 Groups          4 Groups              

GROUP 1 0.6597 1.2365 - 1.8792 2.5052     
GROUP 2 0.4725 0.4784 - 0.6096 0.6747     
GROUP 3 0.1696 - 0.1838 0.5564 0.5652     
GROUP 4 0.3185 - 1.2130 - 1.2391     

                  

b) Field series RMSE (µgr Chla L-1)             

  
Separate Runs                  

automatic calibration 

2 Groups               

Cyano & Crypt 

2 Groups               

Chlor J Chlor 3 3 Groups          4 Groups        

4 Groups         

manual 

calibration 

4 Groups                 

initial condition 

Cyano 

4 Groups                 

initial condition 

Chlor J 

CHLOR J 1.55 forced 2.4496 2.3495 3.0764 1.517 2.19 1.5 

CYA/O 3.62 3.9088 forced 3.924 4.8365 3.6277 3.94 3.68 

CHLOR / 0.79 forced 1.1157 1.0582* 2.071 1.041 1 1.28 

CRYPT 0.55 0.6365 forced forced 13.25 0.6773 0.73 0.68 

FDIAT+DI/OF forced forced forced forced forced forced forced forced 

*not reproducing chlor_2 peak as in 2 groups simulations             

 
Table 2. 4  Root mean squared errors (RMSE), calculated between (A) synthetic series and simulations and (B) field observations and 
simulations. Results for different calibration strategies involving variable number of phytoplankton groups are included. Forced means that the 
group was set to observed values during simulations.   
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Analysis of one group's parameters sensitivity to the others algal groups 

  Group 1 Group 2 Group 3 Group 4 

Parameter (Group 1) ∆ p/p0 S S S S 

µmax 0.0317 1.3571 1.9478 77.7532 0.7025 

KP 0.1000 3.0197 1.3066 3.1068 0.0694 

KN 0.0236 0.0000 0.0000 0.0479 0.0000 

ϑ 0.0220 1.5573 0.9105 0.0000 0.1358 

vs 0.0101 14.6632 13.6545 99.0674 11.3930 

ke 0.0118 31.8033 10.7382 283.8327 0.4701 

ϑL  0.0202 6.1487 2.3640 76.8057 0.1560 

 
Table 2. 5 Sensitivity coefficients (S), showing the effect of changes parameter values of one functional group on the simulations of other algal 
groups. The parameters that are changed in this exercise are those of the sub-model representing the growth of Group 1.  S values are calculated 
following Eq. 2. 
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Symbol Group Unit Automatic 

calibration 
Manual 

calibration 

µmax CHLOR_J day-1 3.6 3.600 

 CYANO day-1 0.59 0.55 

 CHLOR_N  3.6 2.130 

KP CHLOR_J mg L-1 2.54 E-3 2.54 E-3 

 CHLOR_N  3.17 E-2 3.17 E-2 

 CRYPT  3.991 E-2 3.999 E-2 

KN CHLOR_J mg L-1 5.47 E-2 5.47 E-2 

 CHLOR_N  9.98 E-2 9.98 E-2 

ϑ CHLOR_J (no units) 1.081 1.081 

 CHLOR_N  1.135 1.135 

 CRYPT  1.062 1.080 

vs CHLOR_J ms-1 -2.57 E-5 -2.57 E-5 

 CHLOR_N  0.101 E-4 0.101 E-4 

ke CHLOR_J m2 mgChla-1 1.140 E-1 1.140 E-1 

 CHLOR_N  1.876 E-1 1.876 E-1 

 CRYPT  1.49 E-1 0.89 E-1 

ϑL CHLOR_J (no units) 1.095 1.095 

 CHLOR_N  1.056 1.056 

 
Table 2. 6 Final parameter set considering two Chlorophytes subgroups (N and J). The parameters’ ranges adopted for calibration processes were 
the same reported in Table 2. 2 (Chlorophytes range was adopted for both group N and J). The final calibrated parameter values obtained during 
the group-by-group automatic calibration for the two Chlorophytes subgroups were included, the rest of the values were the same of Table 2. 2. 
Cyanobacteria and Cryptophytes parameters were included only if their values were adjusted during the final manual calibration, simulating all 
the algal groups (bold values). 
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Figures 
 
 
FIGURE 2.1 
 

 
 
 
Figure 2. 1.  El Gergal Reservoir bathymetry and main inflows. Location of the 
meteorological station (A) and sampling and data recording point (B) is also indicated. 
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 FIGURE 2.2 

 
 
 
 
Figure 2. 2. Comparison of simulated and observed free surface elevation (m a.s.l.) in El 
Gergal during 2007 (A). For reference, time series of inflows (Cala, Cantalobos, 
Encinilla) (B) and outflows distribution between the four operational outlets (C) are also 
plotted. 
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 FIGURE 2.3 
 

 
 
 
Figure 2. 3. Evolution of Chlorophyll-a concentration as measured by the spectro-
fluorometer. Four groups were identified: Cyanobacteria (CYANO), Cryptophytes 
(CRYPT),  Chlorophytes (CHLOR), sum of freshwater Diatoms and Dinoflagellates 
(FDIAT & DINO).  
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FIGURE 2.4 
 
 

 
 
 
Figure 2. 4. Time trace of total phytoplankton abundance (panel A) and of total 
phytoplankton biomass in terms of bio-volumes (panel B). The most abundant 
Reynolds’ groups associated to the different sampling occasions are identified by a 
symbol. Shadings represent relevant environment conditions: weak stratification (WS), 
strong stratification (SS), low nutrient availability (LN) and high nutrient availability 
(HN). Reynolds groups B, H, J, L, M, Y were identified, dominated by Diatoms, 
Cyanobacteria (Aphanizomenon), Chlorophytes, Dinoflagellates, Cyanobacteria 
(Mycrocistis) and Cryptophytes respectively.  
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FIGURE 2.5 
 

 
 
Figure 2. 5. Simulated water temperature profiles (solid black lines) against 
observations (black dotted lines). The number inside subplots indicates the day of year. 
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FIGURE 2.6 
 
 
 

 
 
 
Figure 2. 6. Results of the sensitivity analysis, expressed as S coefficient values. Low S 
values indicates low model sensitivity to the changes of that particular parameter. 
Sensitivity was evaluated on two outputs: Chloropytes Chla concentration (S Chlor) and 
total Chla concentration in the water column (S tot Chla). The value used in this paper 
as a threshold to include a parameter in the calibration process (S=1) is indicated as a 
dashed line. Parameter acronyms are defined in Table 2. 
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FIGURE 2.7 
  

 
 
 
 
Figure 2. 7. Observed and simulated chlorophyll-a concentration after group-by-group 
calibration. Panel A is for Cyanobacteria, panel B for Cryptophytes, panel C for 
Chlorophytes, and panel D for the sum of Diatoms and Dinoflagellates. Concentrations 
are averaged over volume in the first 20 m of the water column.  
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FIGURE 2.8 
 

 
 
 
Figure 2. 8. Phytoplankton succession observed (symbols) and modeled (lines), 
adopting four phytoplankton groups: Cyanobacteria, Cryptophytes, Chlorophytes group 
J, Chlorophytes group N. In this exercice, Diatoms and Dinoflagellates were set to 
observed values. Therefore, they were not included in the calibration process. 
Concentrations are averaged over volume in the first 20m of the water column.  
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FIGURE 2.9 

 
 
Figure 2. 9. Phytoplankton succession observed (symbols) and modelled (lines) during 
2008 adopting three phytoplankton groups: Cyanobacteria, Cryptophytes and 
Chlorophytes. Simulation was conducted adopting the parameter set found after 2007 
calibration. Chlorophytes were simulated using parameter set of Chlorophytes group J. 
Diatoms and Dinoflagellates were set to observed values. Concentrations are averaged 
over volume in the first 20m of the water column. 
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FIGURE 2.10 
 

 
 
Figure 2. 10.  Two examples of the effect of initial conditions on the modelled 
phytoplankton seasonal succession including four algal groups. (A) Initial concentration 
of Cyanobacteria increased by 50%. (B) Initial concentration of Chlorophytes group J 
increased by 50%. Concentrations are averaged over volume in the first 20m of the 
water column. Solid lines represent the reference simulation obtained without 
modifying initial conditions. 
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Chapter 3 
 

“Sorprenderse, extrañarse, es comenzar a entender” 

José Ortega y Gasset  

 
 
Is the composition of the phytoplankton community 
of reservoirs modified on the short-term by 
withdrawal operations? 
 
 
1. Introduction 
 

The changes in abundance and composition experienced by phytoplankton 
communities in lakes and reservoirs are the result of variations in the physical (light 
climate) and the chemical (nutrient availability) constraints for algal growth (Margalef, 
1983; Reynolds, 1984; Margalef, 1997; Reynolds, 1997). Light climate experienced by 
phytoplankton cells is tightly related to turbulent mixing, which determines the 
residence time of microalgae within the well-illuminated upper layers of the water 
column (MacIntyre, 1998). On the other hand, nutrients distribution and their 
bioavailability in the upper layers where light levels are adequate for phytoplankton 
growth, is the result of transport processes interacting with biological phenomena. 
These changes in the environmental conditions experienced by algal cells are tightly 
linked to the physical forcing driving mixing and transport processes within the lake, 
and they tend to promote the growth of certain groups or species in detriment of others, 
given the variety of adaptations of phytoplankton to the environment (Huisman et al., 
1999; Passarge et al., 2006; Litchman and Klausmeier, 2001).  

The concept of succession being subject to external environmental control has 
been extensively supported through the analysis of experimental observations either 
collected in the framework of field monitoring programs or in microcosms and 
mesocosms, through theoretical arguments, and, also, by means of numerical 
simulations and experiments. Huisman et al. (2004), for example, demonstrated that 
Cyanobacteria tend to dominate at low turbulence diffusivity while sinking diatoms and 
green algae are favored at high turbulent diffusivity. Huisman et al. (1999), also, 
demonstrated that a green alga (Scenedesmus) was competitively displaced by 
Cyanobacteria species (Aphanizomenon and Microcystis) while another green alga 
(Chlorella) was even more competitive at lower light intensities. Passarge et al. (2006) 
showed that under phosphorous limited conditions Synechocystis spp (a Cyanobacteria) 
was able to displace Chlorella sp. (a Chlorophytes). Sommer and Lengfellner (2008), 
working with mesocosms and analyzing phytoplankton growth at different light and 
temperature conditions, demonstrated that light intensity may control the timing of 
spring blooms. They also demonstrated that the biomass of Diatoms tends to decrease 
with rising water temperatures. Similar experiments by De Senerpont Domis et al. 
(2007) showed that artificially warming the environment may not change the 
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phytoplankton succession sequence, but tends to increase the abundance of 
Cyanobacterial species relative to other groups in the community. More recently, Hoyer 
et al. (2009) analyzed the seasonal changes experience by the phytoplankton community 
in a water supply reservoir in Southern Spain during a period of time of 8 years. To 
characterize the composition of the community they used the functional classification 
proposed by Reynolds (2002). In this classification, the predominant genera of algae are 
grouped according to their responses or adaptation to particular environmental 
conditions, characterized in terms of two key variables: the ratio of the euphotic depth 
to the surface mixed layer depth (zeu / zmix) and phosphorus concentration, representing 
energy limitation and nutrient availability for phytoplankton growth, respectively. 
Hoyer et al. (2009) were able to identify a general succession sequence of functional 
groups which was frequently disrupted during events in which the phytoplankton 
assemblage experienced sudden and abrupt changes (i.e shifts and reversions). These 
changes coincided in time either strong wind events or changes in withdrawal rates. 
Hoyer et al. (2009) concluded that water withdrawals were, probably, the most 
important allogenic factor controlling the changes in composition and abundance of the 
phytoplankton community in Mediterranean reservoirs. Their conclusion agreed with 
that of Naselli Flores (2000), who studied twenty-one Sicilian reservoirs of varying 
trophic states, and concluded that the abundance and composition of phytoplankton are 
more strongly influenced by the hydraulic regime than by nutrient availability. 

Few studies have been published in the literature that explore in detail the role of 
hydraulic forcing in particular, withdrawals, on the seasonal or short term evolution of 
the functional structure of phytoplankton communities in stratified reservoirs. 
Moreover, the few studies that exist are, to some extent, contradictory. Barbiero et al. 
(1997), for example, pointed out that long term surface withdrawals in reservoirs could 
induce a decline in the population of Cyanobacteria. Hoyer et al. (2009), instead, 
suggested that deep withdrawals could favor development of Chlorophytes or Diatoms, 
while surface extractions could favor the growth of Cyanobacteria. These conclusions 
regarding the effects of water withdrawal on the phytoplankton community, however, 
were based on the analysis of observations. Our goal in this manuscript is to understand 
the mechanisms by which withdrawal could induce changes in the composition of 
phytoplankton communities. Two mechanisms are likely at play. The first is purely 
physical, and consists of the selective removal of species developing at or near 
withdrawal level, favoring the growth of others which could be occupying other layers. 
The second is associated with the environmental conditions (light, temperature and 
nutrients) experienced by phytoplankton communities, at a given layer, which can be 
different depending on the withdrawal level. Casamitjana et al. (2003), for example, 
showed that the evolution of the thermal structure in reservoirs can be significantly 
different, depending on the withdrawal levels. Of course, the sensitivity of the thermal 
structure to withdrawals will depend on the size of the basin and the magnitude of the 
outflow rates. These changes in the environmental conditions, in turn, may favor the 
development of certain species in detriment of others, depending on their response to 
particular environmental conditions. Here we will focus on this second mechanism. 
First, we will propose a conceptual model through which we will evaluate the changes 
in the light and temperature fields induced by selectively withdrawing at different 
levels. We will then assess the effects of those changes in the growth of two functional 
groups characterized by different sensitivity to light and temperature. Second, we 
analyze the results of simulations conducted with a one-dimensional hydrodynamic-
ecological model (DYRESM-CAEDYM) to evaluate the effects of different withdrawal 
levels on the environmental conditions experienced by two algal groups with different 
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adaptations to the environment, coexisting either at the same layer or at different layers. 
Our arguments and simulations are particularized for the conditions observed in El 
Gergal, a small to medium-sized reservoir in southern Spain, previously studied by 
Hoyer et al (2009). DYRESM-CAEDYM was successfully calibrated and applied to El 
Gergal by Rigosi et al. (2010) to simulate phytoplankton succession in 2007. The initial 
and boundary conditions in these simulation experiments are constructed from 
observations existing in the data set used in that work. 

 
2. Methods 
 

Study site  

El Gergal (37º 34´ 13´´ N, 6° 02´ 57´´ W) is a small, canyon-shaped and 
eutrophic reservoir, supplying water to the city of Seville. The annual inflow volume, 
coming from regulated rivers and not regulated streams is ca. 70 hm3 with extreme 
oscillation on seasonal scales. Outflows occur from either a spillway located at 50 
m.a.s.l. or from a deep draining outlet at 17 m.a.s.l. directly into the river, or from 4 
other withdrawal structures located at 41.2, 39.8, 38 and 26 m.a.s.l. flowing into a water 
treatment plant to be distributed. When full, the volume of water stored in the reservoir 
is 35 hm3, its surface area is 250 ha, and the maximum length is 7750 m. The maximum 
depth is 37 m, close to the dam, and the mean depth is 15.7 m (Fig. 3.1). El Gergal 
reservoir is warm and monomictic. Water never reaches temperatures below 4ºC (Cruz 
Pizarro et al., 2005). The lake stratifies in summer from the beginning of March to the 
middle of October, and de-stratifies towards the end of the year.  
 

 Approach  

Our working hypothesis is that different withdrawal levels may induce different 
changes in the environmental conditions, which, in turn, will favor the development of 
certain algal groups in detriment of others. The effect of environmental conditions is 
assessed through a first order model of phytoplankton growth, in which the chlorophyll-
a concentration (µg L-1) of an algal group i, Chlai, is represented as 
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Here, µmax,i is the maximum growth rate that phytoplankton exhibits under optimal 
conditions, Ri represents the effects of all sinks of phytoplankton biomass (including 
mortality, respiration and grazing), and the functions fi (f

I, fII, fIII, and f), represent the 
limiting effects on growth of light levels I, nitrogen 3 and phosphorus P concentrations 
and temperature T in the water column. The limiting function for temperature is 
represented as: 
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where θ is a temperature multiplier (θ > 1), T is the observed temperature, k, a and b are 
parameters of the model. The limitation function for light, in turn, is given by: 
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where I is the average photo-synthetically active radiation in one layer and Iki is the 
initial slope of the irradiance curve. Nutrient limiting functions are defined as follows: 
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where KPi and K3i are the half saturation constants for phosphorus and nitrogen. All 
parameters in Eqs. (1)-(5) are specific of each algal group (indicated by the subscript i), 
representing the different adaptations to environmental conditions. The growth model 
given by Eqs (1)-(5) is included in the ecological model CAEDYM, and, is used in this 
work as a valid representation of phytoplankton growth.  

 
Experimental data set  

The changes experienced by the phytoplankton community in El Gergal 
occurring during two periods of time in 2007 were carefully analyzed. At those times, 
the reservoir was stratified, the only hydraulic forcing was due to withdrawal and the 
composition of the phytoplankton community was subject to significant changes. In this 
work, we were interested in analyzing independently the withdrawals’ effects so we 
excluded period with inflows. The significance of the changes was determined as 
follows. Phytoplankton species existing in the reservoir were identified and counted 
under inverted microscope following the Utermöhl method (1958), on a weekly basis 
during 2007. The genera were then classified into functional groups, following 
Reynolds (1997, 2000). Abundances of the different Reynold’s functional groups were 
estimated by adding the abundances corresponding to the member species at each depth. 
Most abundant functional groups were B, H, J, L, Y, mainly by Diatoms, 
Cyanobacteria, Chlorophytes, Dinoflagellates, and Cryptophytes, respectively. Time 
series in phytoplankton abundance and the dominant functional group at each time is 
depicted in Figure 3.2 (A).The changes in the composition of the phytoplankton 
community were described using the Index of Community Change σ (or ICC), as 
proposed by Reynolds (1984). The time series of ICC (Fig. 3.2B) was calculated as: 
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where bi(t) is the abundance of group i at time t and β(t) is the total abundance of the 
phytoplankton community. ICC was computed using phytoplankton countings 
(individuals ml-1), rather than biomass so that the development of small-cells could be 
taken into account (Hoyer et al., 2009). We used an arbitrary threshold value of ICC (σ 
= 0.12) to separate small from significant changes in the composition of phytoplankton 
community. Only two periods of time satisfied the necessary conditions established at 
the onset of this work to be analyzed. Period one (P1) started on day 162, and, period 
two (P2) on day 190. The length of the periods analyzed were in both cases 15 days, 
which, according to our observations, is sufficient for the phytoplankton community to 
exhibit large and significant changes both in size and composition.  
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Most of the outflows (82%) during P1 were withdrawn from the lower intake (26 
m a.s.l.). Of the remaining 28%, 15% were withdrawn the intermediate intake (38 m 
a.s.l) and only 3% from the upper intake (41.2 m a.s.l.). The average volume withdrawn 
per day during this period was ca. 3x105 m3. During period P2, a large fraction of the 
total outflows (99%) were withdrawn from the lower intake, and the remaining 1% were 
extracted from the intermediate intake. The average outflow rate in this case was 
7x104m3 day-1, almost one order magnitude less than in P1. Thermal conditions also 
differed between the study periods. Surface temperatures were about 20ºC in P1 and 
24ºC in P2. During the first period the population of Cyanobacteria (group H) and 
Chlorophytes (group J) declined. Diatoms (group B) became dominant at that time (Fig. 
3.2). On the second period, the population of Cyanobacteria (group H) increased, while 
the number of Chlorophytes (group N) declined. Specific light, phosphorus and 
temperature functions for Cyanobacteria-H, Chlorophytes–N and -J, are represented in 
Figure 3.3. Cyanobacteria-H were more sensitive to light limitation than Chlorophytes-
N and –J. Chlorophytes-N was the less tolerant group to phosphorus limitation followed 
by Chlorophytes-J and by Cyanobacteria-H. Temperatures higher than 20ºC favor 
Cyanobacteria-H rather than Chlorophytes-J and –N. 
 

Succession model  

A process based one-dimensional hydrodynamic and ecological model 
(DYRESM-CAEDYM, Imberger and Patterson, 1981; Hamilton and Schladow, 1997; 
Schladow and Hamilton, 1997) is applied to simulate phytoplankton succession in El 
Gergal reservoir. DYRESM (DYnamic REservoir Simulation Model) provides 
predictions of the physical environment which are used to drive water quality 
simulations in CAEDYM (Computational Aquatic Ecosystem DYnamics Model). Our 
choice of model is justified in that (1) it has been widely used as a management tool and 
(2) it represents explicitly the two-way links existing between physical and 
biogeochemical processes. DYRESM includes descriptions of mixing and transport 
processes associated with river inflow, outflows, diffusion in the hypolimnion and 
mixed-layer dynamics, and it is used to predict the variation of water temperature and 
salinity with depth and time. For example, it has been successfully applied to Lake 
Burragorang - Australia (Romero et al., 2004), Lake Constance - Europe’s Alps 
(Hornung, 2002), San Roque reservoir - Argentina (Antenucci et al., 2003) or Lake 
Kinneret - Israel (Antenucci et al., 2000). CAEDYM consists of a series of coupled 
first-order differential equations representing the major biogeochemical processes 
influencing water quality including primary and secondary production, nutrient and 
metal cycling, oxygen dynamics and the movement of sediment. It is a flexible model 
so that it can be configured with different degrees of complexity to focus on particular 
processes (Copetti et al., 2006; Trolle et al., 2008; Gal et al., 2009).  

 
Model setup and calibration  

The biogeochemical model was set up to simulate the growth of four different 
phytoplankton groups (Chlorophytes-J, Chlorophytes-N, Cyanobacteria, and 
Cryptophytes). The biomass of each algal group was assessed in terms of chlorophyll-a 
(from here on, Chla). Phytoplankton growth is represented as in Eqs. (1)-(5). Algae are 
allowed to describe vertical movements, modeled in our implementation, with a 
constant settling velocity. The changes in the physical (temperature and solar radiation) 
and the chemical (nutrient) environment experienced by the algal cells is the result of 
the calculations made by the physical sub-model (DYRESM) coupled with the 
biological sub-model (CAEDYM). Further details of the model can be found in Romero 
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et al. (2004b). A complete list of state variables (both modeled or supplied as field data) 
used in our model of El Gergal is presented in Table 3.1.  

The model was calibrated manually to minimize the difference between 
observations and simulations (evaluated as the Root Mean Squared Error) considering 
data at all the depths observed during the two study periods. The Chla concentration in 
the field was assessed with a submersible four-channel spectro-fluorometer (bbe 
Moldaenke). The spectro-fluorometer is able to discriminate the Chla concentration of 
four different functional groups: green algae (chlorophitae), grey algae (including 
dinoflagellates and diatoms), cyanophyceae and cryptophyceae. Our calibration exercise 
started from a parameter set for algal growth, which was proposed in Rigosi et al. 
(2010), when calibrating the successional model for El Gergal, with nutrient 
concentrations forced (i.e. not simulated). Here, we include nutrients as state variables, 
to account for the effects of withdrawal on the nutrient fields, hence, the need to re-
calibrate the model parameters. A first-order variance analysis (Blumberg and Georgas, 
2008) was used to isolate the sensitive parameters to be adjusted in the manual 
calibration (Table 3.2). Trial and error calibration strategy is traditionally applied in 
water quality modelling (Lewis et al. 2002; Tanentzap et al., 2007; Bonnet and Poulin, 
2004; Hillmer et al., 2008).  

A list of sensitive parameters and corresponding calibrated values are shown in 
Table 3.2 (a complete list of the model parameters can be found in Hipsey et al., 2004). 
Simulations were conducted with a 1 hour time step, and the state variables were output 
every 24 hours at 11:00 am. The results of the physical-chemical model were checked 
by comparing simulated water levels, temperature and nutrients profiles against 
observations (depth and date specific) (Figure 3.4). The results of the ecological model, 
in turn, were checked by comparing Chla concentrations for each of groups simulated 
by the model, against the spectro-fluorometric observations. Figure 3.5 depicts variation 
of simulated and observed phytoplankton group concentration averaged in the first 20m 
of the water column (see Appendix A for details on calibration).  

 
Model simulations 

Several experiments were initially conducted with DYRESM-CAEDYM, under 
simplified scenarios, to understand the effect of withdrawal levels on the growth of 
phytoplankton groups with different sensitivities to light and temperature changes. Only 
one algal group was simulated at a time in El Gergal. Algae were assumed to be 
neutrally buoyant and maximum growth rates and mortalities were set to constant 
values. Initial water surface elevation, temperature and Chla profiles were set equal to 
the observations. Nutrients concentrations, in turn, were forced and set equal to a high 
and constant value, to avoid nutrient limitation on growth. Water was extracted 
alternatively from upper, intermediate and lower intake or from the draining outlet 
(deeper than the lower intake). 

The model was then used to simulate the changes in the phytoplankton 
community in El Gergal during the two study periods, under more realistic conditions. 
All groups existing in the lake during the study periods were simulated with specific 
growth rates, mortalities and settling velocities, as calibrated (see Appendix A). 
Nutrients were also state variables and simulated by the model. Three different 
scenarios were simulated for each study period (see Table 3.3). In all scenarios, 
withdrawal rates were as observed. The base case scenario corresponds to a realistic 
simulation, in which water was withdrawn as indicated above (Experimental data set). 
For period 1, the first scenario (P1S1) consists of withdrawing water only from the 
drainage outlet (17 m a.s.l.); in the second scenario (P1S2) water was only withdrawn 
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from the upper intake. The first scenario during two (P2S1) consists of shifting the 
outflow level from 26 m a.s.l. level to 24.5 m a.s.l. (closer to bottom). The second 
scenario in this period (P2S2) the withdrawal levels is shifted to 38 m a.s.l. 
(intermediate intake) (see Table 3.3), the highest operative intake at that time (about 3 m 
from surface).   
 
3. Results 
    

Conceptual model  

The reservoir will be conceived as a stack of three horizontal layers which are 
free to move vertically (advection) and to contract and expand in response to outflows 
(Fig. 3.6A). Each layer remains homogeneous at all times and property differences 
between layers represent the vertical distribution of those properties. Vertical transport 
across layers will be assumed negligible. Water released at any given level is withdrawn 
from a narrow layer approximately centred at the off-take level. All layers were 
considered to have the same volume Vl, and their thickness was calculated from the 
depth-area curve for El Gergal. Note that the thickness of the layer increases with depth 
as a consequence of the decreasing form of the depth-area curve of natural basins. In a 
period of 15 days it will be assumed that the volume of water withdrawn is equal to Vl. 
In our idealized model of a reservoir, if the volume of the bottom layer is withdrawn, all 
layers above it will descend, their average areas will decrease, and, consequently, their 
thickness will increase, to keep their volume constant. The average light conditions 
within the different layers will consequently decrease. Three scenarios are considered, 
depending on the location of the outlet: (A) surface intake; (B) intermediate intake; (C) 
lower intake. Assuming no limitation for growth due to temperature or nutrients 
concentrations, any changes in the growth rate of phytoplankton should be result of 
changes in light levels occurring as a result of water withdrawal. These levels, in turn, 
are determined by the distance of algal cells to the free surface (Fig. 3.6). Light 
limitation factors (Eq. 3) for Cyanobacteria-H and Chlorophytes-J (with different 
sensitivities to light, Fig. 3.3A) were calculated for the initial and final conditions in 
each withdrawal scenario.  
 Consider first the case of algae occupying the first layer. In scenario (B) or (C), 
Cyanobacteria-H will grow more slowly (0.012%), while Chlorophytes-J should not 
vary significantly (Table 3.4). The differences in growth are associated to differences 
light sensitivity. As layer 1 descends, its thickness increases, and the average light 
levels within it will decrease. The light limiting factor for Cyanobacteria-H will 
decrease too, due its higher sensitivity (Fig. 3.3A). The light limiting factor for 
Chlorophytes-J, in turn, will remain constant (Fig. 3.3A). If water is withdrawn from the 
first layer, the population of both group H and J will decline, as a consequence of the 
outflow. Consider now the case when algae occupy the intermediate layer. The growth 
of Cyanobacteria-H, in this case, is favored in scenario A (withdrawal from upper 
intake), but disfavored in scenario C. The same effect was observed for Chlorophytes-J, 
but the changes of the growth factors were lower than for Cyanobacteria-H (Table 3.4), 
given that it is less sensitive to light variations.The abundance of both groups will 
decline in response to outflows from the intermediate layer.  
 Layer temperatures will also change in response to changes in layer thickness. 
When extracting at bottom level layer temperature decreased due to a decrease of 
surface layer area, exposed to radiation. Radiation absorbed by the layer increased due 
to the increase of layer thickness, while depth of illuminated layers would be reduced. 
Instead, when extracting at surface, the intermediate layer temperature increased, being 
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exposed to surface radiation. Algal groups had a different growth rate response 
depending on the observed temperature, following Eq.2, Cyanobacteria-H growth are 
favored at warmer temperatures (higher than 20ºC) while Chlorophytes performance is 
superior at temperature lower than 20ºC (Fig. 3.3C). Thus, when algae were located at 
intermediate layer, surface extraction will favor the development of Cyanobacteria-H 
and bottom extraction favored Chlorophytes-J development. 
 

Synthetic experiments with a 1D hydrodynamic-ecological model   
Our conceptual model, being based on a simplified model of the physical 

behavior of the reservoir, indicates plausible tendencies in the evolution of algal 
populations, depending on their sensitivity to light and temperature. The actual 
magnitudes of the effects on growth will depend on factors such as mixing and 
stratification in the water column, or realistic outflow rates, light attenuation, etc. We 
test whether the tendencies suggested in the analysis of the conceptual model are 
confirmed by conducting synthetic experiments with DYRESM-CAEDYM. Figure 3.7 
(A and B) depicts the results of the synthetic experiments during the study period P1 for 
Cyanobacteria-H and Chlorophytes-J. Both groups were equally distributed with depth, 
at the start of the simulation, with a ca. 7 m thick layer (from 3 to 10 m depth) with 
maximum Chla concentrations at 5 m. Their distribution, though, changed differently as 
a consequence of their different light and temperature fields. Cyanobacteria-H grew 
near the surface independently of the withdrawal level, hence, shading the algae below. 
The final concentrations varied linearly from a maximum of 20 µg Chla/L at the surface 
to zero at 2 m. When extracting from the drainage outlet (Fig. 3.7A, black line, or case 
D), the subsurface peak after 15 days had decreased from 20 µg Chla/L to about 8 µg 
Chla/L, and the layer hosting the algae had moved away from the free surface: the top 
of this layers was at 5 m at the end of the simulations. When extracting from the upper 
intake (Fig. 3.7A, grey line, or case U) the sub-surface peak also decreased shaded by 
surface algal development, but, the hosting layer approached the surface, extending 
from a depth of 1.5 m to 6 m. When extracting from intermediate intake (Fig. 3.7A, 
discontinuous line, or case I) the subsurface peak approached the free surface, but part 
of the population were flushed out; hence, its magnitude was 35% lower than in case U. 
Chlorophytes-J also grew near the surface in all cases, but responded (Fig. 3.7B) 
differently, due to its lower sensitivity to light. When extracting from below the surface 
(Fig. 3.7B, black solid and discontinuous lines), the final Chla concentration decreased 
linear from a maximum value at the surface to zero at 5 m.  Cyanobacteria-H instead 
only developed until 2 m in the same scenario, thus, final concentration averaged from 
zero to 5 m was higher for Chlorophytes-J. Synthetic experiments, when algae were 
located at intermediate layer, indicated that surface extraction will favor the 
development of Cyanobacteria-H and bottom extraction favored Chlorophytes-J 
development as pointed out in the conceptual model. However the response was less 
evident in synthetic experiments where algae were free to develop at surface. 

Synthetic experiments conducted with the stratification and hydraulic forcing 
prevailing during period P2, and, assuming that algae were initially concentrated near 
the surface as observed during that period of time, suggest that no significant changes 
were experienced by any groups when extracting at different levels below the hosting 
layers (Fig. 3.7C, D).The algal populations only declined when withdrawing water from 
the intermediate intake (4 m depth), directly from the hosting layer. Cyanobacteria-H 
were shifted towards the surface, in response to surface withdrawals, and their biomass 
was flushed out of the reservoir. After 15 days, the concentration of Cyanobacteria-H 
above 4 m was reduced, in 12% compared to the cases with bottom withdrawals (Fig. 
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3.7C, discontinued grey line). The population of Chlorophytes-N also shifted towards 
the surface and declined as a result of surface withdrawals. Their final concentrations at 
the surface, though, were lower than those reached by the Cyanobacteria-H, as these 
were favored by the higher temperatures reached by water. 
 

Withdrawal scenarios under realistic conditions  
The simulations conducted with calibrated parameters, and realistic withdrawal 

levels during the two study periods, will be used as a reference and compared with 
simulations conducted varying the intake levels. The final distribution of group J (Fig. 
3.8) did not change between the reference scenario and scenario P1S1, with all water 
being withdrawn from the drainage outlet. A low increase of Cyanobacteria at about 10 
m depth was observed but the vertical distribution was not altered. The increase was due 
to a shift in layer position: when extracting water from the draining outlet the relative 
position of algae from surface increased because in the reference simulation water was 
extracted not only from lower intake but also from intermediate intake. Nutrient 
concentrations below 15 m were lower than in the reference scenario even if no changes 
were detected at the layers of algal development (Fig. 3.8). To understand 
phytoplankton groups’ mechanism of response to environmental condition we 
calculated growth factors (Fi ), indicating the relative rate of change of biomass in Eq. 
(1). Water temperature in the first few m below the surface was 20ºC, and, hence, it did 
not favor any group in particular (Eq. 2 and Fig. 3.3C). The growth of Chlorophytes-J 
was limited by phosphorus at about 5 m depth (PO4< 50 µg L-1; FChlorJ=0.14), but not 
below (PO4>50 µg L-1 and FChlorJ=1.8, at a depth of 10 m). Hence, Chlorophytes-J 
developed at about 10 m depth. Cyanobacteria-H growth factor calculated at 5 m 
(FCyano=0.5), was higher than Chlorophytes-J, explaining Cyanobacteria-H better 
performance at this layer.  

By extracting from the upper intake (scenario P1S2) the subsurface peak of 
group H shifted towards the free surface: at the end of the period it was developing from 
surface to about 7 m depth (Fig. 3.9). The Chla concentration of Cyanobacteria-H did 
not decrease at the surface even if part of its biomass was flushed out. Chlorophytes-J 
did not develop the last day of the study period. Surface extraction moved the all layers 
below the intake, with higher nutrients concentrations and lower temperatures than the 
surface layers, closer to the surface. Nevertheless, resulting nutrients concentrations at 
surface were still limiting algal growth (Fig. 3.9).  

Lowering the intake level (P2S1) did not affect the growth of any of the groups 
simulated, since in both cases (reference and scenario P2S1) the outflow level was 
below the algae. Nutrients and temperature distributions were not affected at the level of 
algal development (Fig. 3.10). The growth of Cyanobacteria–H was favored at the 
surface as a result of the increase in temperature from 25ºC to 28ºC. Chlorophytes-N, in 
turn, were limited by nutrients (mainly Phosphorus). Growth factors calculated at 2 m 
below the free surface following Eq.1 were: 
 

{ } 63.1105.088.2]1,1,1min[6.0 =−⋅⋅=−HriaCianobacteF  

 
{ } 801.03656.04.2]2.0,4.0,1min[43.2 =−⋅⋅=−3esChlorophytF  

 
The growth factor for Cyanobacteria-H 10 m below the surface was lower 

(0.348), hence,their lower development. 
Shifting the intake level to the surface (P2S2), where algae were developing, 

caused a decrease in the population of both groups, Cyanobacteria-H and Chlorophytes-
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N. Final concentration of Cyanobacteria-H, the most abundant group, was about 4% less 
than the reference simulation while concentration of Chlorophytes-N was reduced about 
9%.  Nutrient and temperature fields remained unchanged (Fig. 3.11). 

 

 
4. Discussion  
 

Surface withdrawals  
Conceptual model indicated that upper intake favored the development of the 

Cyanobateria-H located at intermediate layers.  In synthetic experiments the deep 
chlorophyll maximum of Cyanobacteria-H was shifted towards the surface, where, if 
not shaded by other algae developing near the surface and according to our conceptual 
model, should have experienced higher light levels, hence, increasing its growth rate. 
However, this effect was masked by Cyanobacteria-H cells developing at surface and 
shading algae at lower levels. In our realistic simulations, the subsurface population of 
Cyanobacteria-H was also shifted towards surface (P1S2, Fig. 3.9), and did not decline, 
even if part of the biomass was flushed. These results together suggest that  
Cyanobacteria-H is, in fact, favored by surface withdrawals. Surface withdrawals, in 
turn, caused the surface population of Chlorophytes–J to decrease.  This was due to the 
fact that the concentration of Cyanobacteria-H had increased above 4 m limiting their 
development. This, in turn, was the result of Chlorophytes-J moving away from the 
surface layers due to their high settling velocities, compared to Cyanobacteria (Table 
3.2) . Simulations conducted with the settling of Chlorophytes-J set to zero, indicate 
that, in that case they were able to develop in the first 2 m, limiting the surface growth 
of Cyanobacteria-H (Fig. 3.12 A and B).  

 
Deep withdrawals  
Water withdrawals from below layers hosting phytoplankton will favor the 

growth of species tolerant to low light conditions, in detriment of species more sensitive 
to light. In synthetic experiments the development of Cyanobacteria-H was not favored 
when extracting from lower intake or draining outlet: Cyanobacteria-H chlorpyll 
maximum was moved towards bottom at lower level of light availability limiting 
growth. . In synthetic experiments when extracting from lower intake or draining outlet, 
Chlorophytes-J were able to develop from surface to 5 m. Cyanobacteria-H, instead, 
only from surface to 2 m (Fig. 3.7 A and B, black lines). This was mainly due to 
Chlorophytes-J tolerance to low light environment and partially to the fact that 
Chlorophytes-J had a lower specific attenuation coefficient compared to Cyanobacteria 
(respectively 0.114 and 0.126 µg Chla L-1 m-1) that allowed higher light penetration at 
the same concentration. This would result in Chlorophytes-J concentration at surface 
higher than Cyanobacteria-H at these conditions. 

Withdrawals from the lower intake had the same effect as withdrawals from 
outlets closer to reservoir bottom. In synthetic experiments modifying extraction from 
lower intake to draining outlet did not induce changes in the algal distribution both in 
the first and in the second periods. All layers hosting algae were equally shifted towards 
the bottom, and the light, nutrient and temperature limiting functions were the same 
(Fig. 3.8 and 3.10).  

 
Flushing   
Withdrawing from the layer hosting the algae will flush out phytoplankton cells 

causing the population in the reservoir to decline. When extracting from intermediate 
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intake and both phytoplankton groups were located from surface to intermediate level, 
the effect was a decrease in both algal concentration, as showed by scenario P2S2 (Fig. 
3.11), with no change of the dominant group. The magnitude of the reduction in 
concentration is due to the low outflow rate in P2. When simulating an increase of 
outflow rate, the effect observed in P2S2 was enhanced: at the end of the studied period 
Cyanobacteria-H and Chlorophytes-N concentrations were lower than when 
withdrawing a smaller amount of water (Fig. 3.12, C and D).   

 
Environmental conditions  

Nutrients and temperature conditions can intensify or reduce the effects of 
withdrawals extractions depending on the particular sensitivity of each phytoplankton 
group. Considering the simplest case when nutrients were not affected by withdrawals 
as in P2S1, Chlorophytes-N were limited by phosphorus and their concentration was 
one order magnitude lower than Cyanobacteria-H. Cyanobacteria-H are usually 
phosphorous limited when PO4 concentration starts to be lower than about 30 µg L-1 
(Morris, 1980) and have the ability to uptake nitrogen instead of phosphorus in case of 
PO4 limitation (Margalef, 1983). Thus, nutrients reductions would primarily 
compromise Chlorophytes-N development rather than Cyanobacteria-H.  

On the other hand, temperature conditions are able to enhance withdrawals 
effects. For example, extracting from the upper intake at warmer temperature will favor 
the growth of Cyanobacteria-H both by light and temperature functions, when the 
growth rate is higher than the rate of biomass extraction from the outlet. Small 
differences in temperature functions, that are multiplied by the maximum growth rate 
(see Eq.1), can results in different final growth rates. For example, in synthetic 
experiments (see Fig. 3.7,C and D) at surface f(T)cyanoH=1.5893 and f(T)chlorJ=1.5842) 
with final growth rates of respectively 0.8455 for Cyanobacteria-H and 0.486 day-1 for 
Chlorophytes-J.    
 

 

Withdrawals operations as an instrument to control phytoplankton abundance 

and composition  

We showed by model simulation experiments, that phytoplankton groups were 
influenced by the modification of the outflow level from surface to intermediate or 
bottom layers, but they were not influenced moving the outflow level from the layer 
below phytoplankton peak, closer to the bottom of the reservoir. The effect was 
dependent on the position of extraction with respect to the vertical position of the 
phytoplankton peak in the water column. Each phytoplankton group showed a different 
response to the alteration of the environment due to its buoyancy and its peculiar 
tolerance (or sensitivity) to light limitation. Phytoplankton groups’ response was also 
enhanced or reduced depending on their specific nutrients and temperature limitation 
functions. In particular, the growth of deep chlorophyll maxima dominated by species 
with low sensitivity to nutrient depletion, high sensitivity to light reduction and with 
low settling velocity (as Cyanobacteria-H) were favored when extracting from the upper 
layer, because light availability for these algae, whose relative position from surface 
decrease, was increased. Phytoplankton groups sensitive to nutrients limitation and with 
high settling velocities (as Chlorophytes-J) are not favored under those conditions. 
Settling velocities for this group are such that, even if the intermediate layers are shifted 
closer to the surface as a result of surface withdrawals, the algae will move downwards 
away from the surface at a higer speed. 
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Hoyer et al. (2009) suggested the hypothesis that lower withdrawals could favor 
development of Chlorophytes and Diatoms while surface withdrawals would enhance 
the growth of Cyanobacteria. Our results, in turn, suggest that the short-term 
phytoplankton response depend not only on the level of extraction but also on the 
vertical distribution of the phytoplankton groups. The effects of withdrawals on the 
vertical distribution of light, temperature and nutrient fields in the water column depend 
on the magnitude of the outflow rates and the reservoir bathymetry. Bottom withdrawals 
in the second period, with low outflow rates, caused negligible effects on the vertical 
distribution of algae, compared to the effects during the first period. Our results, hence, 
can be generalized to other reservoirs, as long as the differences in morphologic features 
and hydrologic regimes are taken into account. Our findings indicated that 
Cyanobacteria was favored at short-term by surface withdrawals, instead Barbiero et al. 
(1997) observed a decline of Cyanobacteria with long-term surface extractions. This 
suggests that the phytoplankton response is also dependent on the duration of the 
extraction.  
 

 
5. Conclusions 
 

1. Specific responses of phytoplankton groups to withdrawals level were 
investigated simulating different scenarios through a 1D coupled ecological model for 
El Gergal Reservoir (Seville). Model results showed that the composition of the 
phytoplankton community was modified on the short-term by withdrawals operations. 
The magnitude of variation of algal concentration was related to the magnitude of the 
outflow rate and was also dependent to the reservoir bathymetry. An outflow rate 
generating a free surface decrease of about 1.5 m in 15 days, in a reservoir with the size 
of El Gergal, was able to induce a significant physical displacement of the vertical 
layers with consequences on the environmental conditions of phytoplankton 
development. 
 

2. The phytoplankton group response was dependent on the relative position 
between the level of extraction and the depth of the maximum phytoplankton 
concentration in the water column. Variations in phytoplankton groups abundance were 
observed together with modifications of water column physical and chemical structures 
when shifting extraction from intermediate to surface or bottom layers, but they were 
not observed increasing outflow depths once below the zone of phytoplankton 
development.   

 
3. When extracting from surface level and phytoplankton groups were 

developing at surface, the effect was a reduction in concentration of all the groups 
independently from their sensitivity or tolerance to environmental conditions, due to 
exportation of biomass through the outflow. When extracting from surface level and 
phytoplankton groups were developing at intermediate level the species that were 
tolerant to nutrient depletion, sensitive to light limitation and had low settling velocities 
(e.g. Cyanobacteria Reynolds group H), were favored because their position was shifted 
toward the surface.  

 
4. When extracting from deep layers and phytoplankton groups were developing 

at intermediate levels, the relative position of the algae from surface increase, so the 
species that were tolerant to low light conditions (e.g. Chlorophytes) and whose settling 
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velocities did not avoid growth, were favored. When extracting from deep layers and 
phytoplankton groups were developing at surface, surface algal development was not 
affected and the dominant phytoplankton group depended on the environmental 
conditions at time of extraction, rather than on the effect of the withdrawal. 
 
  
Appendix A 
 

Calibrated models for the selected periods  

The comparisons between observed and simulated physical and chemical 
profiles for P1 and P2 were showed in Figures 3.4. The model was able to reproduce 
well the distribution of most physical and chemical variables in both calibrated periods. 
However, the NH4 concentration in P1 was overestimated and the NO3 concentration in 
P2 was underestimated. Simulated oxygenated layers in both periods were thinner than 
observed. Figure 3.5 depicts the evolution in time of different phytoplankton groups’ 
concentrations simulated and observed in the two studied periods. Concentration was 
averaged over volume for the first 20m of the water column. In P1 the model was able 
to reproduce very well the Chlorophytes-J group concentration and also the decrease of 
Cyanobacteria-H group at the end of the 15 days. In P2 the patterns of both 
Chlorophytes-N and Cyanobacteria-H were well represented.  However, the magnitude 
of Cyanobacteria-H concentration at the end of the simulation was underestimated (12 
µg Chla/l vs of 17 µg Chla/l). The Root Mean Squared Errors (RMSEs) calculated 
between observed and modeled physical, chemical and biological variables are included 
in Table 3.5. Highest RMSEs values, both in period 1 and 2, were relative to PO4, 
although these errors have to be referred to their corresponding range of variation. 
RMSEs founded for biological variables were higher than the ones obtained for physical 
and chemical variables.  

 
Calibrated functional phytoplankton groups  
During the two short-term selected periods we analyze the response of three 

different phytoplankton groups (Cyanobacteria-H, Chlorophytes-J, Chlorphytes-N) 
characterized, through parameter calibration, by different behaviors.  Cyanobacteria-H 
were characterized by lower maximum growth rates compared to Chlorophytes-J and 
Chlorophytes-N that can be defined as colonizer groups. Moreover, Cyanobacteria-H 
were more sensitive than Chlorophytes-N and -J to light limitation and were favored by 
high water temperatures. At temperatures lower than 20ºC, Chlorophytes-J and -N 
performed better than Cyanobacteria-H. Lower KP values indicate that one is more 
tolerant to nutrient depletion. Cyanobacteria-H, whose KP value is 3.0E-4 mg L-1, are 
more tolerant to PO4 limitation than Chlorophytes-N, whose KP value is 3.17E-2 mg L-1. 
Each group was also characterized by different settling rates: Chlorophytes-N were 
classified as neutrally buoyant, Cyanobacteria-H as low negatively buoyant and 
Chlorophytes-J as high negatively buoyant (Table 3.2). 
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TABLES 
 
 
 
  
Notation Description Units 

Modelled state variables 

I Light intensity µEm-2 
T Temperature ºC 
Kd Light exctintion coefficient m-1 
Chla (CHLOR J) Chlorophyll-a concentration Chlorophytes group J mg Chla L-1 
Chla (CHLOR N) Chlorophyll-a concentration Chlorophytes group N mg Chla L-1 
Chla (CRYPT) Chlorophyll-a concentration Cryptophytes mg Chla L-1 
Chla (CYANO) Chlorophyll-a concentration Cyanobacteria mg Chla L-1 
SSOL Suspended Solids mg L-1 
pH pH  
DIC Dissolved inorganic carbon mg C L-1 
DOC Dissolved organic carbon mg C L-1 
TN  Total Nitrogen mg N L-1 
NH4 Ammonium concentration mg N L-1 
NO3 Nitrate concentration mg N L-1 
TP Total Phosphorus mg P L-1 
PO4 Soluble reactive phosphorus mg P L-1 
BOD Biochemical Oxygen Demand mg O m-3 
DO Dissolved Oxygen concentration mg O L-1 
SiO2 Silica mg Si L-1 

Field data  

Chla (FDIAT) Chlorophyll-a concentration Freshwater diatoms mg Chla L-1 
Chla (DINOF) Chlorophyll-a concentration Dinoflagellates mg Chla L-1 

 
 
Table 3. 1 List and short description of variables modelled during Dyresm-Caedym simulations.  
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PARAMETERS              
Symbol Group Name Unit Range Reference values Manual 

calibrated values 
(period 1, initial 

day 162) 

Manual 
calibrated values 
(period 2, initial 

day 190) 

µmax CHLOR_J Max Growth Rate  day-1 0.2 - 3.6 3.600 3.600 3.6000 

  CYANO     0.2 - 1.5 0.550 0.600 0.7543 

  CHLOR_N     0.2 - 3.6 2.130 2.130 2.4267 

  CRYPT     0.2 - 1.5 1.480 1.480 1.480 

KP CHLOR_J 
Half Saturation Constant for 

Phytoplankton P uptake mg L-1 0.0001 - 0.04 2.54 E-3 2.54 E-3 2.54 E-3 

  CYANO     0.0003 - 0.04 3.0 E-4 3.0 E-4 3.0 E-4 

  CHLOR_N     0.0001 - 0.04 3.17 E-2 3.17 E-2 3.17 E-2 

  CRYPT     0.001 - 0.04 3.999 E-2 3.999 E-2 3.999 E-2 

KN CHLOR_J 
Half Saturation Constant for 

Phytoplankton N uptake mg L-1 0.02 - 0.2 5.47 E-2 5.47 E-2 5.47 E-2 

  CYANO     0.02 - 0.2 8.46 E-2 8.46 E-2 8.46 E-2 

  CHLOR_N     0.02 - 0.2 9.98 E-2 9.98 E-2 9.98 E-2 

  CRYPT     0.02 - 0.2 2.0 E-2 2.0 E-2 2.0 E-2 

ϑ CHLOR_J 
phytoplankton temperature 

multiplier for growth (no units) 1.06 - 1.14 1.081 1.081 1.081 

  CYANO     1.06 - 1.14 1.092 1.092 1.092 

  CHLOR_N     1.06 - 1.14 1.135 1.135 1.135 

  CRYPT     1.06 - 1.14 1.080 1.080 1.080 

vs CHLOR_J Constant settling velocity ms-1 -5.83 E-4 - 1 E-5 -2.57 E-5 -2.57 E-5 -2.57 E-5 

  CYANO     -5.83 E-4 - 0.5 E-5 -1.12 E-6 -1.12 E-6 -1.12 E-6 

  CHLOR_N     -5.83 E-4 - 1 E-5 0.101 E-4 0.101 E-4 0.101 E-4 

  CRYPT     -5.83 E-4 - 0.5 E-5 4.97 E-6 4.97 E-6 4.97 E-6 

ke CHLOR_J Specific extintion coefficient m2mgChla-1 0.014 - 0.20 1.140 E-1 1.140 E-1 1.140 E-1 

  CYANO     0.014 - 0.15 1.264 E-1 1.264 E-1 1.264 E-1 

  CHLOR_N     0.014 - 0.20 1.876 E-1 1.876 E-1 1.876 E-1 

  CRYPT     0.014 - 0.15 0.89 E-1 0.89 E-1 0.89 E-1 

ϑL  CHLOR_J 
temperature multiplier 
respiration, loss term (no units) 1.05 -1.10 1.095 1.095 1.095 

  CYANO     1.05 -1.10 1.068 1.068 1.068 

  CHLOR_N     1.05 -1.10 1.056 1.056 1.056 

  CRYPT     1.05 -1.10 1.095 1.095 1.095 

vN2   
Temperature multiplier for 

denitrification (no unit) 1.02-1.14 1.080 1.100 1.1000 

KMAN   
Nitrogen Anaerobic organic 

mineralization rate  day-1 0.002-0.05 0.005 0.005 0.005 

KMN   
 Nitrogen Aerobic organic 

mineralization rate day-1 0.002-0.05 0.017 0.017 0.017 

vM   
temperature multiplier for 

mineralization (no unit) 1.02-1.14 1.08 0.800 0.8000 

Nset   
Settling velocity for particulate 

N ms-1 
1.157E-07 - 3.0E-

5* 2.50E-05 2.50E-05 2.50E-05 

alpN   Resuspension rate constant N g m2 s-1 1.73E-08 - 5.0E-5 5.00E-05 5.00E-05 5.00E-05 

KOAP   
 Phosphorous Anaerobic organic 

mineralization rate day-1 0.001-0.07 0.005 0.005 0.005 

KOP   
Phosphorous Aerobic organic 

mineralization rate day-1 0.01-0.80 0.01 0.020 0.0100 

Pset   
Settling velocity for particulate 

P (m/s) 8.1E-07 - 3.5E-5* 3.00E-05 3.00E-05 3.00E-05 

alpP   Resuspension rate constants P g m2 s-1 0-5.6E-07 0 0 0 

Smpp   
Maximum potential sediment 

flux g m2 day-1 0-0.005 0.003 0.003 0.003 
References: Hipsey et al.,2004; Hamilton & Schladow, 1997;Schladow & Hamilton,1997;Bowie et al., 1985;Reynolds, 1984;Margalef, 1983;Jorgensen 
and Bendoricchio, 2001;Di Toro et al., 1975; Rosa, 1985;*DeVicente Immaculada, personal comm. 
**Forcing nutrients  ( year 2007 Automatic and Manual calibration); *** Simulating nutrients 15 days of simulation  

 
Table 3. 2 Parameters values of sensitive model parameters (values of parameters that are not listed here are the default used 
in Dyresm Caedym version 2.1, see Hipsey et al., 2004)
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P1   P1S1   P1S2   

outlet hight  extraction outlet hight extraction outlet hight  extraction 
26 m a.s.l. 81.80% 17 m a.s.l. 100% 41.2 m a.s.l. 100% 

38 m a.s.l. 15.40%      

41.2 m a.s.l. 2.80%         

P2   P2S1   P2S2   
outlet hight extraction outlet hight  extraction outlet hight  extraction 
26 m a.s.l. 98.90% 24.5 m a.s.l 100% 38 m a.s.l. 100% 

38 m a.s.l.  1.10%         

  
Table 3. 3 Outlet heights of extraction and percentage of outflow volume extracted at each height during periods 1 and 
2 (P1, P2) and in scenarios 1 and 2 applied during both time periods (P1S1, P1S2, P2S1, P2S2). 
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    Change in growth rate   

Algae group Initial Layer 
Bottom 
extraction 

Surface 
extraction 

Intermediate 
Extraction 

Cyanobacteria 1 -0.012% none -0.012% 
  2 -0.87% 0.80% none 
Chlorophytes J 1 0% none 0% 
  2 -0.090% 0.045% none 
Chlorophytes N 1 0% none 0% 
  2 -0.094% 0.047% none 
    Relative population change 

Algae group Initial Layer 
Bottom 
extraction 

Surface 
extraction 

Intermediate 
Extraction 

Cyanobacteria 1 -0.1% none -0.1% 
  2 -6.20% 6.02% none 
Chlorophytes J 1 0% none 0% 
  2 -4.23% 2.18% none 
Chlorophytes N 1 0% none 0% 
  2 -2.85% 1.47% none 

 
Table 3. 4 Conceptual model results: relative growth factor variation and population 
increase/decrease, in 15 days, of different phytoplankton groups at different light conditions. 
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  Period 1 (day 162-176)   Period 2 (190-204)   
Variables RMSE Range of variation RMSE Range of variation 

Temperature (ºC) 1.011 10 - 27 2.362 10 - 29 
pH 0.439 5 - 10 0.200 6 - 10 

DO (mg O2/L-1) 2.849 0 - 14 2.240 0 - 10 
PO4 (µg /L-1) 21.139 0 - 200 42.524 0 - 250 
NH4 (mg L-1) 0.579 0 - 1.9  0.161 0 - 1.2 
NO3 (mg L-1) 1.766 0 - 7 0.658 0 - 3 

CYANO  (Chla L-1) 2.859 0 - 8 5.517 0 - 17 
CHLOR (Chla L-1) 1.487 0 - 6 2.783 0 - 3 
CRYPT  (Chla L-1) 0.010 0 - 1 0.094 0 - 1 

 
 
Table 3. 5 Root Mean Squared error calculated between observed and simulated physical, chemical and biological 
variables, modeling two periods of the year 2007. Variables’ ranges are also indicated. 
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FIGURES 
 
 

FIGURE 3.1 
 

 
 
 
Figure 3. 1. El Gergal Reservoir bathymetry and main inflows. Location of the meteorological station (A) 
and sampling/data-recording point (B) is also indicated. 
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FIGURE 3.2 
 

 
 
Figure 3. 2. (A): Time trace of total phytoplankton abundance. The most abundant Reynolds’ groups 
associated to the different sampling occasions are identified by a symbol. Reynolds’ groups B, H, J, L, Y 
were identified, dominated by Diatoms, Cyanobacteria, Chlorophytes, Dinoflagellates and Cryptophytes 
respectively. (B): Index of Community Change variation during year 2007. Dashed line show the 
arbitrary threshold value 0.12.  
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FIGURE 3.3 
 

 
Figure 3. 3. Representation of phytoplankton specific limitation function for growth: light (A), 
phosphorus (B) and temperature function (C). Each function was represented for Cyanobacteria (Cyano), 
Chlorophytes group J (ChlorJ) and Chlorophytes group N (ChlorN). 
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FIGURE 3.4 
 

 
 
 
Figure 3. 4. Simulated water temperature and nutrients profiles (solid black lines) against observations (black dotted 
lines). The number inside subplots indicates the day of year of the first and the second period of simulation. 
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FIGURE 3.5 

 
 
Figure 3. 5. Phytoplankton concentration simulated (sim) and observed (obs) during the first and second period of 
simulation. Different groups were differentiated: Cyanobacteria (CYANO), Chlorophytes Reynolds group J (CHLOR J), 
Cryptophytes (CRYPT), Chlorophytes Reynolds group N (CHLOR N). Concentrations are averaged over volume in the 
first 20m of the water column.  
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FIGURE 3.6 
 

 
 
 
Figure 3. 6. Conceptual model representation: (A) initial conditions, (B) bottom extraction, (C) surface extraction, 
(D) intermediate extraction. Light dependence with water column depth is stated.  
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FIGURE 3.7   
Figure 3. 7. Synthetic experiments results for P1, Cyanobacteria (A) and Chlorophytes J (B) and P2 Cyanobacteria (C) and Chlorophytes N (D). Algal concentration profiles 
correspond to extraction at different levels: black line corresponds to low and bottom extraction (same results); gray line corresponds to surface extraction in P1; discontinued 
black line corresponds to intermediate extraction in P1; discontinued grey line correspond to surface extraction in P2. 
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FIGURE 3.8 
 

 
Figure 3. 8. Left: Physical and chemical reference profiles (discontinued grey lines) against simulated 
profiles (solid black lines) during period 1 and scenario 1 (P1S1). Right: Reference phytoplankton 
concentration profiles (discontinued gray lines) against simulated profiles (solid black lines) during P1S1. 
Outflow levels before (discontinued gray line) and after (solid black line) the scenario are showed. 
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FIGURE 3.9 
 
 

 
Figure 3. 9. Left: Physical and chemical reference profiles (discontinued grey lines) against simulated 
profiles (solid black line) during period 1 and scenario 2 (P1S2). Right: Reference phytoplankton 
concentration profiles (discontinued gray lines) against simulated profiles (solid black lines) during P1S2. 
Outflow levels before (discontinued gray line) and after (solid black line) the scenario are showed. 
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FIGURE 3.10  
 
 

 
 
Figure 3. 10. Left: Physical and chemical reference profiles (discontinued grey lines) against simulated 
profiles (solid black lines) during period 2 scenario 1 (P2S1). Right: Reference phytoplankton 
concentration profiles were the same as simulated profiles (solid black lines) during P2S1. Outflow levels 
before (discontinued gray line) and after (solid black line) the scenario are showed. 
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FIGURE 3.11 
 
 

 
Figure 3. 11. Left: Physical and chemical reference profiles (discontinued grey lines) against simulated 
profiles (solid black lines) during period 2 scenario 2 (P2S2). Right: Reference phytoplankton 
concentration profiles (discontinued gray lines) against simulated profiles (solid black lines) during P2S2. 
Outflow levels before (discontinued gray line) and after (solid black line) the scenario are showed. 
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FIGURE 3.12 
 
 

 
 
 
 
Figure 3. 12. Reference phytoplankton concentration profiles (discontinued gray lines) against simulated profiles (solid 
black lines) during P1S2 (A and B), simulating Chlorophytes J with settling velocity equal to zero and during P2S2 (C and 
D) increasing outflow rate. Outflow levels before (gray line) and after (black line) the scenario are showed. 
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Conclusiones Generales 
 
 
[1] El mayor problema encontrado por los investigadores que trabajan con modelos de 
sucesión consiste en (1) cómo establecer el nivel de detalle utilizado en la descripción 
de las características biológicas del modelo (compartimentación biológica), y (2) cómo 
determinar y evaluar la biomasa de cada grupo de fitoplancton por separado. La 
compartimentación biológica de un modelo de sucesión debería estar reducida al 
mínimo para limitar su complejidad, a condición de que los grupos principales de 
fitoplancton y sus relaciones con el ambiente físico-químico estén adecuadamente 
representados. La determinación de biomasa para cada grupo de la comunidad se evalúa 
en términos de concentración de clorofila-a, concentración de carbono, peso seco y 
biovolúmenes. Todos ellos son un análogo de la biomasa y no la miden explícitamente. 
La concentración de clorofila-a es la variable mas usada para determinar la biomasa, 
aunque obtener observaciones de concentración de clorofila-a por grupo no es fácil. La 
determinación de biomasa para grupos separados debería basarse en el conteo de células 
de fitoplancton pertenecientes a cada grupo y en la conversión del número de células a 
biomasa. Los factores de conversión, que expresan biomasa por célula, deberían ser 
obtenidos mediante observaciones específicas en el lugar de estudio. 
 
 [2] Se han propuesto y aplicado muchos enfoques para simular la sucesión del 
fitoplancton en lagos y embalses. Los modelos mecanicistas son preferidos debido a su 
habilidad para representar de forma explícita los procesos de interacció entre los 
diferentes componentes de un ecosistema acuático. Esta habilidad determina que sean 
un instrumento útil para la investigación y para la toma de decisiones en la gestión de 
lagos y embalses. Sin embargo, comparar el rendimiento de los diferentes modelos 
mecanicistas propuestos es extremadamente difícil utilizando exclusivamente la 
información contenida en la literatura debido a que: (1) la longitud del intervalo de 
simulación, (2) la calidad de los datos observados para establecer el rendimiento de un 
modelo y (3) el tipo de cuantificación del error (grafico vs. matemático, o si se compara 
la biomasa total de la comunidad o de los grupos de fitoplancton por separado) varían 
considerablemente entre aplicaciones. Es necesario un ejercicio adecuado de 
comparación entre modelos para definir un modelo de sucesión que incorpore los 
aspectos más interesantes de los modelos actuales. Para facilitar esta comparación se 
sugiere: (a) la aplicación de todos los modelos a un grupo de localidades comunes; (b) 
utilizar una base de datos común adquirida con la misma resolución temporal y durante 
un periodo de tiempo suficientemente largo; y (c) utilizar una base de datos completa en 
la cual la biomasa de diferentes grupos de fitoplancton haya sido calculada y expresada 
en diferentes unidades. Este tipo de comparación entre modelos no se ha realizado 
todavía en la literatura. 
 
 [3] Debido a su extraordinaria complejidad, asociada a la no-linealidad de las 
relaciones consideradas y al elevado número de parámetros empleados, los modelos 
mecanicistas de sucesión existentes son difíciles de implementar y están todavía lejos de 
poder predecir con exactitud el comportamiento de grupos específicos de fitoplancton. 
Los errores en la predicción, comparando la evolución de la biomasa observada y 
simulada de grupos de fitoplancton, llegan al 50% en magnitud y a un mes de intervalo 
entre máximos de biomasa simulados y observados. Si funcionaran correctamente, estos 
modelos serian extremadamente útiles como instrumento de investigación y para la 
gestión de la calidad del agua. Se han sugerido algunas propuestas para facilitar la 
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aplicabilidad de estos modelos, entre las cuales: (a) le evaluación de la complejidad de 
un modelo para describir correctamente los procesos dinámicos de un ecosistema; (b) el 
desarrollo de nuevas estrategias de medición de biomasa o de metodologías para valorar 
la biomasa por grupo; (c) la aplicación de modelos con los mismos  parámetros en 
diferentes sistemas mediante técnicas de calibración automáticos eficientes; (d) la 
investigación de la fisiología del fitoplancton para determinar coeficientes que 
expliquen la elevada variabilidad en los valores de los parámetros; y (e) la integración 
entre el desarrollo del modelo y el diseño de adquisición de datos experimentales en el 
campo. Frecuentemente, se han observado errores más elevados para modelos con un 
número de parámetros elevados. Por lo tanto, al decidir el número de grupos de un 
modelo de sucesión se debería preferir la opción más simple, a condición de que la 
complejidad del ecosistema estudiado sea adecuadamente representada.  
 [4] Se ha propuesto un algoritmo automático de optimización global, aplicado de 
forma secuencial, para la calibración de un modelo unidimensional, mecanicista, 
ecológico y acoplado para el embalse de El Gergal. Primero se ha realizado un análisis 
de sensibilidad para identificar los parámetros a incluir en el proceso de calibración. En 
segundo lugar, se ha aplicado el algoritmo de optimización global para calibrar el 
modelo para cada grupo de fitoplancton de forma secuencial. Finalmente, se han 
simulado todos los grupos funcionales utilizando los valores de los parámetros 
obtenidos en las calibraciones grupo a grupo. El modelo calibrado fue capaz de predecir 
los aspectos relevantes de la sucesión, como los periodos de máxima concentración y la 
secuencia en la que los diferentes grupos aparecen como dominantes en la comunidad 
fitoplanctónica. Los errores encontrados fueron de un orden de magnitud parecido a 
otros obtenidos mediante otros modelos de sucesión.  
 
 [5] Cuantos más grupos de fitoplancton se incluyen en el modelo, más aumenta 
la diferencia entre el modelo calibrado y las observaciones, lo que sugiere que existen 
fuertes interacciones no lineales entre los sub-modelos que describen cada grupo, e 
indica que el nivel de compartimentación funcional en el modelo único debería ser 
mínimo. El éxito del proceso de calibración depende de forma crítica en la coherencia 
entre la estructura funcional de la comunidad y la descripción utilizada en el modelo 
(obtenida mediante observaciones). Cada grupo incluido en el modelo presenta una 
respuesta específica a las condiciones ambientales. A su vez, las observaciones deberían 
diferenciar entre grupos con distintas necesidades ambientales.  
 
 [6] Las simulaciones realizadas mediante el modelo calibrado de El Gergal 
sugieren que la composición de la comunidad fitoplanctónica puede ser modificada 
considerablemente a corto plazo por cambios en las salidas de agua. Los mecanismos 
por los cuales las salidas de agua afectan a la comunidad de fitoplancton son múltiples. 
Uno es puramente físico, y consiste en la remoción selectiva de las especies que se 
desarrollan al mismo nivel o cerca de la extracción. Las salidas de agua pueden también 
inducir cambios en las condiciones ambientales experimentadas por las algas y pueden 
promover el desarrollo de algunos grupos de fitoplancton en vez de otros, dependiendo 
de su respuesta específica a luz, disponibilidad de nutrientes y temperatura. La magnitud 
del cambio en las condiciones ambientales experimentada por las células del plancton y 
generadas por las salidas de agua depende de la tasa de extracción de agua y de la 
batimetría del embalse.  
 
 [7] Se observan cambios en las poblaciones fitoplantónicas cuando se modifica 
la salida de agua de tal forma que se varía la situación relativa de la salida respecto a la 
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profundidad donde se sitúan las algas. No se observan cambios cuando las extracciones 
se desplazan desde una zona más profunda de la que ocupa el fitoplancton, hacia niveles 
aún más profundos. 
 
 [8] Las especies que son tolerantes a poca disponibilidad de nutrientes, sensibles 
a limitación de luz y que tienen baja velocidad de sedimentación (Cianobacterias, grupo 
H), están favorecidas por la extracción superficial porque su posición se traslada hacia 
la superficie. Las especies que son tolerantes a baja luminosidad y que tienen baja 
velocidad de sedimentación (algunos grupos de Clorófitas) están favorecidas por salidas 
de agua profundas, porque su posición se traslada hacia el fondo. Para especies con alta 
velocidad de sedimentación el movimiento hacia las capas no iluminadas ocurre más 
rápidamente que en el caso anterior, evitando el crecimiento. El cambio de nivel de 
extracción desde la zona profunda hacia el fondo del embalse no afecta al desarrollo de 
las algas en superficie, y el grupo de fitoplancton dominante en este caso depende de las 
condiciones ambientales en el momento de la extracción, y no de los efectos derivados 
por el cambio de nivel de salida del agua.  
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General Conclusions 
 

 
[1] The major problem faced by modelers working with succession models 

consists of (1) how to establish the level of detail used in the description of the 
biological features of the model (biological segmentation), and (2) how to assess and 
evaluate the biomass of each phytoplankton group separately. The biological 
segmentation of a succession model should be reduced to a minimum to limit its 
complexity, as long as the main phytoplankton groups of the ecosystem studied and 
their relationships with the physical-chemical environment are adequately represented. 
Biomass assessment of any given group in the community is evaluated in terms of 
Chlorophyll-a concentration, carbon concentration, wet/dry weight, and bio-volumes, 
being all a king of analogue of the biomass and not measuring it explicitly.  
Chlorophyll-a concentration is the most frequent variable used to assess biomass even if 
gathering observations of Chlorophyll-a concentration on a per group basis is not 
straightforward. Biomass assessment of separate groups should be based on counting 
phytoplankton cells pertaining to each group and later converting the number of cells to 
biomass.  Conversion factors, expressing the biomass per cell, should be obtained from 
site-specific observations.   
 

[2] Many approaches have been proposed and applied to simulate phytoplankton 
succession in lakes and reservoirs. Mechanistic models are preferred due to their ability 
to represent explicitly the processes by which the different components of an aquatic 
ecosystem interact, which makes them a very useful tool both for research and 
management purposes. Comparing the performances of the many mechanistic models 
proposed, though, is extremely difficult if one uses only literature sources and results, 
due to the fact that (1) the length of time simulated, (2) the quality of the observational 
data set used to assess the model performance, and (3) the approaches used to quantify 
the model error (graphical vs. mathematical, or whether the total biomass of the 
community or the biomass expressed on a group basis are compared) varies 
considerably among model applications. Adequate inter-comparison exercises, though, 
are needed in order to define a successful strategy to model succession that brings 
together the best aspects of existing modeling approaches. To facilitate these inter-
comparison exercises it is suggested: (a) to apply all models to a common set of sites, 
(b) to use a common data set collected with the same temporal and group resolution 
during a sufficiently long period of time; and (c) to use a complete data set in which the 
biomass of different genera and groups has been discriminated and expressed in 
different units. This type of inter-comparison exercises has not been done, yet, in the 
literature. 

 
[3] Due to its extraordinary complexity, associated to the non-linearity of the 

relationships that are accounted for and the large number of parameters used, existing 
mechanistic succession models are difficult to use, and still far from being able to 
predict accurately the behavior of separate specific phytoplankton groups. Errors in 
model predictions are of up to 50% in magnitude and one month in timing, when 
comparing observed and simulated phytoplankton biomass of separate groups. If they 
worked properly, these models can be extremely useful as a research tool and also for 
water quality management. Several tasks are suggested that should be followed to 
increase the applicability of these modes, which include: (a) the evaluation of the model 
complexity required to correctly describe the dynamic processes of an ecosystem; (b) 
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the development of new strategies of biomass measurements or assessment 
methodologies on a per-group basis; (c) the applicability of model parameters at 
different sites, through elaboration of rapid and efficient automated calibration methods; 
(d) the increase of physiological research to ascertain parameter coefficients explaining 
the large variation in reported parameter values; and (e) the integration between model 
development and field sampling design. Frequently, larger errors have been reported for 
models with a larger number of phytoplankton groups, so, in deciding the level of group 
detail of a succession model, the simplest possible option should be preferred, as long as 
the complexity of the ecosystem studied is adequately represented.   
 

 [4] A global, hybrid and automated optimization algorithm, applied in a 
sequential manner, is proposed for the calibration of a one-dimensional, process-based 
(or mechanistic) and coupled physical-ecological model for El Gergal Reservoir.  First, 
we performed a sensitivity analysis to identify the parameters to include in the 
calibration process, and then applied a global optimization algorithm to fit the model for 
each algal group one by one in a sequential fashion. Finally we simulated all the 
functional groups adopting parameter values established during the group-by-group 
calibrations. The calibrated model was capable to predict relevant aspects of the 
succession, such as the timing of the peaks, and the sequence in which the different 
groups appear as dominant in the phytoplankton community. The errors encountered 
were similar to those reported in other succession modeling exercises.  
 

[5] The larger the number of groups included in the model, the larger were the 
differences between the calibrated model and observations, which suggests that exist 
strong and non-linear interactions among group sub-models and that the level of 
functional segmentation in the model should be minimized. The success of the 
calibration process critically depends on the consistency between the functional 
structure of the community, and the description made in the model and achieved 
through observations of that structure. Each group included in the model should 
represent a specific response to environmental conditions. The observations should also 
discriminate between groups with different environmental requirements.  
 

[6] Simulations conducted with the calibrated model of El Gergal suggest that 
the composition of the phytoplankton community can be significantly modified on the 
short-term by withdrawals operations. The mechanisms by which withdrawals affect the 
phytoplankton community are multiple. One of them is purely physical and consists of 
the selective removal of all the species developing at or near withdrawal level. Water 
withdrawals can also induce changes in the environmental conditions experienced by 
algae, and may promote the development of certain phytoplankton groups in detriment 
of others, according to their specific responses to light, nutrients and temperature. The 
magnitude of the changes in environmental conditions experienced by phytoplankton 
cells and induced by withdrawal depends on the outflow rates and on the reservoir 
bathymetry. 

 
[7] Changes in the size of the population of phytoplankton groups are observed 

when shifting withdrawal above, below or directly from layers containing algae. They 
were not observed when intake levels were shifted from below the layers hosting the 
phytoplankton community to lower levels.   
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[8] Species that are tolerant to nutrient depletion, sensitive to light limitation and 
low settling velocities (e.g. Cyanobacteria Reynolds group H), are favored by surface 
withdrawals  because their position is shifted toward the surface.  Species that are 
tolerant to low light conditions and have low settling velocities (e.g. Chlorophytes) are 
favored when extracting from deep withdrawals because they can develop even if their 
position is shifted towards the bottom. For species with high settling velocities the shift 
towards not illuminated layer would occur more rapidly than the previous case, 
preventing growth. A withdrawal change from deep to bottom layers do not affect the 
algal development at surface and the dominant phytoplankton group depends on the 
environmental conditions at time of extraction, rather than on the effect of the 
withdrawal change. 
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